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Abstract

Aksenov proved that in a planar graph G with at most one trian-
gle, every precoloring of a 4-cycle can be extended to a 3-coloring of G.
We give an exact characterization of planar graphs with two triangles in
which some precoloring of a 4-cycle does not extend. We apply this char-
acterization to solve the precoloring extension problem from two 4-cycles
in a triangle-free planar graph in the case that the precolored 4-cycles
are separated by many disjoint 4-cycles. The latter result is used in fol-
lowup papers to give detailed information about the structure of 4-critical
triangle-free graphs embedded in a fixed surface.

1 Introduction

The interest in the 3-coloring properties of planar graphs was started by a
celebrated theorem of Grötzsch [11], who proved that every planar triangle-
free graph is 3-colorable. While in general, deciding 3-colorablity of a planar
graph is an NP-complete problem [9], there are many other sufficient conditions
guaranteeing 3-colorability, see e.g. the survey of Montassier [15].

For a long time, the question of the complexity of deciding whether a triangle-
free graph embedded in a fixed surface (other than the sphere) is 3-colorable was
open. The question was resolved for the projective plane by the result of Gimbel
and Thomassen [10], and in a far reaching generalization, Dvořák, Král’ and
Thomas [6] proved that there exists a linear-time algorithm for this problem for
any fixed surface, even if a bounded number of vertices have prescribed colors.
In order to design their algorithm, they show in [5] that every triangle-free
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graph embedded in a fixed surface exhibits a special structure that determines
its 3-coloring properties.

Before we describe their structural result, let us recall some definitions. A
surface is a two-dimensional manifold, possibly with boundary. By the surface
classification theorem, each surface can be (up to homeomorphism) obtained
from the sphere by adding a finite number of handles and crosscaps, and in
the case of surfaces with boundary, by drilling a finite number of holes. The
disk is the sphere with a hole and the cylinder is the sphere with two holes.
An embedding of a graph G in a surface Σ is a function α that maps vertices
of G to distinct points in Σ and edges of G to simple curves in Σ intersecting
only in their endpoints, such that for each uv ∈ E(G), α(u) and α(v) are the
endpoints of the curve α(uv) and no other vertices are mapped to points in
this curve. Throughout the paper, graphs will generally be embedded in some
surface; we usually keep the embedding implicit and we use terms such as vertex
and edge to refer to both the elements of the graph and the points or curves
in the surface that represent them. A face of a graph G embedded in Σ is a
connected component of the surface after removing the points and curves of the
embedding of G; in particular, if Σ is a surface with boundary and a cycle C
in G traces a component of the boundary, then C does not necessarily bound a
face. A closed walk in G is contractible if the closed curve tracing this walk in
the surface is null-homotopic. A contractible cycle bounds a disk in Σ, unique
unless Σ is the sphere; the cycle is facial if the interior of such a disk is a face
of G.

We are now ready to state the structural result of Dvořák et al. [6]. Let G
be a graph embedded in a surface Σ so that every contractible 4-cycle is facial,
and suppose G intersects the boundary of Σ in a set X of k vertices (which we
view as precolored). Then Σ can be cut in to a bounded number of pieces along
curves tracing closed walks in G, so that

• the total number of vertices contained in the boundaries of the pieces is
bounded by a constant depending only on Σ and k,

• each piece Π and the subgraph H of G drawn in Π satisfies one of the
following:

1. every 3-coloring of the vertices of H contained in the boundary of Π
extends to a 3-coloring of H; or,

2. a 3-coloring of the vertices of H contained in the boundary of Π ex-
tends to a 3-coloring of H if and only if it satisfies a specific condition
(“the winding number constraint”); or,

3. Π is homeomorphic to the cylinder (whose boundary consists of two
cycles in H of arbitrary length) and all faces of H have length 4; or,

4. Π is homeomorphic to the cylinder whose boundary consists of two
cycles in H of length 4.

Thus, to determine whether a precoloring of X extends to a 3-coloring G, we can
try all the (constantly many) extensions to 3-colorings of the boundary vertices
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of the pieces, and then test whether one of them extends to all the pieces. In
the first two possibilities for the pieces of the structure we have a complete
information about which colorings of the boundaries of the pieces extend, and
the last part is thus trivial. However, in the last two cases the information is
much more limited. While this is sufficient for the purposes of the algorithm
of [6], it would be preferable to have a more detailed structural theorem where
the 3-coloring properties of all the pieces are known. This is the main aim of
this series of papers.

In this paper we focus on the last subcase of a graph embedded in the
cylinder with boundary cycles of length 4. Note that if such a graph contains
only a bounded number of separating 4-cycles, then we can further cut the
surface along them and by using the ideas of [5], we can subdivide the pieces to
a bounded number of subpieces satisfying the conditions of one of the first two
well-understood cases of the structure theorem. Hence, it is interesting to study
the graphs in cylinder with many separating 4-cycles, and this is the topic of
this paper.

Let us now give a few definitions enabling us to state the main result more
precisely. In this paper, we generally consider graphs embedded in the sphere,
the disk, or the cylinder. Suppose that G is a graph embedded in a surface
Σ with boundary and consider a component Θ of the boundary (Θ is a simple
closed curve bounding a hole in the surface). Let ΣΘ denote the surface obtained
from Σ by closing the hole, i.e., by identifying Θ with the boundary of an open
disk ΛΘ disjoint from Σ. We say that Θ is surrounded in G if the embedding of
G in ΣΘ has a face homeomorphic to an open disk containing ΛΘ and bounded
by a cycle R. Equivalently, the part of the surface Σ between R and Θ intersects
the drawing of G exactly in R and all non-contractible simple curves contained
in this part are homotopically equivalent to the closed curve tracing R. In that
case, we say that R is the ring surrounding the hole.

From now on, we always assume that if a graph G is embedded in a surface
with boundary, then all the holes of the surface are surrounded. Note that
the ring may or may not trace the boundary of the hole it surrounds, and in
particular the rings surrounding different holes do not have to be disjoint (or
even distinct, in case that G is just a cycle). A face f of G is a non-ring face if
f is not contained in any of the parts of the surface between the holes and the
rings that surround them.

We construct a sequence of graphs T1, T2, . . . , which we call Thomas-Walls
graphs (Thomas and Walls [16] proved that they are exactly the 4-critical graphs
that can be drawn in the Klein bottle without contractible cycles of length at
most 4). Let T1 be equal to K4. For n ≥ 1, let u1u3 be any edge of Tn that
belongs to two triangles and let Tn+1 be obtained from Tn − u1u3 by adding
vertices x, y and z and edges u1x, u3y, u3z, xy, xz, and yz. The first few graphs
of this sequence are drawn in Figure 1. For n ≥ 2, note that Tn contains unique
4-cycles C1 = u1u2u3u4 and C2 = v1v2v3v4 such that u1u3, v1v3 ∈ E(G). Let
T ′n = Tn−{u1u3, v1v3}. We also define T ′1 to be a 4-cycle C1 = C2 = u1v1u3v3.
We call the graphs T ′1, T ′2, . . . reduced Thomas-Walls graphs, and we say that
u1u3 and v1v3 are their interface pairs. Note that T ′n has an embedding in the
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Figure 1: Some Thomas-Walls graphs (with two different drawings of T4).

cylinder with rings C1 and C2.
A patch is a graph F drawn in the disk with ring C of length 6 that traces

the boundary of the disk, such that C is an induced cycle in F , every face of
F has length 4, and every 4-cycle in F is facial. Let G be a graph embedded
in the sphere, possibly with holes. Let G′ be any graph which can be obtained
from G as follows. Let S be an independent set in G such that every vertex of
S has degree 3. For each vertex v ∈ S with neighbors x, y and z, remove v, add
new vertices a, b and c and a 6-cycle C = xaybzc (where a, b, and c are drawn
very close to the original location of v and the edges of C are drawn very close
to the curves representing the edges vx, vy, and vz), and draw any patch with
ring C in the disk bounded by C. We say that any such graph G′ is obtained
from G by patching. This operation was introduced by Borodin et al. [3] in the
context of describing planar 4-critical graphs with exactly 4 triangles.

Consider a reduced Thomas-Walls graph G = T ′n for some n ≥ 1, with
interface pairs u1u3 and v1v3. A patched Thomas-Walls graph is any graph
obtained from such a graph G by patching, and u1u3 and v1v3 are its interface
pairs (note that u1, u3, v1, and v3 have degree two in G, and thus they are not
affected by patching).

Let G be a graph embedded in the sphere with n holes (n ∈ {1, 2}), with
rings Ci = xiyiziwi of length 4, for 1 ≤ i ≤ n. Let y′i be either a new vertex
or yi, and let w′i be either a new vertex or wi. Let G′ be obtained from G by
adding 4-cycles xiy

′
iziw

′
i forming the new rings. We say that G′ is obtained by

framing on pairs x1z1, . . . , xnzn.
Let G be a graph embedded in the cylinder with rings C1 and C2 of length

three, such that every non-ring face of G has length 4. We say that such a
graph G is a 3, 3-quadrangulation. Let G′ be obtained from G by subdividing
at most one edge in each of C1 and C2. We say that such a graph G′ is a near
3, 3-quadrangulation.

We say that a graph G embedded in the cylinder is tame if G contains no
contractible triangles, and all triangles of G are pairwise vertex-disjoint. Let
G be a tame graph embedded in the cylinder with rings of length at most 4.
We say that G is a chain of graphs G1, . . . , Gn, if there exist non-contractible
(≤4)-cycles C0, . . . , Cn in G such that

• the cycles are pairwise vertex-disjoint except that for (i, j) ∈ {(0, 1), (n, n−
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1)}, Ci can intersect Cj if Ci is a 4-cycle and Cj is a triangle,

• for 0 ≤ i < j < k ≤ n the cycle Cj separates Ci from Ck,

• the cycles C0 and Cn are the rings of G,

• every triangle of G is equal to one of C0, . . . , Cn, and

• for 1 ≤ i ≤ n, the subgraph of G drawn between Ci−1 and Ci is isomorphic
to Gi.

We say that C0, . . . , Cn are the cutting cycles of the chain. The main result of
this paper is the following.

Theorem 1.1. There exists an integer c ≥ 0 such that the following holds. Let
G be a tame graph embedded in the cylinder with rings C1 and C2 of length at
most 4. If G is a chain of at least c graphs, then

• every precoloring of C1 ∪ C2 extends to a 3-coloring of G, or

• G contains a subgraph H obtained from a patched Thomas-Walls graph by
framing on its interface pairs, with rings C1 and C2, or

• G contains a near 3, 3-quadrangulation H with rings C1 and C2 as a sub-
graph.

Aksenov [2] proved the following strengthening of Grötzsch’s theorem (fixing
a previous flawed proof of this fact by Grünbaum [12]).

Theorem 1.2 (Aksenov [2]). Every planar graph with at most 3 triangles is
3-colorable.

In the course of the proof, Aksenov also established another interesting fact.

Theorem 1.3 (Aksenov [2]). Let G be a graph drawn in the cylinder with a
ring C of length at most 4. If every triangle in G is non-contractible, then every
precoloring of C extends to a 3-coloring of G.

As a part of the proof of Theorem 1.1, we need to prove a strengthening of
Theorem 1.3 and describe the 3-coloring properties of graphs embedded in the
disk with a ring C of size 4 and with exactly two triangles. To state this result
(Theorem 1.4 below) of independent interest, it is convenient to introduce the
notion of a critical graph.

Let C be the union of the rings of a graph G embedded in a surface (C is
empty when G is embedded in a surface without boundary). By a precoloring of
C, we mean any proper 3-coloring of C. We say that G is critical if G 6= C and
for every proper subgraph G′ of G such that C ⊆ G′, there exists a precoloring
of C that extends to a 3-coloring of G′, but not to a 3-coloring of G; that is,
removing any edge or vertex not belonging to C affects the set of precolorings
of C that extend to a 3-coloring of the graph.
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Figure 2: Graphs related to Theorem 1.4.

In particular, consider any graph H embedded in a surface, let C be the
union of its rings, and let G be an inclusionwise-minimal subgraph of H such
that C ⊆ G and every precoloring of C that extends to a 3-coloring of G also
extends to a 3-coloring of H. Then either G = C or G is critical, and G carries
all the information regarding which precolorings of C extend to H; we say that
G is a critical skeleton of H. Consequently, it suffices to consider the properties
of critical graphs, and we will do so in Theorem 1.4 as well as in many of the
further results.

We need another construction related to Thomas-Walls graphs. For n ≥ 1,
let G = T ′n be a reduced Thomas-Walls graph with rings C1 = u1u2u3u4 and
C2 = v1v2v3v4 and interface pairs u1u3 and v1v3. Consider the embedding
of T ′n in the disk, obtained by closing the hole in the face bounded by C1.
Let G′ be a graph obtained from G by either adding the edge u1u3, or the
subgraph depicted in Figure 2(a) (this graph is often called Havel’s quasiedge,
since Havel [13] used it to disprove a conjecture by Grünbaum that every planar
graph without intersecting triangles is 3-colorable). A patched Havel-Thomas-
Walls graph is any graph obtained from such a graph G′ by patching, and v1v3

is its interface pair.
Let a tent be a graph embedded in the disk with the ring v1v2v3v4, containing

vertices z1 adjacent to v1 and v2, and z2 adjacent to v3 and v4, such that all
faces other than v1v2z1 and v3v4z2 have length 4, and v1v3, v2v4 6∈ E(G), see
Figure 2(c).

Theorem 1.4. Let G be a graph embedded in the disk with at most two triangles
and with the ring of length 4. If G is critical, then G is either a tent, or obtained
from a patched Havel-Thomas-Walls graph by framing on its interface pair.

It is important to note that the precolorings of the rings which extend to
graphs appearing in the conclusions of Theorems 1.1 and 1.4 can be precisely de-
scribed, as we show in Section 2 (Lemma 2.7 for framed patched Thomas-Walls
graphs, Lemma 2.11 for near 3, 3-quadrangulations, Corollary 2.6 for tents, and
Lemma 2.8 for framed patched Havel-Thomas-Walls graphs). In particular,
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in the structure theorem we aim for, it is satisfactory to have pieces that are
patched reduced Thomas-Walls graphs.

Furthermore, in Theorem 1.1, all non-ring faces f of the graphs H are
bounded by contractible (≤ 5)-cycles, and the subgraph G[f ] of G drawn in
the closure of f contains no triangles. Consequently, every precoloring of the
cycle bounding f extends to a 3-coloring of G[f ] (see e.g. Lemma 2.4 below).
We conclude that a precoloring of the rings of G extends to a 3-coloring of G if
and only if it extends to a 3-coloring of H.

The rest of the paper is structured as follows. In Section 2, we describe
possible colorings of the graphs appearing in Theorems 1.1 and 1.4. Section 3
is devoted to examining a chain G of graphs, many of which are not quad-
rangulations, showing that either all precolorings of the rings of G extend, or
that the rings of G have length 4 and all their precolorings which extend to
a 3-coloring of the reduced Thomas-Walls graph T ′4 also extend to G. This
allows us to prove Theorem 1.4 in Section 4. In Section 5, we continue by exam-
ining chains that contain a long subchain consisting only of quadrangulations
and show that either every precoloring of the rings extends or the chain is a
near 3, 3-quadrangulation. We combine these results and prove Theorem 1.1 in
Section 6.

2 Colorings of the special graphs

In this section we study which precolorings of rings extend in the special graphs
appearing in Theorems 1.1 and 1.4. We examine patched Thomas-Walls graphs
in Lemma 2.7, patched Havel-Thomas-Walls graphs in Lemma 2.8 and tame
almost 3, 3-quadrangulations in Lemma 2.11.

We need the following result of Aksenov on the extendability of the precol-
oring of a 5-cycle.

Theorem 2.1 (Aksenov [2]). Let G be a graph embedded in the disk with a
ring C = v1v2v3v4v5 tracing its boundary. Suppose that G contains exactly one
triangle T . If G is critical, then all faces of G other than the one bounded by T
have length 4. Furthermore, if ψ is the 3-coloring of C given by ψ(v1) = ψ(v3) =
1, ψ(v2) = ψ(v4) = 2 and ψ(v5) = 3 and ψ does not extend to a 3-coloring of
G, then v2 and v3 are incident with T .

We also need the following result of Gimbel and Thomassen [10] on the
extendability of the precoloring of a (≤6)-cycle.

Theorem 2.2 (Gimbel and Thomassen [10]). Let G be a triangle-free graph
drawn in the disk with a ring C of length at most 6 tracing its boundary. If G
is critical, then |C| = 6 and every face of G has length 4.

Furthermore, suppose G′ is a graph drawn in the disk with a ring C ′ =
v1 . . . v6 of length 6 tracing its boundary, such that all faces of G′ have length 4.
Then a precoloring ψ of C ′ does not extend to a 3-coloring of G′ if and only if
one of the following conditions holds.
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• There exists i ∈ {1, 2, 3} such that vivi+3 ∈ E(G′) and ψ(vi) = ψ(vi+3),
or

• ψ(v1) = ψ(v4) 6= ψ(v2) = ψ(v5) 6= ψ(v3) = ψ(v6) 6= ψ(v1).

Theorem 2.2 has an important consequence for patches.

Corollary 2.3. Let G be a patch with ring xaybzc, and let H be the graph with
vertex set {x, y, z, v} and edges xv, yv and zv. Then a 3-coloring of {x, y, z}
extends to a 3-coloring of G if and only if it extends to a 3-coloring of H.

Proof. Let ψ be a 3-coloring of {x, y, z} and let C = xaybzc be the ring of G.
If ψ assigns three different colors to the vertices x, y, and z, so that ψ does not
extend to a 3-coloring of H, then ψ extends uniquely to a 3-coloring ψ′ of C,
and ψ′ does not extend to a 3-coloring of the patch G by the second part of
Theorem 2.2. Hence, ψ does not extend to a 3-coloring of G.

Suppose now that ψ extends to a 3-coloring of H, and thus by symmetry we
can assume that ψ(x) = ψ(y). There exists a 3-coloring ψ′ of C extending ψ
such that ψ′(a) 6= ψ′(z). Since x and y have the same color and one of them is
incident to each of b and c, we have ψ′(x) 6= ψ′(b) and ψ′(y) 6= ψ′(c). Again by
the second part of Theorem 2.2, ψ′ (and thus also ψ) extends to a 3-coloring of
G.

That is, replacing a vertex of degree three by a patch does not affect the
3-colorability of the graph. We also often use the following mild strenthening of
Theorem 2.2.

Lemma 2.4. Let G be a graph drawn in a surface Σ. Let K be a closed walk
of length at most 6 in G forming the boundary of an open disk Λ ⊂ Σ, such
that no contractible triangle of G is contained in the closure of Λ. Let G′ be the
subgraph of G drawn in the closure of Λ. If a 3-coloring ψ of K does not extend
to a 3-coloring of G′, then |K| = 6, G′ has a subgraph containing K whose faces
in Λ all have length 4, K = v1 . . . v6, and either there exists i ∈ {1, 2, 3} such
that vivi+3 ∈ E(G′) and ψ(vi) = ψ(vi+3), or ψ(v1) = ψ(v4) 6= ψ(v2) = ψ(v5) 6=
ψ(v3) = ψ(v6) 6= ψ(v1).

Proof. Let ∆ be a closed disk and let θ0 be a homeomorphism from the interior
of ∆ to Λ that extends to a continuous function θ from ∆ to the closure of
Λ. Let GΛ = θ−1(G′) and K ′ = θ−1(K). Note that GΛ is embeded in ∆ and
K ′ is its ring of length |K| tracing the boundary of ∆. Furthermore, if K is a
cycle, then GΛ is isomorphic to G′, and if K is not a cycle (|K| = 6 and K is
a union of two intersecting triangles), then GΛ is obtained from G′ by splitting
the vertices appearing multiple times in K in the natural way.

Observe that ψ′ = ψ ◦ θ is a 3-coloring of K ′ that extends to a 3-coloring of
GΛ if and only if ψ extends to a 3-coloring of G. Let G′Λ be a critical skeleton of
GΛ. If G′Λ = K ′, then ψ′ extends to a 3-coloring of G. Otherwise, Theorem 2.2
implies that |K ′| = 6 and all faces of G′Λ have length 4, and thus θ(G′Λ) is a
subgraph of G′ whose faces in Λ all have length 4. Furthermore, if ψ′ does
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not extend to a 3-coloring of G′Λ (and equivalently, ψ does not extend to a 3-
coloring of G′), then ψ must satisfy one of the conditions from the statement of
Lemma 2.4 by the second part of Theorem 2.2.

Let us give an observation about critical graphs that is often useful.

Lemma 2.5. Let G be a critical graph drawn in the sphere with holes.

• Every vertex v ∈ V (G) that does not belong to the rings has degree at least
three.

• If K is a (≤ 5)-cycle in G forming the boundary of an open disk Λ, and
the closure of Λ does not contain any contractible triangle of G, then Λ is
a face of G.

• If K is a closed walk of length 6 in G forming the boundary of an open
disk Λ, and the closure of Λ does not contain any contractible triangle of
G, then either Λ is a face of G, or all faces of G contained in Λ have
length 4.

Proof. Let C be the union of the rings of G, and consider any vertex v ∈
V (G) \ V (C). Suppose for a contradiction that v has degree at most 2. Let ψ
be any 3-coloring of C that extends to a 3-coloring ϕ of G − v. Then ψ also
extends to a 3-coloring of G, by giving the vertices of V (G)\{v} the same color
as in the coloring ϕ and by choosing a color of v distinct from the colors of its
neighbors. This contradicts the assumption that G is critical.

The second and third claim follow similarly using Lemma 2.4.

Furthermore, colorings of tents can be described using Theorem 2.2. Con-
sider a 4-cycle C = u1u2u3u4 and its 3-coloring ψ. We say that ψ is u1-diagonal
if ψ(u1) 6= ψ(u3), and that it is bichromatic if ψ(u1) = ψ(u3) and ψ(u2) = ψ(u4).
Note that every 3-coloring of C is u1-diagonal, u2-diagonal, or bichromatic. The
following claim is proved analogously to Corollary 2.3.

Corollary 2.6. If G is a tent with the ring C = v1v2v3v4, then exactly the
v1-diagonal and v2-diagonal colorings of C extend to 3-colorings of G.

Let G0 be either a reduced Thomas-Walls graph, or a Havel-Thomas-Walls
graph. Let S be an independent set of vertices of G0 of degree three. Let C0 =
v1v2v3v4 be a ring of G0, with the interface pair v1v3. Let G1 be obtained from
G0 by replacing the vertices of S by patches, and let G be obtained from G1 by
framing on its interface pairs. Let C = v1v

′
2v3v

′
4 be the ring of G corresponding

to C0. We say that the ring C is strong if G 6= C, v2, v4 6∈ S, v′2 = v2, and
v′4 = v4, that is, v2 and v4 are not affected by patching or created by framing.
Otherwise, we say that C is weak. A 3-coloring ψ of C is dangerous if either ψ
is v1-diagonal, or C is strong and ψ is bichromatic.

Let us first deal with Thomas-Walls graphs.

9



Lemma 2.7. Let n ≥ 1 be an integer, let H be a patched Thomas-Walls graph
obtained from T ′n by patching, and let G be a graph obtained by framing on
interface pairs u1u3 and v1v3 of H. Let C1 = u1u2u3u4 and C2 = v1v2v3v4 be
the rings of G and let ψ be a precoloring of C1∪C2. If ψ extends to a 3-coloring
of G, then it is dangerous on at most one of C1 and C2. Furthermore, if n ≥ 4
and ψ is not dangerous on both C1 and C2, then ψ extends to a 3-coloring of G.

Proof. Firstly, suppose that G is the reduced Thomas-Walls graph T ′n. We
proceed by induction on n. The claims obviously hold when n = 1. Hence,
assume that n ≥ 2, and thus both C1 and C2 are strong. Let G be obtained
from a copy G′ of T ′n−1 with rings C1 and C ′2 = v′1v

′
2v
′
3v4 (with interface pairs

u1u3 and v′2v4) by adding the ring C2 and the edge v2v
′
2. Let ψ be a 3-coloring

of C1 ∪ C2.
Suppose for a contradiction that ψ is dangerous on both C1 and C2 and

extends to a 3-coloring ϕ of G; then ψ(v2) = ψ(v4), and because of the edge v2v
′
2,

ϕ is v′2-diagonal on C ′2, and thus it is dangerous on C ′2. This is a contradiction
by the induction hypothesis for G′. Therefore, if ψ extends to a 3-coloring of
G, then it is dangerous on at most one of C1 and C2.

Suppose now that ψ is dangerous on at most one of C1 and C2, and n ≥ 4.
We need to show that ψ extends to a 3-coloring of G. By a straightforward case
analysis, this is true when n = 4, and thus assume that n ≥ 5. By symmetry,
we can assume that ψ is not dangerous on C2, and thus ψ(v2) 6= ψ(v4). Color
v′2 by ψ(v4) and give v′1 and v′3 distinct colors; the obtained coloring of C ′2 is
v′1-diagonal, and thus it is not dangerous on C ′2. By the induction hypothesis,
we can extend the coloring to G′. This gives a 3-coloring of G extending ψ.

Therefore, the claim holds for reduced Thomas-Walls graphs. Suppose that
G is obtained from G0 = T ′n by patching on an independent set S and framing
on the interface pairs. Let S1 be the subset of S consisting of vertices not
incident with the rings. Let G1 be the graph such that G1 is obtained from G0

by patching on S1 and G is obtained from G1 by patching on S \S1 and framing
on the interface pairs. By Corollary 2.3 and the previous analysis of T ′n, the
graph G1 satisfies the conclusions of Lemma 2.7.

Since the vertices of the interface pairs of G0 have degree two, they do not
belong to S. We define a coloring ψ′ of the rings of G1 as follows. Suppose that
C ′1 = u1u

′
2u3u

′
4 is a ring of G1, where u′2 has degree three. Let ψ′(u1) = ψ(u1)

and ψ′(u3) = ψ(u3). If ψ is u1-diagonal on C1, or if u′2 6∈ S, u2 = u′2, and
u4 = u′4, then let ψ′(u′2) = ψ(u2) and ψ′(u′4) = ψ(u4). Otherwise, choose ψ′(u′2)
and ψ′(u′4) so that ψ′i is u′2-diagonal on C ′1 and so that ψ′(u′i) = ψ(ui) for all
i ∈ {2, 4} such that ui = u′i. Define ψ′ on the other ring C ′2 of G1 analogously.
Note that for i ∈ {1, 2}, C ′i is strong in G1, and if C ′i 6= Ci, then Ci is weak in
G; hence, ψ is dangerous on Ci if and only if ψ′ is dangerous on C ′i.

Suppose first for a contradiction that ψ is dangerous both on C1 and C2,
and that it extends to a 3-coloring ϕ of G.

• If C1 is weak, then ψ is u1-diagonal on C1, and ψ′(u′i) = ϕ(u′i) = ψ(ui)
for i ∈ {2, 4}. Let z be the neighbor of u′2 distinct from u1 and u3. If
u′2 6∈ S, then u′2z is an edge of G, and ϕ(z) 6= ψ′(u′2). If u′2 ∈ S, then
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ϕ(z) 6= ψ′(u′2) by the second part of Theorem 2.2 applied to the patch P
replacing u′2 and the 3-coloring of P given by ϕ.

• If C1 is strong, then u′2 = u2, u′4 = u4, and u′2z is an edge of G.

Together with a similar argument applied at C2, we conclude that ψ′ ∪ (ϕ �
V (G1)) is a 3-coloring of G1 extending ψ′, which is a contradiction since ψ′ is
dangerous both on C ′1 and C ′2 and the conclusions of Lemma 2.7 are satisfied
by G1 as we argued before.

Next, suppose that ψ is not dangerous on one of the rings, say on C1, and
that n ≥ 4. Then ψ′ is not dangerous on C ′1, and thus it extends to a 3-coloring
ϕ′ of G1. If u′2 6∈ S, then let ϕ1 be an empty coloring. If u′2 ∈ S, then by
Theorem 2.2, there exists a 3-coloring ϕ1 of the patch replacing u′2 such that
ϕ1(x) = ψ(x) for x ∈ {u1, u2, u3} and ϕ1(z) = ϕ′(z), where z is the neighbor of
u′2 distinct from u1 and u3. Let ϕ2 be defined analogously at C2. Observe that
ψ ∪ ϕ1 ∪ ϕ2 ∪ (ϕ′ � V (G)) is a 3-coloring of G extending ψ.

Using this lemma, we can easily handle Havel-Thomas-Walls graphs as well.

Lemma 2.8. Let G be a graph obtained by framing on the interface pair v1v3

of a patched Havel-Thomas-Walls graph, with ring C = v1v2v3v4. A 3-coloring
ψ of C extends to a 3-coloring of G if and only if ψ is not dangerous on C.

Proof. Consider first the case that G is a Havel-Thomas-Walls graph, obtained
from the reduced Thomas-Walls graph T ′n with rings C and C ′ = u1u2u3u4 and
interface pairs v1v3 and u1u3 by either adding the edge u1u3, or the graph in
Figure 2(a). Consider any 3-coloring ϕ of G. Note that both the edge u1u3

and the graph from Figure 2(a) ensure that ϕ(u1) 6= ϕ(u3), and thus ϕ is u1-
diagonal on C ′. Consequently, ϕ is dangerous on C ′, and by Lemma 2.7, it is
not dangerous on C. Therefore, if ψ extends to a 3-coloring of G, then ψ is not
dangerous on C.

Conversely, if ψ is not dangerous on C, then we can extend it to a 3-coloring
of T ′n that is u1-diagonal on C ′ (for n ≥ 4, this follows by Lemma 2.7; for
1 ≤ n ≤ 3, it is easy to construct the desired colorings), and further extend the
coloring to the graph from Figure 2(a) if present in G.

The case that G is obtained from a Havel-Thomas-Walls graph by patching
and framing is handled in the same way as in the proof of Lemma 2.7.

Next, we consider the colorability of near 3, 3-quadrangulations. We need
some additional definitions. Given a 3-coloring ψ : V (G)→ {0, 1, 2} of a graph
G, let us define an orientation Gψ of G by orienting every edge uv ∈ E(G)
towards v if and only if ψ(v) − ψ(u) ∈ {1,−2}. Let W = v1v2 . . . vk be a walk
in a graph G. We define ω(W,ψ) to be the difference between the number of
forward and backward edges of W in Gψ, i.e.,

ω(W,ψ) = |{i : 1 ≤ i ≤ k−1, vivi+1 ∈ E(Gψ)}|−|{i : 1 ≤ i ≤ k−1, vi+1vi ∈ E(Gψ)}|.

Suppose that G is embedded in the cylinder, and let C be a non-contractible
cycle in G. We fix one orientation around the cylinder as positive. Let W (with
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v1 = vk) be a closed walk tracing C in the positive direction. We define the
winding number of ψ on C as ω(W,ψ)/3. Observe that the winding number is
an integer of the same parity as the length of C. We need the following result
concerning the colorability of quadrangulations, see e.g. the Propositions 4.1
and 4.2 in [4].

Lemma 2.9. Let G be a graph embedded in the cylinder with rings C1 and C2,
such that all non-ring faces of G have length 4. For any 3-coloring ϕ of G, the
winding number of ϕ on C1 is equal to the winding number of ϕ on C2.

We also need a strengthening of Lemma 2.9 for quadrangulations of the
cylinder with rings of length at most 4.

Lemma 2.10. Let G be a tame graph embedded in the cylinder with rings C1

and C2 of length at most 4. If all faces of G have length 4, the distance between
C1 and C2 is at least |C1|, and ψ is a precoloring of C1∪C2 that does not extend
to a 3-coloring of G, then |C1| = |C2| = 3 and ψ has opposite winding numbers
on C1 and C2, i.e. ψ has winding number +1 on one of them and −1 on the
other one.

Proof. Note that C1 and C2 have the same parity, and thus |C1| = |C2|. Suppose
first that |C1| = 4. In this case, G is bipartite. Let C1 = v1v2v3v4, with the
labels chosen so that ψ(v1) = ψ(v3). For 0 ≤ i ≤ 3, let Si denote the set of
vertices of G at distance exactly i from {v2, v4}. Let G′ be the graph obtained
from G−(S0∪S1∪S2) by identifying all vertices in S3 to a single vertex x. Note
that G′ is also bipartite, and in particular it has no loops and it is triangle-free.
Furthermore, since the distance between C1 and C2 is at least four, C2 is a cycle
in G′. By Lemma 2.4, the graph G′ has a 3-coloring ϕ′ that matches ψ on C2.
Then, we can obtain a 3-coloring of G that extends ψ by coloring every vertex
v ∈ V (G′) \ {x} by the color ϕ′(v), all vertices in S3 by the color ϕ′(x), all
vertices in S2 by a color distinct from ϕ′(x) and ψ(v1), all vertices in S1 by the
color ψ(v1), and v2 by ψ(v2) and v4 by ψ(v4).

Suppose now that |C1| = 3. Note that the winding number of ψ on each of
C1 and C2 is either +1 or −1. By Lemma 2.9, if the winding numbers of ψ on
C1 and C2 are opposite, then ψ does not extend to a 3-coloring of G. Hence,
we can assume that the winding numbers of ψ on C1 and C2 are the same. For
i ∈ {1, 2}, let Ci = vi,1vi,2vi,3, with the labels chosen so that ψ(vi,j) = j for
j ∈ {1, 2, 3}. For j ∈ {1, 2, 3}, let Si,j denote the set of vertices of G adjacent
to vi,j that do not belong to V (Ci). Since G is tame and the distance between
C1 and C2 is at least three, these sets are pairwise disjoint. Let G′ be the graph
obtained from G by, for i ∈ {1, 2} and j ∈ {1, 2, 3}, identifying all vertices in
Si,j to a single vertex xi,j , and suppressing the resulting faces of length two.
Note that Ki = xi,1xi,2xi,3 is a non-contractible triangle in G′. If ψ extends to
a 3-coloring of G′, then it also extends to a 3-coloring of G, obtained by giving
each vertex in Si,j the color of xi,j .

Let G0 be the subgraph of G′ drawn between K1 and K2. By Theorem 1.3,
there exists a 3-coloring ϕ1 of G0 such that ϕ1(x1,j) = (j mod 3) + 1 for j ∈
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{1, 2, 3}. By permuting the colors in ϕ1, we obtain a 3-coloring ϕ2 of G0 such
that ϕ2(x1,j) = ((j+ 1) mod 3) + 1 for j ∈ {1, 2, 3} and ϕ1(v) 6= ϕ2(v) for every
v ∈ V (G0). Suppose that ϕ1 ∪ ψ is not a 3-coloring of G′. By Lemma 2.9, the
winding numbers of ϕ1 on K1 and K2 are the same, and thus ϕ1(x2,j) = ψ(v2,j)
for j ∈ {1, 2, 3}. Then, it follows that ψ ∪ϕ2 is a 3-coloring of G′. We conclude
that G′, and thus also G, has a 3-coloring which extends ψ.

Let G be a near 3, 3-quadrangulation, let C be one of the rings of G and let
ψ be a 3-coloring of C. Let us discuss several cases:

• If C shares an edge with a triangle T in G (where possibly T = C if C
is a triangle), then ψ uniquely extends to a 3-coloring ϕ of T . Let w be
the winding number of ϕ on T . In this case, we say that ψ on C causes
winding number w.

• If C does not share an edge with a triangle and we can label the vertices
of C as v1v2v3v4 so that the path v1v2v3 is a part of the boundary of a
5-face f and ψ(v1) 6= ψ(v3), then draw an edge between v1 and v3 in f ,
and let w be the winding number of ψ on the triangle v1v3v4. In this case,
we also say that ψ on C causes winding number w.

• Otherwise, we say that ψ on C does not cause fixed winding number.

If C1 and C2 are the rings of G and ψ is their precoloring, we say that ψ is
inconsistent if ψ causes winding numbers on both C1 and C2 and these winding
numbers are opposite. Otherwise, ψ is consistent.

Lemma 2.11. Let G be a tame near 3, 3-quadrangulation embedded in the cylin-
der with rings C1 and C2. If a precoloring ψ of C1 ∪C2 extends to a 3-coloring
of G, then it is consistent. Furthermore, if the distance between C1 and C2 is
at least 9, then every consistent precoloring of C1 ∪ C2 extends to a 3-coloring
of G.

Proof. Let G0 be a graph and ψ0 a 3-coloring of its rings obtained from G and
ψ as follows. For i = 1, 2, if Ci shares an edge with a triangle T , then remove all
vertices between Ci and T (excluding T , but including V (Ci)\V (T )), and let ψ0

restricted to T be the unique 3-coloring of T that matches ψ on V (T )∩V (Ci). If
Ci = v1v2v3v4, v1v2v3 is a part of the boundary of a 5-face f , and ψ(v1) 6= ψ(v3),
then remove v2 and add the edge v1v3 drawn inside f , and let ψ0 restricted to
v1v3v4 match ψ. Finally, if ψ(v1) = ψ(v3), then do not alter G at Ci and let ψ0

restricted to Ci match ψ. Let C ′1 and C ′2 be the rings of G0 obtained from C1

and C2, respectively.
Using Theorem 1.3, observe that ψ extends to a 3-coloring of G if and only

if ψ0 extends to a 3-coloring of G0. Note that if ψ is inconsistent, then G0 is a
3, 3-quadrangulation and the winding numbers of ψ0 on C ′1 and C ′2 are opposite,
and thus by Lemma 2.9, ψ0 does not extend to a 3-coloring of G0.

Therefore, it suffices to consider the case that ψ is consistent and the distance
between C1 and C2 in G is at least 9, and to show that in this case, ψ0 extends
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to a 3-coloring of G0. If ψ on C1 or C2 causes winding number, then let w be
this winding number. Otherwise, let w = 1.

We now modifyG0 and ψ0 into another auxiliary graphG1 with a precoloring
ψ1 of its rings. For each i = 1, 2 such that |C ′i| = 4, we modify the graph as
follows. Let C ′i = v1v2v3v4, where v1v2v3u4u5 is a 5-face and ψ0(v1) = ψ0(v3).
Let ϕ be the unique 3-coloring of the 5-cycle K = v1u5u4v3v4 matching ψ0 on v1,
v3, and v4, such that ϕ has winding number w on K. If necessary, exchange the
labels of v1 with v3 and of u4 with u5 so that ϕ(v4) = ϕ(u5). If v1 is contained
in a triangle T , then remove from G1 all vertices between C ′i and T (excluding
T , but including V (C ′i) \ V (T )), and let ψ1 restricted to T be the 3-coloring
with winding number w such that ψ0(v1) = ψ1(v1) (since T does not share an
edge with C ′i, ϕ(v1) = ϕ(v3), and ϕ(v4) = ϕ(u5), the coloring ϕ extends to
a 3-coloring of the subgraph of G0 drawn between K and T by Theorem 2.1,
and the restriction of this 3-coloring to T matches ψ1 by Lemma 2.9). If v1 is
not contained in any triangle, then remove v1 and v2 and identify all remaining
neighbors of v1 to a single vertex x, and let ψ1 restricted to xu4v3 be the 3-
coloring such that ψ1(v3) = ϕ(v3), ψ1(u4) = ϕ(u4) and ψ1(x) = ϕ(v4) = ϕ(u5).
For each i = 1, 2 such that |C ′i| = 3, we do not modify the graph and we let ψ1

restricted to C ′i match ψ0.
Observe that G1 is a 3, 3-quadrangulation and that if ψ1 extends to a 3-

coloring of G1, then we can obtain a 3-coloring of G0 that extends ψ0. Let C ′′1
and C ′′2 be the rings of G1. Let T1 and T2 be non-contractible triangles in G1

such that the subgraph G′1 drawn between T1 and T2 is tame and G′1 is as large
as possible, with labels chosen so that T1 separates C ′′1 from T2. Since G is tame
and the distance between C1 and C2 in G is at least 9, the construction of G0

and G1 ensures that the distance between T1 and T2 in G′1 is at least three.
By Theorem 1.3, ψ1 extends to a 3-coloring ϕ1 of the subgraphs of G1 drawn

between C ′′1 and T1, and between C ′′1 and T2, and by Lemma 2.9, ϕ1 has winding
number w both on T1 and T2. By Lemma 2.10, the restriction of ϕ1 to T1 ∪ T2

extends to a 3-coloring ϕ2 of G′1. Hence, ψ1 extends to a 3-coloring ϕ1 ∪ ϕ2 of
G1. This also gives a 3-coloring of G extending ψ.

3 Basic cylinders

We now make the first step towards the proof of Theorem 1.1, by studying the
coloring properties of chains of graphs. Let G and G′ be graphs embedded in
a surface with the same rings, and let C be the union of the rings. We say
that G dominates G′ if every precoloring of C that extends to a 3-coloring of G
also extends to a 3-coloring of G′. We aim to show that for any chain G with
sufficiently many graphs that are not quadrangulations, either all precolorings
of the rings of G extend, or G is dominated by the reduced Thomas-Walls graph
T ′4. To do so, we contract 4-faces in the graphs of the chain as long as possible,
ending up with easily enumerated and analyzed “basic” graphs.

Let us give a few more definitions. We say that a graph H embedded in the
cylinder with rings K1 and K2 is a quadrangulation if all its non-ring faces have
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length 4. We say that H is quadrangulated if it contains a quadrangulation with
rings K1 and K2 as a subgraph.

Let H be a graph embedded in the cylinder without contractible triangles,
and let Ty = xy1y2 and Tz = xz1z2 be triangles in H with the vertices listed
in the positive direction around the cylinder. By collapsing Ty and Tz, we
mean removing the vertices and edges of H that are separated from the rings
by Ty ∪ Tz, and identifying yi with zi for i = 1, 2. Let H ′ be obtained from H
by collapsing Ty and Tz. By Lemma 2.4 (applied to the subgraph of H drawn
between Ty and Tz), every 3-coloring of H ′ extends to a 3-coloring of H, and
thus H ′ dominates H.

Let G be a tame chain of graphs G1, . . . , Gn with the sequence of cutting
cycles C = C0, . . . , Cn. We say that the vertices of the cutting cycles are special.
Let f = x1x2x3x4 be a 4-face in Gi for some i ∈ {1, . . . , n}. We call the
identification of x1 and x3 to a new vertex x legal if

• at most one of x1 and x3 is special, and

• Gi does not contain (not necessarily distinct) paths x1z1z2x3 and x1z
′
1z
′
2x3

such that {x1, z1, z2, x3} ∩ V (Ci−1) 6= ∅ and {x1, z
′
1, z
′
2, x3} ∩ V (Ci) 6= ∅.

If a graph H is obtained from a graph G by a legal identification, then H
dominates G since every 3-coloring of H extends to a 3-coloring of G. Note that
if the indentification of x1 with x3 creates parallel edges, we suppress them,
i.e., keep only one (arbitrary) of them. Since G is tame, x1 and x3 are not
adjacent, and thus the identification does not create loops. Also, by the second
condition of the legality, we can collapse the triangles possibly created by the
identification while keeping the rings of Gi disjoint.

Let G be a tame graph embedded in the cylinder with rings of length at
most 4. We say that G is basic if either G contains no contractible 4-cycle, or it
is one of the graphs depicted in Figure 3 (the rings of each depicted basic graph
are the cycle bounding its outer face and the cycle bounding its central face of
length 3 or 4). We aim to show that it suffices to consider the chains of basic
graphs.

We need the following result concerning extension of a precoloring of a (≤9)-
cycle.

Theorem 3.1 (Thomassen [17]). Let G be a graph of girth at least 5 drawn in
the disk with the ring C of length at most 8. If G is critical, then |C| = 8 and
G = C + e for an edge e with both ends in C.

Borodin et al. [1] investigated precolorings of 7-faces in planar triangle-free
graphs, and their result has the following corollary.

Theorem 3.2 (Borodin et al. [1]). Let G be a triangle-free graph embedded in
the disk with the ring C of length 7 tracing its boundary. If G is critical, then
it has exactly one 5-face f , all faces other than f have length 4, and the cycle
bounding f intersects C in a path of length at least two. Furthermore, if ψ is a
precoloring of C that does not extend to a 3-coloring of G and xyz is a subpath
of C such that ψ(x) = ψ(z), then y is incident with f .
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Figure 3: Basic graphs with contractible 4-cycles. The dotted lines indicate how
to identify vertices in quadrangulations.
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We now turn our attention to legal identifications. Let G be a chain of
critical graphs G1, . . . , Gn with the sequence of cutting cycles C = C0, . . . , Cn.
Let r(G, C) denote the number of the graphs among G1, . . . , Gn that are not
quadrangulations.

Lemma 3.3. Let G be a tame graph embedded in the cylinder with rings of
length at most 4. Suppose that G is chain of critical graphs G1, . . . , Gn with
cutting cycles C = C0, . . . , Cn. If there exists i ∈ {1, . . . , n} such that Gi con-
tains a 4-face allowing a legal identification, then there exists a tame graph H
embedded in the cylinder with the same rings, such that

• |V (H)| < |V (G)| and H dominates G, and

• H is a chain of at least n critical graphs with cutting cycles C′ satisfying
r(H, C′) ≥ r(G, C).

Proof. Let f = x1x2x3x4 be a 4-face allowing a legal identification of x1 and
x3 in Gi. Let a chain H with cutting cycles C′ be obtained from G as follows.
First, identify x1 with x3 to a new vertex x, obtaining a graph H ′. Collapse
all intersecting non-contractible triangles in H ′ to a single triangle, obtaining
a graph H ′′. Note that H ′′ contains at most one triangle T not belonging to
C. Furthermore, by the legality of the identification, the cycles Ci−1 and Ci in
H ′′ are vertex-disjoint and at most one of them (of length 4) intersects T . If T
does not exist, then let C′ = C. Otherwise, let C′ = C ′0, . . . , C

′
n′ be the sequence

of cutting cycles in H ′′ obtained from C by adding T and removing the 4-cycle
distinct from C0 and Cn that intersects T , if any. For j = 1, . . . , n′, let H ′′j
denote the subgraph of H ′′ drawn between C ′j−1 and C ′j . Finally, replace H ′′j
by its maximal critical subgraph Hj for j = 1, . . . , n′, obtaining the graph H.

Suppose for a contradiction that H ′ contains a contractible triangle xz1z2.
Then x1x2x3z1z2 is a contractible 5-cycle in Gi, and by Lemma 2.5, this 5-cycle
bounds a face of Gi. Hence, x2 has degree two in Gi, and by Lemma 2.5, x2 is
special. But then also both neighbors of x2 would be special, which contradicts
the assumption that the identification of x1 and x3 is legal. Therefore, H ′ con-
tains no contractible triangles, and consequently, H ′′ and H are tame. Clearly,
H dominates G and |V (H)| < |V (G)|. Note that C′ contains all the triangles
of H, and that |C′| ≥ |C|. Hence, if r(H, C′) ≥ r(G, C), then H satisfies all the
conditions of Lemma 3.3. Let us argue that we can choose the face f and its
labelling so that the identification of x1 and x3 is legal and r(H, C′) ≥ r(G, C).
We distinguish several cases.

Suppose first that f = x1x2x3x4 is a face of Gi such that at most one of
x1 and x3 is special and Gi contains no path x1z1z2x3 of length three disjoint
with {x2, x4}. Note that this implies that the identification of x1 with x3 is
legal. Consider the procedure described at the beginning of the proof. In this
case H ′′ = H ′ and C′ = C, and H is obtained from G by replacing Gi with
Hi. Suppose that Hi is a quadrangulation. For every 4-face h of Hi, either
h corresponds to a 4-face of Gi, or h corresponds to a contractible 6-cycle K
in Gi containing the path x1x2x3. In the latter case, note that K does not
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bound a face, since then x2 would have degree two and Lemma 2.5 would imply
that x1, x2 and x3 are special vertices, contrary to the assumption that the
identification of x1 and x3 is legal. Hence, Lemma 2.5 implies that all faces of
Gi inside K have length 4. We conclude that if Hi is a quadrangulation, then
Gi is a quadrangulation as well, and thus r(H, C′) ≥ r(G, C).

Let us remark that if the identification of x1 with x3 does not create a new
triangle, then the legality only requires that not both x1 and x3 are special.
Therefore, it remains to consider the case that the following holds.

For every 4-face y1y2y3y4 in Gi such that not both y1 and y3 are special, there
exists a path in Gi of length three joining y1 with y3 and disjoint with {y2, y4}.

(1)
Next, suppose that f = x1x2x3x4 is a face in Gi such that x3 and x4 are

not special. By (1), G contains paths of length three between x1 and x3, and
between x2 and x4, and the two paths must intersect, forming a triangle. Since
all triangles are contained in C, this triangle is equal to say Ci and contains x1

and x2. Hence, G contains paths x1zy1x3 and x2zy2x4, where Ci = x1x2z. At
least one of the 4-cycles zx2x3y1 and zx1x4y2 (say the former) is contractible.
By Lemma 2.5, zx2x3y1 is a face. Note that since G is tame and x3 and x4 are
not special, y1 is not adjacent to y2 or x4. Consequently, G contains no path
of length three between y1 and x2 disjoint with {z, x3}, and by (1), it follows
that y1 ∈ V (Ci−1). Therefore, the 4-cycle zx1x4y2 is also contractible, and by
symmetry, y2 ∈ V (Ci−1). However, then Gi is isomorphic to the graph EV1 (if
y1 6= y2) or Q5 (if y1 = y2) from Figure 3, and contains no 4-face allowing a
legal identification. This contradicts the assumptions of Lemma 3.3.

By symmetry, it follows that every edge of a 4-face is incident with a special
vertex. In particular, the following holds.

For every 4-face y1y2y3y4 in Gi, there exists k ∈ {1, 2} such that both yk and
yk+2 are special.

(2)
Consider now a 4-face f = x1x2x3x4 in Gi such that x1 is not special. By

(2), x2 and x4 are special. If x2, x4 ∈ V (Cj) for some j ∈ {i− 1, i}, then x1 and
x3 are in different components of Gi − {x2, x4}, which contradicts (1). Hence,
we have a strengthening of (2):

For every 4-face y1y2y3y4 in Gi, there exists k ∈ {1, 2} such that one of yk and
yk+2 belongs to Ci−1 and the other one to Ci.

(3)
Let us now consider any 4-face f = x1x2x3x4 in Gi such that the identifica-

tion of x1 with x3 is legal. By symmetry, we can assume that x1 is not special,
and by (3), we can assume that x2 ∈ V (Ci−1) and x4 ∈ V (Ci). Since x1 is not
contained in a triangle, (3) implies that x2 and x4 are the only special neighbors
of x1.

Let us now distinguish two subcases depending on whether x3 is special or
not. Let us first consider the subcase that x3 is not special. By symmetry, x2

and x4 are the only special neighbors of x3. In this case, we claim that the
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graph H constructed at the beginning of the proof satisfies r(H, C′) ≥ r(G, C),
and thus Lemma 3.3 holds. By (1), the identification creates a new triangle T .
Since x1 and x3 have no special neighbors other than x2 and x4, even after the
collapse of the triangles during the construction of H ′′, T is vertex-disjoint with
Ci−1 and Ci. Hence, H is obtained from G by replacing Gi with two subgraphs
Hj and Hj+1 for some j ∈ {1, . . . , n′−1} such that Hj and Hj+1 intersect in T .
Clearly, r(H, C′) ≥ r(G, C), unless both Hj and Hj+1 are quadrangulations and
Gi is not a quadrangulation. As we argued before, every 4-face of Hj ∪ Hj+1

corresponds to either a 4-face inG, or to a contractible walk of length 6 bounding
a quadrangulated disk in G. Hence, all the (≥ 5)-faces of G are destroyed by
collapsing the triangles, that is, Gi contains two paths x1y1y2x3 and x1y

′
1y
′
2x3

such that the open disk Λ bounded by the closed walk x1y1y2x3y
′
2y
′
1 contains a

face of Gi of length greater than 4, and all faces of Gi not contained in Λ have
length 4. But then the edge y1y2 is contained in a 4-face in Gi. Since y1 and y2

are neighbors of x1 and x3, respectively, they are not special. This contradicts
(2).

Finally, we consider the subcase that x3 is special. By symmetry, we can
assume that x3 ∈ V (Ci). If Ci is a triangle, then since the identification of x1

and x3 is legal, we conclude that no path x1y1y2x3 intersects Ci−1, and by the
same argument as in the previous paragraph, we show that r(H, C′) ≥ r(G, C).
Therefore, suppose that |Ci| = 4.

By (1), Gi contains a path x1y1y2x3 disjoint from {x2, x4}. Since the iden-
tification of x1 with x3 is legal, we have y2 6∈ V (Ci−1). If y2 6∈ V (Ci), then let
W be the contractible closed walk of length 7 consisting of x4x1y1y2x3 and the
path of length three between x3 and x4 in Ci. If y2 ∈ V (Ci), then let W be the
contractible closed walk of length 5 consisting of x4x1y1y2 and a path of length
two between y2 and x4 in Ci. In both cases, let Λ be the open disk bounded by
W . Since y2 6∈ V (Ci−1), (3) implies that Λ does not contain any 4-face of Gi,
and by Theorem 3.1, we conclude that Λ is a face. Since this holds for every
path of length three between x1 and x3, it follows that x1y1y2x3 is the only such
path, and thus H ′ contains only one new triangle T = xy1y2. Let Hj be the
subgraph of H between Ci−1 and T . Note that Hj is not a quadrangulation,
since otherwise Gi would contain a 4-cycle incident with x1 and y1, contrary
to (2). Consider the other subgraph Hj+1 in the chain that contains T . Since
Λ is a face, it follows that y1 has degree two in Hj+1, and since H is tame,
the face of Hj+1 incident with y1 has length greater than 4 and Hj+1 is not a
quadrangulation. Therefore, r(H, C′) ≥ r(G, C) as required.

Now, let us show that legal identification is always possible in a non-basic
graph.

Lemma 3.4. Let G be a tame critical graph embedded in the cylinder with rings
C1 and C2 of length at most 4, such that every triangle of G is equal to one of
the rings. Assume furthermore that the rings of G are either vertex-disjoint, or
one of them has length 3 and the other one length 4. If G has no 4-face admiting
a legal identification (with respect to the sequence C1, C2 of cutting cycles), then
G is basic.
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Proof. Since no 4-face of G admits a legal identification,

for any 4-face x1x2x3x4 of G such that x1 6∈ V (C1 ∪ C2), there exists a path of
length three between x1 and x3 disjoint with {x2, x4}.

(4)
Suppose that G contains a 4-face x1x2x3x4 such that x3, x4 6∈ V (C1 ∪ C2).

By (4), G contains paths of length three between x1 and x3, and between x2 and
x4, and the two paths must intersect, forming a triangle. This triangle is equal to
say C1 and contains x1 and x2. Hence, G contains paths x1zy1x3 and x2zy2x4,
where C1 = x1x2z. At least one of the 4-cycles zx2x3y1 and zx1x4y2 (say the
former) is contractible. By Lemma 2.5, zx2x3y1 is a face. Note that since G is
tame and x3, x4 6∈ V (C1 ∪ C2), y1 is not adjacent to y2 or x4. Consequently,
G contains no path of length three between y1 and x2 disjoint with {z, x3},
and by (4), it follows that y1 ∈ V (C2). Therefore, the 4-cycle zx1x4y2 is also
contractible, bounds a face, and by symmetry, y2 ∈ V (C2). However, then G is
isomorphic to the basic graph Q5 or EV1.

Hence, we can assume that each edge of a 4-face of G is incident with a
vertex of C1 ∪ C2, or equivalently

for every 4-face y1y2y3y4 in G, there exists k ∈ {1, 2} such that both yk and
yk+2 belong to V (C1 ∪ C2).

(5)
Suppose that x1x2x3x4 is a 4-face in G such that x1 6∈ V (C1 ∪ C2). By (5),
x2, x4 ∈ V (C1 ∪ C2). If x2, x4 ∈ V (Cj) for some j ∈ {1, 2}, then x1 and x3 are
in different components of G− {x2, x4}, which contradicts (4). Hence, we have
a strengthening of (5):

For every 4-face y1y2y3y4 in Gi, there exists k ∈ {1, 2} such that one of yk and
yk+2 belongs to C1 and the other one to C2.

(6)
Suppose that x1x2x3x4 is a 4-face such that x1 6∈ V (C1∪C2). By symmetry,

we can assume that x2 ∈ V (C1) and x4 ∈ V (C2). Since x1 is not contained in a
triangle, (6) implies that x2 and x4 are the only neighbors of x1 in V (C1 ∪C2).

If x3 is not special, then by symmetry, x2 and x4 are the only neighbors of
x3 in V (C1 ∪ C2). However, then no path x1z1z2x3 intersects C1 or C2, and
thus the identification of x1 and x3 is legal, which is a contradiction.

Hence,

every 4-face of G intersects C1 ∪ C2 in at least three vertices.
(7)

Suppose that C1 and C2 are not disjoint, and thus say |C1| = 3 and |C2| = 4.
If C1 and C2 share an edge, then Lemma 2.5 implies that G = C1 ∪ C2 has no
4-face, and thus it is basic. Let us consider the case that C1 and C2 share only
one vertex. If G contains an edge e 6∈ E(C1∪C2) with both ends in V (C1∪C2),
then since G is tame, we conclude that G is the basic graph J1. If G contains
no such edge and contains a 4-face, then by (7), such a 4-face shares two edges
with C1 ∪C2. However, then Theorem 3.2 gives a contradiction with (6) or (7).
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Therefore, we can assume that C1 and C2 are vertex-disjoint. Suppose that
x1x2x3x4 is a 4-face such that x1 6∈ V (C1 ∪C2). By (6) and (7), we can assume
that x2 ∈ V (C1) and x3, x4 ∈ V (C2). Recall that x2 and x4 are the only
neighbors of x1 in V (C1 ∪C2). Since the identification of x1 and x3 is not legal,
there exists a path x1y1y2x3 disjoint with {x2, x4} such that y2 ∈ V (C1). Since
x2 ∈ C1, x3 ∈ V (C2), C1 and C2 are vertex-disjoint, and G contains no non-ring
triangles, it follows that x2x3 is not contained in a triangle. It follows that y2

is not adjacent to x2, and thus |C1| = 4. Let C1 = x2z1y2z2, with the labels
chosen so that x2x3y2z1 is a contractible 4-cycle. By Lemma 2.5, x2x3y2z1 and
x2z2y2y1x1 are faces. Also by Lemma 2.5, y1 has degree at least three. By (7),
the edge x1y1 is not incident with a 4-face, and thus by Theorems 2.2 and 3.2
applied to the cycle consisting of x4x1y1y2x3 and the path of length |C2| − 1 in
C2 between x3 and x4 implies that |C2| = 4 and the edge y1y2 is incident with
a 4-face. By (7), y1 has a neighbor in C2, and thus G is isomorphic to the basic
graph EV2.

It follows that every 4-face in G has all vertices contained in V (C1 ∪ C2).
Note that since G is tame, C1 and C2 are induced cycles. If G has no 4-face,
then by Lemma 2.5 it contains no contractible 4-cycle, and thus it is basic.
Hence, it suffices to consider the case that G contains a 4-face f = x1x2x3x4.
By symmetry, we can assume that x1, x2 ∈ V (C1) and x4 ∈ V (C2). Let h be
the face of C1 ∪ C2 ∪ {x2x3, x3x4, x4x1} distinct from f and the rings. Note
that |h| = |C1| + |C2| ≤ 8. If G has no face of length 4 other than f , then by
Theorem 3.1 applied to the subgraph of h drawn in the closure of h, we conclude
that either h is a face of G and G is one of the basic graphs Tr′1, Tr′2, Xq5, Xq6,
or Xq7; or |C1| = |C2| = 4 and one edge of G is drawn in h, and G is a basic
graph S1 or S2.

Let us consider the case that G has a face f ′ of length 4 distinct from f ;
hence, an edge of G splits h into a 4-face f ′ and a (|C1| + |C2| − 2)-face h′. If
G contains no 4-face other than f and f ′, then by Theorem 3.1, h′ is a face of
G, and thus G is one of the basic graphs Xq1, Xq2, Xq3, Xq4, Q5, Tr1, or Tr2.
Finally, G might also have four 4-faces, and then G is one of the basic graphs
Q1, Q2, Q3, or Q4.

By combining Lemmas 3.3 and Lemma 3.4, we obtain the following.

Lemma 3.5. Let G be a tame graph embedded in the cylinder with rings of
length at most 4. Suppose that G is a chain of n ≥ 1 critical graphs with the
sequence C of cutting cycles. Then there exists a tame graph G′ embedded in the
cylinder with the same rings, such that G′ dominates G and G′ is a chain of at
least n basic graphs with cutting cycles C′, with r(G′, C′) ≥ r(G, C).

Proof. We prove the claim by induction on |V (G)|. Let G be a chain of critical
graphs G1, . . . , Gn with cutting cycles C = {C0, . . . , Cn}. If all of G1, . . . , Gn
are basic, then the claim is trivialy true with G′ = G. Otherwise, by Lemma 3.4,
there exists i ∈ {1, . . . , n} such that a 4-face in Gi admits a legal identification.
Then, the claim follows by the induction hypothesis applied to the graph H
obtained by Lemma 3.3.
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Dvořák and Lidický [8] gave an exact description of critical graphs embedded
in the cylinder with rings of length at most 4 and without contractible (≤ 4)-
cycles—in addition to the infinite family of reduced Thomas-Walls graphs, there
are only 95 such critical graphs. In particular, their examination gives the
following.

Theorem 3.6 (Dvořák and Lidický [8]). Let G be a graph embedded in the
cylinder with rings of length at most 4, such that G contains no contractible
(≤4)-cycles. If G is critical and the distance between its rings is at least 6, then
G is a reduced Thomas-Walls graph.

We need the following observation about basic graphs.

Lemma 3.7. Let G be a tame chain of basic graphs, such that each of them
either contains no contractible 4-cycles, or is isomorphic to EV1, EV2, Tr1, Tr2,
S1, or S2, with pairwise vertex-disjoint cutting cycles C0, . . . , Cn. If n ≥ 5,
then G is dominated by a graph G′ with the same vertex-disjoint rings C0 and
Cn and without contractible (≤ 4)-cycles. Furthermore, if |C0| = 4 and e0 is
any edge of C0, then G′ can be chosen so that e is not contained in a triangle
in G′.

Proof. Let C0, . . . , Cn be the cutting cycles of the chain, and for i = 1, . . . , n,
let Gi denote the subgraph of G drawn between Ci−1 and Ci.

We start with several observations about graphs dominating EV1, EV2, Tr1,
Tr2, S1, or S2. Let H be one of these graphs, with rings u1u2 . . . and v1v2 . . .
labelled as in Figure 3. In all the identifications described below, we suppress
arising parallel edges.

• If H = EV1 or H = EV2, then

– let H ′ be the graph isomorphic to one of the graphs I1 or I2 depicted
in Figure 4, obtained from H by identifying u2 with v2 and u1 with
v1 and by removing the vertices that do not belong to the rings, and

– let H ′′ be the graph isomorphic to one of the graphs I1 or I2, obtained
from H by identifying u2 with v2 and u3 with v3 and by removing
the vertices that do not belong to the rings.

Let R(H) = {H ′, H ′′} and D(H) = {u2, v2}.

• If H = Tr1, then

– let H ′ be the graph isomorphic to the graph I1 depicted in Figure 4,
obtained from H by identifying u2 with v2 and u1 with v1, and

– let H ′′ be the graph isomorphic to the graph I1, obtained from H by
identifying u2 with v4 and u3 with v1.

Let R(H) = {H ′, H ′′} and D(H) = {u2, v1}.

• If H = Tr2, then
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– let H ′ be the graph isomorphic to the graph I1 depicted in Figure 4,
obtained from H by identifying u1 with v1 and u2 with v2, and

– let H ′′ be the graph isomorphic to the graph I4 depicted in Figure 4,
obtained from H by identifying u1 with v3.

Let R(H) = {H ′, H ′′} and D(H) = {u1}.

• If H = S1, then let H ′ be the graph isomorphic to the graph I3 depicted
in Figure 4, obtained from H by identifying u1 with v1. Let R(H) = {H ′}
and D(H) = {u1, v1}.

• If H = S2, then let H ′ be the graph isomorphic to the graph I3 depicted
in Figure 4, obtained from H by identifying u4 with v4. Let R(H) = {H ′}
and D(H) = {u4, v4}.

Observe that every graph in R(H) dominates H and contains no contractible
(≤ 4)-cycle. For every edge e of a ring of H, there exists at least one graph
He ∈ R(H) such that the corresponding edge in He is not shared by both rings.
Furthermore, if a vertex v of a ring of H does not belong to D(H), then there
exists at least one graph Hv ∈ R(H) such that the corresponding vertex in Hv

is not shared by both rings.

I1 I2 I3 I4

Figure 4: Results of identifications in Lemma 3.7.

For i = 1, . . . , n, let G′i be the graph obtained as follows. Let vi be a vertex
of Ci−1 not belonging to D(Gi), chosen so that

• if i = 1, then vi is incident with e0,

• if i ≥ 2 and the intersection Zi of C0 and Ci−1 in G′1 ∪ . . .∪G′i−1 is not a
subset of D(Gi), then vi ∈ Zi \ D(Gi), and

• if i ≥ 2, |Ci−1| = 4 and the intersection Yi of Ci−2 and Ci−1 in G′i−1 is
not a subset of D(Gi), then vi ∈ Yi \ D(Gi).

If Gi does not contain any contractible 4-cycle, then let G′i = Gi. Otherwise,
let G′i be an element of R(Gi), chosen so that the vertex of G′i corresponding
to vi is not shared by both rings of G′i.
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Note that this ensures that no two triangles of G′ = G′1 ∪ . . . ∪G′n share an
edge, and thus G′ contains no contractible (≤4)-cycles. Furthermore, the edge
corresponding to e0 is not contained in a triangle of G′.

The graph G′ dominates G. Note that |Z2| ≤ 2 and |Zi| ≤ 1 for i ≥ 3, and
thus the rings of G′ share at most one vertex. If the rings of G′ are vertex-
disjoint, then G′ satisfies the conclusion of the lemma. Hence, suppose the rings
of G′ share a unique vertex z. This is only possible if each of G1, . . . , Gn is
isomorphic to EV1, EV2, Tr1, Tr2, S1, or S2. For i = 0, . . . , n, let zi denote the
vertex of Ci corresponding to z.

Consider the graph F1 = G′1∪G′2∪G′3, whose rings C0 and C3 intersect only
in z. Observe that every edge of F1 with both ends in V (C0 ∪ C3) is contained
in E(C0∪C3). Since |C0|+ |C3| ≤ 8 and F1 contains no contractible (≤4)-cycle,
Theorem 3.1 shows that every precoloring of C0∪C3 that assigns the same color
to z0 and z3 extends to a 3-coloring of F1. Since z is contained in both rings
of G′, the choice of G′4 implies that z3 belongs to D(G4). Hence, F1 ∪ G4 is
dominated by a graph obtained from G4 by adding the cycle C0 and identifying
z0 with z3. By inspecting all choices of G4 ∈ {EV1,EV2,Tr1,Tr2,S1,S2} and
z3 ∈ D(G4), we conclude that the following holds.

• if |C4| = 3, then F1 ∪G4 is dominated by the graph F2 obtained from the
disjoint union of C0 and C4 by adding an edge between z0 and a vertex of
C4, and

• if |C4| = 4, then either

– F1 ∪G4 is dominated by the graph F ′2 isomorphic to Xq6 or Tr′2 ob-
tained from the disjoint union of C0 and C4 by adding edges between
z0 and two non-adjacent vertices of C4 distinct from z4, or

– G4 is isomorphic to Tr1.

If |C4| = 3, then F2 ∪ G′5 ∪ . . . ∪ G′n satisfies the conclusions of the lemma.
Let us consider the case that |C4| = 4. If G4 is isomorphic to Tr1 (and thus
|C3| = 3), note that none of the conditions for specifying v4 applies, and thus we
can choose G′4 so that z does not correspond to any vertex of D(G5). However,
then the choice of v5 ensures that C0 and C5 are vertex-disjoint in G′, which is
a contradiction.

Hence, we can assume that F1 ∪ G4 is dominated by the graph F ′2. By
inspection of all choices of G5 ∈ {EV1,EV2,Tr1,Tr2,S1,S2} and z4 ∈ D(G4),
we conclude that F ′2∪G5 is dominated by a graph F3 obtained from the vertex-
disjoint union of cycles C0 and C5 by adding an edge between them, and thus
F3 ∪G′6 ∪ . . . ∪G′n satisfies the conclusions of the lemma.

Let us now prove a variation on Theorem 3.6.

Lemma 3.8. Let G be a tame chain of n basic graphs, such that each of them
either contains no contractible 4-cycles, or is isomorphic to J1, EV1, EV2, Tr1,
Tr2, S1, or S2. If n ≥ 32, then either every precoloring of the rings of G extends
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to a 3-coloring of G, or both rings of G have length 4 and G is dominated by
the reduced Thomas-Walls graph T ′4.

Proof. Let C0, . . . , Cn be the cutting cycles of the chain. Let s0 = 0 if C0 and
C1 are vertex-disjoint, and s0 = 1 otherwise. Let s1 = n if Cn−1 and Cn are
vertex-disjoint, and s1 = n−1 otherwise. Let F be the union of subgraphs of G
drawn between C0 and Cs0 , and between Cs1 and Cn. Note that if a component
of F contains a contractible 4-cycle, then it is isomporphic to J1. Identify two
opposite vertices in each 4-face of F , obtaining a graph F ′.

For i = 1, . . . , 5, let Gi denote the subgraph of G drawn between Cs0+5i−5

and Cs0+5i. Let G6 denote the subgraph of Gi drawn between Cs0+25 and Cs1 .
By the definition of a chain, J1 does not appear in the subchain bounded by Cs0
and Cs1 . For i = 1, . . . , 6, Lemma 3.7 implies that Gi is dominated by a graph
G′i with the same vertex-disjoint rings, such that the graph G′ = F ′∪G′1∪. . .∪G′6
contains no contractible (≤ 4)-cycles—this is ensured by choosing e0 to be an
edge of Cs0+5i−5 contained in a triangle in G′i−1 (if any) for i = 2, . . . , 6.

Note that the distance between C0 and Cn in G′ is at least 6. Suppose
that not every precoloring of C0 ∪ Cn extends to a 3-coloring of G. Then G′ is
dominated by its maximal critical subgraph G′′, and by Theorem 3.6, G′′ is a
reduced Thomas-Walls graph in that the distance between C0 and Cn is at least
6. By Lemma 2.7, G is dominated by the reduced Thomas-Walls graph T ′4.

We call graphs Xq1, . . . , Xq7 almost quadrangulations. We need the following
claim.

Lemma 3.9. Let G be a tame chain of n basic graphs, such that each of them
is an almost quadrangulation. If n ≥ 4, then every precoloring of the rings of G
extends to a 3-coloring of G.

Proof. Let C0, . . . , Cn be the cutting cycles of the chain, and let ψ be a 3-
coloring of C0 ∪ Cn. The graph G is dominated by a quadrangulation of the
cylinder with rings at distance at least 4 from each other. Hence, if |C0| = 4,
then ψ extends to a 3-coloring of G by Lemma 2.10. If |C0| = 3, then G is
a chain of the copies of Xq7. Observe that ψ extends to a 3-coloring ϕ of the
subgraph of G drawn between C0 and C1 such that the winding number of ϕ on
C1 is the same as the winding number of ψ on Cn. By Lemma 2.10, it follows
that ψ extends to a 3-coloring of G.

By combining these results, we obtain the following.

Lemma 3.10. Let G be a tame graph embedded in the cylinder with rings of
length at most 4. If G is a chain of graphs, at least 131 of which are not
quadrangulated, then either every precoloring of the rings of G extends to a
3-coloring of G, or both rings of G have length 4 and G is dominated by the
reduced Thomas-Walls graph T ′4.

Proof. Let C = C0, C1, . . . , Cn be the sequence of cutting cycles of the chain G,
and for i = 1, . . . , n, let Gi be the subgraph of G drawn between Gi−1 and Gi.
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Without loss of generality, Gi is critical, as otherwise we can replace Gi by its
maximal critical subgraph. Furthermore, by Lemma 3.5, we can assume that
Gi is basic. If Gi is a quadrangulation, then Gi is one of Q1, . . . , Q5; in this
case, we identify the vertices of the rings of Gi as indicated by dotted lines in
Figure 3.

Hence, assume that none of G1, . . . , Gn is a quadrangulation. By the as-
sumptions of the lemma, we have n ≥ 131.

Suppose that there exists i ∈ {1, . . . , n − 3} such that Gi, . . . , Gi+3 are
almost quadrangulations. By Theorem 1.3, any 3-coloring ψ of C0∪Cn extends
to a 3-coloring of G1∪ . . .∪Gi−1∪Gi+4∪ . . .∪Gn, and by Lemma 3.9, ψ extends
to a 3-coloring of G. Therefore, we can assume that no four consecutive graphs
in the chain G′′′ are almost quadrangulations.

Extend all almost quadrangulations in G to quadrangulations Q1, . . . , Q5

and identify the vertices of their rings as indicated by dotted lines in Figure 3.
The resulting graph G′ is a chain of at least 32 basic graphs dominating G, such
that none of the graphs in the chain is a quadrangulation or almost quadran-
gulation. Also, if J1 appears in the chain (necessarily as the first or the last
element), identify the opposite vertices of its 4-face not contained in the ring of
G′, thus turning it into I1. Similarly, we turn each of the graphs in the chain
that is isomorphic to Tr′1 or Tr′2 into Tr1 or Tr2 by adding an edge. The claim
of Lemma 3.10 then follows by Lemma 3.8.

Actually, we only need the following consequence of Lemmas 2.7 and 3.10

Corollary 3.11. Let G be a tame graph embedded in the cylinder with rings C1

and C2 of length at most 4. Suppose that G is a chain of graphs, at least 131 of
which are not quadrangulated. If |C1| = 3 or |C2| = 3, then every precoloring of
C1∪C2 extends to a 3-coloring of G. If |C1| = |C2| = 4, then for every 3-coloring
ψ1 of C1, there exists v ∈ V (C2) such that for every v-diagonal 3-coloring ψ2 of
C2, the precoloring ψ1 ∪ ψ2 extends to a 3-coloring of G.

Let us remark that using computer, we can signficantly improve the bound
of Corollary 3.11 as follows.

Lemma 3.12. Let G be a tame graph embedded in the cylinder with rings C1

and C2 of length at most 4. Suppose that G is a chain of n ≥ 7 graphs, at
least 3 of which are not quadrangulated. If |C1| = 3 or |C2| = 3, then every
precoloring of C1 ∪C2 extends to a 3-coloring of G. If |C1| = |C2| = 4, then for
every 3-coloring ψ1 of C1, there exists v ∈ V (C2) such that for every v-diagonal
3-coloring ψ2 of C2, the precoloring ψ1 ∪ ψ2 extends to a 3-coloring of G.

Proof. By Lemma 3.5, we can assume that all the graphs in the chain are basic.
Furthermore, without loss of generality, they are critical. We consider the chains
consisting of copies of the graphs depicted in Figure 3, the graph I4, and the
graphs from [8] whose rings are disjoint and not separated by another triangle
or disjoint 4-cycle. By computer enumeration, we verify that the claim holds
for n = 7.
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For longer chains, we prove the claim by induction on n. By symmetry, we
can assume that if |C1| = 3, then |C2| = 3. If any of the graphs in the chain
is isomorphic to a quadrangulation Q1, . . . , or Q5, then identify the vertices
of their rings as indicated by dotted lines in Figure 3, and apply induction to
the resulting graph. Otherwise, let K be the first cutting cycle of the chain
distinct from C1. We extend the 3-coloring of C1 to the subgraph of G drawn
between C1 and K by Theorem 1.3, and then the claim follows by the induction
hypothesis for the subgraph of G drawn between K and C2.

Let us mention that Lemma 3.12 is not true if we demand just two non-
quadrangulations or if the chain has length at most 6.

4 Disk with two triangles

In this section, we consider the case of the graphs embedded in the disk with a
ring of length 4 and with exactly two triangles, and we aim to prove Theorem 1.4.

Borodin et al. [3] described all non-3-colorable planar graphs with exactly 4
triangles. The following is a special case of their main result relevant to us.

Theorem 4.1 (Borodin et al. [3]). If G is a 4-critical planar graph with exactly
four triangles and there exists an edge e ∈ E(G) intersecting two of them, then
G− e is a patched Havel-Thomas-Walls graph with the interface pair e.

As a corollary, we have the following special case of Theorem 1.4.

Corollary 4.2. Let G be a graph embedded in the disk with at most two triangles
and with ring C = v1v2v3v4. If G is critical and has no 3-coloring that is v1-
diagonal on C, then G is obtained from a patched Havel-Thomas-Walls graph
by framing on its interface pair v1v3.

Proof. Since G is critical, Theorem 1.3 implies that any non-facial 4-cycle in G
separates the hole of the disk from both triangles of G.

Let C ′ be a non-facial 4-cycle in G containing v1 and v3, such that the
subgraph of G drawn between C ′ and C is maximal. Let G′ = G − (V (C) \
V (C ′)). Since the 4-cycles in C ∪ C ′ distinct from C and C ′ do not separate
the hole from the triangles, they bound faces, and thus G is obtained from G′

by framing on v1v3.
Let G′′ = G′ + v1v3. Note that G′′ is not 3-colorable, and by the choice of

C ′, it contains exactly four triangles. By Theorem 1.2, G′′ contains a 4-critical
subgraph H with all four triangles. By Theorem 4.1, H − v1v3 is a patched
Havel-Thomas-Walls graph with the interface pair v1v3. Since G is critical,
Lemma 2.5 implies that every non-facial (≤5)-cycle of G separates the hole of
the disk from at least one triangle of G. However, all faces H−v1v3 have length
at most 5, and thus G′′ = H.

It follows that G is obtained from the patched Havel-Thomas-Walls graph
G′ by framing on its interface pair v1v3.
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Finally, we need a result on the density of 4-critical graphs by Kostochka
and Yancey [14].

Theorem 4.3. For every n ≥ 4, every 4-critical graph with n vertices has at
least 5n−2

3 edges.

We can now prove the main theorem of this section.

Proof of Theorem 1.4. We prove the claim by the induction on the number of
vertices of G; hence, we assume that the claim holds for all graphs with less
than |V (G)| vertices.

Let C = v1v2v3v4 be the ring of G. Let ψ1, ψ2 and ψ3 be a v1-diagonal, a
v2-diagonal, and a bichromatic 3-coloring of C, respectively. If either ψ1 or ψ2

does not extend to a 3-coloring of G, then the claim follows from Corollary 4.2.
Hence, we can assume that ψ1 and ψ2 extend to 3-colorings ϕ1 and ϕ2 of G,
respectively. Since G is critical, ψ3 does not extend to a 3-coloring of G.

Note that if say v1 had degree 2, then we could recolor v1 in the coloring
ϕ1 and obtain a 3-coloring of G whose restriction to C is bichromatic, which
is a contradiction. Similarly, we conclude that every vertex of C has degree
at least three. Also, since ϕ1(v2) = ϕ1(v4), the graph G?2 obtained from G
by identifying v2 with v4 is 3-colorable. Symmetrically, the graph G?1 obtained
from G by identifying v1 with v3 is 3-colorable.

Suppose for a contradiction that G has no non-ring 4-faces. Let n, m and s
denote the number of vertices, edges and faces of G, respectively. Then 2m ≥
5(s − 3) + 4 + 2 · 3 = 5s − 5. By Euler’s formula, we have s = m + 2 − n, and
thus

2m ≥ 5(m+ 2− n)− 5 = 5m− 5n+ 5

5n− 5 ≥ 3m

and m ≤ 5n−5
3 . Let G′ be the graph (not embedded in the disk) obtained from

G by identifying v1 with v3 to a vertex z1 and v2 with v4 to a vertex z2 and by
suppressing parallel edges. Note that G′ is not 3-colorable, since ψ3 does not
extend to a 3-coloring of G. Let G′′ be a 4-critical subgraph of G′. Since G?1
and G?2 are 3-colorable, we have z1, z2 ∈ V (G′′). For every v ∈ V (G′) \ {z1, z2},
note that ψ3 extends to a 3-coloring of G − v by the criticality of G, and
thus v ∈ V (G′′). Thus, V (G′′) = V (G′). Note that |E(G′)| = m − 3 and
|V (G′)| = n− 2 since C is replaced by the edge z1z2. Thus

|E(G′′)| ≤ |E(G′)| = m− 3 ≤ 5n− 14

3
=

5|V (G′′)| − 4

3
.

This contradicts Theorem 4.3.
It follows that G contains a 4-face x1x2x3x4. Since all vertices of C have

degree at least 3, we can assume that x1, x2 6∈ V (C). If x3, x4 ∈ V (C), say
x3 = v3 and x4 = v4, and x1 is adjacent to v1 and x2 is adjacent to v2, then
G is a tent. Hence, by symmetry, we can assume that either x3 6∈ V (C), or
x3 = vi for some i ∈ {3, 4} and x1 is not adjacent to vi−2. Let G0 be the graph
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obtained from G by identifying x1 with x3 to a new vertex x. Note that C is
the ring of G0 and C is an induced cycle. Observe that every 3-coloring of G0

corresponds to a 3-coloring of G, obtained by giving x1 and x3 the color of x.
Consequently, ψ3 does not extend to a 3-coloring of G0.

Consider any triangle xyz in G0 created by the identification; i.e., K =
x1x2x3yz is a 5-cycle in G. Since G is critical, x2 has degree at least three, and
thus K does not bound a face. By Lemma 2.5, K separates a triangle of G from
the hole of the disk. If K separated both triangles, then Theorems 1.3 and 1.2
would imply that ψ3 extends to a 3-coloring of G0, which is a contradiction.
Consequently, K separates exactly one of the triangles of G from the hole. Let
G1 be a maximal critical subgraph of G0, and note that by Theorem 1.3, G1

contains exactly two triangles.
By the induction hypothesis, G1 is either a tent or obtained from a patched

Havel-Thomas-Walls graph by framing on its interface pair.
Let us first discuss the case that G1 is a tent. Then G1 contains two vertex-

disjoint triangles, each of them sharing an edge with C. At least one of the
triangles does not contain x, say a triangle v1v2z1. Hence, v1v2z1 is a triangle
in G as well. By Theorem 2.1 applied to the disk bounded by the 5-cycle
K = v1z1v2v3v4 and the 3-coloring of K that extends ψ3, we conclude that G
also contains a triangle containing the edge v3v4 and all other faces of G have
length 4. Therefore, G is a tent.

Hence, it remains to consider the case that G1 is obtained from a patched
Havel-Thomas-Walls graph by framing on its interface pair, say v1v3. Since ψ3

does not extend to a 3-coloring of G1, Lemma 2.8 implies that C is strong in
G1, and thus G1 is a patched Havel-Thomas-Walls graph.

As the next case, suppose that G1 is not obtained by patching from the
graph depicted in Figure 2(b). Then, since C is a strong ring G1 and since C
is an induced cycle in G1, it follows that G1 contains vertices w1, w2, y1 and
y2 and facial 5-cycles K1 = v2v1v4w1y1 and K2 = v2v3v4w2y2, where possibly
w1 = w2. Furthermore, if w1 6= w2, then G1 also contains a 6-cycle y1w1v4w2y2z
with quadrangulated interior. If w1 = w2, let us define z = w1. Let K = zy1v2y2

and let G1,K be the subgraph of G1 drawn in the closed disk bounded by K; note
that G1,K is obtained from a patched Havel-Thomas-Walls graph by framing on
its interface pair v2z. See Figure 5.

Both v1 and v3 have degree two in G1. Since v1 and v3 have degree at least
three in G and every non-facial (≤5)-cycle in G separates the hole from at least
one of the triangles of G, it follows that neither K1 nor K2 is a cycle in G. In
particular, x is one of v4, v2 or w1 (in the case that w1 = w2). Furthermore,
K corresponds to a 4-cycle K ′ in G, and the subgraph GK′ of G drawn in
the closed disk bounded by K ′ is isomorphic to G1,K . By Lemma 2.8, any y1-
diagonal 3-coloring of K ′ extends to a 3-coloring of GK′ . Let us distinguish two
subcases.

• If x = v2, then G contains cycles K ′1 = v2v1v4w1y1x1x2 and K ′2 =
v2v3v4w2y2x1x2 (recall that x2 6∈ V (C), and that v1, v3 have degree at
least three in C and non-facial (≤ 5)-cycles in G separate the hole from
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Figure 5: Graph G1 in proof of Theorem 1.4.

at least one of the triangles, and thus x2 6∈ {v1, v3, y1, y2}). Let GK′
1

and
GK′

2
denote the subgraphs of G drawn in the closed disks bounded by K ′1

and K ′2, respectively.

Since x2 has degree at least three in G and every non-facial (≤5)-cycle in
G separates a triangle from the hole, either v1y1 or v3y2 is not an edge.
By symmetry, we can assume the former. Let ϕ be a 3-coloring defined
by ϕ(v1) = ϕ(v3) = ϕ(x2) = ϕ(y1) = 1, ϕ(v2) = ϕ(v4) = ϕ(y2) = 2
and ϕ(x1) = ϕ(w1) = ϕ(w2) = ϕ(z) = 3. Since ϕ is y1-diagonal on K ′, it
extends to a 3-coloring of GK′ . If w1 6= w2, then by Lemma 2.4, ϕ extends
to the subgraph of G drawn in the closed disk bounded by v4w1y1zy2w2.

Suppose that ϕ does not extend to a 3-coloring of GK′
1
. By Theorem 3.2,

GK′
1

contains a 5-face whose intersection with K ′1 is a path containing v1,
v2, x1, and y1. However, this is not possible, since y1 is not adjacent to
v1. Hence, ϕ extends to a 3-coloring of GK′

1
.

Suppose that ϕ does not extend to a 3-coloring of GK′
2
. By Theorem 3.2,

GK′
2

contains a 5-face whose intersection with K ′2 is a path containing w2,
y2, v2, and v3. However, this is not possible, since v3 has degree at least
three in G. Hence, ϕ extends to a 3-coloring of GK′

2
.

We conclude that ϕ extends to a 3-coloring of G. This is a contradiction,
since ϕ is bichromatic on C.

• If x 6= v2, thenG contains cyclesK ′1 = v2v1v4abw1y1 andK ′2 = v2v3v4abw2y2,
with {a, b} = {x1, x2}. LetGK′

1
andGK′

2
denote the subgraphs ofG drawn

in the closed disks bounded by K ′1 and K ′2, respectively.

Let ϕ be a 3-coloring defined by ϕ(v1) = ϕ(v3) = ϕ(a) = ϕ(y1) = 1,
ϕ(v2) = ϕ(v4) = ϕ(w1) = ϕ(w2) = ϕ(z) = 2 and ϕ(y2) = ϕ(b) = 3. Since
ϕ is y1-diagonal on K ′, it extends to a 3-coloring of GK′ . If w1 6= w2, then
by Lemma 2.4, ϕ extends to the subgraph of G drawn in the closed disk
bounded by bw1y1zy2w2.
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Suppose that ϕ does not extend to a 3-coloring of GK′
1
. By Theorem 3.2,

GK′
1

contains a 5-face whose intersection with K ′1 is a path containing v1,
v2, v4, and y1. However, this is not possible, since v1 has degree at least
three in G.

Suppose that ϕ does not extend to a 3-coloring of GK′
2
. By Theorem 3.2,

GK′
2

contains a 5-face whose intersection with K ′2 is a path containing v3,
v4, w2 and y2. However, this is not possible, since v3 has degree at least
three in G.

We conclude that ϕ extends to a 3-coloring of G. This is a contradiction,
since ϕ is bichromatic on C.

Finally, let us consider the case that G1 is obtained by patching from the
graph depicted in Figure 2(b). Since C is strong, G1 contains 5-faces v2v1v4w1y1

and v2v3v4w2y2. Let H denote the subgraph of G1 drawn in the closed disk
bounded by the 6-cycle K = v2y1w1v4w2y2, and observe that a precoloring ϕ of
K extends to a 3-coloring of H, unless {ϕ(y1), ϕ(w1)} = {ϕ(y2), ϕ(w2)}. Since
both v1 and v3 have degree at least three in G, we conclude that x ∈ {v2, v4},
say x = x3 = v2, and G contains a 6-cycle K ′ = x1y1w1v4w2y2 such that the
subgraph drawn in the closed disk bounded by K ′ is isomorphic to H.

Because x2 has degree at least three in G and non-facial (≤ 5)-cycles in G
separate the hole from at least one of the triangles, either v1y1 or v3y2 is not
an edge; assume the latter. Let ϕ be a 3-coloring defined by ϕ(v2) = ϕ(v4) =
ϕ(y1) = 1, ϕ(v1) = ϕ(v3) = ϕ(y2) = ϕ(x2) = 2 and ϕ(x1) = ϕ(w1) = ϕ(w2) =
3. Note that ϕ extends to a 3-coloring of H. We consider the subgraphs GK′

1

and GK′
2

of G drawn inside the 7-cycles v2x2x1y1w1v4v1 and v2x2x1y2w2v4v3,
respectively.

Suppose that ϕ does not extend to a 3-coloring of GK′
1
. By Theorem 3.2,

GK′
1

contains a 5-face whose intersection with K ′1 is a path containing v1, v2,
y1, and w1. However, this is not possible, since v1 has degree at least three in
G.

Suppose that ϕ does not extend to a 3-coloring of GK′
2
. By Theorem 3.2,

GK′
2

contains a 5-face whose intersection with K ′2 is a path containing v2, v3,
x1 and y2. However, this is not possible, since y2 is not adjacent to v3.

Therefore, ϕ extends to a 3-coloring of G. This is a contradiction, since the
restriction of ϕ to C is bichromatic.

Theorem 1.4 enables us to give some information about critical graphs em-
bedded in the cylinder with rings of length 4.

Corollary 4.4. Let G be a critical tame graph embedded in the cylinder with
rings C1 = u1u2u3u4 and C2 = v1v2v3v4. Let ψ be a 3-coloring of C1. If no
3-coloring of G that extends ψ is v1-diagonal on C2, then G is obtained from a
patched Thomas-Walls graph by framing on its interface pairs, one of which is
v1v3.

Proof. Let C ′2 be a non-contractible 4-cycle in G containing v1 and v3 such that
the subgraph G2 of G drawn between C ′2 and C2 is maximal. Let G1 be the
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subgraph of G drawn between C1 and C ′2. Note that all faces of C ′2 ∪ C2 have
length 4. Since G is critical, Lemma 2.5 implies that G2 = C ′2 ∪C2, and thus G
is obtained from G1 by framing on v1v3.

Let G′1 = G1 + v1v3. Note that ψ does not extend to a 3-coloring of G′1.
By the choice of C ′2, the edge v1v3 belongs to exactly two triangles v1v

′
2v3 and

v1v
′
4v3 in G′1. If G′1 contains a triangle T distinct from v1v

′
2v3 and v1v

′
4v3, then

T separates the hole bounded by C1 from v1v
′
2v3 and v1v

′
4v3, and ψ extends

to a 3-coloring of G′1 by Theorems 1.3 and 1.2. This is a contradiction, and
thus G′1 contains exactly two triangles. Since the two triangles of G′1 share an
edge, the examination of the outcomes of Theorem 1.4 shows that G′1 contains
a subgraph H ′ that is obtained from a patched Thomas-Walls graph by framing
on its interface pair in C1, v1v3 is an interface pair of H ′, and the rings of H ′

are C1 and C ′2.
Let H = H ′ ∪ C2. To prove Corollary 4.4, it suffices to show that G = H.

This is the case, since H ⊆ G, every face of H has length at most 5, and every
contractible (≤5)-cycle in G bounds a face by Lemma 2.5.

We can now strengthen the conclusions of Lemma 3.10.

Lemma 4.5. Let G be a tame graph embedded in the cylinder with rings of
length at most 4. If G is a chain of graphs, at least 264 of which are not
quadrangulated, then either every precoloring of the rings of G extends to a 3-
coloring of G, or G contains a subgraph obtained from a patched Thomas-Walls
graph by framing on its interface pairs, with the same rings as G.

Proof. Let C1 and C2 be the rings of G. There exists a non-contractible (≤
4)-cycle K such that for i ∈ {1, 2}, if Gi denotes the subgraph of G drawn
between Ci and K, then Gi is a chain of graphs, at least 132 of which are not
quadrangulated.

Suppose that there exists a 3-coloring ψ of C1∪C2 that does not extend to a
3-coloring of G. By Corollary 3.11, for i ∈ {1, 2} there exists a vertex vi ∈ V (K)
such that for any vi-diagonal 3-coloring ψ′ of K, the coloring (ψ � V (Ci)) ∪ ψ′
extends to a 3-coloring of Gi. If v1 is either equal or non-adjacent to v2, then
we can choose a 3-coloring ψ′ of K that is both v1-diagonal and v2-diagonal,
and extend ψ ∪ ψ′ to both to G1 and G2, which is a contradiction.

Therefore, assume that v1 and v2 are adjacent, K = v1v2v3v4. Consider any
3-coloring ψ′ of C1 ∪ C2 ∪K that extends ψ, such that ψ′ is v2-diagonal on K.
It follows that ψ′ extends to a 3-coloring of G2, and thus it does not extend
to a 3-coloring of G1. By Corollary 4.4, G1 contains a subgraph H1 obtained
from a patched Thomas-Walls graph by framing on its interface pairs, v2v4 is
an interface pair of H1, and the rings of H1 are C1 and K. By symmetry,
G2 contains a subgraph H2 obtained from a patched Thomas-Walls graph by
framing on its interface pairs, v1v3 is an interface pair of H2, and the rings of
H2 are C2 and K.

Note that all faces of H1 ∪H2 have length at most 5, and since ψ does not
extend to a 3-coloring of G, Lemma 2.4 implies that ψ does not extend to a 3-
coloring of H1∪H2. If K is weak in both H1 and H2, then we can extend ψ to a
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3-coloring ψ′ of C1 ∪C2 ∪K that is bichromatic on K, and further extend ψ′ to
a 3-coloring of H1 and H2 by Lemma 2.7, which is a contradiction. Hence, K is
weak in at most one of H1 and H2. Let H be the subgraph of H1∪H2 obtained
by removing all vertices of degree two not belonging to C1 ∪ C2. Observe that
H is obtained from a patched Thomas-Walls graph by framing on its interface
pairs, as required by the conclusion of the lemma.

Let us remark that by using Lemma 3.12 instead of Corollary 3.11, the
assumption of Lemma 4.5 could be relaxed to “If G is a chain of at least 14
graphs, at least 10 of which are not quadrangulated”.

5 Colorings of quadrangulations

Next, we explore the graphs containing a long chain of quadrangulations, which
complements Lemma 4.5. We need the following fact, which follows from Lem-
mas 4 and 5 of [7].

Lemma 5.1. Let G be a graph embedded in the cylinder with a ring C =
v1v2v3v4 and a ring T of length 3, such that T is the only triangle in G, G has
exactly one face f of length 5, and all non-ring faces of G other than f have
length 4. Let ψ be a 3-coloring of C, and let w ∈ {−1, 1}. If ψ does not extend
to a 3-coloring of G with winding number w on T , then either T shares an edge
with C, or there exists a path vixyvi+2 in G for some i ∈ {1, 2} such that f is
drawn inside the contractible 5-cycle of C + vixyvi+2, and ψ(vi) 6= ψ(vi+2).

Let G be a graph embedded in the cylinder with rings C and T such that
|T | = 3. Let ψ be a 3-coloring of C. We say that ψ forces the winding number of
T if there exists w ∈ {−1, 1} such that for every 3-coloring ϕ of G that extends
ψ, the winding number of ϕ on T is w.

Lemma 5.2. Let G be a critical graph embedded in the cylinder with rings C
of length at most 4 and T of length 3, such that all triangles in G are non-
contractible. If there exists a 3-coloring ψ of C that forces the winding number
of T , then G is a near 3, 3-quadrangulation and for some w ∈ {−1, 1}, ψ on C
causes winding number w.

Proof. We proceed by induction, assuming that the claim holds for all graphs
with less than |V (G)| vertices. If C and T share at least two vertices, or if
|C| = 3 and |V (C)∩V (T )| = 1, then the claim follows from Lemma 2.4. Hence,
assume that C intersects T in at most one vertex, and if |C| = 3, then C and T
are vertex-disjoint.

IfG contains a triangle T ′ distinct from C and T , then letG1 be the subgraph
ofG drawn between C and T ′, and letG2 be the subgraph ofG drawn between T ′

and T . By Theorem 1.3, ψ extends to a 3-coloring ϕ of G1. Note that ϕ � V (T ′)
must force the winding number of T in G2. By the induction hypothesis, G2 is
a 3, 3-quadrangulation. By Lemma 2.9, the winding number of any 3-coloring
of G2 on T is equal to its winding number on T ′, and we conclude that ψ forces
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the winding number of T ′ in G1. The claims of Lemma 5.2 then follow by the
induction hypothesis applied to G1. Therefore, we can assume that G contains
no triangle distinct from the rings, and in particular G is tame.

Suppose that G contains at most one non-ring face f of length other than 4,
and if G has such a face f , that |f | = 5. Since G has even number of odd faces,
note that f exists if and only if |C| = 4. If |C| = 3, then it follows that G is a
3, 3-quadrangulation, and ψ automatically causes winding number. If |C| = 4,
then G satisfies the assumptions of Lemma 5.1. Since T does not share an edge
with C, it follows that say C = v1v2v3v4 and G contains a path v1xyv3 such
that f is contained inside the contractible 5-cycle v3v4v1xy, and ψ(v1) 6= ψ(v3).
Since G is critical, Lemma 2.5 implies that f = v3v4v1xy, and thus G is a near
3, 3-quadrangulation and ψ on C causes winding number w.

Hence, assume that

G contains either at least two faces of length at least 5, or a face of length at
least 6.

(8)
If G contains no 4-face, then G is one of the critical graphs determined in [8].
We depict those without separating triangles in Figure 6. A straightforward
case analysis shows that ψ does not force the the winding number of T in any
of these graphs.

Therefore, we can assume that G contains a 4-face f = u1u2u3u4. Suppose
first that three vertices of f , say u1, u2, and u3, either all belong to C, or
all belong to T . Since G is tame, this is only possible if u1, u2, u3 ∈ V (C)
and |C| = 4. Let C = u1u2u3v4. Let G′ = G − u2, and let ψ′ be the 3-
coloring of C ′ = u1u4u3v4 given by ψ′(x) = ψ(x) for x ∈ {u1, u3, v4} and
ψ′(u4) = ψ(v4). Note that ψ′ forces the winding number of T in G′, and by the
induction hypothesis, G′ is a near 3, 3-quadrangulation. Since f is the only face
of G that does not belong to G′, this contradicts (8). It follows that we can
assume that |V (f) ∩ V (C)| ≤ 2 and |V (f) ∩ V (T )| ≤ 2 for every 4-face f of G.

In particular, we can by symmetry assume that |{u1, u3} ∩ V (C)| ≤ 1 and
|{u1, u3}∩V (T )| ≤ 1; hence, u1 and u3 are not both contained in the same trian-
gle, and thus they are non-adjacent. Let G1 be obtained from G by identifying
u1 with u3, and let G2 be a maximal critical subgraph of G1.

Suppose for a contradiction that G2 contains a contractible triangle, and
thus G contains a contractible 5-cycle K with u1u2u3 ⊂ K. By Lemma 2.5, K
bounds a face in G, and thus u2 has degree two. Since G is critical, we conclude
that u2 is incident with C or T . However, then u2 and its neighbors u1 and u3

all belong to C or all belong to T , which is a contradiction.
Hence, every triangle in G2 is non-contractible. Note that ψ forces the

winding number of T in G2, since every precoloring of C ∪ T that extends to a
3-coloring of G2 also extends to a 3-coloring of G. By the induction hypothesis,
G2 is a near 3, 3-quadrangulation. Each (≤5)-face K in G2 corresponds either
to a |K|-face in G, or to a contractible (|K|+ 2)-cycle K ′ in G containing either
the path u1u2u3 or the path u1u4u3. Since neither u2 nor u4 has degree 2 in G,
in the latter case K ′ does not bound a face, and by Theorems 2.2 and 3.2, all
the faces contained in the disk bounded by K ′ have length 4 except for one of
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Figure 6: Tame critical graphs with rings of length 3 and at most 4, no con-
tractible 4-cycles, and no non-ring triangles.
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length |K|. We conclude that all faces of G distinct from C and T have length
four, except possibly for one of length 5. This contradicts (8).

As a corollary, we obtain the following.

Lemma 5.3. Let G be a tame graph embedded in the cylinder with rings C1 and
C2 of length at most 4. Suppose that G contains non-contractible (≤ 4)-cycles
K1 and K2 at distance at least 4 from each other, such that all faces of G drawn
between K1 and K2 have length 4. Then either every precoloring of C1 ∪ C2

extends to a 3-coloring of G, or G contains a near 3, 3-quadrangulation with
rings C1 and C2 as a subgraph.

Proof. Without loss of generality, K1 separates C1 from K2. For i ∈ {1, 2}, let
Gi be the subgraph of G drawn between Ci and Ki. Let G0 be the subgraph of
G drawn between K1 and K2.

Suppose that there exists a precoloring ψ of C1 ∪ C2 that does not extend
to a 3-coloring of G. By Theorem 1.3, ψ extends to a 3-coloring ϕ of G1 ∪G2.
Since ψ does not extend to a 3-coloring of G, ϕ � V (K1∪K2) does not extend to
a 3-coloring of G0. By Lemma 2.10, it follows that |K1| = |K2| = 3 and ϕ has
opposite winding numbers on K1 and K2. Furthermore, ψ forces the winding
number of K1 and K2, and thus by Lemma 5.2, for i ∈ {1, 2}, Gi contains a near
3, 3-quadrangulation Hi with rings Ci and Ki as a subgraph. Then, H1∪G0∪H2

is a near 3, 3-quadrangulation with rings C1 ∪ C2.

6 Chains in cylinder

We can now prove the main result of the paper.

Proof of Theorem 1.1. Let c1 = 264 be the constant of Lemma 4.5. Let c =
4c1 = 1056. If at least c1 of the graphs forming the chain G are not quadran-
gulations, then by Lemma 4.5, either every precoloring of C1 ∪C2 extends to a
3-coloring of G, or G contains a subgraph H obtained from a patched Thomas-
Walls graph by framing on its interface pairs, and the rings of H are C1 and
C2.

On the other hand, if all but at most c1 − 1 graphs in the chain forming
G are quadrangulations, then there exist four consecutive graphs in the chain
that are quadrangulations, and thus by Lemma 5.3, either every precoloring of
C1 ∪C2 extends to a 3-coloring of G, or G contains a near 3, 3-quadrangulation
with rings C1 and C2 as a subgraph.

Using the bound from Lemma 3.12, the constant c of Theorem 1.1 can be
improved to 40. However, even this improved bound is still likely to be far from
the best possible.
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