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Abstract

The existence-uniqueness and stability of strong solutions are proved for a class
of degenerate stochastic differential equations, where the noise coeffcicient might be
non-Lipschitz, and the drift is locally Dini continuous in the component with noise
(i.e. the second component) and locally Hölder-Dini continuous of order 2

3 in the first
component. Moreover, the weak uniqueness is proved under weaker conditions on the
noise coefficient. Furthermore, if the noise coefficient is C1+ε for some ε > 0 and the
drift is Hölder continuous of order α ∈ (23 , 1) in the first component and order β ∈ (0, 1)
in the second, the solution forms a C1-stochastic diffeormorphism flow. To prove these
results, we present some new characterizations of Hölder-Dini space by using the heat
semigroup and slowly varying functions.

AMS subject Classification: 60H15, 35R60.
Keywords: Stochastic Hamiltonian system, Hölder-Dini continuity, weak solution, strong
solution, diffeomorphism flow.

1 Introduction

Consider the following ordinary differential equation (abbreviated as ODE):

ẋ(t) = b(x(t)), x(0) = x0.

It is classical that the equation is well-posed for Lipschitz b but usually ill-posed if b is only
Hölder continuous. For instance, for b(x) := |x|α with α ∈ (0, 1) and x0 = 0, the above ODE
has two solutions: x(t) ≡ 0 and x(t) = (1 − α)t1/(1−α), t > 0. However, if the above ODE

∗FW is supported in part by NNSFC (11131003, 11431014), the 985 project and the Laboratory of
Mathematical and Complex Systems, XZ is supported partly by NNSFC (11271294, 11325105).
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is perturbed by a strong enough noise (e.g. the Browian motion), the equation might be
well-posed for very singular b. For instance, consider the following SDE on R

d:

dXt = bt(Xt)dt+ σdWt, X0 = x,

whereWt is a d-dimensional standard Brownian motion on some probability space (Ω,F ,P),
σ is an invertible matrix. If b is a bounded measurable function, Veretennikov [22] proved
that the above SDE admits a unique strong solution, which extended an earlier result of
Zvonkin [32] in the case of d = 1. More recent results about the above SDE can be found in
[9, 14, 30] and references therein for further development in this direction.

It is worthy noticing that all the well-posedness results mentioned above are done only
for the time-white noise, which means that the noise is a distribution of the time variable.
In this work, we are concerning with the following problem: Is it possible to prove the
well-posedness of the ODE with singular b perturbed by an absolutely continuous Gaussian
process? More concretely, consider the following random ODE:

dXt = [bt(Xt) + σWt]dt, X0 = x.(1.1)

We aim to find minimal conditions on b and σ ensuring the well-posedness of this random
ODE. By regarding Xt as the first component process X

(1)
t and introducing X

(2)
t := σWt,

this problem is reduced to the study of the following more general degenerate SDE for
Xt := (X

(1)
t , X

(2)
t ) on R

d1+d2 = R
d1 × R

d2 :

dXt = bt(Xt)dt + (0, σt(Xt)dWt), X0 = x = (x(1), x(2)) ∈ R
d1+d2 ,(1.2)

where, for R+ := (0,∞), the maps σ : R+ × R
d1+d2 → R

d2 ⊗ R
d2 and b = (b(1), b(2)) :

R+ × R
d1+d2 → R

d1+d2 are measurable and locally bounded. This model is known as the
stochastic Hamiltonian system with potential H if b = ∇H , which includes the kinetic
Fokker-Planck equation as a typical example (see [23]).

In the following, we will use ∇(1) and ∇(2) to denote the gradient operators on the first
space R

d1 and the second space R
d2 respectively. Thus, for every (t, x) ∈ R+ × R

d1+d2 ,

∇(2)b
(1)
t (x) ∈ R

d2 ⊗ R
d1 with (∇(2)b

(1)
t (x))h := ∇(2)

h b
(1)
t (x) ∈ R

d1 , h ∈ R
d2 . By Itô’s formula,

the infinitesimal generator associated to (1.2) is given by

L
Σ,b
t u = tr

(
Σt · ∇(2)∇(2)u

)
+ bt · ∇u,(1.3)

where Σt(x) :=
1
2
σt(x)σ

∗
t (x) and tr(·) denotes the trace of a matrix.

Let | · | denote the Euclidiean norm and let ‖ · ‖ denote the operator norm. We introduce
below the notion of Hölder-Dini continuity.

Definition 1.1. An increasing function φ : R+ → R+ is called a Dini function if

∫ 1

0

φ(t)

t
dt <∞.(1.4)

A measurable function φ : R+ → R+ is called a slowly varying function at zero if for any
λ > 0,

lim
t→0

φ(λt)

t
= 1.(1.5)
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A function f on the Euclidiean space is called Hölder-Dini continuous of order α ∈ [0, 1) if

|f(x)− f(y)| 6 |x− y|αφ(|x− y|), |x− y| 6 1

holds for some Dini function φ, and is called Dini-continuous if this condition holds for α = 0.

Let D0 be the set of all Dini functions, and S0 the set of all slowly varying functions
that are bounded from 0 and ∞ on [ε,∞) for any ε > 0. Notice that the typical examples
in D0 ∩ S0 are φ(t) := (log(1 + t−1))−β for β > 1.

Roughly speaking, for the existence and uniqueness of the solutions to (1.2), we will need
b(1)(·, x(2)) and b(2)(·, x(2)) and ∇(2)b(2)(x(1), ·) with fixed x(2) to be locally Hölder-Dini contin-
uous of order 2

3
, and b(2)(x(1), ·) with fixed x(1) to be merely Dini continuous. These coincide

with the continuity conditions used in [25] for infinite-dimensional degenerate systems with
linear b(1).

Moreover, it is known that (1.2) is well-posed if σ and b are “almostly Lipschitz contin-
uous”, see e.g. [27, 8, 19]. In this paper we show that, under the above mentioned much
weaker conditions on b, such a non-Lipschitz condition on σ still implies the well-posedness.
To characterize this condition, we introduce the class

C :=

{
γ ∈ C1(R+;R+) :

∫ 1

0

1

tγ(t)
dt = ∞, lim inf

t↓0

(γ(t)
4

+ tγ′(t)
)
> 0

}
,

where
∫ 1

0
1

tγ(t)
dt = ∞ is the key condition, and lim inft↓0

(
γ(t)
4

+ tγ′(t)
)
> 0 comes from our

calculations in the present framework, which is weaker than the following condition used in
[8, Theorem B]:

lim
t↓0

γ(t) = ∞, lim
t↓0

tγ′(t)

γ(t)
= 0.

Typical functions in C include

γ1(t) := log(1 + t−1), γ2(t) := γ1(t) log log(e + t−1), γ3(t) := γ2(t) log log log(e
2 + t−1)...

In the following four subsections, we state our main results on the weak solutions, the
strong solutions, the stability of solutions with respect to coefficients, and the C1-stochastic
diffeormorphism flows respectively.

1.1 Weak solutions

We introduce the following assumptions for some φ ∈ D0 ∩S0 and some increasing function
C : R+ → R+:

(C1) (Hypoellipticity) σt(x) and [∇(2)b
(1)
t (x)][∇(2)b

(1)
t (x)]∗ are invertible with

‖∇(2)b
(1)
t ‖∞ +

∥∥([∇(2)b
(1)
t ][∇(2)b

(1)
t ]∗

)−1∥∥
∞ + ‖σt‖∞ + ‖σ−1

t ‖∞ 6 C(t), t > 0.

(C2) (Regularity of b(1)) For any x, y ∈ R
d1+d2 with |x− y| 6 1 and t > 0,

|b(1)t (x)− b
(1)
t (y)| 6 C(t)|x(1) − y(1)| 23φ(|x(1) − y(1)|), if x(2) = y(2),

‖∇(2)b
(1)
t (x)−∇(2)b

(1)
t (y)‖ 6 C(t)φ(|x(2) − y(2)|), if x(1) = y(1).
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(C3) (Regularity of b(2), σ) Either

(1.6)

{
|b(2)t (x)− b

(2)
t (y)| 6 C(t)

{
|x(1) − y(1)| 23φ(|x(1) − y(1)|) + φ

7
2 (|x(2) − y(2)|)

}
,

‖σt(x)− σt(y)‖ 6 C(t)|x− y| 23φ(|x− y|), t > 0, |x− y| 6 1;

or for t > 0, |x− y| 6 1, there hold ‖∇(2)σt‖∞ 6 C(t) and

(1.7)





|b(2)t (x)− b
(2)
t (y)| 6 C(t)

{
|x(1) − y(1)| 23φ(|x(1) − y(1)|) + φ(|x(2) − y(2)|)

}
,

‖∇(2)σt(x
(1), x(2))−∇(2)σt(y

(1), x(2))‖ 6 C(t)|x(1) − y(1)| 19φ(|x(1) − y(1)|),
‖σt(x(1), x(2))− σt(y

(1), x(2))‖ 6 C(t)|x(1) − y(1)| 23φ(|x(1) − y(1)|).

Intuitively, there should be a balance between the regularities of b(2) and σ; that is, with
a stronger condition on σ we will only need a weaker regularity of b(2). Conditions (1.6) and
(1.7), as well as (1.8) and (1.9) below, are introduced in this spirit.

Theorem 1.1. Assume that (C1)–(C3) hold for some φ ∈ D0∩S0 and increasing function

C : R+ → R+. Then (1.2) has a unique weak solution.

Remark 1.1. In [16], Menozzi showed that the weak uniqueness holds for (1.2) under the
assumptions that σ is Hölder continuous and b is Lipschitz continuous. In [17], Priola showed
that there is a unique weak solution to (1.2) when σt(x) = σ(x) is bounded continuous,
b(1)(x) = x(2) and b(2)(x) is bounded measurable. Although our assumptions on b(2) and σ
are stronger, we allow b(1)(x) to be merely Hölder-Dini continuous in x(1). In fact, this is
the main source of the difficulty in our study, since due to the singularity of b(1)(x) in x(1)

we have to carefully estimate the regularization of the noise transported from the second
component to the first, see Lemma 3.1 below.

1.2 Strong solutions

By a localization argument, we will take the following local conditions on σ and b.

(A) For any n ∈ N, there exist a constant Cn ∈ R+, some φn ∈ D0 ∩ S0 and γn ∈ C such
that the following conditions hold for all t ∈ [0, n]:

(A1) (Hypoellipticity) σt(x) and [∇(2)b
(1)
t (x)][∇(2)b

(1)
t (x)]∗ are invertible and locally bounded

with

sup
x∈Rd1+d2 ,|x(1)|6n

∥∥([∇(2)b
(1)
t ][∇(2)b

(1)
t ]∗

)−1∥∥(x) + sup
|x|6n

‖σ−1
t ‖(x) 6 Cn.

(A2) (Regularity of b(1)) For any x, y ∈ R
d1+d2 with |x| ∨ |y| 6 n,

|b(1)t (x)− b
(1)
t (y)| 6 |x(1) − y(1)| 23φn(|x(1) − y(1)|), if x(2) = y(2),

‖∇(2)b
(1)
t (x)−∇(2)b

(1)
t (y)‖ 6 φn(|x(2) − y(2)|), if x(1) = y(1).
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(A3) (Regularity of b(2), σ) Either

(1.8)

{
|b(2)t (x)− b

(2)
t (y)| 6

{
|x(1) − y(1)| 23φn(|x(1) − y(1)|) + φ

7
2
n(|x(2) − y(2)|)

}
,

‖σt(x)− σt(y)‖ 6 |x− y|
√
γn(|x− y|) , |x| ∨ |y| 6 n;

or sup|x|6n ‖∇(2)σt(x)‖∞ 6 Cn and for |x| ∨ |y| 6 n,

(1.9)





|b(2)t (x)− b
(2)
t (y)| 6

{
|x(1) − y(1)| 23φn(|x(1) − y(1)|) + φn(|x(2) − y(2)|)

}
,

‖∇(2)σt(x
(1), x(2))−∇(2)σt(y

(1), x(2))‖ 6 |x(1) − y(1)|
√
γn(|x(1) − y(1)|) ,

‖σt(x(1), x(2))− σt(y
(1), x(2))‖ 6 |x(1) − y(1)|

√
γn(|x(1) − y(1)|).

Theorem 1.2. (1) Under assumption (A), for any x ∈ R
d1+d2, SDE (1.2) has a unique

solution Xt(x) up to the explosion time ζ(x).

(2) If, in particular, bt(x) and σt(x) do not depend on x(1), then the above assertion follows

provided for any n ∈ N there exists φn ∈ D0 ∩ S0 and γn ∈ C such that (A1) and

(1.10)

{
‖σt(x)− σt(y)‖ 6 |x(2) − y(2)|

√
γn(|x(2) − y(2)|),

|b2t (x)− b
(2)
t (y)|+ ‖∇(2)b

(1)
t (x)−∇(2)b

(1)
t (y)‖ 6 φn(|x(2) − y(2)|)

hold for all t, |x|, |y| 6 n.

(3) If there exists H ∈ C2(Rd1+d2) such that

(1.11) H > 1, lim
|x|→∞

H(x) = ∞, |∇(2)H|2 6 CH2−ε, L
Σ,b
t H 6 Φ(t)H, t > 0

holds for some constant ε ∈ (0, 1] and positive increasing function Φ, then the solution

to (1.2) is non-explosive and for any ε′ ∈ [0, ε),

(1.12) E exp

[
sup
t∈[0,T ]

H(Xt(x))
ε′
]
6 Ψ(T ) exp

[
H(x)ε

]
, T > 0, x ∈ R

d1+d2

holds for some increasing function Ψ : [0,∞) → (0,∞).

Remark 1.2. (1) When b(1) is linear, an infinite-dimensional version of the well-posedness
has been proved in [25] by following the line of [24] for non-degenerate SPDEs, see [4, 5, 6, 7]
for discussions on the pathwise uniqueness of SPDEs with Hölder continuous drifts and
non-degenerate additive noises.

(2) When m = d, the well-posedness was also proved in [2] under a stronger assumption
where σ is Lipschitz continuous, b(x) is Hölder continuous of order α ∈ (3

2
, 1) in x(1) and

order β ∈ (0, 1) in x(2), and ∇(2)b(1) is Hölder continuous. In fact, we will show in Theorem
1.7 below that under this assumption and that σ ∈ C1+ε for some ε > 0 the solutions to (1.2)
form C1-stochastic diffeomorphism flows. Notice that the proofs given in [2] strongly depend
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on the explicit form of the fundamental solutions of linear degenerate Kolmogorov’s opera-
tors, while our proof is based on explicit probability formulas of the semigroup associated to
the linear stochastic Hamiltonian system (see Section 2.4 below).

To illustrate Theorem 1.2, we present below three direct consequences, where the first
generalizes to (1.1), the second includes a class of SDEs with unbounded time-delay which
are interesting by themselves, and the last presents a new well-posedness result for non-
degenerate SDEs.

Corollary 1.3. The following stochastic differential-integral equation on R
d admits a unique

strong solution up to life time:

dXt =

(
bt(Xt) +

∫ t

0

σs(Xs)dWs

)
dt,

where Wt is a d-dimensional Brownian motion, b : R+ × R
d → R

d, σ : R+ × R
d → R

d ⊗ R
d

are measurable such that b, σ and σ−1 are locally bounded, and for any n > 1 there exist

φn ∈ D0 ∩ S0 and γn ∈ C such that for all t, |x|, |y| 6 n,

|bt(x)− bt(y)| 6 |x− y| 23φn(|x− y|),
|σt(x)− σt(y)| 6 |x− y|

√
γn(|x− y|).

(1.13)

Proof. Let X̃
(1)
t = Xt, X̃

(2)
t =

∫ t
0
σ(Xs)dWs. Then the equation reduces to (1.2) on R

d+d with

b̃
(1)
t (x̃) := bt(x̃

(1)) + x̃(2), b̃
(2)
t := 0, σ̃t(x̃) := σt(x̃

(1)).

Obviously, the local boundedness of b, σ and σ−1 as well as (1.13) imply (A) with (1.8) for
(b̃, σ̃). Then the proof is finished by Theorem 1.2(1).

Corollary 1.4. Let b and σ satisfy (A) and let b
(1)
t (x) = b

(1)
t (x(2)) not depend on x(1). Then

for any Y0 = y ∈ R
d2, the following SDE with unbounded time-delay has a unique solution

up to life time:

dYt = b
(2)
t

(∫ t

0

b(1)s (Ys)ds, Yt

)
dt+ σ

(∫ t

0

b(1)s (Ys)ds, Yt

)
dWt, Y0 = y.

Proof. Let X
(1)
t =

∫ t
0
b
(1)
s (Ys)ds and X

(2)
t = Yt. Then the SDE reduces to (1.2) with X0 =

(0, y) ∈ R
d1+d2 . So, the desired assertion follows from Theorem 1.2.

Finally, since existing well-posedness results for non-degenerated SDEs at least assumed
that σ is weakly differentiable (see [9, 30] and references within), the following result is new
even in the non-degenerate setting.

Corollary 1.5. The following SDE on R
d admits a unique strong solution up to life time:

dXt = bt(Xt) + σt(Xt)dWt,

where Wt is a d-dimensional Brownian motion, b : R+ × R
d → R

d, σ : R+ × R
d → R

d ⊗ R
d

are measurable such that b, σ and σ−1 are locally bounded, and for any n > 1 there exist

φn ∈ D0 ∩ S0 and γn ∈ C such that for all t, |x|, |y| 6 n,

(1.14) |bt(x)− bt(y)| 6 φn(|x− y|), |σt(x)− σt(y)| 6 C(t)|x− y|
√
γn(|x− y|).
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Proof. Let X̃
(1)
t =

∫ t
0
Xsds, X̃

(2)
t = Xt. Then the equation reduces to (1.2) on R

d+d with

b̃
(1)
t (x̃) := x̃(2), b̃

(2)
t (x̃) = bt(x̃

(2)), σ̃t(x̃) = σt(x̃
(2)).

Obviously, the local boundedness of b, σ and σ−1, together with (1.14), implies that (A1)
and (1.10) for (b̃, σ̃). Then the proof is finished by Theorem 1.2(2).

1.3 Stability of solutions with respect to coefficients

About the continuous dependence of strong solutions with respect to the coefficients (b, σ),
we have

Theorem 1.6. Let (bk, σk)k∈N∞ be a sequence of functions satisfying (A1), (A2) and

(1.15)

{
|(bk)(2)t (x)− (bk)

(2)
t (y)| 6

{
|x(1) − y(1)| 23φn(|x(1) − y(1)|) + φ

7
2
n(|x(2) − y(2)|)

}
,

‖σkt (x)− σkt (y)‖ 6 Cn|x− y|, t 6 n, |x| ∨ |y| 6 n

with the same localization constants Cn and φn ∈ D0 ∩ S0. Assume that (bk, σk) satisfies

(1.11) with the same H and C, and for each t, x,

lim
k→∞

‖σkt (x)− σ∞
t (x)‖+ |bkt (x)− b∞t (x)| = 0.

Let Xk
t (x) be the unique solution of (1.2) corresponding to (bk, σk) for each k ∈ N∞. Then

for each ε, T > 0 and x ∈ R
d,

lim
k→∞

P

(
sup
t∈[0,T ]

|Xk
t (x)−X∞

t (x)| > ε

)
= 0.(1.16)

Moreover, if for some p > d and for all T,R > 0,

sup
k∈N∞

sup
|x|6R

E

(
sup
t∈[0,T ]

|∇Xk
t (x)|p

)
<∞,(1.17)

then for each ε, R, T > 0,

lim
k→∞

P

(
sup
t∈[0,T ]

sup
|x|6R

|Xk
t (x)−X∞

t (x)| > ε

)
= 0.(1.18)

Remark 1.3. See Theorem 1.7 below for sufficient conditions of (1.17). According to [26,
Theorem 2.3], condition (1.17) can be replaced with the following weaker one: for some p > d
and for all T,R > 0,

sup
k∈N∞

E

(
sup
t∈[0,T ]

|Xk
t (x)−Xk

t (y)|p
)

6 C|x− y|p, |x| ∨ |y| 6 R.

7



1.4 C1-stochastic diffeormorphism flow

In order to show the C1-diffeomorphism flow property of Xt(x), we need stronger conditions
as shown in the following result.

Theorem 1.7. Assume (C1) and that for some constant β ∈ (0, 1
3
) and increasing function

C : [0,∞) → R+ the conditions

|b(1)t (x)− b
(1)
t (y)| 6 C(t)|x(1) − y(1)|β+ 2

3 , if x(2) = y(2),

‖∇(2)b
(1)
t (x)−∇(2)b

(1)
t (y)‖ 6 C(t)|x(2) − y(2)|β, if x(1) = y(1),

|b(2)t (x)− b
(2)
t (y)| 6 C(t)

(
|x(1) − y(1)|β+ 2

3 + |x(2) − y(2)|β
)
,

‖∇σt‖∞ 6 C(t), ‖∇σt(x)−∇σt(y)‖ 6 C(t)|x− y|β

hold for any |x − y| 6 1, t > 0. Then the unique strong solution {Xt(·)}t>0 to (1.2) is a

C1-stochastic diffeomorphism flow, and

(1.19) sup
x∈Rd1+d2

E

(
sup
t∈[0,T ]

‖∇Xt(x)‖p
)
<∞, T > 0, p > 1.

In the above result, b has at most linear growth. The following result shows that by
making perturbations to b, it is possible to prove the C1-stochastic diffeomorphism flow
property for b of high order polynomial growth.

Theorem 1.8. Keep the same assumptions of Theorem 1.7. Let a : R+ × R
d1+d2 → R

d2 be

a measurable function such that ∇at is locally Hölder continuous uniformly in t ∈ [0, T ] for
any T > 0. Suppose also that for some H ∈ C2(Rd1+d2), ε ∈ (0, 1], δ1, δ2, C1, C2, C3 > 0 and

positive increasing function Φ, and for all t > 0, x ∈ R
d1+d2,

(1.20) C1(1 + |x|δ1) 6 H(x) 6 C2(1 + |x|δ2), |∇(2)H|2 6 C3H
2−ε, |L Σ,b+a

t H| 6 Φ(t)H,

and for some ε′ ∈ [0, ε) and positive increasing function Φ′, and for all t > 0 and x, x′ ∈
R
d1+d2,

|at(x)| 6 Φ′(t)H(x)ε
′

, |at(x)− at(x
′)| 6 Φ′(t)(H(x)ε

′

+H(x′)ε
′

)|x− x′|,(1.21)

Then the SDE

dXt = [at(Xt) + bt(Xt)]dt + (0, σt(Xt)dWt), X0 = x ∈ R
d1+d2(1.22)

has a unique strong solution Xt(x) such that {Xt(·)}t>0 forms a C1-stochastic diffeomorphism

flow, and for any T > 0 and p > 1, there exists a constant C > 0 such that

(1.23) E

(
sup
t∈[0,T ]

‖∇Xt(x)‖p
)

6 CeH(x)ε , x ∈ R
d1+d2 .

Below is a simple example illustrating Theorem 1.8, where the drift is neither local
Lipschitz nor of linear growth.
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Example 1.1. Let d1 = d2 = d, α ∈ (2
3
, 1], m ∈ N and c1, c2 > 0. Take

H(x) = 1 + 1
2
|x(2)|2 + c1|x(1)|α+1 + c2|x(1)|m+1.

Let σ be an invertible d× d-matrix. Consider the following SDE

d(X
(1)
t , X

(2)
t ) = (X

(2)
t ,−∇(1)H(Xt))dt+ (0, σdWt).

It is easy to see that Theorem 1.8 applies to

b(x) =
(
x(2),−c1(α + 1)x(1)|x(1)|α−1

)
, a(x) =

(
0,−c2(m+ 1)x(1)|x(1)|m−1

)
.

In the spirit of [32, 22], the key point of the study is to construct a time-dependent diffeo-
morphism on R

d1+d2 which transforms (1.2) into an equation with regular enough coefficients
ensuring the desired assertions. To this end, we take a freezing coefficient argument, which
is different from the one used in [2], so that the construction is reduced to solve an parabolic
equation associated to a linear stochastic Hamiltonian system. To figure out the minimal
conditions on b and σ for the required estimates on solutions to this parabolic equation, we
introduce some techniques in Section 2, in particular, some characterizations of the conti-
nuity using the heat semigroup. Moreover, in Section 2 we also present gradient estimates
on the semigroup of the linear stochastic Hamiltonian system. With these preparations, in
Section 3 we investigate the parabolic equation associated to the generator L

Σ,b
t (see (3.1)

below), which in turn provides the desired diffeomorphism on R
d1+d2 . Finally, in Section 4

we present complete proofs of the above theorems.

2 Preparations

This section contains some results which will be used to construct the regularization trans-
form in the proof of the main results. We first present a Volterra-Gronwall type inequality
associated to a Dini function, then characterize the continuity of functions using the heat
semigroup, and finally introduce derivative formula and gradient estimates on linear stochas-
tic Hamiltonian systems.

Throughout the paper, the letter C with or without subscripts will denote a positive
constant whose value may change from one appearance to another. For two real functions
f and g, we write f � g if f 6 C0g for some C0 > 0; and f ≍ g if C1g 6 f 6 C2g for some
C1, C2 > 0.

2.1 Volterra-Gronwall inequality associated to a Dini function

Lemma 2.1. Let φ : R+ → R+ be a Dini function. For any T > 0, there exists a constant

C = C(φ, T ) > 0 such that if λ > 0 and bounded measurable functions f, h : R+ → R+

satisfy

h(t) 6

∫ t

0

e−λ(t−s)
φ(t− s)

t− s

(
h(s) + f(s)

)
ds, t ∈ (0, T ],

9



then

h(t) 6 C

∫ t

0

e−λ(t−s)
φ(t− s)

t− s
f(s)ds, t ∈ (0, T ].

Proof. Let a1(t) =
φ(t)
t

and define

an+1(t) =

∫ t

0

an(t− s)a1(s)ds, t ∈ (0, T ], n ∈ N.

Since
∫ T
0

φ(t)
t
dt < ∞, by [27, Theorem 1] with k(t, s) := φ(t−s)

t−s 1{s<t} (see also [28, Lemma
2.1]), we have

a(t) :=

∞∑

n=1

an(t) ∈ L1([0, T ])

and

a(t) = a1(t) +

∫ t

0

a(t− s)a1(s)ds.(2.1)

Letting

g(t) =

∫ t

0

e−λ(t−s)a1(t− s)f(s)ds,

then by [28, Lemma 2.2], we have

h(t) 6 g(t) +

∫ t

0

e−λ(t−s)a(t− s)g(s)ds.

Combining this with (2.1) and using Fubini’s theorem, we obtain

h(t) 6 g(t) +

∫ t

0

e−λ(t−s)a(t− s)

(∫ s

0

e−λ(s−r)a1(s− r)f(r)dr

)
ds

= g(t) +

∫ t

0

(∫ t

r

e−λ(t−s)a(t− s)e−λ(s−r)a1(s− r)ds

)
f(r)dr

= g(t) +

∫ t

0

e−λ(t−r)f(r)dr

∫ t−r

0

a(t− r − s)a1(s)ds

6 g(t) +

∫ t

0

e−λ(t−r)a(t− r)f(r)dr.

So, it remains to prove

(2.2) a(t) 6 Ca1(t), t ∈ (0, T ]

for some constant C > 0. By the increasing property of φ, we have

a1(rt) =
φ(rt)

rt
6
φ(t)

rt
=
a1(t)

r
, r ∈ (0, 1), t ∈ (0, T ].
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By the standard induction argument, this implies

an(rt) 6
an(t)

r
, r ∈ (0, 1), t ∈ (0, T ], n ∈ N.(2.3)

Indeed, by the change of variables and induction hypothesis, we have

an+1(rt) =

∫ rt

0

an(rt− s)a1(s)ds = r

∫ t

0

an(r(t− s))a1(rs)ds

6
1

r

∫ t

0

an(t− s)a1(s)ds =
an+1(t)

r
.

Thus, for any ε ∈ (0, 1) and t ∈ (0, T ], by (2.3) we have

∫ t

0

a(t− s)a1(s)ds =

∞∑

n=1

∫ t

0

an(t− s)a1(s)ds

6

∞∑

n=1

∫ t

εt

an(t− s)
a1(t)

s/t
ds+

∞∑

n=1

∫ εt

0

an(t)

(t− s)/t
a1(s)ds

6
a1(t)

ε

∫ T

0

a(s)ds+
a(t)

1− ε

∫ εT

0

a1(s)ds.

Letting ε ∈ (0, 1) be small enough such that 1
1−ε
∫ εT
0
a1(s)ds 6

1
2
, and combining this with

(2.1), we obtain

a(t) 6 2a1(t)

(
1 +

1

ε

∫ T

0

a(t)dt

)
, t ∈ (0, T ].

This implies (2.2) since a ∈ L1([0, T ]).

2.2 Slowly varying functions

We first recall some important properties of slowly varying functions (cf. [1, Theorem 1.5.6
(ii) and Theorem 1.5.11]).

Proposition 2.2. For any φ ∈ S0, the following assertions hold:

(i) For any δ > 0, there is a constant C = C(δ) > 1 such that for all t, s > 0,

φ(t)

φ(s)
6 Cmax

{( t
s

)δ
,
( t
s

)−δ}
.

(ii) For any β > −1, as t→ 0, we have

∫ t

0

sβφ(s)ds ∼ tβ+1φ(t)

β + 1
,

∫ 1

t

s−β−2φ(s)ds ∼ t−β−1φ(t)

β + 1
.

The following lemma is simple.
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Lemma 2.3. For any bounded measurable function ψ : (0, 1] → R+, we have

[f ]ψ := sup
|x−y|61

|f(x)− f(y)|
ψ(|x− y|) = sup

x 6=y

|f(x)− f(y)|
ψ[0](|x− y|) ,(2.4)

where ψ[0](t) := ψ(t)1t61 + ψ∗(1)t1t>1 and ψ∗(1) := sups∈(0,1] ψ(s).

Proof. Clearly, it suffices to prove that

|f(x)− f(y)| 6 [f ]ψψ∗(1)|x− y|, |x− y| > 1.

Suppose that n < |x − y| 6 n + 1 for some n ∈ N. Let x = x0, x1, · · · , xn, xn+1 = y be
n+ 2-points in R

d so that

|xi − xi−1| = 1, i = 1, · · · , n, |x− y| = n+ |xn+1 − xn|.
Then we have

|f(x)− f(y)| 6
n+1∑

i=1

|f(xi)− f(xi−1)| 6 [f ]ψψ∗(1)(n+ |xn+1 − xn|) = [f ]ψψ∗(1)|x− y|.

The proof is finished.

Due to the above lemma and also for later use, we introduce

Rα :=
{
φ[α](t) := tαφ(t)1t61 + cαt1t>1 : φ ∈ S0 with cα = sups∈(0,1](s

αφ(s)) <∞
}

(2.5)

for α ∈ [0, 1], and let
R = ∪α∈[0,1]Rα.

The function φ[α] with α ∈ [0, 1] and φ ∈ D0 not only characterizes the Hölder-Dini modulus,
but also reduces the study to functions with linear growth. Notice that by (i) of Proposition
2.2, cα in (2.5) is automatically finite for α ∈ (0, 1].

Below we list the main properties of ψ ∈ Rα for later use, which are easy consequences
of Proposition 2.2.

Proposition 2.4. For α ∈ [0, 1], let ψ ∈ Rα.

(i) For any δ > 0, there is a constant C = C(δ) > 1 such that for all t, s > 0,

ψ(t)

ψ(s)
6 Cmax

{( t
s

)α+δ
,
( t
s

)α−δ}
.(2.6)

In particular, if α ∈ [0, 1), then for all t > s > 0,

s

ψ(s)
6 C

t

ψ(t)
.(2.7)

(ii) If α ∈ (0, 1), then there is a constant C > 0 such that for all t ∈ (0, 1],
∫ t

0

s−1ψ(s)ds 6 Cψ(t),

∫ 1

t

s−2ψ(s)ds 6 Ct−1ψ(t).(2.8)

(iii) There is a constant C > 0 such that for all s, t > 0,

ψ(s+ t) 6 C
(
ψ(s) + ψ(t)

)
.(2.9)
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2.3 Characterization of continuity by using heat semigroup

Let Bp(R
d) be the set of all measurable functions on R

d with polynomial growth. We will
investigate the continuity of f ∈ Bp(R

d) on R
d by using the standard heat semigroup

Pθf(x) =

∫

Rd

f(y)pθ(x− y)dy, θ > 0,(2.10)

where

pθ(x) :=
1

(2πθ)d/2
e−

|x|2

2θ .

Notice that by elementary calculus,

|∇k∂jθpθ(x)| �
|x|k(θ + |x|2)j

θk+2j
pθ(x), θ > 0, x ∈ R

d, k, j = 0, 1.(2.11)

For any measurable function ψ : [0, 1] → R+ and f : Rd → R, define

[f ]ψ := sup
|x−y|61

|f(x)− f(y)|
ψ(|x− y|) , ‖f‖∞ := sup

x∈Rd

|f(x)|, ‖f‖ψ := [f ]ψ + ‖f‖∞.

It should be noticed by (2.4) and (2.5) that for any ψ ∈ R,

|f(x)− f(y)| 6 ψ(|x− y|)[f ]ψ, x, y ∈ R
d,(2.12)

and if ψ1(s) 6 Cψ2(s), s ∈ (0, 1] for some C > 0, then

[f ]ψ2 6 C[f ]ψ1 .

We first present the following simple lemma.

Lemma 2.5. For any ψ ∈ R and β > 0, there exists a constant C > 0 such that for all

θ > 0,
∫

Rd

|z|βψ(|z|)pθ(z)dz 6 Cθ
β
2ψ(θ

1
2 ),(2.13)

‖∇k∂jθPθf‖∞ 6 C[f ]ψθ
− k

2
−jψ(θ

1
2 ), k, j = 0, 1.(2.14)

Proof. Let ψ ∈ Rα for some α ∈ [0, 1]. By the change of variables and (2.6), for any
δ ∈ (0, 1), we have

∫

Rd

|z|βψ(|z|)pθ(z)dz = θ
β
2

∫

Rd

|z|jψ(θ 1
2 |z|)p1(z)dz

� θ
β
2ψ(θ

1
2 )

∫

Rd

|z|β
(
|z|α+δ ∨ |z|α−δ

)
p1(z)dz,

which gives (2.13).
Next, for any x ∈ R

d, let fx = f − f(x). By (2.11), (2.12) and (2.13) we obtain

|∇k∂jθPθf |(x) = |∇k∂jθPθfx|(x) 6
∫

Rd

|fx(x+ z)||∇k∂jθpθ(z)|dz

� [f ]ψ

∫

Rd

|z|k(θ + |z|2)jψ(|z|)
θk+2j

pθ(z)dz � [f ]ψθ
− k

2
−jψ(θ

1
2 ).

This proves (2.14).
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We have the following commutator estimate result. A similar version for the Cauchy
semigroup can be found in [3]. As an advantage of the present result, it applies to f ∈
Bp(R

d), the class of measurable functions with polynomial growth.

Lemma 2.6. Let ψ ∈ Rα for some α ∈ [0, 1] and φ : R+ → R+ be increasing so that ψφ
satisfies for some C > 0,

(ψφ)(t+ s) 6 C
(
(ψφ)(t) + (ψφ)(s)

)
, t, s > 0.(2.15)

Suppose also that ψ(t) is increasing on [0, 1] if α = 0, and t−1ψ(t) is decreasing on [0, 1] if
α = 1. Then there exists a constant C > 0 such that for any f ∈ Bp(R

d) and g ∈ Bb(R
d),

(2.16) [∂θPθ(fg)− f∂θPθg]ψ 6 C[f ]ψφ‖g‖∞θ−1φ(θ
1
2 ), θ ∈ (0, 1].

Proof. By definition (2.10), we have

(2.17) Fθ(x) := ∂θPθ(fg)(x)− f(x)∂θPθg(x) =

∫

Rd

(f(z)− f(x))g(z)∂θpθ(x− z)dz,

which, by (2.12), (2.11) and (2.13), implies that for all θ > 0,

‖Fθ‖∞ � [f ]ψφ‖g‖∞
∫

Rd

(ψφ)(|x− z|)|∂θpθ(z − x)| dz � [f ]ψφ‖g‖∞θ−1(ψφ)(θ
1
2 ).(2.18)

Thus, when 1 > |x− y|2 > θ, by (2.6) for α ∈ (0, 1] and by the increasing property of ψ for
α = 0, we have

|Fθ(x)− Fθ(y)| 6 2‖Fθ‖∞ � [f ]ψφ‖g‖∞ψ(|x− y|)θ−1φ(θ
1
2 ).(2.19)

On the other hand, by (2.17) we have

Fθ(x)− Fθ(y) =

∫

Rd

(f(z)− f(x))g(z)(∂θpθ(x− z)− ∂θpθ(y − z))dz

+

∫

Rd

(f(y)− f(x))g(z)∂θpθ(y − z)dz =: I1 + I2.

(2.20)

When |x− y|2 6 θ 6 1, by (2.12), (2.15), (2.11) and (2.13), we have

|I1| � [f ]ψφ‖g‖∞|x− y|
∫

Rd×[0,1]

(ψφ)(|x− z|)|∇∂θpθ(x− z + r(y − x))|dzdr

� [f ]ψφ‖g‖∞|x− y|
∫

Rd×[0,1]

[
(ψφ)(|x− z + r(y − x)|) + (ψφ)(|x− y|)

]

× |∇∂θpθ(x− z + r(y − x))| dzdr
� [f ]ψφ‖g‖∞|x− y|(ψφ)(θ 1

2 )θ−
3
2 � [f ]ψφ‖g‖∞ψ(|x− y|)θ−1φ(θ

1
2 ),

(2.21)

where the last step is due to (2.7) for α ∈ [0, 1) and the decreasing property of t−1ψ(t) for
α = 1. Moreover, since φ is increasing, when |x− y|2 6 θ, it follows from (2.12), (2.13) that

|I2| � [f ]ψφ‖g‖∞(ψφ)(|x− y|)θ−1
6 [f ]ψφ‖g‖∞ψ(|x− y|)θ−1φ(θ

1
2 ).

Combining this with (2.19), (2.20) and (2.21), we obtain (2.16).
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We are now able to characterize a Hölder-Dini continuous function by using the heat
semigroup (see [20] for the characterization of Hölder space by using Poisson integrals).

Lemma 2.7. For any φ ∈ R with
∫ 1

0
φ(s)
s
ds <∞, letting

φ̄(t) = t+ t

∫ 1

t

φ(s)

s2
ds +

∫ t

0

φ(s)

s
ds, t ∈ (0, 1),(2.22)

then we have

(2.23) ‖f‖φ̄ � ‖f‖∞ + sup
θ∈(0,1]

(
‖θ∂θPθf‖∞
φ(θ

1
2 )

)
, f ∈ Bb(R

d).

In particular, if φ ∈ Rα for some α ∈ (0, 1), then

‖f‖φ ≍ ‖f‖∞ + sup
θ∈(0,1]

(
‖θ∂θPθf‖∞
φ(θ

1
2 )

)
, f ∈ Bb(R

d).(2.24)

Proof. Notice that

f(x) = Pθf(x)−
∫ θ

0

∂sPsf(x)ds.

Since ‖∇Psf‖∞ � ‖f‖∞/
√
s for s > 0 and ∂s∇Psf(x) = ∇Ps/2(∂rPr)r=s/2f(x), we have

∇Pθf(x) =

∫ ∞

θ

∂s∇Psf(x)ds =

∫ ∞

θ

∇Ps/2(∂rPr)r=s/2f(x)ds,

which, by (2.14), implies that for θ ∈ (0, 1],

‖∇Pθf‖∞ � ℓ(f)

(∫ ∞

1

s−
3
2ds+

∫ 1

θ

s−
3
2φ(s

1
2 )ds

)
� ℓ(f)

(
1 +

∫ 1

√
θ

s−2φ(s)ds

)
,

where ℓ(f) is the quantity of the right hand side of (2.23). Hence,

|f(x)− f(y)| 6 ‖∇Pθf‖∞|x− y|+ 2

∫ θ

0

‖∂sPsf‖∞ds

� ℓ(f)

(
|x− y|+ |x− y|

∫ 1

√
θ

s−2φ(s)ds+

∫ θ

0

s−1φ(s
1
2 )ds

)
,

which in turn implies that by letting θ = |x− y|2 6 1,

|f(x)− f(y)| � ℓ(f)φ̄(|x− y|),

where φ̄ is defined by (2.22). If α ∈ (0, 1), by (2.7) and (2.8), we have φ̄(t) � φ(t). Thus,
(2.24) follows by (2.23) and (2.18) with g = 1 and ψ = 1.
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Next, we consider the product space R
d1+d2 . For any ψ1, ψ2 : R+ → R+ and f ∈

C(Rd1+d2), set

[f ]ψ1,∞ := sup
x(2)∈Rd2

[f(·, x(2))]ψ1 , [f ]∞,ψ2 := sup
x(1)∈Rd1

[f(x(1), ·)]ψ2 ,

[f ]ψ1,ψ2 := [f ]ψ1,∞ + [f ]∞,ψ2, ‖f‖ψ1,ψ2 := [f ]ψ1,ψ2 + ‖f‖∞,
and for simplicity,

[f ]ψ := [f ]ψ,ψ, ‖f‖ψ := ‖f‖ψ,ψ.
Let P

(i)
θ be the heat semigroup on R

di, we set for x = (x(1), x(2)) ∈ R
d1+d2 ,

(2.25) P
(1)
θ f(x) =

{
P

(1)
θ f(·, x(2))

}
(x(1)), P

(2)
θ f(x) =

{
P

(2)
θ f(x(1), ·)

}
(x(2)).

Obviously, Lemmas 2.6 and 2.7 apply to both (‖·‖φ,∞,P(1)
θ ) and (‖·‖∞,φ,P

(2)
θ ). For instance,

letting Pθ = P
(1)
θ P

(2)
θ be the Gaussian heat semigroup on R

d1+d2 , by the contractivity of P
(i)
θ

under the uniform norm, Lemma 2.6 implies the following result.

Lemma 2.8. Let ψ1, ψ2 ∈ R and φ : R+ → R+ be increasing such that ψi, i = 1, 2 and φ
satisfy the same assumptions as in Lemma 2.6. Then there exists a constant C > 0 such

that

(2.26) [∂θPθ(fg)− f∂θPθg]ψ1,ψ2 6 C[f ]ψ1φ,ψ2φ‖g‖∞θ−1φ(θ
1
2 ), θ > 0.

Finally, the following result characterizes ‖ · ‖∞,φ by using P(1), and the same holds for

(‖ · ‖φ,∞,P(2)
θ ).

Lemma 2.9. For any ψ1, ψ2 ∈ R and φ : R+ → R+, there exists a constant C > 0 such that

[∂θP
(1)
θ (fg)− f∂θP

(1)
θ g]∞,φ 6 C[f ]ψ1,ψ2‖g‖∞,ψ2 sup

s∈(0,1]

(
ψ1(θ

1
2 )ψ2(s) + ψ1(θ

1
2 ) ∧ ψ2(s)

φ(s)

)
θ−1

holds for all θ ∈ (0, 1] and measurable functions f, g on R
d1+d2.

Proof. By definition, we have

Fθ(x) = ∂θP
(1)
θ (fg)(x)− f(x)∂θP

(1)
θ g(x) =

∫

Rd1

G(z(1), x(1), x(2))∂θpθ(x
(1) − z(1))dz(1),

where
G(z(1), x(1), x(2)) :=

(
f(z(1), x(2))− f(x(1), x(2))

)
g(z(1), x(2)).

Clearly, by (2.12) we have

|G(z(1), x(1), x(2))−G(z(1), x(1), y(2))| 6 ψ1(|x(1) − z(1)|)[f ]ψ1,∞ψ2(|x(2) − y(2)|)[g]∞,ψ2

+ 2
((
ψ1(|x(1) − z(1)|)[f ]ψ1,∞

)
∧
(
ψ2(|x(2) − y(2)|)[f ]∞,ψ2

))
‖g‖∞.

Hence, for x, y ∈ R
d1+d2 with x(1) = y(1), by (2.13), we obtain

|Fθ(x)− Fθ(y)| � [f ]ψ1,∞[g]∞,ψ2ψ1(θ
1
2 )ψ2(|x(2) − y(2)|)θ−1

+ [f ]ψ1,ψ2‖g‖∞
(
ψ1(θ

1
2 ) ∧ ψ2(|x(2) − y(2)|)

)
θ−1,

which in turn gives the desired estimate by dividing both sides by φ(|x(2) − y(2)|) and then
taking supremum for |x(2) − y(2)| 6 1.
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2.4 Gradient estimates for linear stochastic Hamiltonian system

Let B : R+ → R
d1 ⊗ R

d2 , σ : R+ → R
d2 ⊗ R

d2 be measurable such that BrB
∗
r and σr are

invertible with

(2.27) κ := sup
r∈R+

(
|Br|+ |σr|+ |(BrB

∗
r )

−1|+ |σ−1
r |
)
<∞.

For x = (x(1), x(2)) ∈ R
d1+d2 and 0 6 s 6 t, define

Xs,t(x) =

(
x(1) + Γs,tx

(2) +

∫ t

s

Brdr

∫ r

s

σr′dWr′, x
(2) +

∫ t

s

σrdWr

)
,(2.28)

where (Wr)r>0 is a d2-dimensional standard Brownian motion, and

Γs,t =

∫ t

s

Brdr.(2.29)

Clearly, Xs,t(x) = (X
(1)
s,t , X

(2)
s,t ) solves the following degenerate linear equation for t > s:

{
dX

(1)
s,t = BtX

(2)
s,t dt, X(1)

s,s = x(1),

dX
(2)
s,t = σtdWt, X(2)

s,s = x(2).
(2.30)

Let Ps,t be the Markov operator associated with Xs,t(x), i.e.,

Ps,tf(x) = Ef(Xs,t(x)), f ∈ Bp(R
d1+d2).

We first investigate the derivative estimates of Ps,tf. To this end, we collect some fre-
quently used notations here.

• For a smooth function f on R
d1+d2 , ∇(1)f and ∇(2)f denotes the gradient of f with

respect to the variables x(1) and x(2) respectively. In particular, by (2.28) we have

(2.31) ∇(1)Ps,tf = Ps,t∇(1)f, Ps,t∇(2)f = ∇(2)Ps,tf − Γs,t∇(1)Ps,tf.

• For h = (h(1), h(2)) ∈ R
d1+d2 , we also write

∇f := (∇(1)f,∇(2)f), ∇hf := 〈∇f, h〉 = ∇(1)

h(1)
f +∇(2)

h(2)
f.

• Let U be the set of all increasing functions φ : R+ → R+ with the property

φ(rt) 6 Crδφ(t), r > 1, t > 0(2.32)

for some C, δ > 0. Notice that by (2.6),

D0 ∩ R ⊂ U .
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To estimate the derivatives of Ps,tf , we first present a Bismut type derivative formula
which can be found in [28], [11] and [25]. For readers’ convenience we state the formula in
details and present a simple proof.

Fix 0 6 s 6 t and define

Qs,t =

∫ t

s

(t− r)(r − s)BrB
∗
rdr ∈ R

d1 ⊗ R
d1 .

By (2.27), it holds that for some C > 0,

|Q−1
s,t | 6 C(t− s)−3, t > s.

For h = (h(1), h(2)) ∈ R
d1+d2 , define for r ∈ [s, t],

Φhs,t(r) =
h(2)

t− s
+ (t+ s− 2r)B∗

sQ
−1
s,t

[
h(1) +

∫ t

s

t− r′

t− s
Br′h

(2)dr′
]
.(2.33)

Obviously, by (2.27), there exists a constant C > 0 such that

(2.34)
∣∣Φhs,t(r)

∣∣ 6 C

( |h(2)|
t− s

+
|h(1)|

(t− s)2

)
, 0 6 s < t <∞, r ∈ [s, t].

Theorem 2.10. For n ∈ N, s = s0 < s1 · · · < sn = t and h1, · · · , hn ∈ R
d1+d2, let

h̆i =
(
h
(1)
i + Γs,si−1

h
(2)
i , h

(2)
i

)
, ξh̆isi−1,si

=

∫ si

si−1

〈σ−1
r Φh̆is,t(r), dWr〉,(2.35)

where Γs,si−1
is defined by (2.29) and i = 1, · · · , n. Then for any f ∈ Bp(R

d1+d2), we have

∇h1 · · ·∇hnPs,tf(x) = E

[
f
(
Xs,t(x)

) n∏

i=1

ξh̆isi−1,si

]
, x ∈ R

d1+d2 .(2.36)

Proof. (i) First of all, we consider the case of n = 1. For ε ∈ (0, 1), define

W ε
r = Wr − ε

∫ r

s

σ−1
r′ Φ

h
s,t(r

′)dr′, r ∈ [s, t].

By Camaron-Martin’s theorem, (W ε
r )r∈[s,t] is still a Brownian motion under the probability

measure dPε := RεdP, where

Rε := exp

[
ε

∫ t

s

〈σ−1
r Φhs,t(r), dWr〉 −

ε2

2

∫ t

s

∣∣σ−1
r Φhs,t(r)

∣∣2dr
]
.(2.37)

Thus, if we write

Xε
s,t(x) :=

(
x(1) + εh(1) +

∫ t

s

Br

[
x(2) + εh(2) +

∫ r

s

σr′dW
ε
r′

]
dr, x(2) + εh(2) +

∫ t

s

σrdW
ε
r

)
,

18



then the law of Xs,t(x+ εh) under P is the same as the law of Xε
s,t(x) under Pε, that is,

Ps,tf(x+ εh) = Ef(Xs,t(x+ εh)) = E(Rεf(X
ε
s,t(x))).

On the other hand, by definition (2.33), it is easy to see that

Xε
s,t(x) = Xs,t(x) + ε

(
h(1) +

∫ t

s

Br

[
h(2) −

∫ r

s

Φhs,t(r
′)dr′

]
dr, h(2) −

∫ t

s

Φhs,t(r)dr

)
= Xs,t(x).

Hence,

∇hPs,tf(x) = lim
ε↓0

1

ε
E [f(Xs,t(x+ εh))− f(Xs,t(x))] = lim

ε↓0
E

[
Rε − 1

ε
f(Xs,t(x))

]
,

which together with (2.37) yields (2.36) for n = 1.

(ii) Assuming that (2.36) holds for n = k ∈ N, we intend to prove (2.36) for n = k + 1.
Noticing that Ps,tf = Ps,skPsk,tf and by definition (2.28),

∇hk+1
Xs,sk =

(
h
(1)
k+1 + Γs,skh

(2)
k+1, h

(2)
k+1

)
= h̆k+1,

by induction hypothesis, we have

∇hk+1
∇hk · · ·∇h1Ps,tf(x) = ∇hk+1

E

[
(Psk,tf)(Xs,sk(x))

k∏

i=1

ξh̆isi−1,si

]

= E

[
∇hk+1

(
Psk,tf(Xs,sk(x))

) k∏

i=1

ξh̆isi−1,si

]

= E

[(
∇h̆k+1

Psk,tf
)
(Xs,sk(x))

k∏

i=1

ξh̆isi−1,si

]

= E

[
f(Xs,t(x))

k+1∏

i=1

ξh̆isi−1,si

]
,

where in the last step we have used the independence of
{
Xs,sk(x), ξ

h̆i
si−1,si

, i = 1, · · · , k
}
and

{
Xsk,t(x), ξ

h̆k+1
sk,sk+1

}
. The proof is complete.

Lemma 2.11. For any p > 1 and φ ∈ U , there is a constant C = C(φ, p, κ) > 0, where κ
is given in (2.27), such that for all 0 6 s < t <∞,

∥∥φ
(∣∣X(1)

s,t (0)
∣∣)∥∥

p
6 Cφ((t− s)

3
2 ),

∥∥φ
(∣∣X(2)

s,t (0)
∣∣)∥∥

p
6 Cφ((t− s)

1
2 ),(2.38)

where ‖ · ‖p := (E| · |p) 1
p .
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Proof. First of all, by (2.28) and Burkholder’s inequality, for any p > 1 there is a constant
C = C(p, κ) > 0 such that for all 0 6 s < t <∞,

∥∥X(1)
s,t (0)

∥∥
p
6 C(t− s)

3
2 ,
∥∥X(2)

s,t (0)
∥∥
p
6 C(t− s)

1
2 .(2.39)

On the other hand, since φ ∈ U is increasing, by (2.32) we obtain

∥∥φ
(∣∣X(1)

s,t (0)
∣∣)∥∥

p
=
∥∥φ
(
(t− s)

3
2 |(t− s)−

3
2X

(1)
s,t (0)|

)∥∥
p

6 Cφ
(
(t− s)

3
2

)∥∥1 + |(t− s)−
3
2X

(1)
s,t (0)|δ

∥∥
p
.

Combining this with (2.39) we prove the first estimate. Similarly, we can prove the second
estimate.

Below we present a simple consequence of the above formula, which will play crucial
roles in the next section. In particular, as in [3], the pointwise estimate results given below
allow us to borrow the Hölder regularity of b(1) to compensate the singularity along the first
direction induced by the degeneracy.

Corollary 2.12. Let φ, ψ ∈ U . For any T > 0 and m, k ∈ N0 =: {0} ∪ N, there exists a

constant C > 0 such that for any 0 6 s < t 6 T and any constants K1, K2 > 0,

‖(∇(1))⊗m(∇(2))⊗kPs,tf‖(0) 6 C
(
K1φ((t− s)

3
2 ) +K2ψ((t− s)

1
2 )
)
(t− s)−

3m
2

− k
2(2.40)

holds for any measurable function f on R
d1+d2 satisfying

|f(x)| 6 K1φ(|x(1)|) +K2ψ(|x(2)|).(2.41)

Consequently, for any m ∈ N, k ∈ N0 and any measurable function f on R
d1+d2,

‖(∇(1))⊗m(∇(2))⊗kPs,tf‖∞ 6 C[f ]φ,∞φ((t− s)
3
2 )(t− s)−

3m
2

− k
2 ,(2.42)

‖(∇(2))⊗kPs,tf‖∞ 6 C
(
[f ]φ,∞φ((t− s)

3
2 ) + [f ]∞,ψψ((t− s)

1
2 )
)
(t− s)−

k
2 .(2.43)

Proof. We introduce the following notations:

ξ̆hs,t = ξh̆s,t, h ∈ R
d1+d2 , ξ̆

(·,0)
s,t =

(
ξ̆
(ei,0)
s,t

)
i=1,··· ,d1,

where ξh̆s,t is defined by (2.35), and (ei)i=1,··· ,d1 is the standard basis of Rd1 . Similarly, we can

define ξ̆
(0,·)
s,t ∈ R

d2 . By (2.34), (2.35) and Burkholder’s inequality, we have for any T > 0 and
p > 1,

‖ξ̆(·,0)s,t ‖p � (t− s)−
3
2 , ‖ξ̆(0,·)s,t ‖p � (t− s)−

1
2 , 0 6 s < t 6 T,(2.44)

where ‖ · ‖p := (E| · |p) 1
p .

Let si = s+ (t− s)i/(m+ k), i = 0, 1, · · · , m+ k be the uniform partition of [s, t]. Using
the above notations, by (2.36) we have

‖(∇(1))⊗m(∇(2))⊗kPs,tf‖(0) 6 E

{
∣∣f(Xs,t(0))

∣∣ ·
∥∥∥∥∥

m∏

i=1

ξ̆(·,0)si−1,si
·
m+k∏

j=m+1

ξ̆(0,·)sj−1,sj

∥∥∥∥∥

}
.

20



Estimate (2.40) follows by Hölder’s inequality and (2.41), (2.38), (2.44).
In general, for fixed x0 ∈ R

d1+d2 , let

gx0(x) := f
(
x
(1)
0 + Γs,tx

(2)
0 , x(2) + x

(2)
0

)
,

fx0(x) := f
(
x(1) + x

(1)
0 + Γs,tx

(2)
0 , x(2) + x

(2)
0

)
− gx0(x).

Noticing that ∇(1)Ps,tgx0 ≡ 0, we have

(∇(1))⊗m(∇(2))⊗kPs,tf(x0) = (∇(1))⊗m(∇(2))⊗kPs,tfx0(0), m 6= 0.

Thus, (2.42) follows from (2.40) with K2 = 0. As for (2.43), it follows by (2.40).

3 A study for degenerate parabolic equations

Throughout this section, we fix T, λ > 0 and consider the following degenerate parabolic
equation with Hölder coefficients:

∂tut = L
Σ,b
t ut − λut + ft, u0 = 0, t ∈ [0, T ],(3.1)

where L
Σ,b
t is defined by (1.3) and f : [0, T ]× R

d1+d2 → R is measurable. The solution will
be used in Section 4 to construct the diffeomorphism on R

d1+d2 which transforms the original
(1.2) into an equation with regular enough coefficients so that the existence and uniqueness
of solutions are proved.

Before studying equation (3.1), we first estimate the gradients on Ps,t(H ·∇(i)f), i = 1, 2,
which are nontrivial consequences of Corollary 2.12, and will play a crucial role in estimating
derivatives of ut in terms of the formula (3.32) below. For fixed φ ∈ D0 ∩ S0, let

Λφλ(t) = e−λtt−1φ(t
1
2 ), t ∈ (0, T ].(3.2)

3.1 Gradient estimates on Ps,t(H · ∇(i)f)

Below all the constants appearing in � only depends on T, d1, d2 and φ.

Lemma 3.1. Let f ∈ C1(Rd1+d2) and H ∈ C1(Rd1+d2 ;Rd2) with H(0) = 0. For 0 6 s < t 6
T and k = 0, 1, recalling the definition of φ[α] in (2.5), we have

‖(∇(2))⊗(k+1)Ps,t(H · ∇(2)f)‖(0) � [H ]φ‖∇(2)f‖∞Λφ0(t− s),(3.3)

‖∇(1)(∇(2))⊗kPs,t(H · ∇(2)f)‖(0) � ‖H‖φ[(k+1)/3],∞‖∇(2)f‖φ[(k+1)/3],∞Λφ0(t− s),(3.4)

‖∇(1)(∇(2))⊗kPs,t(H · ∇(2)f)‖(0) � [H ]φ[2/3]

(
[f ]1[(k+2)/3],∞ + ‖∇(2)f‖∞

)
Λφ0(t− s),(3.5)

|∇(1)Ps,t(H · ∇(2)f)|(0) �
(
[H ]1[2/3] + ‖∇(2)H‖φ[1/9],∞

)
[f ]1[2/3]Λ

φ
0(t− s).(3.6)

Moreover, if for some K > 0,

|H(0, x(2))| 6 K|x(2)|φ(|x(2)|),
then

‖(∇(2))⊗(k+1)Ps,t(H · ∇(1)f)‖(0) � ([H ]φ[1/3],∞ +K)‖∇(1)f‖∞(t− s)−
k
2 ,(3.7)

‖∇(1)(∇(2))⊗kPs,t(H · ∇(1)f)‖(0) � ([H ]φ[(k+1)/3],φ +K)‖∇(1)f‖1[k/3],∞Λφ0(t− s).(3.8)
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Proof. (1) Since H(0) = 0, recalling definition (2.5) and (2.12), we have

|H(x)| 6 [H ]φφ[0](|x|), ‖H · ∇(2)f‖φ[(k+1)/3]
6 ‖H‖φ[(k+1)/3]

‖∇(2)f‖φ[(k+1)/3]
.

So, (3.3) follows by (2.40), and (3.4) follows by (2.42).

(2) To prove (3.5), we introduce

f1(x) := f(x(1), 0), f2(x) := f(0, x(2)), f̂i(x) := f(x)− fi(x), i = 1, 2.

Moreover, for P
(2)
θ being the heat semigroup on R

d2 , let

Hθ
2 = P

(2)
θ H2 −P

(2)
θ H2(0), Ĥθ

2 = H2 −Hθ
2 , θ > 0.

We have

(3.9) H · ∇(2)f = Ĥ2 · ∇(2)f + Ĥθ
2 · ∇(2)f +Hθ

2 · ∇(2)f, θ ∈ (0, 1].

Below we investigate these three terms respectively.

(2a) Observing from (2.12) that

|Ĥ2 · ∇(2)f |(x) 6 [H ]φ[(k+1)/3],∞‖∇(2)f‖∞φ[(k+1)/3](|x(1)|),

by (2.40) we obtain

‖∇(1)(∇(2))⊗kPs,t(Ĥ2 · ∇(2)f)‖(0) � [H ]φ[(k+1)/3],∞‖∇(2)f‖∞Λφ0(t− s).(3.10)

(2b) Since by (2.31) we have ∇(1)Ps,gg = 0 for g depending only on x(2), it follows that

∇(1)Ps,t(H
θ
2 · ∇(2)f) = ∇(1)Ps,t(H

θ
2 · ∇(2)f̂2) = ∇(1)Ps,tdiv

(2)(f̂2H
θ
2 )−∇(1)Ps,t(f̂2div

(2)Hθ
2 ).

Noting that Lemma 2.3 and (2.5) imply

|f̂2Hθ
2 |(x) 6 ‖∇(2)Hθ

2‖∞[f ]1[2/3],∞|x(2)|(|x(1)|+ |x(1)| 23 ),
|f̂2div(2)Hθ

2 |(x) 6 ‖∇(2)Hθ
2‖∞[f ]1[2/3],∞(|x(1)|+ |x(1)| 23 ),

(3.11)

from (2.31) and Corollary 2.12 we obtain

‖∇(1)Ps,t(H
θ
2 · ∇(2)f)‖(0) 6 ‖∇(1)Ps,tdiv

(2)(f̂2H
θ
2)‖(0) + ‖∇(1)Ps,t(f̂2div

(2)Hθ
2)‖(0)

6 ‖∇(1)∇(2)Ps,t(f̂2H
θ
2 )‖(0) + ‖Γs,t‖ · ‖∇(1)∇(1)Ps,t(f̂2H

θ
2 )‖(0)

+ ‖∇(1)Ps,t(f̂2div
(2)Hθ

2 )‖(0) � [f ]1[2/3],∞‖∇(2)Hθ
2‖∞(t− s)−

1
2 .

(3.12)

Similarly, using

|f̂2Hθ
2 |(x) 6 ‖∇(2)Hθ

2‖∞[f ]1[1],∞|x(2)| · |x(1)|,
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|f̂2div(2)Hθ
2 |(x) 6 ‖∇(2)Hθ

2‖∞[f ]1[1],∞|x(1)|,

to replace (3.11), we have

(3.13) ‖∇(1)∇(2)Ps,t(H
θ
2 · ∇(2)f)‖(0) � [f ]1[1],∞‖∇(2)Hθ

2‖∞(t− s)−
1
2 .

Moreover, by (2.14),

‖∇(2)Hθ
2‖∞ � [H2]φ[2/3]θ

− 1
6φ(θ

1
2 ), θ ∈ (0, 1].

Then (3.12) and (3.13) yield

‖∇(1)(∇(2))⊗kPs,t(H
θ
2 · ∇(2)f)‖(0) � [f ]1[(k+2)/3],∞[H ]∞,φ[2/3]θ

− 1
6φ(θ

1
2 )(t− s)−

1
2 .(3.14)

(2c) Since H(0) = 0, by (2.14) we have

|Ĥθ
2 (x)| =

∣∣∣∣
∫ θ

0

(
∂rP

(2)
r H2(0)− ∂rP

(2)
r H2(x)

)
dr

∣∣∣∣

6 2

∫ θ

0

‖∂rP(2)
r H2‖∞dr � [H ]∞,φ[2/3]

∫ θ

0

r−
2
3φ(r

1
2 )dr

� [H ]∞,φ[2/3]θ
1
3φ(θ

1
2 ), θ ∈ (0, 1].

Thus, it follows from Corollary 2.12 that for θ ∈ (0, 1],

‖∇(1)(∇(2))⊗kPs,t(Ĥ
θ
2 · ∇(2)f)‖(0) � ‖∇(2)f‖∞[H ]∞,φ[2/3](t− s)−

3+k
2 θ

1
3φ(θ

1
2 ).(3.15)

Taking θ = (t− s)3, by combining (3.9) with (3.10), (3.14) and (3.15), we prove (3.5).

(3) We now prove (3.6). Since ∇(2)f1 = 0 and ∇(1)Ps,t(H2 · ∇(2)f2) = 0, we have

∇(1)Ps,t
(
H · ∇(2)f

)
= ∇(1)Ps,t(H2 · ∇(2)f̂2) +∇(1)Ps,t(Ĥ2 · ∇(2)f̂1)

= ∇(1)Ps,tdiv
(2)
(
f̂2H2 + f̂1Ĥ2

)
−∇(1)Ps,t(f̂2div

(2)H2 + f̂1div
(2)Ĥ2).

(3.16)

Below we estimate these two terms respectively.
Firstly, by div(2)Ĥ2(x) = div(2)H(x)− div(2)H(0, x(2)), we have

|f̂2div(2)H2|(x) � [f ]1
[ 23 ]
,∞‖∇(2)H‖∞(|x(1)| 23 + |x(1)|),

|f̂1div(2)Ĥ2|(x) � [f ]∞,1
[ 23 ]
[∇(2)H ]φ

[ 19 ]
,∞(|x(2)| 23 + |x(2)|)φ[ 1

9
](|x(1)|).

So, Corollary 2.12 implies

∣∣∇(1)Ps,t
(
f̂2div

(2)H2

)∣∣(0) � [f ]1[2/3],∞‖∇(2)H‖∞(t− s)−
1
2 ,

∣∣∇(1)Ps,t
(
f̂1div

(2)Ĥ2

)∣∣(0) � [f ]∞,1[2/3] [∇(2)H ]φ[1/9],∞Λφ0(t− s).
(3.17)
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Next, since

|f̂2H2|(x) + |f̂1Ĥ2|(x) 6 [H ]1[2/3] [f ]1[2/3](|x(2)|+ |x(2)| 23 )(|x(1)| 23 + |x(1)|),
it follows from (2.31) and Corollary 2.12 that

|∇(1)Ps,tdiv
(2)(f̂2H2)|(0) + |∇(1)Ps,tdiv

(2)(f̂1Ĥ2)|(0)
� ‖∇(1)∇(2)Ps,t(f̂2H2 + f̂1Ĥ2)‖(0) + (t− s)‖∇(1)∇(1)Ps,t(f̂2H2 + f̂1Ĥ2)‖(0)
� [H ]1[2/3] [f ]1[2/3](t− s)−

2
3 � [H ]1[2/3] [f ]1[2/3]Λ

φ
0(t− s).

Combining this with (3.16) and (3.17), we prove (3.6).

(4) Noticing that

|H · ∇(1)f |(x) 6
(
[H ]φ[1/3],∞φ[1/3](|x(1)|) +K|x(2)|φ(|x(2)|)

)
‖∇(1)f‖∞,

by Corollary 2.12, we obtain (3.7). Let g := H · ∇(1)f . Observing that

|ĝ2|(x) 6 K[∇(1)f ]1[k/3],∞|x(2)|φ(|x(2)|)(|x(1)|+ |x(1)| k3 )
+ [H ]φ[(k+1)/3],∞‖∇(1)f‖∞φ[(k+1)/3](|x(1)|),

and ∇(1)g2 ≡ 0, by Corollary 2.12 again, we have

‖∇(1)(∇(2))⊗kPs,t(H · ∇(1)f)‖(0) = ‖∇(1)(∇(2))⊗kPs,tĝ2‖(0)
� ([H ]φ[(k+1)/3],φ +K)‖∇(1)f‖1[k/3],∞Λφ0(t− s).

The proof is complete.

3.2 Smooth solutions and apriori estimates

In this subsection, we study the key apriori estimates for the smooth solutions of equation
(3.1). To this aim we assume that

sup
t∈[0,T ]

(
‖∇⊗kbt‖∞ + ‖∇⊗kft‖∞ + ‖∇⊗kσt‖∞ + ‖σt‖∞ + ‖σ−1

t ‖∞
)
<∞, k ∈ N.(3.18)

For fixed φ ∈ D0 ∩ S0, we introduce the following quantities for later use:

Q̄φ := sup
t∈[0,T ]

{
[b

(1)
t ]φ[2/3],∞ + ‖∇(2)b

(1)
t ‖∞,φ + ‖

(
[∇(2)b

(1)
t ][∇(2)b

(1)
t ]∗

)−1‖∞

+ ‖σ−1
t ‖∞ + ‖σt‖φ[2/3] + [b

(2)
t ]φ[2/3],φ

}
,

(3.19)

and

Qφ := Q̄φ + sup
t∈[0,T ]

[b
(2)
t ]φ[2/3],φ7/2 , Q

′
φ := Q̄φ + sup

t∈[0,T ]
‖∇(2)σt‖φ[1/9],∞,(3.20)

where φ[α] is defined in (2.5). By (3.18), these quantities are all finite.

The main result of this section is the following, which is the key in the proofs of Theorems
1.1-1.8.
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Theorem 3.2. Under (3.18), (3.1) has a unique smooth solution u such that for all t ∈ [0, T ],

‖∇ut‖1[1/3],∞ + ‖∇(1)∇(2)ut‖∞ + ‖∇(2)∇(2)ut‖φ3/2

6 C

∫ t

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s
[fs]φ[2/3],φ7/2ds,

(3.21)

‖∇ut‖1[1/3],∞ + ‖∇∇(2)ut‖∞ 6 C ′
∫ t

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s
[fs]φ[2/3],φds,(3.22)

where C = C(φ,Qφ) and C
′ = C ′(φ,Q′

φ) are increasing in Qφ and Q′
φ respectively.

Remark 3.1. We emphasize that the constants in Theorem 3.2 are increasing in Qφ or
Q′
φ, since this property enables us to make smooth approximations of relevant functionals

in the proof of the main results without changing the constants.

We first prove the existence and uniqueness of u.

Lemma 3.3. Assume (3.18). Then (3.1) has a unique smooth solution u such that

sup
t∈[0,T ]

‖∇kut‖∞ <∞, k ∈ N, sup
(t,x)∈[0,T ]×Rd1+d2

|ut(x)|
1 + |x| 6 Cλ−1,(3.23)

holds for some constant C increasing in supt∈[0,T ]
(
‖ |bt|+|ft|

1+|·| ‖∞ + ‖σt‖∞
)
.

Proof. Let Xt,s(x) = Xt,s solve the following SDE:

dXt,s = bT−s(Xt,s)ds+ (0, σT−s(Xt,s)dWs), Xt,t = x ∈ R
d1+d2 , s ∈ [t, T ].

Notice that uT−t(x) solves the following backward equation:

∂tuT−t + L
b
T−tuT−t − λuT−t + fT−t = 0.

It is well-known that uT−t(x) has the following probabilistic representation (for example, see
[31, Theorem 4.4]),

uT−t(x) =

∫ T

t

eλ(t−s)EfT−s(Xt,s(x))ds.

By (3.18), we have

sup
s∈[0,T ]

(
‖∇kfT−s‖∞ +

∥∥E‖∇kXt,s(·)‖
∥∥
∞

)
<∞, k > 1.

Then ut has bounded derivatives uniformly in t ∈ [0, T ]. Moreover, by the linear growth of
b and f , it is easy to derive the second inequality in (3.23).

In order to prove (3.21) and (3.22), we need the following three lemmas, which will be
proved in the next subsection.

Lemma 3.4. Assume (3.18).
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(1) There exists a constant C̄ = C̄(φ, Q̄φ) increasing in Q̄φ such that for any 0 6 s < t 6
T ,

‖∇(2)ut‖∞ + ‖∇(2)∇(2)ut‖∞ 6 C̄

∫ t

0

Λφλ(t− s)
(
‖∇us‖∞ + [fs]φ

)
ds,(3.24)

and for k = 0, 1,

‖∇(1)(∇(2))⊗kut‖∞ 6 C̄

∫ t

0

Λφλ(t− s)
(
‖∇(1)us‖1[k/3],∞

+ ‖∇(2)us‖1[(k+2)/3],∞ + [fs]φ[(k+1)/3],φ

)
ds.

(3.25)

(3) There exists a constant C ′ = C ′(φ,Q′
φ) increasing in Q′

φ such that for any 0 6 s <
t 6 T ,

(3.26) ‖∇(1)ut‖∞ 6 C ′
∫ t

0

Λφλ(t− s)
(
‖∇(2)us‖1[2/3] + [fs]φ[1/3],∞

)
ds,

Lemma 3.5. Assume (3.18). There exist constants C = C(φ,Qφ) and C ′ = C ′(φ,Q′
φ)

which are increasing in Qφ and Q′
φ respectively, such that for all 0 6 s < t 6 T ,

‖∇(1)ut‖1
[ 13 ]
,∞ 6 C

∫ t

0

Λφλ(t− s)
(
‖∇∇(2)us‖∞ + ‖∇(2)∇(2)us‖∞,φ3/2 + [fs]φ[2/3],φ2

)
ds(3.27)

and

(3.28) ‖∇(1)ut‖1
[ 13 ]
,∞ 6 C ′

∫ t

0

Λφλ(t− s)
(
‖∇∇(2)us‖∞ + [fs]φ[2/3],φ

)
ds.

Lemma 3.6. Assume (3.18). There exists a constant C = C(φ,Qφ) increasing in Qφ such

that for any 0 6 s < t 6 T ,

‖∇(2)∇(2)ut‖φ3/2 6 C

∫ t

0

Λφλ(t− s)
(
‖∇us‖φ5/2 + [fs]φ7/2

)
ds.(3.29)

Now we can give

Proof of Theorem 3.2. Letting

h(t) := ‖∇ut‖1[1/3],∞ + ‖∇(1)∇(2)ut‖∞ + ‖∇(2)∇(2)ut‖φ3/2 ,

and combining (3.24), (3.25), (3.27) and (3.29), we obtain

h(t) �
∫ t

0

Λφλ(t− s)
(
h(s) + [fs]φ[2/3],φ7/2

)
ds

=

∫ t

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s

(
h(s) + [fs]φ[2/3],φ7/2

)
ds,

which yields (3.21) by Lemma 2.1.
Similarly, (3.22) follows by combining (3.25), (3.26) and (3.28).
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3.3 Proofs of Lemmas 3.4–3.6 by using freezing equations and

Duhamel’s representation

To prove Lemmas 3.4-3.6 by using results presented in Section 2, we need to represent u by
using Ps,t. To this end, we introduce the following scheme of freezing coefficients at a fixed

point x0 = (x
(1)
0 , x

(2)
0 ) ∈ R

d1+d2.
Let yt be the unique solution of the following ODE:

(3.30)
dyt
dt

= −bt(yt), y0 = x0 ∈ R
d1+d2 .

Since b is smooth and has bounded derivatives due to (3.18),

θt : x0 7→ yt is a diffeomorphism on R
d1+d2 .(3.31)

Let L
x0
t be the freezing operator defined by

L
x0
t u = tr

(
At · ∇(2)∇(2)u

)
+ (Btx

(2)) · ∇(1)u,

where At := Σt(yt) and Bt := (∇(2)b
(1)
t )(yt). Set

ũt(x) = ut(x+ yt), f̃t(x) = ft(x+ yt), Σ̃t(x) = Σt(x+ yt)− Σt(yt),

and

b̃
(2)
t (x) = b

(2)
t (x+ yt)− b

(2)
t (yt), b̃

(1)
t (x) = b

(1)
t (x+ yt)− b

(1)
t (yt)−∇(2)b

(1)
t (yt)x

(2).

From (3.1) and (3.30) it is easy to see that ũ satisfies

∂tũ = L
x0
t ũ− λũ+ tr

(
Σ̃t · ∇(2)∇(2)ũ

)
+ b̃ · ∇ũ+ f̃ , ũ0 = 0.

Let Ps,t be the semigroup generated by L
x0
t . By Duhamel’s formula, we have

ũt =

∫ t

0

e−λ(t−s)Ps,t
(
tr
(
Σ̃s · ∇(2)∇(2)ũs

)
+ b̃s · ∇ũs + f̃s

)
ds.(3.32)

Note from the definition of b̃
(1)
t (x) that

|b̃(1)t (0, x(2))| =
∣∣b(1)t

(
y
(1)
t , x(2) + y

(2)
t

)
− b

(1)
t (yt)−∇(2)b

(1)
t (yt)x

(2)
∣∣

6 |x(2)|
∫ 1

0

∣∣∇(2)b
(1)
t

(
y
(1)
t , rx(2) + y

(2)
t

)
−∇(2)b

(1)
t (yt)

∣∣dr

6 C[∇(2)b
(1)
t ]∞,φ|x(2)|φ[0](|x(2)|).

(3.33)

Combining this with (3.20) and (3.19), we are able to apply (3.3), (3.4), (3.7) and (3.8) to
derive the following lemma.
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Lemma 3.7. Assume (3.18). There exist constants C̄ = C̄(φ, Q̄φ) increasing in Q̄φ, such

that for all 0 6 s < t 6 T and k = 0, 1,

∥∥∇(1)(∇(2))⊗kPs,t
(
b̃s · ∇ũs

)∥∥(0) 6 C̄Λφ0(t− s)
(
‖∇(1)us‖1

[ k3 ]
,∞ + ‖∇(2)us‖φ

[ k+1
3 ]

,∞

)
,(3.34)

∥∥(∇(2))⊗(k+1)Ps,t
(
b̃s · ∇ũs

)∥∥(0) 6 C̄Λφ0(t− s)‖∇us‖∞.(3.35)

The following lemma is an easy consequence of (2.42) and (2.43).

Lemma 3.8. There is a constant C = C(φ, T ) > 0 such that for all 0 6 s < t 6 T and

k = 0, 1,

‖∇(1)(∇(2))⊗kPs,tf̃s‖∞ 6 CΛφ0(t− s)[fs]φ[(k+1)/3],∞,(3.36)

‖(∇(2))⊗(k+1)Ps,tf̃s‖∞ 6 CΛφ0(t− s)[fs]φ.(3.37)

Moreover, by (3.3), (3.5) and (3.6), we have

Lemma 3.9. Assume (3.18). There exist constants C̄ = C̄(φ, Q̄φ) and C
′ = C ′(φ, Q̃φ) which

are increasing in Q̄φ and Q′
φ respectively, such that for all 0 6 s < t 6 T and k = 0, 1,

∥∥∇(1)(∇(2))⊗kPs,t
(
tr
(
Σ̃s · ∇(2)∇(2)ũs

))∥∥(0)
6 C̄

(
‖∇(2)us‖1[(k+2)/3],∞ + ‖∇(2)∇(2)us‖∞

)
Λφ0(t− s),

(3.38)

∥∥(∇(2))⊗(k+1)Ps,t
(
tr
(
Σ̃s · ∇(2)∇(2)ũs

))∥∥(0) 6 C̄‖∇(2)∇(2)us‖∞Λφ0(t− s),(3.39)

and

(3.40)
∣∣∇(1)Ps,t

(
tr
(
Σ̃s · ∇(2)∇(2)ũs

))∣∣(0) 6 C ′‖∇(2)us‖1[2/3]Λ
φ
0(t− s).

Now we are in a position to give the proofs of Lemmas 3.4-3.6.

Proof of Lemma 3.4. Now, substituting estimates in Lemmas 3.7-3.9 into (3.32), and noting
that ũt = ut(· + yt) where, according to (3.31), yt runs all over R

d1+d2 as x0 does, and by
Lemma 2.1 and (3.32), estimate (3.24) follows from (3.35), (3.37) and (3.39); estimate (3.25)
follows from (3.34), (3.36), (3.38) and (3.24); and finally, estimate (3.26) follows from (3.34),
(3.36) and (3.40).

Proof of Lemma 3.5. For simplicity, constants C and C ′ below are corresponding to Qφ and
Q′
φ respectively as in the statement, which may vary from line to line.

(1) Let P
(1)
θ be defined by (2.25). Let wθt (x) := ∂θP

(1)
θ ut(x) and

gθt (x) := ∂θP
(1)
θ (bt · ∇ut)(x)− (bt · ∇∂θP(1)

θ ut)(x) + ∂θP
(1)
θ ft(x)

+ tr
(
∂θP

(1)
θ (Σt · ∇(2)∇(2)ut)− Σt · ∂θP(1)

θ ∇(2)∇(2)ut
)
(x).

By equation (3.1), we have
∂tw

θ
t = L

Σ,b
t wθt − λwθt + gθt .
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By (3.25) with k = 0, we have

‖∇(1)wθt ‖∞ 6 C̄

∫ t

0

Λφλ(t− s)
(
[∇(2)wθs ]1[2/3],∞ + [gθs ]φ[1/3],φ

)
ds.(3.41)

By the definition of wθt and using (2.16) for g = 1, ψ = 1[2/3] and φ = 1[1/3], we obtain

(3.42) [∇(2)wθs ]1[2/3],∞ � ‖∇(1)∇(2)us‖∞θ−
5
6 .

Next, by Lemma 2.6 with ψ = φ[ 1
3
] and φ = 1[1/3], we obtain

[gθt ]φ[ 13 ]
,∞ 6 C

(
[bt]φ

[ 23 ]
,∞‖∇ut‖∞ + [Σt]φ

[ 23 ]
,∞‖∇(2)∇(2)ut‖∞ + [ft]φ

[ 23 ]
,∞

)
θ−

5
6 .(3.43)

Moreover, by Lemma 2.9 for ψ1 = 1[ 2
3
] and ψ2 = φ2, and using a ∧ c 6 a

1
2 c

1
2 for a, c > 0, we

obtain

[∂θP
(1)
θ (bt · ∇ut)− bt · ∇∂θP(1)

θ ut]∞,φ 6 C[bt]1
[ 23 ]
,φ2‖∇ut‖∞,φ2θ

− 5
6

and
[∂θP

(1)
θ ft]∞,φ 6 C[ft]1

[ 23 ]
,φ2θ

− 5
6 6 C[ft]φ

[ 23 ]
,φ2θ

− 5
6 .

Finally, by Lemma 2.9 for ψ1 = 1[1] and ψ2 = φ
3
2 , we obtain

[∂θP
(1)
θ (Σt · ∇(2)∇(2)ut)− Σt · ∂θP(1)

θ ∇(2)∇(2)ut]∞,φ 6 C‖∇(2)∇(2)ut‖∞,φ3/2θ
− 5

6 .

Therefore,

[gθt ]∞,φ 6 C
(
‖∇ut‖∞,φ2 + ‖∇(2)∇(2)ut‖∞,φ3/2 + [ft]1

[ 23 ]
,φ2

)
θ−

5
6 .

Combining this with (3.41), (3.43) and (3.42), and using (2.24), we obtain (3.27).

(2) We now prove (3.28) in the same way. By (3.26) for (wθ, gθ) in place of (u, f), we
have

(3.44) ‖∇wθt ‖∞ 6 C ′
∫ t

0

Λφλ(t− s)
(
‖∇(2)wθs‖1[ 23 ]

+ [gθs ]φ[ 13 ]
,∞

)
ds.

Due to (3.42) and(3.43), we only need to estimate ‖∇(2)wθs‖∞,1[2/3]. By Lemma 2.9 for g = 1,
ψ1 = 1[1], ψ2 = 1[1] and φ = 1[2/3], we have

‖∇(2)wθs‖∞,1[2/3] � ‖∇∇(2)ut‖∞θ−
5
6 .

This, together with (3.44), (3.43) and (3.42), yields

sup
θ∈(0,1)

‖θ 5
6∂θP

(1)
θ ∇ut‖∞ 6 C ′

∫ t

0

Λφλ(t− s)
(
‖∇∇(2)us‖∞ + ‖∇us‖∞ + [fs]φ

[ 23 ]
,∞

)
ds.

By Lemma 2.7 for φ(s) = s
1
3 , this implies (3.28).
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Proof of Lemma 3.6. Let Pθ be the semigroup on R
d1+d2 . Let wθt = ∂θPθut and

gθt (x) = ∂θPθ(bt · ∇ut)(x)− (bt · ∇∂θPθut)(x) + ∂θPθft(x)

+ tr
(
∂θPθ(Σt · ∇(2)∇(2)ut)− Σt · ∂θPθ∇(2)∇(2)ut

)
(x).

By equation (3.1) we have
∂tw

θ
t = L

Σ,b
t wθt − λwθt + gθt .

Thus, by (3.24) we have

(3.45) ‖∇(2)∇(2)wθt ‖∞ �
∫ t

0

Λφλ(t− s)
(
‖∇wθs‖∞ + [gθs ]φ

)
ds.

On the other hand, by (2.14), we have

‖∇wθt ‖∞ = ‖∂θPθ∇ut‖∞ � θ−1φ5/2(θ
1
2 )‖∇ut‖φ5/2 ,

and by (2.16),

[gθt ]φ � θ−1φ5/2(θ
1
2 )
(
[bt]φ7/2‖∇ut‖∞ + [ft]φ7/2 + [Σt]φ7/2‖∇(2)∇(2)ut‖∞

)
.

Substituting these two estimates into (3.45) and noticing that by (ii) of Proposition 2.2,

∫ t

0

s−1φ5/2(s)ds+ t

∫ 1

t

s−2φ5/2(s)ds � φ3/2(t), t ∈ (0, 1],

by (2.23), we obtain

‖∇(2)∇(2)ut‖φ3/2 �
∫ t

0

Λφλ(t− s)
(
‖∇us‖φ5/2 + ‖∇(2)∇(2)us‖∞ + [fs]φ7/2

)
ds,

which gives the desired estimate by Lemma 2.1.

3.4 Classical solutions of (3.1)

In this subsection we prove the existence and stability of classical solutions to equation (3.1).

Theorem 3.10. Assume Qφ <∞. For any f : [0, T ]× R
d → R with

sup
s∈[0,T ]

[fs]φ[2/3],φ7/2 <∞,

there exist a unique classical solution u to (3.1) such that for all t ∈ [0, T ],

‖∇ut‖1[1/3],∞ + ‖∇(2)∇(2)ut‖φ3/2 6 C

∫ t

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s
[fs]φ[2/3],φ7/2ds.(3.46)

Moreover, let (bk, σk, fk)k∈N∞ be a sequence of functions. Let Qk
φ be defined as in (3.20) in

terms of (bk, σk). Assume that

sup
k

(
Q
k
φ + sup

s∈[0,T ]
[fks ]φ[2/3],φ7/2

)
<∞,
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and for each t > 0, x ∈ R
d1+d2,

lim
k→∞

‖σkt (x)− σ∞
t (x)‖+ |bkt (x)− b∞t (x)|+ |fkt (x)− f∞

t (x)| = 0.

Let ukt (x) be the unique classical solution of (3.1) corresponding to (bk, σk, fk) for each

k ∈ N∞. Then for each T,R > 0,

lim
k→∞

sup
t∈[0,1],|x|6R

(
|ukt − u∞t |+ |∇(ukt − u∞t )|+ ‖∇(2)∇(2)(ukt − u∞t )‖

)
(x) = 0.(3.47)

Proof. (1) Let ̺ be a non-negative smooth function with compact support in R
d having

∫

Rd

̺(x)dx = 1.

For n ∈ N, define ̺n(x) = nd̺(nx) and

bnt = ̺n ∗ bt, σnt = ̺n ∗ σt, fnt := ̺n ∗ ft.(3.48)

Clearly, bn, σn and fn satisfy (3.18). Let Qn
φ be defined by (3.20) corresponding to bn, σn.

It is easy to see that for some n0 large enough and all n > n0,

Q
n
φ 6 2Qφ.

Let un be the unique smooth solution of the following equation

(3.49) ∂tu
n
t = L

Σn,bn

t unt − λunt + fnt , un0 = 0, t ∈ [0, T ],

which enjoys the following uniform estimate:

‖∇unt ‖1[1/3],∞ + ‖∇(1)∇(2)unt ‖∞ + ‖∇(2)∇(2)unt ‖φ3/2

6 C

∫ t

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s
[fs]φ[2/3],φ7/2ds,

(3.50)

So, Ascoli-Arzela’s theorem implies the existence of u such that, up to a subsequence,

lim
n→∞

sup
t∈[0,1],|x|6R

(
|unt − ut|+ |∇(unt − ut)|+ ‖∇(2)∇(2)(unt − ut)‖

)
(x) = 0, R > 0.

By taking limits for (3.49) and inequality (3.50), we obtain the existence of classical solutions
of (3.1) as well as the estimate (3.46).

(2) We use a contradiction argument. Suppose that (3.47) does not hold. Then there
is a subsequence km such that

lim
m→∞

sup
t∈[0,1],|x|6R

(
|ukmt − u∞t |+ |∇(ukmt − u∞t )|+ ‖∇(2)∇(2)(ukmt − u∞t )‖

)
(x) > 0.

On the other hand, repeating the proof in step (1), since u∞ is the unique solution of (3.1)
corresponding to (b∞, σ∞, f∞), there is a subsubsequence k′m such that

lim
m→∞

sup
t∈[0,1],|x|6R

(
|uk′mt − u∞t |+ |∇(u

k′m
t − u∞t )|+ ‖∇(2)∇(2)(u

k′m
t − u∞t )‖

)
(x) = 0.

Thus, we obtain a contradiction, and so, (3.47) holds.
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We also have the following existence of Hölder classical solutions under Hölder assump-
tions.

Theorem 3.11. Assume for some α ∈ (2
3
, 1), β ∈ (0, 1

2
),

Qα,β := sup
t∈[0,T ]

{
[b

(1)
t ]1[α],∞ + ‖∇(2)b

(1)
t ‖∞,1[β]

+
∥∥([∇(2)b

(1)
t ][∇(2)b

(1)
t ]∗

)−1∥∥
∞

+ ‖b(2)t ‖1[α],1[β]
+ ‖σt‖∞ + ‖σ−1

t ‖∞ + ‖σt‖1[α]

}
<∞.

(3.51)

Then for any ε ∈ (0, β ∧ (α − 2
3
)), there exist a unique solution u to (3.1) and constants

δ ∈ (0, 1) depending only on α, β, and C = C(Qα,β, ε, δ) > 0, which is increasing in Qα,β,

and such that for all t ∈ [0, T ] and λ > 0,

‖∇ut‖1[1/3] + ‖∇∇(2)ut‖1[ε],1[ε] 6 C

∫ t

0

e−λ(t−s)(t− s)−δ[fs]1[α],1[β]
ds.(3.52)

Proof. First of all, we assume (3.18). Following the proof of Lemma 3.6, by Lemma 2.8, we
have for any ε ∈ (0, β ∧ (α− 2

3
)),

[gθt ]1[α−ε],1[β−ε]
�
(
[bt]1[α],1[β]

‖∇ut‖∞ + [ft]1[α],1[β]
+ [Σt]1[α−ε],1[β−ε]

‖∇(2)∇(2)ut‖∞
)
θ

ε
2
−1.

Noticing that for any φ ∈ S0,

φ[2/3](s) = s3/2φ(s) � 1[α−ε](s) = sα−ε, φ7/2(s) � 1[β−ε](s) = sβ−ε, s ∈ [0, 1],

by (3.21), we obtain that for some δ ∈ (0, 1),

‖∇wθt ‖1[1/3],∞ + ‖∇∇(2)wθt ‖∞ �
∫ t

0

e−λ(t−s)(t− s)−δ[gθs ]1[α−ε],1[β−ε]
ds

� θ
ε
2
−1

∫ t

0

e−λ(t−s)(t− s)−δ
(
‖∇us‖∞ + ‖∇(2)∇(2)us‖∞ + [fs]1[α],1[β]

)
ds,

which in turn gives (3.52) by Lemma 2.7 and (3.21). In general, we can follow the same
approximation as done in Theorem 3.10.

4 Proofs of Main Results

Proof of Theorem 1.1. The existence of weak solution is well known, see e.g. [13, Theo-
rem 2.2 and Remark 2.1, Chapter IV] and [21]. So, we only prove the uniqueness. Let
(Ω,F ,P;Xt,Wt) and (Ω′,F ′,P′;X ′

t,W
′
t ) be two weak solutions of SDE (1.2) with X0 =

X ′
0 = x ∈ R

d1+d2 . Fix T > 0 and f ∈ C∞
b ([0, T ] × R

d1+d2). For any n > 1, let σn and bn

be in (3.48), and let Qn and Q′
n be the numbers defined in (3.20) and (3.19) for (bn, σn) in

place of (b, σ). It is easy to see that for some n0 large enough and all n > n0,

Qn 6 2Q, Q
′
n 6 2Q′.
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By Theorem 3.2 for (L Σn,bn

T−t , fT−t) in place of (L Σ,b
t , ft), for any λ > 0 the equation

(4.1) ∂tu
n
t = L

Σn,bn

T−t unt − λunt + fT−t, un0 = 0, t ∈ [0, T ]

has a unique solution un : [0, T ]× R
d1+d2 → R such that

(4.2) sup
t∈[0,T ],n>1

(
‖∇unt ‖1[ 13 ]

,∞ + ‖∇∇(2)unt ‖∞
)
6 ε(λ) := C

∫ T

0

e−λ(t−s)
φ((t− s)

1
2 )

t− s
ds

for some constant C > 0. So, Ascoli-Arzela’s theorem implies the existence of

u : [0, T ]× R
d1+d2 → R

such that, up to a subsequence,

(4.3) lim
n→∞

sup
t∈[0,T ],|x|6R

(
|unt − ut|+ ‖∇(2)(unt − ut)‖

)
(x) = 0, R > 0,

and, moreover,

(4.4) sup
t∈[0,T ]

(
[ut]1[1] + [∇(2)ut]1[1]

)
6 ε(λ).

Now, due to (1.2) and (4.1) with λ = 0, Itô’s formula for unT−t(x) implies

0 = unT (x) +

∫ T

0

E
{
(∂s + L

Σ,b
s )unT−s(Xs)

}
ds

= unT (x) + E

∫ T

0

{
tr
[(
Σs − Σns )∇(2)∇(2)unT−s

]
+ (bs − bns ) · ∇unT−s − fs

}
(Xs)ds.

So, according to (4.2), (4.3) and noting that {|bt− bnt |+ ‖σt−σnt ‖}n>1 is bounded uniformly
in t ∈ [0, T ] and converges to 0 as n → ∞, by the dominated convergence theorem, letting
n→ ∞ we obtain

uT (x) =

∫ T

0

Efs(Xs)ds.

By the same reason, we also have

uT (x) =

∫ T

0

E
′fs(X

′
s)ds.

Hence, ∫ T

0

Efs(Xs)ds =

∫ T

0

E
′fs(X

′
s)ds, f ∈ C∞

b ([0, T ]× R
d1+d2).

By [20, Corollary 6.2.4], this implies the weak uniqueness.
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Proof of Theorem 1.2. If (1.11) holds, then the non-explosion and estimate (1.12) follows by
[29, Lemma 2.2]. So, we only prove the existence and uniqueness of local solutions.

(1) We first assume that (A) holds for some Cn = C, φn = φ and γn = γ independent

of n > 1. Noting that γ ∈ C implies γ(r) 6 cr−
1
4 for some c > 0 and all r ∈ (0, 1], in

this case we have either Qφ < ∞ or Q′
φ < ∞. Due to the existence of the weak solution

as explained in the proof of Theorem 1.2, by the Yamada-Watanabe principle [27], we only
need to prove the pathwise uniqueness.

Let bn, σn be defined as in (3.48). As in the proof of Theorem 1.1, by Theorem 3.2 for
(L Σn,bn

T−t , bnT−t) in place of (L Σ,b
t , ft), the equation

(4.5) ∂tu
n
t = L

Σn,bn

T−t unt − λunt + bnT−t, un0 = 0, t ∈ [0, T ]

has a unique solution un : [0, T ] × R
d1+d2 → R

d1+d2 such that (4.2)–(4.4) hold for un and
some u : [0, T ]× R

d1+d2 → R
d1+d2 in place of un and u. Let

Φt(x) = x+ uT−t(x), t ∈ [0, T ], x ∈ R
d1+d2 .

Then for large enough λ > 0, Φt is a homeomorphism on R
d1+d2 such that

(4.6) sup
t∈[0,T ]

(
[Φt]1[1] + [Φ−1

t ]1[1]

)
<∞;

that is, both Φt and Φ−1
t are Lipschitz continuous uniformly in t ∈ [0, T ].

Now, if Xt solves (1.2) up to a stopping time τ 6 T , then by Itô’s formula and (4.5), we
have

Xt + unT−t(Xt)−X0 − uT (X0)

=

∫ t

0

{
λunT−s + tr

[
(Σs − Σns )∇(2)∇(2)unT−s

]
+ (bs − bns ) · ∇unT−s + bs − bns

}
(Xs)ds

+

∫ t

0

(
0, σsdWs

)
+

∫ t

0

(∇(2)
σsdWs

unT−s)(Xs), t ∈ [0, τ ], P-a.s.

So, as explained in the proof of Theorem 1.1, by letting n→ ∞, we obtain for t ∈ [0, τ ],

Φt(Xt) = Φ0(X0) +

∫ t

0

λuT−s(Xs)ds+

∫ t

0

(
0, σs(Xs)dWs

)
+

∫ t

0

(∇(2)
σsdWs

uT−s)(Xs).

Therefore, if (Xt)t∈[0,τ ] solves (1.2), then Yt := Φt(Xt) solves the following SDE for t ∈ [0, τ ] :

(4.7) dYt = λ(uT−t ◦ Φ−1
t )(Yt)dt+

{
(∇(2)

σtdWt
Φt) ◦ Φ−1

t

}
(Yt).

Since by (4.4) and (4.6), both uT−t ◦ Φ−1
t and (∇(2)Φt) ◦ Φ−1

t are Lipschitz continuous uni-
formly in t ∈ [0, T ], from the condition (1.8) or (1.9) on σ we see that (4.7) has a unique
solution up to time T (see [19, Theorem 4.1]). So, the pathwise uniqueness of (1.2) holds
up to any stopping time less than T . By the arbitrary of T > 0 we conclude that (1.2) has
a unique solution for all t > 0.
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(2) Next, if σ(x) and b(x) do not depend on x(1), then so does un(x). In this case, if
(1.10) holds with φn and γn uniformly in n > 1, then Q̄φ < ∞ for some φ ∈ D0 ∩ S0, so
that by (3.24) we may repeat the above argument to prove the pathwise uniqueness.

(3) In general, by a localization argument as in [25, Proof of Theorem 1.1], we obtain
the local existence and uniqueness of SDE (1.2) up to explosion time ζ . More precisely, for
any m > 1, let θm ∈ C∞

0 (Rd1+d2 ;Rd1+d2) be such that θm(x) = x for |x| 6 m. Define

σm(x) = σ ◦ θm(x), b(2)m (x) = b(2) ◦ θm(x), b(1)m (x) = b(1)(θ(1)m (x), x(2)).(4.8)

Here and below, for simplicity of notation, we shall drop the time variables in b and σ since
it does not play any role in the proof. If (A) or (1.10) holds, then for any m ∈ N, σm and
bm satisfy the same assumption for some uniform C, φ and γ. For fixed X0 ∈ R

d1+d2 , let
Xm
t with Xm

0 = X0 be the unique solution to (1.2) for (σm, bm) in place of (σ, b). Since
bm(x) = b(x), σm(x) = σ(x) for |x| 6 m, Xm

t solves the original equation (1.2) up to the
stopping time

τm := inf{t > 0 : |Xm
t | > m}.

By step (1), we have Xn
t = Xm

t for t 6 τn ∧ τm, and τn is increasing in n. Letting ζ =
limn→∞ τn, we see that

Xt :=
∑

t∈[τn−1,τn)

Xn
t , τ0 := 0, t < ζ

is the unique solution to (1.2) with life time ζ , i.e. lim supt→ζ |Xt| = ∞ holds a.s. on
{ζ <∞}.

Proof of Theorem 1.6. (1) First of all, we assume that the global conditions in the theorem
hold for (bk, σk)k∈N. In this case, let uk be the unique classical solution of (3.1) in Theorem
3.10 corresponding to (bk, σk, bk). Define

Φkt (x) = x+ ukT−t(x), t ∈ [0, T ], x ∈ R
d1+d2 .

As in the proof of Theorem 1.2, for large enough λ > 0, and for each k ∈ N∞, Φkt is a
homeomorphism on R

d1+d2 such that

sup
k∈N∞

sup
t∈[0,T ]

(
[Φkt ]1[1] + [(Φkt )

−1]1[1]

)
<∞;

By Itô’s formula, Y k
t := Φkt (X

k
t ) solves the following SDE for t ∈ [0, T ],

dY k
t = gkt (Y

k
t )dt +Θk

t (Y
k
t )dWt, Y k

0 = Φk0(x),

where
gkt := λukT−t ◦ (Φk)−1

t , Θk
t :=

(
∇(2)

σkt ·
Φkt ) ◦ (Φkt )−1.

Moreover, by (3.47), it is easy to see that for each t, x ∈ R
d,

lim
k→∞

(
|gkt (x)− g∞t (x)|+ ‖Θk

t (x)−Θ∞
t (x)‖+ |Φkt (x)− Φ∞

t (x)|
)
= 0.
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and by (3.46), for all x, y ∈ R
d1+d2 ,

sup
k∈N∞

sup
t∈[0,T ]

(
|gkt (x)− gkt (y)|+ ‖Θk

t (x)−Θ∞
t (y)‖

)
6 C|x− y|.

Hence, by [18, Theorem 15, p.271], we have for each T, ε > 0,

lim
k→∞

P

(
sup
t∈[0,T ]

|Y k
t − Y ∞

t | > ε

)
= 0,

which in turn implies (1.16).

(2) In general, by the assumption and (1.12), we have the following uniform estimate:

sup
k

E exp

[
sup
t∈[0,T ]

H(Xk
t (x))

ε′
]
6 Ψ(T ) exp

[
H(x)ε

]
, T > 0, x ∈ R

d1+d2 .(4.9)

For each m ∈ N, let θm ∈ C∞
0 (Rd1+d2 ;Rd1+d2) be such that θm(x) = x for H(x) 6 m. Let σkm

and bkm be defined as in (4.8), and let Xk,m
t (x) be the solution of SDE (1.2) corresponding

to (σkm, b
k
m). Define the stopping times

τkm := inf{t > 0 : H(Xk
t (x)) ∧H(X∞

t (x)) > m}.

Then by (4.9), we have

sup
k

P(τkm < T ) 6 sup
k

E

(
sup
t∈[0,T ]

H(Xk
t (x)) ∧H(X∞

t (x))
)
/m→ 0, m→ ∞.(4.10)

On the other hand, we have

P

(
sup
t∈[0,T ]

|Xk
t −X∞

t | > ε

)
6 P

(
sup
t∈[0,T ]

|Xk
t −X∞

t | > ε; τkm > T

)
+ P(τkm < T )

6 P

(
sup
t∈[0,T ]

|Xk,m
t −X∞,m

t | > ε

)
+ P(τkm < T ),

which together with step (1) and (4.10) gives the desired estimate (1.16).

(3) Let ϕ : R+ → R+ be a bounded smooth function with ϕ(r) = r for |r| 6 1. Let
ξkt (x) := |Xk

t (x)−X∞
t (x)|2. For fixed R > 0, let χR : Rd → [0, 1] be a smooth function with

χR(x) = 1 for |x| 6 R and χR(x) = 0 for |x| > 2R. By Gagliado-Nirenberg’s inequality and
(1.17) for some p > d, we have

E

[
sup
t∈[0,T ]

‖ϕ(ξkt )χR‖∞
]

6 CE

[
sup
t∈[0,T ]

‖ϕ(ξkt )χR‖
1− d

p

Lp

(
‖ϕ(ξkt )χR‖Lp + ‖χR∇(ϕ(ξkt ))‖Lp + 1

) d
p

]

6 C

{
E

[
sup
t∈[0,T ]

‖ϕ(ξkt )χR‖
p(p−d)

p2−d
p

]}1−d/p2

→ 0, n→ ∞,

due to (1.16) and the dominated convergence theorem. So, (1.18) holds.
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Proof of Theorem 1.7. By Theorem 1.2, for each x ∈ R
d1+d2 , there is a unique global solution

{Xt(x), t > 0} for SDE (1.2). Let ut(x) be the unique solution of equation (3.1) in Theorem
3.11 corresponding to (σ, b) and f = b. By (3.52), we have

‖∇ut‖1[1/3] + ‖∇∇(2)ut‖1[ε] 6 C

∫ t

0

e−λ(t−s)(t− s)−δds.(4.11)

As in the proof of Theorem 1.2, let

Φt(x) = x+ uT−t(x).

By (4.11), for large enough λ > 0, Φt is a diffeomorphism on R
d1+d2 such that

(4.12) sup
t∈[0,T ]

(
‖∇Φt‖1[ε] + ‖∇Φ−1

t ‖1[ε]
)
<∞;

Moreover, as shown in the proof of Theorem 1.2 that if Xt(x) solves SDE (1.2) then Yt =
Φt(Xt) solves (4.7). By (4.12) and the condition on σ in Theorem 1.7, we have

sup
t∈[0,T ]

(‖∇(uT−t ◦ Φ−1
t )‖1[ε] + ‖∇{(∇(2)

σt·Φt) ◦ Φ−1
t }‖1[ε]) <∞,(4.13)

for some ε > 0. So, by [15, Theorem 4.6.5], {Yt(·)}t∈[0,T ] forms a C1-stochastic diffeomor-
phism flow, and so does {Xt(·) := Φ−1

t (Yt(·))}t∈[0,T ]. Finally, it is easy to prove (1.19) from
(4.7), (4.12) and supt∈[0,T ] ‖∇σt‖∞ <∞.

Proof of Theorem 1.8. As shown in the proof of Theorem 1.2 that SDE (1.22) admits a
unique global strong solution Xt(x) and Yt := Φt(Xt) solves (see (4.7))

dYt = gat (Yt)dt +Θt(Yt)dWt, Y0 = y =: Φ0(x),(4.14)

where

gat :=
(
λuT−t + at · ∇(2)Φt

)
◦ Φ−1

t , Θt :=
(
∇(2)
σt·Φt) ◦ Φ−1

t .(4.15)

By (1.21), (4.11), (4.12) and σt ∈ C1
b uniformly in t ∈ [0, T ], there is a constant C > 0 such

that for all t ∈ [0, T ] and y, y′ ∈ R
d,

|gat (y)− gat (y
′)| 6 C(Hε′ ◦ Φ−1

t (y) +Hε′ ◦ Φ−1
t (y′))|y − y′|, ‖∇Θt‖∞ 6 C.(4.16)

On the other hand, by (1.12) and ε′ < ε, for any K > 0, there exists CK > 0 such that

E exp

[
K sup

t∈[0,T ]
(H ◦ Φ−1

t (Yt))
ε′
]
6 CK exp[H(x)ε].(4.17)

In order to show the diffeomorphism property of x 7→ Xt(x), we shall use Kunita’s
argument. More precisely, we want to show the following estimates: for any p ∈ R and
T > 0, there are constants C1, C2 > 0 such that for all x, x′ ∈ R

d1+d2 and t ∈ [0, T ],

E|Xt(x)−Xt(x
′)|2p 6 C1(e

H(x)ε + eH(x′)ε)|x− x′|2p,(4.18)
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E(1 + |Xt(x)|δ2)p 6 C2(1 + |x|δ1)p, p < 0;(4.19)

and for any p > 1 and T > 0, there is a constant C3 > 0 such that for all x ∈ R
d1+d2 and

t, s ∈ [0, T ],

E|Xt(x)−Xs(x)|2p 6 C3e
H(x)ε |t− s|p.(4.20)

Estimate (4.20) is direct by the assumptions, (1.22) and (4.17). Let us show (4.18). Set

Zt := Yt(y)− Yt(y
′), y = Φ0(x), y

′ = Φ0(x
′),

and
Gt := gat (Yt(y))− gat (Yt(y

′)), Ut := Θt(Yt(y))−Θt(Yt(y
′).

By Itô’s formula, we have

d|Zt|2 = [2〈Zt, Gt〉+ tr(U∗
t Ut)]dt + 2〈Zt, UtdWt〉 = |Zt|2d(Nt +Mt),

where

Nt :=

∫ t

0

|Zs|−2[2〈Zs, Gs〉+ tr(U∗
sUs)]ds, Mt := 2

∫ t

0

|Zs|−2〈Zs, UsdWs〉.

Here we use the convention 0
0
= 0. Notice that by (4.16),

|Gt| 6 C(Hε′ ◦ Φ−1
t (Yt(y)) +Hε′ ◦ Φ−1

t (Yt(y
′)))|Zt|, |Ut| 6 C|Zt|.(4.21)

Hence, by (4.17), Nt +Mt is a continuous semimartingale, and

|Zt|2 = |Z0|2 exp
{
Mt − 1

2
〈M〉t +Nt

}
.

Since for any q ∈ R, t 7→ exp
{
qMt− q2

2
〈M〉t

}
is an exponential martingale, by (4.21), (4.17)

and using Hölder’s inequality, we have for any p ∈ R,

E|Zt|2p = |Z0|2pE exp
{
pMt − p

2
〈M〉t + pNt

}
6 C(eH(x)ε + eH(x′)ε)|Z0|2p,

which in turn gives (4.18).
Next comes to (2.42). By Itô’s formula and (1.20), we have

EH(Xt(x))
p =H(x)p + pE

∫ t

0

H(Xs(x))
p−1(L Σ,b+a

s H)(Xs(x))ds

+
p(p− 1)

2
E

∫ t

0

H(Xs(x))
p−2|σt · ∇(2)H(Xs(x))|2ds

6H(x)p + CE

∫ t

0

H(Xs(x))
pds,

which in turn gives (4.19) by Gronwall’s inequality and (1.20).
Finally, by (4.18)-(4.20), as in the proof of Kunita [15, p.159-160] (see also [30, The-

orem 3.4]), there is a full set Ω0 such that for all ω ∈ Ω0 and t > 0, x 7→ Xt(x, ω) is a
homeomorphism. On the other hand, since the coefficients of SDE (4.14) are C1+ε, by [15,
Theorem 4.7.2], {Yt(·)}t>0 defines a local C1-diffeomorphism flow, so does {Xt(·)}t>0. This
together with the homeomorphism property implies the global C1-diffeomorphism property
of {Xt(·)}t>0. Finally, (1.23) follows from (4.18) and [26, Lemma 2.1].
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