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Abstract

The existence-uniqueness and stability of strong solutions are proved for a class
of degenerate stochastic differential equations, where the noise coeffcicient might be
non-Lipschitz, and the drift is locally Dini continuous in the component with noise
(i.e. the second component) and locally Holder-Dini continuous of order % in the first
component. Moreover, the weak uniqueness is proved under weaker conditions on the
noise coefficient. Furthermore, if the noise coefficient is C'*¢ for some € > 0 and the
drift is Holder continuous of order o € (%, 1) in the first component and order 3 € (0,1)
in the second, the solution forms a C'-stochastic diffeormorphism flow. To prove these
results, we present some new characterizations of Holder-Dini space by using the heat

semigroup and slowly varying functions.
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1 Introduction
Consider the following ordinary differential equation (abbreviated as ODE):

(1) = b(x(t)), 2(0) = xo.

It is classical that the equation is well-posed for Lipschitz b but usually ill-posed if b is only
Holder continuous. For instance, for b(x) := |z|* with a € (0,1) and 2o = 0, the above ODE
has two solutions: x(t) = 0 and z(t) = (1 — )t~ t > 0. However, if the above ODE
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is perturbed by a strong enough noise (e.g. the Browian motion), the equation might be
well-posed for very singular b. For instance, consider the following SDE on R¢%:

dXt = bt(Xt)dt + O'th, X(] =,

where W, is a d-dimensional standard Brownian motion on some probability space (€, .7, P),
o is an invertible matrix. If b is a bounded measurable function, Veretennikov [22] proved
that the above SDE admits a unique strong solution, which extended an earlier result of
Zvonkin [32] in the case of d = 1. More recent results about the above SDE can be found in
[9, 14], B0] and references therein for further development in this direction.

It is worthy noticing that all the well-posedness results mentioned above are done only
for the time-white noise, which means that the noise is a distribution of the time variable.
In this work, we are concerning with the following problem: Is it possible to prove the
well-posedness of the ODE with singular b perturbed by an absolutely continuous Gaussian
process? More concretely, consider the following random ODE:

(11) dXt = [bt(Xt) -+ O'Wt]dt, XQ = XT.

We aim to find minimal conditions on b and ¢ ensuring the well-posedness of this random
ODE. By regarding X, as the first component process Xt(l) and introducing Xt(2) = oW,
this problem is reduced to the study of the following more general degenerate SDE for
Xpo= (XY, X)) on RU+E = RA x R

(1.2) dX, = b (X)dt + (0, 04(X,)dW,), Xy = = (2, 2?) e RN +ez,

where, for R, := (0,00), the maps ¢ : Ry x R+ — R% @ R% and b = (b, p?) :
R, x Ra+d s Réi+d2 are measurable and locally bounded. This model is known as the
stochastic Hamiltonian system with potential H if b = VH, which includes the kinetic
Fokker-Planck equation as a typical example (see [23]).

In the following, we will use VM and V) to denote the gradient operators on the first
space R% and the second space R% respectively. Thus, for every (t,7) € R, x R&+d2,
VO (z) € R2 @ R with (V@b (2)h = VbV (2) € RT h € R%. By 1t6’s formula,
the infinitesimal generator associated to (L2) is given by

(1.3) L= (S, - VOVOu) + b, - Va,

where Y (z) := 10y(z)o; (z) and tr(-) denotes the trace of a matrix.
Let |- | denote the Euclidiean norm and let || - || denote the operator norm. We introduce
below the notion of Hélder-Dini continuity:.

Definition 1.1. An increasing function ¢ : R, — R, is called a Dini function if
1
t
(1.4) / @dt < .
0

A measurable function ¢ : R, — R, is called a slowly varying function at zero if for any
A >0,

(1.5) lim 22

t—0 t
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A function f on the Euclidiean space is called Hélder-Dini continuous of order o € [0,1) if

|f(@) = fW) <Mz —yl*o(lz —yl), Jz—y|<1
holds for some Dini function ¢, and is called Dini-continuous if this condition holds for o = 0.

Let 2y be the set of all Dini functions, and .7 the set of all slowly varying functions
that are bounded from 0 and oo on [g,00) for any € > 0. Notice that the typical examples
in 9y N.% are ¢(t) := (log(1 +t71))=# for > 1.

Roughly speaking, for the existence and uniqueness of the solutions to (.2)), we will need
b (-, ) and b (-, 2?)) and Vb2 (2D .) with fixed 22 to be locally Holder-Dini contin-
uous of order 2, and b® (21, -) with fixed ") to be merely Dini continuous. These coincide
with the continuity conditions used in [25] for infinite-dimensional degenerate systems with
linear b,

Moreover, it is known that ([.2)) is well-posed if o and b are “almostly Lipschitz contin-
uous”, see e.g. [27, 8, [19]. In this paper we show that, under the above mentioned much
weaker conditions on b, such a non-Lipschitz condition on o still implies the well-posedness.
To characterize this condition, we introduce the class

! (t)
@ = Ry Ry : [ ——dt = o0, li 'f(— t’t)
{VGC ( + +> /0 t’}/(t) o0, ll’?ul]n 4 + 7() >O}7
where fol %dt = oo is the key condition, and lim inf; g (% + ty (t)) > (0 comes from our

calculations in the present framework, which is weaker than the following condition used in
[8, Theorem B]:

= 0.

/
lim~v(t) = oo, lim i)
t10 tl0 y(t)

Typical functions in € include

n(t) =log(1+t7"), 72(t) 1= m(t)loglog(e +t71), 75(t) 1= 1(t) logloglog(e” +¢71)...

In the following four subsections, we state our main results on the weak solutions, the
strong solutions, the stability of solutions with respect to coefficients, and the C'-stochastic
diffeormorphism flows respectively.

1.1 Weak solutions

We introduce the following assumptions for some ¢ € %, N.#, and some increasing function
C . R+ — R+:

(C1) (Hypoellipticity) o,(z) and [V (2)][V@b" (2)]* are invertible with

V@b oo + [[((VEBPNVEEDT) |+ llotlloe + o7 oo < C(#), £ 0.

(C2) (Regularity of bV)) For any x,y € R1+% with |z —y| < 1and t > 0,

b () — bV ()] < C@)|2W — yD 5|z —y D)), i 2@ = y@),
IV (z) — VIV ()| < C)p(|2® —y @), if 2@ =y,



(C3) (Regularity of b, o) Either

(1.6) {|b§2)($) y)l < C@){ja =y Mgz — y D) + 67 (]2 — @]},
Hm<%wmwn<omu—y|wm—ym £3 0.0yl <1

or for t > 0, |z — y| < 1, there hold [|[V®e,|| < C(t) and

62 () — b ()] < C){Ja® — yD[5p(|z® -y n+wm@—yﬂn}
(1.7) < IVP0,(z®,2®) = Vo, (y®, 2@)|| < C(1)]aD — yD[5¢(|z) — y D)),
o (2, 2@ — 6, (y D, 2| < C@1) |2V = yD[3p(j® — yD)).

Intuitively, there should be a balance between the regularities of b and o; that is, with
a stronger condition on o we will only need a weaker regularity of 6. Conditions (ILG) and
(D), as well as (L) and (LI) below, are introduced in this spirit.

Theorem 1.1. Assume that (C1)—(C3) hold for some ¢ € DyN.Sy and increasing function
C:Ry — Ry. Then (L2) has a unique weak solution.

Remark 1.1. In [16], Menozzi showed that the weak uniqueness holds for (L.2)) under the
assumptions that o is Holder continuous and b is Lipschitz continuous. In [I7], Priola showed
that there is a unique weak solution to ([2) when o,(z) = o(z) is bounded continuous,
b (z) = 2@ and @ (z) is bounded measurable. Although our assumptions on b and o
are stronger, we allow b(')(z) to be merely Holder-Dini continuous in 2. In fact, this is
the main source of the difficulty in our study, since due to the singularity of b (z) in z()
we have to carefully estimate the regularization of the noise transported from the second
component to the first, see Lemma 3.1 below.

1.2 Strong solutions

By a localization argument, we will take the following local conditions on ¢ and b.

(A) For any n € N, there exist a constant C,, € R, some ¢, € Py N H and 7, € € such
that the following conditions hold for all ¢ € [0, n]:

(A1) (Hypoellipticity) o,(z) and [V@b" (2)][V@b" (2)]* are invertible and locally bounded
with

sup[|((VEBP)VE ) 7 (@ ) + sup [l () < G

zeRM+4? |30 |<n
(A2) (Regularity of b)) For any z,y € R“*% with |z| V |y| < n

MW@—#%>\| =y 0n(leV =y D)), i 2 =y,
IVOs) (2) = VOB ()| < du(|z® —y@)),  if 2D = 5O,



(A3) (Regularity of b?, o) Either

2 7
(1.8) {|b§2>(x)—b(2( y)| < {|x(1) _ (1)‘ %(Ixm —y(1)|)+¢ﬁ(|x(2) _y(mm,
Jou(@) = )l < o = w1Vl = ol Jal V Iyl <

O SUD|,(<p VP, (2)s < Cp and for |z V |y| < n
2 2)
07 (2) = 57 ()] < (|2 =y Vs <z>n<|x W)+ ga(la® -y},
(19) < [VP0(al %x@)) — V0,5V, 22) | < |x — YOy 32 — ),

loe(@®, 2®) — (5, @) < 2 — yD]y 7 (j2® — D)),

Theorem 1.2. (1) Under assumption (A), for any x € R1+%  SDE ([L2) has a unique
solution X;(x) up to the explosion time ((x).

(2) If, in particular, b,(x) and o,(x) do not depend on V), then the above assertion follows
provided for any n € N there exists ¢, € Do NSy and 7, € € such that (A1) and

(1.10) low(z) = o)l < 122 — y@ /3 (@ — @),
B(2) — b2 (y)] + IV (2) = VOB ()] < gu(j2® — y?))

hold for all t,|z|, |y] < n
(3) If there exists H € C*(R“T%2) such that

. =1, 1m T) = 00, < -, T TH < P)H, t>
1.11) H>1, lim H VOH?2<OHY: ¥*'H <o#)H 0

|x|—o00

holds for some constant € € (0, 1] and positive increasing function ®, then the solution
to ([L2) is non-explosive and for any £ € [0, ¢),

(1.12) E exp { sup H(Xt(a:))al] S U(T)exp [H(x)], T >0,z€ R Fd2
te[0,T

holds for some increasing function ¥ : [0, 00) — (0, 00).

Remark 1.2. (1) When b!) is linear, an infinite-dimensional version of the well-posedness
has been proved in [25] by following the line of [24] for non-degenerate SPDEs, see [4, 5] [0, [7]
for discussions on the pathwise uniqueness of SPDEs with Holder continuous drifts and
non-degenerate additive noises.

(2) When m = d, the well-posedness was also proved in [2] under a stronger assumption
where o is Lipschitz continuous, b(z) is Hélder continuous of order o € (2,1) in ™ and
order B € (0,1) in 2®, and V@b is Holder continuous. In fact, we will show in Theorem
L7 below that under this assumption and that o € C'*¢ for some £ > 0 the solutions to (2
form C'-stochastic diffeomorphism flows. Notice that the proofs given in [2] strongly depend



on the explicit form of the fundamental solutions of linear degenerate Kolmogorov’s opera-
tors, while our proof is based on explicit probability formulas of the semigroup associated to
the linear stochastic Hamiltonian system (see Section 2.4 below).

To illustrate Theorem [[.2] we present below three direct consequences, where the first
generalizes to ([[LT]), the second includes a class of SDEs with unbounded time-delay which
are interesting by themselves, and the last presents a new well-posedness result for non-
degenerate SDEs.

Corollary 1.3. The following stochastic differential-integral equation on RY admits a unique
strong solution up to life time:

dx, = <bt(Xt) + /0 t aS(XS)dW8> dt,

where Wy is a d-dimensional Brownian motion, b: Ry x R? - R? o : R, x R? = R? @ R?
are measurable such that b,o and o= are locally bounded, and for any n > 1 there exist
On € DyNHy and vy, € € such that for allt,|z|, |y| < n,

2
[be(2) = be(y)| < |2 = y[5 dullz — yl),

lou(2) = ou(y)| < [z =yl m(lz = yl).

Proof. Let XV = X,, X% = f(f o(X,)dW,. Then the equation reduces to (L) on R with

(1.13)

b (@) = b (3D) + 32, B =0, 6(7) = o (&),

Obviously, the local boundedness of b, 0 and o~ as well as (LI3) imply (A) with (L) for
(b,5). Then the proof is finished by Theorem [L.2(1). O

Corollary 1.4. Let b and o satisfy (A) and let bgl)(x) = bgl)(x@)) not depend on V). Then
for any Yy = y € R%, the following SDE with unbounded time-delay has a unique solution
up to life time:

t t
dy, = o ( / b (Y,)ds, m) dt + o—( / b0 (Y, )ds, m) aw,, Yo=y.
0 0

Proof. Let X" = [T6{"(V,)ds and X* = V,. Then the SDE reduces to (L2) with X, =
(0,y) € RE+d So. the desired assertion follows from Theorem L2 O

Finally, since existing well-posedness results for non-degenerated SDEs at least assumed
that o is weakly differentiable (see [9] [30] and references within), the following result is new
even in the non-degenerate setting.

Corollary 1.5. The following SDE on RY admits a unique strong solution up to life time:
dXt = bt(Xt) + Ut(Xt)th7

where Wy is a d-dimensional Brownian motion, b: Ry x R =+ R% 0 : Ry x R? -+ R? @ R?
are measurable such that b,o and o= are locally bounded, and for any n > 1 there exist
On € Do N Fy and 7y, € € such that for all t,|x|, |y| < n,

(1.14) [b:(x) = b (y)] < Dnllz = yl), loe(x) — ou(y)] < C) ]z =yl |z —yl).



Proof. Let XV = f(f X,ds, X{? = X,. Then the equation reduces to ([C2) on R4 with
b @) =2, B @) =0(@®), 6lE) = @),

Obviously, the local boundedness of b, o and o=t together with (CLI4), implies that (A1)
and (ICIQ) for (b,5). Then the proof is finished by Theorem [L2(2). O

1.3 Stability of solutions with respect to coefficients

About the continuous dependence of strong solutions with respect to the coefficients (b, o),
we have

Theorem 1.6. Let (b*,0%)ren.. be a sequence of functions satisfying (A1), (A2) and

(115) { B9 @) = )P )] < {2 =y Fou(1a® =y ) + 63 (e =y},

loz (@) = o ()l < Calw —yl, t<n,lalV Iyl <n

with the same localization constants C,, and ¢, € Dy N .Sy. Assume that (bk,ak) satisfies
(LII)) with the same H and C, and for each t,x,

lim oy (x) — o7 ()| + [bf () — b7 ()] = 0.

k—o00

Let XF(x) be the unique solution of ([L2) corresponding to (b*,o*) for each k € Ny,. Then
for each e, T >0 and x € R,

(1.16) lim IP( sup | X[ (7) — X;°(2)| > 5) = 0.
k=0 \ tef0,1)
Moreover, if for some p > d and for all T, R > 0,
(1.17) sup sup IE( sup |Vth(:£)|p) < 00,
k€N |z|<R t€[0,7]
then for each e, R, T > 0,
(1.18) lim IP’( sup sup | XF(z) — X>2°(z)] > 5) =0.

k=oo  \ te[0,1] |z|<R

Remark 1.3. See Theorem [T below for sufficient conditions of (LIT). According to |26,
Theorem 2.3], condition (L.I7) can be replaced with the following weaker one: for some p > d
and for all T, R > 0,

sup E( sup [ X5(z) — Xf@)\p) < Cle—yP, o]V Iyl < B

k€Nso te[0,T]



1.4 (Cl-stochastic diffeormorphism flow

In order to show the C'-diffeomorphism flow property of X;(x), we need stronger conditions
as shown in the following result.

Theorem 1.7. Assume (C1) and that for some constant 3 € (0, %) and increasing function

3
C :]0,00) = R, the conditions
o7 () = b ()] S COIY =y, if 2 =y,
IVO5 @) = VO ()| < COI® —y® P, if 2t =y,
2
67 (2) = 67 )] < CO (1D =y V7 4 2 =y @),
[Voille < C@0), [Vouz) = Vo)l < CHle - ol

hold for any |x —y| < 1,t = 0. Then the unique strong solution {X;(-)}=o to (L2) is a
C'-stochastic diffeomorphism flow, and

(1.19) sup E( sup ||VXt(x)||p) <oo, T>0,p=>1.

rERA1+d2 te[0,T

In the above result, b has at most linear growth. The following result shows that by
making perturbations to b, it is possible to prove the C'-stochastic diffeomorphism flow
property for b of high order polynomial growth.

Theorem 1.8. Keep the same assumptions of Theorem [L7. Let a : Ry x Ra+d2 — R%2 pe
a measurable function such that Vay is locally Holder continuous uniformly in t € [0,T] for
any T > 0. Suppose also that for some H € C*(R%%%) ¢ € (0,1], 01,6, C1,Cy, C3 > 0 and
positive increasing function ®, and for allt > 0, v € Ra+d2,

(1.20)  Ci(1+ |2|™) < H(z) < Co(1 + [2|®), VO H? < C3H ™, | L7 H| < d(H)H,

and for some €' € [0,e) and positive increasing function ®', and for allt > 0 and x,2' €
]Rd1+d2;

(1.21) lan(2)| < V() H(2), ar(r) — a(a’)] < O () (H ()" + H(z')")|x - '],
Then the SDE
(1.22) dX, = [a,(Xy) + by(X)]dt + (0, 04(X)dW,), Xo =z € R

has a unique strong solution X;(x) such that { X;(+) }¢=o0 forms a C-stochastic diffeomorphism
flow, and for any T > 0 and p > 1, there exists a constant C' > 0 such that

(1.23) E( sup (VX)) < 0o, v e mi

te[0,7

Below is a simple example illustrating Theorem [[.§], where the drift is neither local
Lipschitz nor of linear growth.



Example 1.1. Letd, =dy=d, a € (%, 1], m € N and ¢, ¢y > 0. Take
H(@) = 1+ 3P + a0 4 opfs0t
Let o be an invertible d x d-matrix. Consider the following SDE
dx Y, X = (X ~VOH(X,))dt + (0,0dW,).
It is easy to see that Theorem applies to

b(x) = (:)3(2), —ci(a+ 1)x(1)|:v(1)|°‘_1), a(z) = (0, —co(m + 1)x(1)|x(1)|m_1).

In the spirit of [32, 22], the key point of the study is to construct a time-dependent diffeo-
morphism on R4*92 which transforms (L.2) into an equation with regular enough coefficients
ensuring the desired assertions. To this end, we take a freezing coefficient argument, which
is different from the one used in [2], so that the construction is reduced to solve an parabolic
equation associated to a linear stochastic Hamiltonian system. To figure out the minimal
conditions on b and o for the required estimates on solutions to this parabolic equation, we
introduce some techniques in Section 2, in particular, some characterizations of the conti-
nuity using the heat semigroup. Moreover, in Section 2 we also present gradient estimates
on the semigroup of the linear stochastic Hamiltonian system. With these preparations, in
Section 3 we investigate the parabolic equation associated to the generator iﬂtz’b (see (B.)
below), which in turn provides the desired diffeomorphism on R4+ Finally, in Section 4
we present complete proofs of the above theorems.

2 Preparations

This section contains some results which will be used to construct the regularization trans-
form in the proof of the main results. We first present a Volterra-Gronwall type inequality
associated to a Dini function, then characterize the continuity of functions using the heat
semigroup, and finally introduce derivative formula and gradient estimates on linear stochas-
tic Hamiltonian systems.

Throughout the paper, the letter C' with or without subscripts will denote a positive
constant whose value may change from one appearance to another. For two real functions
f and g, we write f <X g if f < Cyg for some Cy > 0; and f =< g if C1g < f < Cyg for some
Cl, CQ > 0.

2.1 Volterra-Gronwall inequality associated to a Dini function

Lemma 2.1. Let ¢ : R, — R, be a Dini function. For any T > 0, there exists a constant
C = C(¢,T) > 0 such that if X > 0 and bounded measurable functions f,h : Ry — Ry
satisfy
t —_—
h(t) < / e_’\(t_s)M(h(s) + f(s))ds, t€ (0,7,
0

t—s



then

0/ A(t=s) tt__;)f(s)ds, t € (0,7).

Proof. Let ay(t) = @ and define

ani1(t) = /Ot an(t — s)ai(s)ds, te (0,7], neN.

Since fOT @dt < 00, by [27, Theorem 1] with k(t,s) := ¢>§15_—88)1{S<t} (see also [28, Lemma
2.1]), we have

Zan ) € L'([0,77)
and
(2.1) a(t) = ay(t) + /0 aft — s)ar(s)ds.
Letting

then by [28, Lemma 2.2], we have

t
h(t) < g(t) —I—/ e Mg (t — 5)g(s)ds.
0
Combining this with (2.1]) and using Fubini’s theorem, we obtain
t s
h(t) < g(t) —i—/ e M= (t — 5) (/ e Mg, (s — r)f(r)dr) ds
0 0
t t
=g(t)+ / (/ e A= g(t — §)e Mgy (s — r)ds) f(r)dr
0 r
t t—r
=g(t)+ / e_’\(t_r)f(r)dr/ a(t —r — s)ay(s)ds
ot 0
<g(t)+ / e Mt — ) f(r)dr
0
So, it remains to prove

(2.2) a(t) < Cay(t), te(0,T]

for some constant C' > 0. By the increasing property of ¢, we have

ar(rt) = olrt) (o) _ “1(t>, re(0,1), t € (0,7].

rt rt r

10



By the standard induction argument, this implies

(2.3) ) <D e 0.1), te(0.7), neN.

r

Indeed, by the change of variables and induction hypothesis, we have

s (1t) = /0 ! an(rt — s)ai(s)ds = r /O t an(r(t — 5))ay (rs)ds

Ap+y1 (t)
. .

< an(t — S)an(s)ds =

r

Thus, for any € € (0,1) and ¢ € (0,7], by (Z3]) we have

/t a(t — s)ay(s)ds = i /t a,(t — s)ay(s)ds

o0

<3 [
cal) / Ca(s)ds + <t> / aTa1<s>ds.

(1)

d
t—s )8

€ 1—¢

Letting € € (0,1) be small enough such that = OET a1(s)ds < 3, and combining this with
210), we obtain
A
a(t) < 2a4(t) <1 + E/ a(t)dt), t e (0,17
0
This implies (Z2) since a € L*([0,T]). O

2.2 Slowly varying functions

We first recall some important properties of slowly varying functions (cf. [I, Theorem 1.5.6
(ii) and Theorem 1.5.11]).

Proposition 2.2. For any ¢ € .4, the following assertions hold:

(i) For any 0 > 0, there is a constant C' = C(6) > 1 such that for all t,s > 0,
o(t) AN
— 2 K — —
o(5) < Cmax <s> ’(s) .

(ii) For any B > —1, ast — 0, we have

t B et) [N, t71o(t)
/Osﬁqb(s)dSN SR /t s 2¢(s)ds~ﬁ.

The following lemma is simple.

11



Lemma 2.3. For any bounded measurable function v : (0,1] — R, we have
|f(x) = f(y)] |f(z) = f(y)]
2.4 = gy S (ERSPAN AT 24
24 o= 20 oo =) o (e —ul)
where Yo (t) == ()11 + V(1)1 and u(1) = supye(o 1) V(5)-
Proof. Clearly, it suffices to prove that
(@) = fWl < [flou )]z =y, |z —y| > 1.

Suppose that n < [z —y| < n+ 1 for some n € N. Let z = xg, 21, ,Tp, Tpe1 = y be
n + 2-points in R? so that

v, — x| =1,i=1,--- n, |[x—y| =n+|T,1 — x|

Then we have
n+1

[f(x) = f(y)| < Z [f (i) = f(zia)| < e (0 + |01 — 2al) = [flotbe (V]2 =yl

The proof is finished. ]
Due to the above lemma and also for later use, we introduce
(25) B = { 01a(8) i= °0(0) i + Callins & € T With o = suP,e((8°6(s)) < 0 |
for o € [0,1], and let
H = Unelo,|Pa-

The function ¢, with o € [0,1] and ¢ € %, not only characterizes the Hélder-Dini modulus,
but also reduces the study to functions with linear growth. Notice that by (i) of Proposition
22 ¢, in (Z3) is automatically finite for « € (0, 1].

Below we list the main properties of ¥ € %, for later use, which are easy consequences
of Proposition 2.2

Proposition 2.4. For a € (0,1}, let ¢ € Z,.
(i) For any 6 > 0, there is a constant C = C(d

)
(2.6 o <oma{ (577

> 1 such that for all t,s > 0,

¥(s) s
In particular, if a € [0,1), then for allt > s >0,
s t
2.7 — < CO—
27 o S

(ii) If a € (0,1), then there is a constant C' > 0 such that for all t € (0, 1],
t 1
(2.8) / s Mp(s)ds < CY(t), / s 2P(s)ds < Ot ().
0 t

(i) There is a constant C' > 0 such that for all s,t > 0,
29) Uls + 1) < C6(s) + (1),

12



2.3 Characterization of continuity by using heat semigroup

Let %,(RY) be the set of all measurable functions on R¢ with polynomial growth. We will
investigate the continuity of f € %,(R?) on R? by using the standard heat semigroup

(2.10) Pyf(z / f(y)pe(z —y)dy, 6 >0,

where
1 ||

po(z) = We 20
Notice that by elementary calculus,

|2[*(0 + |2[*)?
Qk+2j

(2.11) IV O po()| < po(z), >0, z€RY k j=0,1.

For any measurable function v : [0,1] — R, and f : R? — R, define

o= sup TEOZION o o 7@ 11 = o + 1l

a—yi<t Pz —yl) zeRd

It should be noticed by (24]) and (2.3) that for any ¢ € Z,

(2.12) [f(z) = f)l < e(le = yD[fly, 2,y €RY,
and if Y1 (s) < Cia(s), s € (0,1] for some C' > 0, then
[flys < Clf -

We first present the following simple lemma.

Lemma 2.5. For any ¢ € Z and [ > 0, there exists a constant C > 0 such that for all
0 >0,

(2.13) [ P u:Dm(z)a= < Cotoed),

(2.14) IV P [l < CLf)u8 2 70(07), k,j=0,1.

Proof. Let ¢ € %, for some a € [0,1]. By the change of variables and (2.6)), for any
§ € (0,1), we have

[ ezbmlz)dz = 6% [ a0 63D )
< 0800h) [ 1 (147 V1) (),

which gives (213)).
Next, for any z € R, let f, = f — f(x). By @I), @I2) and @I3) we obtain

VROIP () = V0P Lo (x / ol + 2)[V*0po(2)]d2

= [fly o 216 —;Li]) vl DP@(Z)dz = [f]wﬁ_g_jw(ﬁé).

This proves (ZI4). O
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We have the following commutator estimate result. A similar version for the Cauchy
semigroup can be found in [3]. As an advantage of the present result, it applies to f €
B,(RY), the class of measurable functions with polynomial growth.

Lemma 2.6. Let v € %, for some o € [0,1] and ¢ : R, — R, be increasing so that ¢
satisfies for some C' > 0,

(2.15) (W)t +5) < C((¥o)(t) + (¥o)(s)), t,s>0.

Suppose also that 1(t) is increasing on [0,1] if a = 0, and t~'4(t) is decreasing on [0,1] if
a = 1. Then there exists a constant C' > 0 such that for any f € B,(R?) and g € B(RY),

(2.16) [05Po(£9) = fOrPagly < Clflyollgll8'6(67), 6 € (0,1].
Proof. By definition (2.10), we have

(2.17)  Fy(x) := 0pPo(fg)(x) — f(2)0pPog(x) = / (f(2) = f(2))g(2)Opps(x — 2)dz,

R4

which, by (2.12)), 210 and (2.13), implies that for all 6 > 0,
(2.18)  [[Folloo = [f]w¢||g||oo/Rd(¢¢)(|I — 2)|0ppo (= — @)| dz 2 [flusllgllt ! (0)(62).

Thus, when 1> |z — y|* > 0, by [2.0) for a € (0, 1] and by the increasing property of v for
a = 0, we have

(219 Foe) — Folo)] < 2ol < [Fluollgllcti(lz — 9866,
On the other hand, by (2.I7) we have

Fy(x) — Fyly) = / (f(2) = f(@))g(2)(Oppo(x — 2) — Oppo(y — 2))dz
(2.20) R

+ [ (0) = Faglumaly - )z =5 + I
Rd
When |z —y|*> < 0 < 1, by 212), 2I5), @II) and 2I3), we have

11| = [flwollglloolz = vl /Rd . 1](Wb)(lx — 2DIVOpo(x — 2+ r(y — x))|dzdr

(2.21) = [fluollgllolz — vl [(W)(LT—z+r(y—$)\)+(w¢)(lx—y\)]

R [0,1]
X |VOgpo(x — 2+ r(y — x))| dzdr

3

=< [flusllglloclz = yl(we) (62)072 < [flugllgllacti(|z — w16~ 6(62),

where the last step is due to ([2.71) for @ € [0,1) and the decreasing property of ¢t~ 14(t) for
a = 1. Moreover, since ¢ is increasing, when |z — y|?> < 6, it follows from [212)), (213) that

15| 2 [flusglloe (@) (2 = yDO™" < [flusllgllocti(z = y1)0 " 6(67).
Combining this with (219]), (220) and (2.21]), we obtain (2.10]). O
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We are now able to characterize a Hélder-Dini continuous function by using the heat

semigroup (see [20] for the characterization of Holder space by using Poisson integrals).

Lemma 2.7. For any ¢ € Z with fo . 28) 45 < o0, letting

(2.22) o(t) =t +t d +/ 9(s) (0,1),

then we have

(2.23) 15 < 11 flloo + sup <M> f € R,
6<(0.1) P(02)

In particular, if ¢ € Xy for some o € (0,1), then

_ o [ N16%Pof o d
(2.24) £l = 1 oo +02(017)1} <7¢(9%) ) , [ € B(RY).

Proof. Notice that
o) =Pofte) - [ 0P
Since ||[VP,f|loo = || flloc/+/s for s > 0 and O,VP,f(x) = VP,/2(0,P)r—s/2f (x), we have

VP, f(x / O.VP, f(x)ds — /6 VP, (0,P, )y o f (a)ds

which, by (ZI4)), implies that for 6 € (0, 1],

wPusll =) ([ tas s / Hoshias) <o) 1+ /jgs—%(s)ds),

where /(f) is the quantity of the right hand side of (2.23]). Hence,

0
[f (@) = FW) < IVPofloclz — yl + 2/0 10sP s fllocds

<o) (=l + o=l [ s oas+ [ o

which in turn implies that by letting 6 = |z — y|> < 1

[f(@) = F)l 2 U)ol —yl),

where ¢ is defined by Z22). If a € (0,1), by ([7) and 23], we have ¢(t) < ¢(t). Thus,
(224 follows by ([223)) and ([2I8) with g =1 and ¢ = 1.

t\.’)l»—n

)
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Next, we consider the product space R%*9  For any ;,v, : Ry — Ry and f €
C(R4Fd2) et

[f]ilfl,oo ‘= sup [f('vx@))]wlv [f]ooﬂﬁz ‘= sup [f(x(l)v ')]wzu

2(2) cRd2 2D eRd1
lone = [floroo + [floownr 1 lre = [Flor e + [/ lloos
and for simplicity,

[fly = [floaws Nl = 11l

Let Péi) be the heat semigroup on R%, we set for z = (2(M), 2(?)) € RAa+dz,
(225) P f(a) = {PY (e} W), PP f(@) = (PP faM, )} ().

Obviously, Lemmas 2.6 and 27 apply to both (]| -] .00 Pél)) and (]| - [|oo¢, P§2)). For instance,
letting Py = P((,I)Péz) be the Gaussian heat semigroup on R%*+% by the contractivity of P((;)
under the uniform norm, Lemma implies the following result.

Lemma 2.8. Let 91,199 € Z and ¢ : Ry — R, be increasing such that 1;,i = 1,2 and ¢
satisfy the same assumptions as in Lemma [2.8. Then there exists a constant C > 0 such
that

1L
(2'26> [8@P9(fg) - fﬁGP@g]wlﬂﬁz < C[f]%@’l’z(ﬁ“g”we 1¢(‘92>7 6> 0.

Finally, the following result characterizes || - ||o.4 by using P, and the same holds for
(I .00 P57

Lemma 2.9. For any 1,9, € Z and ¢ : R, — R, there exists a constant C' > 0 such that

(z/}l(e%)wz(s) +41(6%) A w2<s>) g1
o(s)

5P (f9) = FOPY glocs < Clflprnllgllocss sUD

s€(0,1]
holds for all § € (0,1] and measurable functions f, g on R¥+d2,
Proof. By definition, we have

Fy(z) = 8@Pé1)(fg)(x) _ f(:L’)@gPél)g(x) — G(Z(l),l’(l), 56(2))89]99(:6(1) _ z(l))dz(l),

R%
where
W, 2M 2@ .= ( FU, 2@ = fzW), $<2>))g(z<1>’x(2>).

Clearly, by (2.12) we have
Gz, 2D, 2®) — G, 2D,y < i (Ja = 2D [y cetia (2P = 5@ ])[g)oo,vs
+2((n(12 = 20D o) A (Ga® — gD ) e
Hence, for x,y € R4+ with () = ¢y by (ZI3), we obtain
[Fo(x) = Fo(y)] = [l col0]ooatin (02)ha (|2 — y@ )0~
o [lonallglloe ($2(6%) A (2@ = @) )9,

which in turn gives the desired estimate by dividing both sides by ¢(|z® — 3?)|) and then
taking supremum for |z — 3®)| < 1. O
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2.4 Gradient estimates for linear stochastic Hamiltonian system

Let B: R, - R @R%" ¢ : R, — R® @ R® be measurable such that B,B} and o, are
invertible with

(2.27) k= sup (|B;|+ |o,| + [(B,BS) | + |0, ') < 0.

reRy

For z = (¢, 2?)) € R“%% and 0 < s < ¢, define

(2.28) Xi(x) :( @ —i—Fstx / B dr/ o dW,, 2% / O’TdW)

where (W,.),>0 is a do-dimensional standard Brownian motion, and

t
(2.29) T, = / B,dr.

Clearly, X .(z) = (X S(It ,X ) solves the following degenerate linear equation for ¢ >

dxly = BxPat, x0) =20,
(2.30) P > >

dxP) = od;,  X® =2®.

S,8

Let P, be the Markov operator associated with X, (z), i.e.,

Pyf(x) = Ef (Xsu(2), | € Bp(RTT2).

We first investigate the derivative estimates of Ps,f. To this end, we collect some fre-
quently used notations here.

e For a smooth function f on R4*+% VO f and V@ f denotes the gradient of f with
respect to the variables 2™ and 2 respectively. In particular, by (228) we have

(2.31) vop,f=r,VYf PVOf=vOp -1, VIP,,f
e For h = (hM, h®) € R1+% we also write
V= (VL VD)), Vif = (Vf.h) = Vil f + Vi .
o Let % be the set of all increasing functions ¢ : R, — R, with the property
(2.32) P(rt) < Crop(t), r>=1, t>0
for some C,§ > 0. Notice that by (2.0,

DoNKE CU.
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To estimate the derivatives of P;,f, we first present a Bismut type derivative formula
which can be found in [2§], [TI1] and [25]. For readers’ convenience we state the formula in
details and present a simple proof.

Fix 0 < s <t and define

t
Qs = / (t—r)(r—s)B.B:dr € R @ R% .

By (227)), it holds that for some C' > 0,
Q5| < Clt—s)7° t>s.
For h = (hM, h?)) € RU+dz define for r € [s, 1],

2.33 o (ry = 1 _ompro-t a4 [T
( . ) s,t(r)_t S+(t+8 T) st,t + t

B,,/h@)dr’] .

Obviously, by (Z27]), there exists a constant C' > 0 such that

h p®] a0
(2.34) L (r)| < C .t =rk 0<s<t<oorcl[st.
Theorem 2.10. Forn € N, s = sy < 51---< 5, =t and hy,--- , h, € R1T9%_[et
(2.35) hi = (hgﬂ + Dy 12, hf?)) e = / (o7 D (r), AW,
Si—1

where Uy, _, is defined by @29) and i = 1,--- ,n. Then for any f € B,(R4T%) we have

(2.36) Vi oV, Poif(x) =E

f(Xs,t(x)) Hgiih&] = Rdﬁ-dz'
Proof. (i) First of all, we consider the case of n = 1. For ¢ € (0, 1), define

T

We =W, — 8/ o 8, (F)dr!, € [s,t].

By Camaron-Martin’s theorem, (W) ¢[s is still a Brownian motion under the probability
measure dP, := R.dP, where

(2.37) R. = exp {g / t<0;1¢i‘7t(r),dWT> - 52—2 / t}aglqﬁt(r)fdr}.

Thus, if we write

t r t
X5i(x) = (I(l) +ehW +/ B, {SC@) +eh® +/ Ur/de/} dr, z® + ep? +/ arde) )

18



then the law of X ;(x + eh) under P is the same as the law of X¢,(x) under P, that is,

Porf(z +eh) = Bf(Xou(x +h)) = E(R: f (XS ,(2))).

On the other hand, by definition (2.33)), it is easy to see that

t r t
XE(2) = X, (2) +¢ <h<1>+ / B, [h@) — / cbgt(r/)dr/} dr, h® — / @Z,t(r)dr) = X, (z).

Hence,

Vil f (x) = lim %E [f(Xoa 4 eh)) = f(Xoa(w))] = himE

R.—1
€

X))
which together with (Z37) yields ([2.38]) for n = 1.

(ii) Assuming that ([236]) holds for n = k& € N, we intend to prove ([236]) for n = k + 1.
Noticing that Psf = Ps, P, +f and by definition (2.25),

1 2 2 7
th+1X375k = <hl(c—|)—1 + Fsvskhl(f-‘f)-17 hl(f—l)—l) = hpt1,

by induction hypothesis, we have

thHth T Vhlps,tf(x) = vthrl]E {( Sk, tf s Sk Hgsl 1 51}
=K th+1( sktf ssk Hgsz 151:|
= E| (Vi Poutf) (Xew Hﬁsz y ]
k+1
— E H gsl 1 SZ:| ?
h

where in the last step we have used the independence of {Xs,sk (x),&m 1=1,---, k} and

Si—1,8i"

{Xs(2), ?:,ﬁiﬂ}. The proof is complete. O

Lemma 2.11. For anyp > 1 and ¢ € %, there is a constant C = C (¢, p, k) > 0, where K
is gwen in [227), such that for all 0 < s < t < o0,

=

@38 [e(XQON], <ot - b Jo(xL0DI, < Colt - )b

1
where || - [ == (B - 7).
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Proof. First of all, by (Z28) and Burkholder’s inequality, for any p > 1 there is a constant
C = C(p, k) > 0 such that for all 0 < s <t < o0,

3

(2.39) XSO <ct-s)2, [|xZ0)], <Ct-s).
On the other hand, since ¢ € % is increasing, by (Z32]) we obtain

lo(Ix: DI, = lo((t = )21t = ) 2XF @),
C’(Z)((t—s H1—|—|t—s_§Xst |H

Combining this with ([239) we prove the first estimate. Similarly, we can prove the second
estimate. O

Below we present a simple consequence of the above formula, which will play crucial
roles in the next section. In particular, as in [3], the pointwise estimate results given below
allow us to borrow the Holder regularity of ™) to compensate the singularity along the first
direction induced by the degeneracy.

Corollary 2.12. Let ¢,¢p € % . For any T > 0 and m,k € Ng =: {0} UN, there exists a
constant C' > 0 such that for any 0 < s <t < T and any constants Ky, K5 > 0,

(2:40) (VO (TP F(0) € CR1((E = 9)F) + Kar(t = 5)2)) (0 = 5) %5
holds for any measurable function f on RU*T% satisfying

(2.41) £ (@) < Ki(jaV]) + Katp(|l2®)).

Consequently, for any m € N, k € Ny and any measurable function f on Ra+dz,

(2.42) IV (VEYFP, fllag < CLFlpoed((t — 8)F)(t — 5)~ 53,
(243) (V)P f oo < O(Uflamod(t = 5)3) + [flaost(E — 5))) (¢ — 5) 7.

Proof. We introduce the following notations:

£h di+dy  £(50) _ (F(eis0)
gs,t - gstv h € R o 27 gs,t - (gs,et )i:l,---,dl’

where fgt is defined by ([235), and (e;);=1.... 4, is the standard basis of R%. Similarly, we can

define £ S,)t") € R%®. By [234), (235) and Burkholder’s inequality, we have for any T > 0 and
p=1

1

_3 1
(2.44) 1667 = (=) 72 165l < (E—9)72, 0< s <t < T,

m

1
where || - ||, := (E[ - [")7.
Let s; = s+ (t—s)i/(m+k),i=0,1,--- ,m+k be the uniform partition of [s,t]. Using
the above notations, by (2.30]) we have

m m-+k
(VDY (v@yEp, £ (0) {\f ol - |ITT€% - TT €9, }
i=1 j=m+1
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Estimate (2.40) follows by Holder’s inequality and (Z41)), [2.38), (2.44).

In general, for fixed 2y € RA+% et
o (@) = f (28 + Tzl 2@ 4 2),
Fro(@) = [V + 28 + Ty 2, 2@ 4 28) = guo ().
Noticing that VI P, 9z, = 0, we have
(V)RR f(w0) = (VD) (VE) P 1, (0), m # 0.
Thus, [2:42) follows from (240) with Ky = 0. As for (Z43)), it follows by (Z.40]). O

3 A study for degenerate parabolic equations
Throughout this section, we fix T, A > 0 and consider the following degenerate parabolic
equation with Holder coefficients:
(3.1) Opuy = L7 wy — Mg + fr, ug =0, t €[0T,
where .Z>" is defined by @3) and f:[0,T] x R4+ — R is measurable. The solution will
be used in Section 4 to construct the diffeomorphism on R4+ which transforms the original
(L2) into an equation with regular enough coefficients so that the existence and uniqueness
of solutions are proved.

Before studying equation (BI), we first estimate the gradients on P, ,(H -V© f), i =1,2,

which are nontrivial consequences of Corollary .12 and will play a crucial role in estimating
derivatives of u; in terms of the formula (8:32)) below. For fixed ¢ € 2y N A, let

(3.2) AS(t) = e Mt g(t2), € (0,T).

3.1 Gradient estimates on P,;(H - VU f)

Below all the constants appearing in < only depends on T, dy, dy and ¢.

Lemma 3.1. Let f € CY(RU*%) and H € C1(R4F42;R%2) with H(0) = 0. For0 < s <t <
T and k = 0,1, recalling the definition of ¢ in (Z3), we have

(3:3)  (VE)ZEDP(H - VEH[(0) = [H]o[VE FlAF(E = 5),

(34) VO (VE)TELUH -V N)0) 2 log1y.00 IV Flliny e (E = 5),
(3.5)  IVOVEVP(H -V F)1(0) 2 [Hl sy (Frgeom oo + 1V Fll JAG(E = ),
(3.6)  [VOPH - VIHI0) = ([Hlrgy + IV H o110 00) [ A (E = 5).

Moreover, if for some K >0,

(
(

[H(0,2®)] < K|z®]g(|2)]),
then
(3.7 VO)EIP (1 -V )
(38)  [VO(VO)EP, (H - V)

k
2

(0) = ([Hlgp, .00 + ENVE flloo(t = 5)72,
10) = ([Hl g1y g0+ EIVD fll 00 A5 (E = 5).
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Proof. (1) Since H(0) = 0, recalling definition (23] and (212]), we have
1H ()| < [Hlsoo (), 1H -V Fllogern s < TH s s IV Fllogein s
So, ([B3) follows by (2.40), and ([3.4)) follows by (2.42).
(2) To prove ([BH), we introduce
filz) = f(@D,0), f(x) = £0,2), fi(z) = f(x) = filx), i=1,2,

Moreover, for Péz) being the heat semigroup on R%, let

H) = PP Hy — P HY(0), HY = Hy— HY, 6> 0.
We have
(3.9) H-VOf=H, - VOf4+H . vOf4+H .VOr 6e(0,1].
Below we investigate these three terms respectively.
(2a) Observing from ([212]) that

|Hy - VO fl(z) < [Hgy0011,51:00 1V Flloo by a1 (121,

by ([240) we obtain

(3.10) [V (V)P (Hy -V )](0) < [H] ool VP fllocAG (t = 5).

Pl(k+1)/3

(2b) Since by ([231)) we have VI P, ;g = 0 for g depending only on x? it follows that
VOP,(H] VO f) =VOP,(H) - VP f) = VO P, div® (f,HY) — VO P, ( fodiv® HY).
Noting that Lemma 23] and (23] imply

~ 2
|23 (2) < VO H ool gyl @ (12 V] + [20]5),

(3.11) - g
| fodiv® Hy| () < VO Hy ool 9,00 (120 ]+ [2V]5),
from (Z31)) and Corollary we obtain

IVOP,,(HY - VP £)](0) < [V P, div® (FHI(0) + |V P, o fodiv® HE)||(0)
(3.12) < [VOVO P, (FHD[(0) + [Tl - [[VOVO Py fHY)|(0)
VO P (fodiv® H(0) < [Fl1,,00 | VP HY [l (t — 5) 72

Similarly, using
|FoHS)(2) < IVOH o[l oola®] - |2V,
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| odiv® HY| () < |V HE||oo [ Fl1, 02,

to replace (B.I1), we have
1
(3.13) IVOVE P (Hy -V H)(0) 2 [flieol VP H ot = )72
Moreover, by (2.14),
11

Hv(z)HgHOO = [H2]¢[2/3]0 6¢(02>7 ZAS (Ov 1]

Then (B12) and B.I3) yield

(314) VOV (HY - TD1)O) = Uiy Hler 4000

=

)(t—s)72
(2c) Since H(0) = 0, by (2.14)) we have

6
|HY (z)| = / (0,P® Hy(0) — 0,P® Hy(z))dr
0

< 2/06 10, PP Hy | sodr = [H]oo g1 /06 rig(r2)dr

= [H oo 036(0%), 0 € (0,1].
Thus, it follows from Corollary that for 6 € (0, 1],
(8.15) VIOV, (H - V@ )[[(0) 2 IV flloo[Hloo g0 (t = )72 03(07).
Taking 6 = (t — s)®, by combining ([39) with (310), (3I4) and BI5), we prove ([B.3).
(3) We now prove ([B.6). Since V@ f; =0 and VI P, ,(Hy - VP f,) = 0, we have

VOP,(H-VOf) =VYP, (Hy-VOf,) + VUP, (Hy - VO fl)

(3.16) e
== V(I)Ps’tdiV( )(f2H2 -+ leQ) — V(l s’t(fgdlv H2 + f1d1V 2).

Below we estimate these two terms respectively.
Firstly, by div® Hy(z) = div® H(z) — div® H(0, 22)), we have

- .
| fodiv® Hy|(z) < [f ]1% sl VOH| o (lzD]F + 20)),

A 2

[ Friv® H|(2) 2 [flocy g, [VH H]g oo(2@15 + 12 Dyy (12D)).

9

So, Corollary 2212] implies

(VO Py o (Fdiv® Ha) [(0) =X [Fliys 00|V H oot — 5)72,

3.17
( ) ‘V (fldlv ) }(O) = [f]m71[2/3] [V(Z)H]qﬁu/g],ooAg(t - 5)-
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Next, since
[P () + | i) (@) < [H] o [fTry (2] 4 12P1) (12D + 20,
it follows from (23T)) and Corollary that
(VO Podiv® (fH)[(0) + [V Peydiv® (f112)|(0)
< |VOVOP (foll + fTL)[[(0) + (8= ) [ VOV P (folls + f172)](0)
= H g [Pl (8= )75 2 (g [Pl A5 = 5).
Combining this with ([B.16]) and [B.17), we prove (3.6).
(4) Noticing that
119 71(2) < ([Hlog o0 (12]) + KLo@10(2@ ) [V .,
by Corollary 212, we obtain (3.7). Let g := H - V) f. Observing that
G21(2) < K1V 1y 00262 (|20] + [20]5)
+ [Hloys1, .00l VD Fllso@iiesya (I2]),
and Vg, = 0, by Corollary again, we have
V(TP (H - VW )](0) = [VO(VE) R, g](0)
= (Hlsny g0 + EVD Fll 0085 (8 = 9).

The proof is complete. ]

3.2 Smooth solutions and apriori estimates

In this subsection, we study the key apriori estimates for the smooth solutions of equation
B1). To this aim we assume that

(3.18) sup, (IV¥*0elloe + IV filloo + 1V 01lloo + ot e + 107 [loo) < 00, k €N.

t€[0,T
For fixed ¢ € .@0 N “, we introduce the following quantities for later use:
5 1 1 1 )75\ —1
s i= 50 {1 o0 + 1VOH e + 11 (TR IVEK) o
(3.19) el0T]
_ 2
107 oo + el + 6o 0}
and

= 2
(3.20) 2y =24+ sup [bg )]¢2/3 67/25 Q¢ = o%, + sup ||V O’t||¢1/9 005
te[0,T] t€[0,T

where ¢, is defined in (ZH). By ([BI8), these quantities are all finite.

The main result of this section is the following, which is the key in the proofs of Theorems

LIS
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Theorem 3.2. Under (318), (B1) has a unique smooth solution u such that for allt € [0, T,

IV ttg] 11,00 + HV(”V@)WIIOO + !IV<2)V(2)Ut!|¢3/2

(3.21) _ B((t —s)2) )
< C/ At— — [fs] $2/3]» ¢7/2d$
t t %
(322) ||Vut||1[1/3] o T ||Vv(2 ut”oo < C,/ A= S)M[fs] 2/3]7¢ds>
0 —

where C = C(¢, 2y) and C" = C'(¢, 2},) are increasing in Ly and 2j respectively.

Remark 3.1. We emphasize that the constants in Theorem are increasing in 2 or
Q’ , since this property enables us to make smooth approximations of relevant functionals
in the proof of the main results without changing the constants.

We first prove the existence and uniqueness of .

Lemma 3.3. Assume [BI8). Then BI) has a unique smooth solution u such that

(3.23) sup || VFullso < 00, k€N, sup
t€[0,T] (t.2)e[0,T] xR +d2 1+ |Z]

holds for some constant C' increasing in sup,cp 1 (|| lbtllj_rﬂ.{t‘ oo + [loe]loo)-

Proof. Let X;4(z) = X, solve the following SDE:
AdX; s = br_s(Xis)ds + (0,07 (X, )AW,), X;p =2 € RETR 5[t T].
Notice that ur_;(x) solves the following backward equation:
Oyup_; + .fo_tuT_t —Xur_+ fr_ = 0.

It is well-known that ur_;(x) has the following probabilistic representation (for example, see
[31, Theorem 4.4]),

T
ur_¢(x) = / e’\(t_s)EfT_s(Xt,S(:B))ds.
t
By ([B18), we have

sup (9% fr e + [EIVEX O] ) <00, k=1

s€[0,T]

Then u; has bounded derivatives uniformly in ¢ € [0,7]. Moreover, by the linear growth of
b and f, it is easy to derive the second inequality in ([3.23)). O

In order to prove (B2I)) and (3:22)), we need the following three lemmas, which will be
proved in the next subsection.

Lemma 3.4. Assume (B.I8)).
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(1) There exists a constant C = C(¢, D) increasing in 2y such that for any 0 < s <t <

T,
t

B2) VWl + VOVl < € [ AL = 5) (190 + [£)s) ds.
0

and for k =0,1,

t
VOV <€ [ 4320 = ) (17Dl
(3.25) 0

+ ||v(2)u5’|1[(k+2)/3]700 + [fs]¢[(k+1>/3]’¢> ds.

(3) There exists a constant C" = C"(¢, 2y) increasing in 2y such that for any 0 < s <
t< T,

t
326) VDl <€ [ A=) (19 Pl + oy e s,

Lemma 3.5. Assume [B.I8). There exist constants C = C(¢,Zy) and C" = C'(¢, Zy)
which are increasing in 2y and 2y respectively, such that for all0 < s <t < T,

t
(3.27) ||V(1)ut||1[1]7oo < C/O Af(t — S)(||Vv(2)US||oo + ||V(2)V(2)u8||oo’¢3/2 + [fs]¢[2/3]7¢2>d8

3

and

t
(3.28) nw%m@m<dﬂA%—@wa%wm+mmm@®

Lemma 3.6. Assume [BI8)). There exists a constant C' = C(¢, Zy) increasing in Ly such
that for any 0 < s <t < T,

t
(3.29) IVOV@ || < C / Af(t—s)(nvus s+ [fs]¢7/2>ds.
0

Now we can give
Proof of Theorem B2l Letting
h(t) = [Vl .00 + 1IVOVE oo + VOV g 12,
and combining (3.24), (3:28), (B21) and ([B.29), we obtain

h(t) < /0 ALl - 5) (1) + [l e ) s
- /Ot e_A(t_S)M <h(s) + [f8]¢>[2/3],¢>7/2>d87

t—s

which yields (3.2I)) by Lemma 2,11
Similarly, [3:22) follows by combining (3.20), (3:20) and (3.28). O
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3.3 Proofs of Lemmas [3.4H3.6] by using freezing equations and
Duhamel’s representation

To prove Lemmas B.4H3.6] by using results presented in Section 2, we need to represent u by

using P, ;. To this end, we introduce the following scheme of freezing coefficients at a fixed

point zg = (z", z{?) € Rér+z,

Let y; be the unique solution of the following ODE:

d
(3.30) o= bl g =ao € R,

Since b is smooth and has bounded derivatives due to (B.I5)),
(3.31) 0, : 29 — vy, is a diffeomorphism on R,

Let £ be the freezing operator defined by
Zu = tr (At . V(Z)V@)u) (Byz®) - vy
where A; := ¥ (y;) and By := (V(Q)bgl))(yt). Set

() = wz + ), filw) = file+ ), Sux) = Sela +u) — Sil(we),
and
b @) =07 (e + 9 = 07 (), 87 (@) = b7+ ) = b () = VOB ().
From (B.1]) and ([B30) it is easy to see that @ satisfies
Ot = L0 — N+ tr(8, - VOVIG) +b-Va+ f, G = 0.

Let P;; be the semigroup generated by .£;"°. By Duhamel’s formula, we have
t
(3.32) iy = / e NP (tr(Ss - VOVOa,) + b, - Vi + f)ds
0

Note from the definition of B,El)(x) that

160,22 = [b (", 2 + ) — b (1) — v<2>b§”<yt>x<2>}
(3.33) <\x<2|/ }v b“ yt ) ra@ —|—yt ) v<2 yt )|dr
< OV, s|2@ | (J22]).

Combining this with (320) and ([B.19), we are able to apply B.3)), (3.4), B17) and B.8)) to

derive the following lemma.
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Lemma 3.7. Assume [B.I8). There exist constants C = C(¢, 2y) increasing in 24, such
that for all0 < s <t <T and k=0,1,

(334) [[VOTD)* P (B, - V) [ 0) < CAT(E = ) (1Tl oo+ 1Vt g o0 ).
(3.35) [(VEYSED P (b, - Vi) [[(0) < CAG(t — s)||Vu8||oo.
The following lemma is an easy consequence of (2.42) and (2.43).

Lemma 3.8. There is a constant C = C(¢,T) > 0 such that for all0 < s <t < T and
k=0,1,

(3.36) v (V(2 )Py fill
(3.37) I(VE)EEDP il

Moreover, by B3], (B3] and ([B6]), we have

Lemma 3.9. Assume ([BI8). There exist constants C' = C(¢, 24) and C" = C'(¢, 2 ) which
are increasing in Q¢ and 2}, respectively, such that for all0 < s <t <T and k =

Ag(t - 8)[f3]¢[(k+1)/3]7007

<
< OAJ(t = 9)[fls.

V(v >®’“P (tr (3 - VEVa,)) || (0)
(3.38) o) .
<c(|ve us||u<k+2)/3],oo+||v tglloe ) AR (E = 5),
(3.39) [(VEeED P, (1 (2, - VOV 5,))[[(0) < CIVOVOuy|| At - s),
and
(3.40) [V Py (tr(S, - VOV )] (0) < OV gl AS(E — ).

Now we are in a position to give the proofs of Lemmas [3.413.0l

Proof of Lemma[3.4 Now, substituting estimates in Lemmas B39 into (8:32), and noting
that @ = u,(- + y;) where, according to ([B31)), y; runs all over R as z; does, and by

Lemma 2T and ([B:32), estimate ([3.24) follows from (3:39), (3.37) and (3:39); estimate (3.23])
follows from (3.34), (8:36]), (3.38) and ([B.24); and finally, estimate ([B3.26]) follows from (B:ﬂl)
(330 and (B3.40).

Proof of Lemmal3.3. For simplicity, constants C' and C” below are corresponding to 2, and
o@gb respectively as in the statement, which may vary from line to line.

(1) Let Pél) be defined by Z28). Let w!(z) := 89P§1)ut(x) and

g0 (x) = 0PN (by - V) (z) — (by - VPN wy) () + 8PV f(2)
+tr(8PY () - VOVOy,) — %, 9P VIV, (2).

By equation (B.1]), we have
o) = L7 w) — M + gf.
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By (823]) with £ = 0, we have

t
(3.41) IVl < € [ 850 = ) (9l + [0y 0
By the definition of w{ and using [2I06) for g = 1, ¥ = 1j3/3 and ¢ = 11 /3], we obtain

(3.42) V@ w < IVOV@qy, |07,

112/3),00

Next, by Lemma 2.6] with ¢ = gb[%] and ¢ = 113, we obtain

3

3

(343) [l 00 < C(logg el Tt + [Z1leyy oI VO Tl + (il )0 %

Moreover, by Lemma 2.9 for ¢y = 1[%} and 1, = ¢?, and using a A ¢ < azct for a,c >0, we
obtain

[09 (bt Vut) — bt V@gPa ut]oo o XX C[bt]l 2 ¢,2||Vut||oo ¢29

and

[00PY” filsoo < Clfilg 20 % < Clfilog 207+,
Finally, by Lemma for ¢ = 13y and v, = gbi, we obtain
0P (2 - VOV u,) — 5 - 9pPIVEOVOy] o, < O VOV || 2075
Therefore,

3

Combining this with (3:41)), (3:43) and ([B42), and using (2.24)), we obtain (3:27).

(2) We now prove ([B28) in the same way. By [B26) for (v’ ¢%) in place of (u, f), we
have

197)oc.6 < C(IVtlloc.02 + IV OVt s + [Fil g2 ) 075

t
(3.44) IVutlle < € [ 230 =) (19208l + ol o) s

Due to (B42) and(B43), we only need to estimate |V w!| 1, By LemmaZJfor g = 1,
1/11 = 1[1],1D2 = 1[1} and ¢ = 1[2/3], we have

IVt = IVV @] 075

(2/3]

This, together with (3.44), (3.43)) and (3.42), yields

sup [050,P V] o < /A¢(t-s)(||vv<2 talloe [Vt + [l e )l

0e(0,1)

By Lemma 7 for ¢(s) = s3, this implies (328). 0O
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Proof of Lemma[38. Let Py be the semigroup on R4+, Let w! = 9Ppu; and

g0 (z) = 0pPo(by - Vur)(x) — (b - VOyPouy) () + 0pPo fi()
+tr(0pPy(S: - VIVDuy) — 5, - 0P VIV ) (2).

By equation (BII) we have
o) = L7 wf — M + gf.

Thus, by B:24) we have
t
(3.45) IVOVOutl = [ A%t =9IVl + loo)ds.
0
On the other hand, by ([2I4), we have
V!l = [105PsVtelloo < 071 6%2(07)]| Vel o2,
and by (2.16),
[gf]qs = 9_1¢5/2(9%)<[bt]¢7/2||vut||oo + [ft]¢7/2 + [Zt]¢7/2||v(2)v(2)ut||°°)'

Substituting these two estimates into (3.45) and noticing that by (ii) of Proposition 22]
/t 571972 (s)ds +t/1 s72¢7%(s)ds = ¢*2(t), t € (0,1],
0 t
by ([223), we obtain
9OV Dulgn = [ A= 5) (Vs + 90T+ ).

which gives the desired estimate by Lemma [2.1] O

3.4 Classical solutions of (3]

In this subsection we prove the existence and stability of classical solutions to equation (B.1]).

Theorem 3.10. Assume 2y < co. For any f:[0,T] x R? — R with

sup [f8]¢>[2/3],¢>7/2 < 00,
s€[0,7T

there exist a unique classical solution u to [B1l) such that for all t € [0,T],

t—s)2)

t
_at—s) @((
(3.46) VUl 00 + IVE VO g2 < C /0 e A=) [fs)gya, 07725

1/3 t_S

Moreover, let (b*, 0%, f¥)ren. be a sequence of functions. Let Q(’; be defined as in (B20) in
terms of (b*,o*). Assume that

sup (@@g + sup [ff]¢[2/3}7¢7/2> < 0,
k s€[0,T]
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and for each t > 0,x € Rh+d2
Jim o (2) = o7 (@) | + b5 (2) = b (@)] + |f(2) = f=(2)] = 0.

Let uf(z) be the unique classical solution of ([B) corresponding to (b*,a%, f*) for each
k € No. Then for each T, R > 0,

(Ba7)  lim sup  (Juf - w4+ V0 — 0]+ VOV W — )]} (2) = 0

k=00 tef0,1),|z|<R

Proof. (1) Let o be a non-negative smooth function with compact support in R? having

/Rd o(z)dx = 1.

For n € N, define g,(z) = n?o(nz) and
(3.48) bf = o0 *by, 0 =0n*01, fi' =00 fr.

Clearly, 0", 0™ and f" satisfy (3.I8). Let 27 be defined by ([B.20) corresponding to b, ™.
It is easy to see that for some ng large enough and all n > ny,

24 <29,
Let u™ be the unique smooth solution of the following equation
(3.49) ol = L7 = ult + f, up =0, t € [0,7),
which enjoys the following uniform estimate:

IVl .00 + VOV 0o + [VEVE 0| 5/2
(3.50) 't endlt= 9
< C/O e Alt s)ﬁ[f8]¢[2/3]7¢7/2d3,

So, Ascoli-Arzela’s theorem implies the existence of u such that, up to a subsequence,

lim  sup (mg—mpuvwg-mn+nv VO (yr —uMD()—Q R>0.

"0 te(0,1],]x|<R

By taking limits for (8.49) and inequality (8.50), we obtain the existence of classical solutions
of B as well as the estimate (B.40]).

(2) We use a contradiction argument. Suppose that ([3.47) does not hold. Then there
is a subsequence k,, such that

im swp (Jul = ]+ [V )] + VOV i — 6] ) () > 0

m—00 t€[0,1],Je|<R

On the other hand, repeating the proof in step (1), since u* is the unique solution of (B.])
corresponding to (b, 0%, f*°), there is a subsubsequence k! such that

fim  sup (] V- )] + VOO - ) (@) =
MO0 tel0,1],|2|<R
Thus, we obtain a contradiction, and so, ([B.47) holds. O
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We also have the following existence of Holder classical solutions under Holder assump-
tions.

Theorem 3.11. Assume for some a € (2,1), 5 € (0,1),

1 1) 1)
Dasi= 50 {100 + IV oy + [ ((FOBIVEH]) 7
(3.51) teloT]
2 _
1B s+ el + 07 o + ol b < o0

Then for any ¢ € (0,8 A (a — 2)), there ezist a unique solution u to BI) and constants

d € (0,1) depending only on o, B, and C = C(Lap,e,0) > 0, which is increasing in 2, g,
and such that for allt € [0,T] and X\ > 0,

t
(3'52) ||vut||1[1/3] + ||VV(2)Ut||1[E],1[E] < C/ e_)\(t_S)( - ) [fS] 1[5]
0

Proof. First of all, we assume (B.1I]]). Following the proof of Lemma [B.6] by Lemma 2.8 we
have for any £ € (0, 8 A (o — 2)),

97 = (Bl 9l g+ 2D [V2 V] )05
Noticing that for any ¢ € %%,

Pra/3)(s) = 83/2¢(s) = 1ja—g(s) = 577, gz57/2(s) = 1p—q(s) = $PE s 0, 1],

by ([B:21)), we obtain that for some ¢ € (0, 1),

t
IV Iy, .00 + IVV 0t [l = /0 e Mt =) (g1 s

m\m

<62

t
e = 9 (Wl + 1T+ ),
0

which in turn gives (852) by Lemma 27 and ([B21). In general, we can follow the same
approximation as done in Theorem [3.10 O

4 Proofs of Main Results

Proof of Theorem[11. The existence of weak solution is well known, see e.g. [I3, Theo-
rem 2.2 and Remark 2.1, Chapter IV] and [2I]. So, we only prove the uniqueness. Let
(Q,.7,P; Xy, W;) and (Y, 7", P'; X], W/) be two weak solutions of SDE ([L2) with X, =
X) =2 € Rt Fix T >0 and f € C([0,T] x RM+%). For any n > 1, let o™ and "
be in (B.48)), and let 2,, and 2/, be the numbers defined in ([3.20) and BI19) for (b",0") in
place of (b, o). It is easy to see that for some ng large enough and all n > no,

2,<22, 2 <22.
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By Theorem for (g%)jt,b"’ fr—¢) in place of (iﬂtz’b, fi), for any A > 0 the equation
(4.1) ol = L7V U — xul + fr_y, up = 0,t €[0,7T)

has a unique solution u” : [0, 7] x R#*42 — R such that

D=

T J—
@2 swp (Ve [9V0) <= C [ e (=)
0

>ds
t€[0,T],n>1 3 t—s
for some constant C' > 0. So, Ascoli-Arzela’s theorem implies the existence of
u:[0,7T] x R 5 R

such that, up to a subsequence,

(4.3) lim sup <|u? — u| + ||V(2) (uy — ut)||> (x) =0, R>0,

"0 te(0,T],|x|<R

and, moreover,

(4.4) sup ([ut]lm + [V@)ut]lm) <e(N).

te[0,7

Now, due to (L2) and [{@I]) with A = 0, It6’s formula for u}._,(z) implies

T

0= uja) + [ B{(0.+Zup (X)) }ds
0
T
= uh(z) + E / {tr[(ES —EVOVOur_ ]+ (bs —b7) - Vuj_, — fs}(XS)ds.

0

So, according to (£2)), (£3) and noting that {|b; — b}'| + ||or — 0}'|| }n=1 is bounded uniformly

in ¢t € [0,7] and converges to 0 as n — oo, by the dominated convergence theorem, letting
n — 0o we obtain

T
up(x) :/ Efs(Xs)ds.
0
By the same reason, we also have

) = [ (KD

Hence,
T T
/ Efs(Xs)dSZ/ E'fo(X))ds, f € C([0,T) x RHT®),
0 0

By [20, Corollary 6.2.4], this implies the weak uniqueness. O
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Proof of Theorem [1.2. 1f (L1I]) holds, then the non-explosion and estimate (L.12]) follows by
[29, Lemma 2.2]. So, we only prove the existence and uniqueness of local solutions.

(1) We first assume that (A) holds for some C, = C,¢, = ¢ and 7, = v independent
of n > 1. Noting that v € % implies v(r) < ¢r~1 for some ¢ > 0 and all r € (0,1], in
this case we have either 2, < oo or 2§ < co. Due to the existence of the weak solution
as explained in the proof of Theorem [[.2] by the Yamada-Watanabe principle [27], we only
need to prove the pathwise uniqueness.

Let ", 0™ be defined as in ([8.48). As in the proof of Theorem [T, by Theorem for
(&> br ) in place of (Z7, f,), the equation

(4.5) o = 2 ul —  al +b8,, ul =0,t € [0,7)

has a unique solution u” : [0, 7] x Ré+dz — Ré+d2 guch that (@Z)—-ED) hold for u™ and
some u : [0, 7] x ROtz — R4+ i place of u™ and u. Let

®y(2) =2 +up_(x), te€[0,T],xc Rt

Then for large enough A > 0, ®, is a homeomorphism on R4+ such that

(4.6) sup ([@1]sg, + 971y, ) < o3

te[0,7

that is, both ®, and ®; ' are Lipschitz continuous uniformly in ¢ € [0, 7).
Now, if X; solves (L.2)) up to a stopping time 7 < 7', then by It&’s formula and (4.3]), we
have

Xt -+ u%_t(Xt) — XO — uT(X(])

t
- / {Aug_s + (S — )VOVOu ] + (b — ) - Vuh, + b, — bg}(xs)ds
0

t t
- /0 (0, 0,dW) + /0 (VO wr_)(X,), te[0,7], P-as.

So, as explained in the proof of Theorem [[T] by letting n — oo, we obtain for ¢ € [0, 7],

t t t
D,(X,) = o(Xo) + / Ay (X,)ds + / (0, 04(X,)dW,) + / (VO ur_ o) (X,).

0 0 0
Therefore, if (X;)icpo,- solves (L2), then Y; := ®,(X;) solves the following SDE for t € [0, 7] :
(4.7) AY; = Aur— 0 @) (Vy)dt + { (Vi 1) 0 071 (V).
Since by ([@4) and (&G), both ur_; o ®;* and (V*®,) o &, are Lipschitz continuous uni-
formly in ¢ € [0,7], from the condition (L)) or (LY) on o we see that (A7) has a unique
solution up to time 7" (see [19, Theorem 4.1]). So, the pathwise uniqueness of (L2) holds

up to any stopping time less than 7". By the arbitrary of 7" > 0 we conclude that (L2]) has
a unique solution for all ¢ > 0.
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(2) Next, if o(z) and b(x) do not depend on zM, then so does u"(z). In this case, if
(LI0) holds with ¢, and ~, uniformly in n > 1, then 24 < oo for some ¢ € Py N .S, so
that by (8.24]) we may repeat the above argument to prove the pathwise uniqueness.

(3) In general, by a localization argument as in [25, Proof of Theorem 1.1], we obtain
the local existence and uniqueness of SDE (L2) up to explosion time ¢. More precisely, for
any m > 1, let 0, € Cg°(R4+d2; Rhi+dz2) he guch that 6,,(x) = x for |z| < m. Define

(4.8) om(z) =0 00,(x), b (z)=0Po0b,(z), bV (z)=>bL(OD (), 2?).

m

Here and below, for simplicity of notation, we shall drop the time variables in b and ¢ since
it does not play any role in the proof. If (A) or (LI0O) holds, then for any m € N, o, and
b, satisfy the same assumption for some uniform C,¢ and . For fixed X, € R4+% et
X" with X" = X, be the unique solution to (L2)) for (o,,,b,) in place of (o,b). Since
b () = b(x), 00 (x) = o(x) for |z| < m, X" solves the original equation (2] up to the
stopping time

T = Inf{t > 0: | X["| = m}.

By step (1), we have X' = X]" for t < 7, A T, and 7, is increasing in n. Letting ( =
lim,, oo 7, We see that

Xp= Y X[, m:=0, t<¢
tE[Tn—1,Tn)
is the unique solution to (L.2) with life time ¢, i.e. limsup, . |X;| = oo holds a.s. on
{¢ < o0}. O

Proof of Theorem[1.d. (1) First of all, we assume that the global conditions in the theorem
hold for (b*, o*)ren. In this case, let u* be the unique classical solution of ([B1]) in Theorem
3.10 corresponding to (b*, 0%, b¥). Define

Of(r) = & +uj_,(z), t€[0,T),x € RI*E.

As in the proof of Theorem [LZ] for large enough A > 0, and for each k € N, ®F is a
homeomorphism on R%“+% such that

sup sup <[®f]1[1] + [(be)_l]lm) < 00;
keNoo te[0,T]

By Ito’s formula, Y* := ®F(XF) solves the following SDE for ¢ € [0, 77,
Ay} = g7 (V}h)dt + 07 (V) dW,, Yy = (),

where
_ 2 _
gt =M 0 (¥, Of = (V) @f) o (o).

Moreover, by ([B.47), it is easy to see that for each t,z € R,
lim (|g(2) - ()| + |05 (x) — OF (@) | + |@f (x) — ¥*(2)]) =0,
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and by (B.48)), for all z,y € Ra+dz2,

sup sup (Igf (@) = g ()] + [0} () = O (w)]) < Cla—y.
keNoo t€[0,T]

Hence, by [I8, Theorem 15, p.271], we have for each T,e > 0,

lim IP( sup |YF — Y| 25) =0,

k—o0 te[0,T]

which in turn implies (LIG).
(2) In general, by the assumption and ([LI2), we have the following uniform estimate:

(4.9) sup E exp [ sup H(Xf(a:))al} <U(T)exp [H(z)], T >0,z €RU®
k t€[0,T]

For each m € N, let 6,, € C5°(R4+d2; R4+42) he such that 6,,(z) = x for H(z) < m. Let o¥,
and b be defined as in [{@X), and let X" (x) be the solution of SDE (I2) corresponding
to (ok , bk ). Define the stopping times

= inf{t > 0: H(X[(z)) A H(X(2)) = m}.
Then by (Z£9), we have
(4.10) sgp P(r* < T) < SllipE<ts[%I;“] H(XF) A H(X?(:E))) /m— 0, m— 0.
€lo,
On the other hand, we have
IP( sup | X} — X°| > 6) <IP’( sup | X[ — X°| =678 > T) +P(th < T)

t€[0,7)] t€[0,T

<IP’( sup |Xf’m—Xf°’m\ > 6) +P(T,I% <T),

te[0,7

which together with step (1) and (EI0) gives the desired estimate ([LIG]).

(3) Let ¢ : Ry — R, be a bounded smooth function with ¢(r) = r for |r| < 1. Let
EF(x) == | XF(z) — X°(x)|?. For fixed R > 0, let xg : R? — [0,1] be a smooth function with
xr(z) =1 for |z| < R and xgr(x) = 0 for |z| > 2R. By Gagliado-Nirenberg’s inequality and
(LID) for some p > d, we have

E[ sup [lo(6)xnllc
te[0,T]

d
P

1—4
< CE LSESPT Tl (letehalsn + P o(€)lin + 1)
€10,

plp=d) 1-d/p?
<ofB] s ol ]} 00
te[0,7

due to (LI6) and the dominated convergence theorem. So, (LIS) holds. O
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Proof of Theorem[1.7. By Theorem[L[2] for each z € R®+% there is a unique global solution
{Xi(z),t > 0} for SDE (L2). Let u,(z) be the unique solution of equation (BI]) in Theorem
31T corresponding to (o,b) and f = b. By [B52), we have

t
(4.11) Va5 + ||VV(2)ut||1[E] < C’/ e M=) (1 — ) 7°ds.
0

1/3
As in the proof of Theorem [[.2] let
Oy (z) = x 4+ up_(2).

By (@II)), for large enough A > 0, ®; is a diffeomorphism on R% %92 such that

(4.12) up (HVq%Hl[E] + ||V‘I>t_1||1[5]) < 0%;
T

S
te[0

Moreover, as shown in the proof of Theorem that if X;(z) solves SDE (L2) then Y; =
®,(X;) solves (AT). By (£I2)) and the condition on ¢ in Theorem [[.7] we have

(4.13) ts[%pT]UIV(uT—t 0 ®; |y, + IV{(VEI®) 0 &7 Hy,,) < o0,
€|0,

for some e > 0. So, by [I5, Theorem 4.6.5], {Y;(:)}icjo,r) forms a C'-stochastic diffeomor-
phism flow, and so does {X;(-) := ®; " (Y;(-)) }iejo.r)- Finally, it is easy to prove (LI9) from
@), @EI2) and sup,co 7 [Vorlleo < 00 O

Proof of Theorem[L8 As shown in the proof of Theorem that SDE (L22)) admits a
unique global strong solution X;(z) and Y; := ®,(X) solves (see (1))

(414) dY;g = g?(yz)dt + @t(Y;)th, Yb =y = @0(1’),
where
(4.15) gy = ()\uT_t + ay - V(Q)(I)t) od !t O, := (Vg)@t) od;t.

By (L21), (A11), (EI2) and o, € C} uniformly in ¢ € [0, T], there is a constant C' > 0 such
that for all t € [0,7] and y,y’ € RY,

(4.16) 98 (y) — gi(y)| < C(HT 0 @7 (y) + H o &, (y)ly — ¥'|, VO < C.

On the other hand, by (LI2) and &’ < ¢, for any K > 0, there exists Cx > 0 such that

(4.17) Eexp | K sup (H o ®;71(Y;))7 | < Ck exp[H (2)7].

te[0,7

In order to show the diffeomorphism property of z — X;(x), we shall use Kunita’s
argument. More precisely, we want to show the following estimates: for any p € R and
T > 0, there are constants C;, Cy > 0 such that for all z, 2’ € R4 and ¢ € (0,7,

(4.18) E| X, (z) — X, (2)|? < Cy (e @ 4 HE )z — 2/ P,
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(4.19) E(1 + | X (2)]%2)P < Cy(1 + |z|)P, p < 0;

and for any p > 1 and T > 0, there is a constant Cs > 0 such that for all z € R%*92 and
t,s €1[0,77,

(4.20) B| X, (2) — Xy ()| < Csef!@° |t — s|P.
Estimate (£20) is direct by the assumptions, ([.22]) and (ZI7)). Let us show (4I8])). Set
Zy=Y(y) = Vi), y=o(x), y = Do(a'),
and

G = g; (Yi(y) — g/ (Ya(y), Ui = 0u(Yily)) — Ou(Yi(y).
By It6’s formula, we have

d|Z,)° = [2(Zy, Gy) + te(U;U)|dE + 2(Z,, U dW,) = | Zy*d(N, + M),

where
t t
N, ::/ 1Z.722(Z,, G + te(UU)]ds, M ::2/ 2,22, U.dW,).
0 0

Here we use the convention § = 0. Notice that by (@IG),
(4.21) (Gl < CHT 0 @7 (Yily)) + HT 0 7 (Y (YD) Z], U] < C|Z].
Hence, by ([@IT), N; + M, is a continuous semimartingale, and

|Zt|2 = |Zo|2eXp {Mt — %<M>t + Nt}

Since for any ¢ € R, t — exp {th - %(M)t} is an exponential martingale, by (£21]), (£I7)
and using Holder’s inequality, we have for any p € R,

E|Zt|2p - |Z0|2PEexp {th — §<M>t —l—pNt} < C(eH(x) _|_eH(x )|Z |2P

which in turn gives ([AIS]).
Next comes to (2.42). By Itd’s formula and (L20), we have

EH(X,(z))? =H(z)" + pE / H (X ()P (LZH) (X (x))ds

Vg /O H(X, (@) oy - VO H(X,(2))Pds

+ 2
t
x)p+C’E/ H(X(x
0

which in turn gives (£I9) by Gronwall’s inequality and (L20).

Finally, by (ZIR)-(20), as in the proof of Kunita [I5, p.159-160] (see also [30, The-
orem 3.4]), there is a full set € such that for all w € Qy and t > 0, z — X;(z,w) is a
homeomorphism. On the other hand, since the coefficients of SDE ({LI4) are C'*¢, by [15]
Theorem 4.7.2], {Y;(-) }1>0 defines a local C''-diffeomorphism flow, so does {X;(-)};s0. This
together with the homeomorphism property implies the global C*-diffeomorphism property
of {Xi(*)}i=0. Finally, (L23]) follows from ([AI8]) and [26, Lemma 2.1]. O
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