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A TGV-Based Framework for Variational Image Decompression, Zooming, and
Reconstruction. Part II: Numerics∗
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Abstract. The present work is the second of two papers on a variational model for image reconstruction
whose specific features are twofold: First, data fidelity is realized by interval constraints on the
coefficients of a Riesz basis representation, and second, total generalized variation (TGV) of arbitrary
order is employed as image prior. While Part I provides a comprehensive analysis of the model
in a general function space setting as well as discusses applications such as artifact-free JPEG,
JPEG 2000 decompression, and variational zooming, Part II deals with the discretized setting and
presents globally convergent algorithms for these applications. In the case of JPEG and JPEG
2000 decompression, highly improved color image reconstructions are obtained from the encoded
files. The numerical results are supplemented by duality based stopping criteria, a parallelized
implementation, and a comparison of results obtained with TV and second and third order TGV
regularization.
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variational zooming, primal-dual algorithm

AMS subject classifications. 94A08, 49M29, 65F22, 90C25

DOI. 10.1137/15M1023877

1. Introduction. This work is the second of two papers on a total generalized variation
(TGV) based image reconstruction model. The variational problem under consideration in
this part as well as in Part I [9] reads as

min
u∈L2(Ω,Rm)

TGVk
α(u) + IUD

(u),

where TGVk
α [10] is the vectorial TGV functional of order k, and IUD

is the indicator function
of the convex set UD; i.e., IUD

(u) = 0 if u ∈ UD and infinity else. The set UD is given as

UD = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn, n ∈ N},

with A : L2(Ω,Rm)→ �2 being a Riesz-basis transformation operator and (Jn)n being closed
intervals. This setting is motivated by the application to JPEG [32] decompression, where A
is a blockwise cosine transform and, given a JPEG compressed file, UD defines the set of all
images that, when compressed at the given rate, result in the same file.
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2852 KRISTIAN BREDIES AND MARTIN HOLLER

In Part I [9] on this topic, the above minimization problem was investigated in a general
function space setting. Existence of a solution and optimality conditions were obtained under
generic assumptions. Three particular applications, namely the improved decompression of
JPEG and JPEG 2000 images and a variational zooming method, were defined and shown to
be concrete instances of the above setting.

Part II of our work is devoted to the numerical realization and practical evaluation of these
three applications. It thereby also summarizes and significantly extends related previous works
on second order TGV-based JPEG decompression and wavelet based zooming [6, 7]. After
discretization, we establish a uniform algorithmic framework that is based on the primal-
dual algorithm of [13] and obtain globally convergent algorithms for all three applications.
We provide duality based stopping criteria that allow us to estimate optimality in terms
of the objective functional and an adaptive stepsize strategy that guarantees a convergent
algorithm while, in practice, enabling us to overcome the stepsize constraint of [13] that yields
prohibitively small stepsizes in some applications. Novelties with respect to the existing
proceedings papers [6, 7] include a further development of the JPEG decompression setting
comprising a new primal-dual gap based stopping criterion and numerical experiments using
third order TGV regularization. Moreover, we present a new application to JPEG 2000
decompression comprising a complete numerical framework, an adaptive stepsize strategy,
and a corresponding method for simultaneous decompression and zooming.

In particular, for JPEG and JPEG 2000 decompression, we are able to obtain highly
improved reconstructions for color images by extracting the necessary information from the
encoded files. In addition, for JPEG decompression, a multi-core CPU and GPU implemen-
tation is presented that obtains the improved decompression within seconds even for larger
image files. As result of a general formulation, only minimal effort is required to combine the
decompression methods with zooming. In particular, our work comprises a simple framework
for pure zooming, which allows us to use any wavelet analysis operator to model downsampling
and gives a surprisingly good upsampling quality for some choices.

Both the general function space formulation as well as the numerical solution strategy allow
any order of the TGV functional for regularization. Nevertheless we restrict ourselves to the
second order functional in the discrete setting. This keeps the presentation of our methods
simple and yields a good compromise between computational complexity and obtained image
quality. We do, however, also provide experiments for JPEG decompression using the third
order TGV functional for regularization.

As our framework covers different applications in mathematical image processing, there is,
for each application, literature available. In particular, for JPEG decompression there exist
many methods to improve on the standard decompression procedure, and we refer the reader
to [28, 6, 5, 1, 36] for those that are most related to our work and to [5, 25, 31, 30] for a
short overview of current standard techniques. For JPEG 2000 decompression, the problem
of wavelet coefficient inpainting is most related, and we refer the reader to [34, 35, 14, 27, 15]
for variational approaches in this setting. Concerning image zooming, methods that approach
the task by applying either a TV-type regularization or aiming at wavelet inpainting for
upsampling can be found in [2, 12, 23, 21, 16, 11]. In any case, we refer the reader to [9] for a
more detailed discussion on existing methods. Regarding a common framework for different
applications of the above type, the only available work that goes in this direction is the TVD
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TGV-BASED IMAGE RECONSTRUCTION. PART II: NUMERICS 2853

based model [5] that preceded this work. Indeed, [5], which is based on the TV functional for
regularization and an orthonormal basis for data fidelity, can be seen as motivation for the
present work, where nontrivial extensions have been obtained in terms of regularization, data
fidelity, assumptions for existence of a solution, and applications.

Part II is divided into four sections, the first one dealing with aspects that are shared
by all applications of interest and the three others dealing with the particular reconstruction
models.

2. Discretization and algorithmic setup. In an abstract setting, we aim at solving the
following minimization problem:

min
u∈L2(Ω,Rm)

TGVk
α(u) subject to (an, u)L2 ∈ Jn for all n,

with Ω a rectangular domain and (an)n a given Riesz basis of L2(Ω,Rm) with (Jn)n given,
nonempty closed intervals, both of which depend on the concrete problem under consideration.
In this section, we fix the discretization of the TGVk

α functional and the underlying spaces.
Also a stepsize adaptive primal-dual algorithm based on [13] is described in a generic form.

While we will later present numerical results also for third order TGV regularization, we
detail the discrete setting only for the second order TGV functional. The extension to the
third order can be obtained with similar techniques, and also the same algorithmic framework
can be employed.

2.1. Discrete problem setting. Our discrete variational problem is based on functions
on regular grids. The spaces of discrete multichannel images and of first and second order
gradient information are defined as

U := R
N×M×C , V = U × U, W = U × U × U,

where N,M ∈ N denote the image dimensions and C ∈ N denotes the number of (color)
channels, both of which will be further specified in concrete applications.

For u ∈ U , the value uci,j is the value of the channel c of the pixel (i, j), (ui,j) ∈ R
C denotes

the vector valued entry at the pixel (i, j), and uc ∈ R
N×M is the color component c. A norm

on the entries (ui,j) is given by ∣∣(ui,j)∣∣2U =

C∑
c=1

(uci,j)
2.

Similarly, elements v ∈ V and w ∈W are denoted by

v = (vλ,ci,j )i,j,c,λ and w = (wλ,c
i,j )i,j,c,λ

for 0 ≤ i < N , 0 ≤ j < M , c ∈ {1, . . . , C}, and λ ∈ {1, 2} for v and λ ∈ {1, 2, 3} for w, and
norms on their entries are denoted by

∣∣(vi,j)∣∣2V =
∑

c∈{1,...,C}
λ∈{1,2}

(vλ,ci,j )
2 and

∣∣(wi,j)
∣∣2
W

=
∑

c∈{1,...,C}
λ∈{1,2}

(wλ,c
i,j )

2 + 2
C∑
c=1

(w3,c
i,j )

2.
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2854 KRISTIAN BREDIES AND MARTIN HOLLER

The reason for the weighing in | · |W is that the three entries of w correspond to symmetric 2 ×
2 matrices with the off diagonal entries stored only once. Standard norms and inner products
on U , V , and W can be obtained, for E ∈ {U, V,W}, e, t ∈ E, by summation over each pixel
and the polarization identity, i.e.,

(2.1) ‖e‖2E =
∑

0≤i<N
0≤j<M

|ei,j|2E , (e, t)E =
1

4
(‖e+ t‖2E − ‖e− t‖2E).

Besides the 2-norm, we will also need other discrete Lp norms on U, V, W . For an exponent
r ∈ [1,∞] we always denote by r′ = r/(r − 1) ∈ [1,∞] its conjugate exponent and, abusing
notation, define

(2.2) ‖e‖r =
⎧⎨
⎩
(∑

i,j |ei,j |rE
)1/r

if r <∞,

maxi,j{|ei,j |E} if r =∞

for E ∈ {U, V,W}, e ∈ E.

The discretization of the second order TGV functional is based on its equivalent represen-
tation as detailed in [9, 8] and is given as

(2.3) TGV2
α(u) = inf

v∈V
α1‖∇u− v‖1 + α0‖Ev‖1,

where ∇ : U → V denotes a discrete, color componentwise gradient operator using forward
differences and E : V → W denotes a discrete, color componentwise symmetric gradient
operator using backward differences, i.e.,

(∇u)1,c = (δx+u
c), (∇u)2,c = (δy+u

c)

for u ∈ U , c = 1, . . . , C, with

δx+, δy+ : RN×M → R
N×M ,

(2.4)

(δx+z)i,j =

{
(zi+1,j − zi,j) if 0 ≤ i < N − 1,
0 if i = N − 1,

(δy+z)i,j =

{
(zi,j+1 − zi,j) if 0 ≤ j < M − 1,
0 if j = M − 1,

and

(Ev)1,c = (δx−v1,c), (Ev)2,c = (δy−v2,c), (Ev)3,c =
(
δy−v1,c + δx−v2,c

2

)

for v ∈ V , c = 1, . . . , C, withD
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TGV-BASED IMAGE RECONSTRUCTION. PART II: NUMERICS 2855

δx−, δy− : RN×M → R
N×M ,

(2.5)

(δx−z)i,j =
{

(zi,j − zi−1,j) if 0 < i ≤ N − 1,
0 if i = 0,

(δy−z)i,j =
{

(zi,j − zi,j−1) if 0 < j ≤M − 1,
0 if j = 0.

Note that usage of forward and backward differences for the gradient ∇ and the symmetrized
gradient E , respectively, results in second order central differences for E ◦ ∇.

We will further need discrete divergence operators which are, abusing notation, defined as
div = −∇∗ and div = −E∗, or, more explicitly,

(div v)c = −(δ∗x+v1,c + δ∗y+v
2,c)

and
(divw)1,c = −(δ∗x−w1,c + δ∗y−w

3,c), (divw)2,c = −(δ∗x−w3,c + δ∗y−w
2,c),

with

(2.6) (δ∗x+z)i,j =

⎧⎨
⎩

(zi−1,j − zi,j) if 0 < i < N − 1,
−zi,j if i = 0,
zi−1,j if i = N − 1,

and

(2.7) (δ∗x−z)i,j =

⎧⎨
⎩

(zi,j − zi+1,j) if 0 < i < N − 1,
−zi+1,j if i = 0,
zi,j if i = N − 1,

and δ∗y+, δ∗y− defined accordingly.

2.2. A stepsize-adaptive primal-dual algorithm. The solution strategies for the subse-
quent applications are derived from the primal-dual algorithm presented in [13]. For the sake
of completeness, we give a short overview of the abstract framework. Given the problem
setting

min
x∈X

F (Kx) +G(x),

withK : X → Y a linear operator, X,Y finite dimensional Hilbert spaces, and F and G convex
and l.s.c. functions, if Fenchel–Rockafellar duality is applicable, a saddle-point formulation of
the above minimization problem is given as

min
x∈dom(G)

max
y∈dom(F ∗)

(Kx, y)Y +G(x)− F ∗(y),

with F ∗ being the convex conjugate of F . The solution strategy now essentially consists of
alternatingly performing gradient descent and ascent steps in the primal and dual directions,
respectively, resulting in Algorithm 1.

There, the expressions (I+σ∂F ∗)−1 and (I+τ∂G)−1 are the proximal maps of F ∗ and G,
which are well-defined for any proper, convex, l.s.c. function. In our applications we employD
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2856 KRISTIAN BREDIES AND MARTIN HOLLER

Algorithm 1. Abstract primal-dual algorithm.

• Initialization: Choose τ, σ > 0 such that ‖K‖2τσ < 1, (x0, y0) ∈ X × Y and set
x0 = x0

• Iterations (n ≥ 0): Update xn, yn, xn as follows:⎧⎪⎨
⎪⎩
yn+1 = (I + σ∂F ∗)−1(yn + σKxn),

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1),

xn+1 = 2xn+1 − xn

the abstract primal-dual algorithm to suitable reformulations of the problems of interest with
the aim of obtaining proximal maps that can be calculated explicitly and fast.

As shown in [13] the algorithm is globally convergent if the stepsizes σ, τ satisfy στ‖K‖2 <
1. An estimate on ‖K‖, however, has to include all pathological cases, and thus the stepsize
restriction can be too conservative in some applications. On the other hand, we can learn
from the proof of convergence for Algorithm 1 as given in [13, Theorem 1] that this restriction
is in fact only needed to ensure that

(2.8) ‖K(xn − xn−1)‖Y <
1√
στ
‖xn − xn−1‖X

is satisfied in each iteration. This means that one might only use the iterates to estimate ‖K‖
and, in doing so, potentially obtain convergence for larger stepsizes. Motivated by this, we
formulate the following criterion for adaptive stepsize choice, which still allows us to ensure
convergence of the primal-dual algorithm.

Given θ ∈ (0, 1) and η > 0, after each iteration of Algorithm 1, update σ and τ as

σ = S
(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
η, τ = S

(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
/η,

with

(2.9) S(στ, n) =

⎧⎪⎨
⎪⎩
n if θστ ≥ n,√
θστ if στ ≥ n > θστ,√
στ else.

As each reduction of σ and τ is done at least by a constant factor
√
θ < 1, this rule

guarantees that, after finitely many reductions, (2.8) holds for all remaining iterates. In
practice, this situation is often already reached for stepsizes that still cannot be guaranteed to
satisfy στL2 < 1, with L being an analytical upper bound of ‖K‖, and consequently, as we will
see, for example, in the application to JPEG 2000 decompression, convergence can be obtained
using significantly larger stepsizes. Note that the choice of η allows us to balance between
the primal stepsize τ and the dual stepsize σ. As we did, for the applications considered in
this work, not observe a significant improvement with unequal primal and dual stepsizes, we
choose η = 1 in practice.D
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TGV-BASED IMAGE RECONSTRUCTION. PART II: NUMERICS 2857

3. Color JPEG decompression.

3.1. Discrete setting. Given the minimization problem [9, equation (4.10)] for artifact-
free JPEG decompression, defined in a function space setting, we will now handle its discrete
equivalent and show how a solution can be obtained numerically. For that purpose, we use the
notation as given in section 2. We note that some discrete formulations for this problem have
already been presented in the proceedings paper [6]; however, a more extensive treatment
is presented in the following. In particular, besides providing more details and proofs, the
present section includes a primal-dual gap based stopping criterion for which convergence and
estimate on the objective functional are established. Additionally, results using the third order
TGV functional are shown for the first time in this context.

We assume that the horizontal and vertical numbers of pixels of the discrete images are
multiples of 8 and consider three color components, i.e., U is given by U = R

8k×8l×3, k, l ∈
N. In order to describe the set of all images matching a given, JPEG compressed file, we
need discrete versions of a subsampling and a blockwise cosine transform operator S and
C, respectively, for which we only give a local, componentwise definition in order to avoid
extensive indexing.

A subsampling operator S : U → Ũ , with Ũ = R
Ñ1×M̃1 × R

Ñ2×M̃2 × R
Ñ3×M̃3 being the

space of subsampled images, is defined componentwise, locally, for subsampling factors f1, f2
of the horizontal and vertical directions and (ri,j)i,j with 0 ≤ i < f1, 0 ≤ j < f2, as

(3.1) Sr =
1

f1f2

f1−1∑
m=0

f2−1∑
n=0

rm,n,

reducing the resolution of the component by factors f1 and f2 in the vertical and horizontal
directions, respectively. If the resolution of one component is not reduced, as typically for the
brightness component, S is the identity for this component. The discrete cosine transformation
operator is defined, for each color component, on each disjoint 8× 8 block (ri,j)0≤i,j<8, as

(3.2) (Cr)p,q = cpcq

7∑
n,m=0

rn,m cos

(
π(2n + 1)p

16

)
cos

(
π(2m+ 1)q

16

)

for 0 ≤ p, q < 8 and

cs =

{
1√
8

if s = 0,
1
2 if 1 ≤ s < 8.

Having this, the discrete data set UD of all images that would result in the same, given JPEG
file can now be described by

(3.3) UD = {u ∈ U |CSu ∈ D},

with D = {d | dci,j ∈ Jc
i,j} and Jc

i,j = [lci,j, o
c
i,j ] data intervals that can be obtained from the

quantized DCT coefficients stored in the compressed JPEG file as in [9, equation (4.3)] (see
also [5, section 5]).D
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2858 KRISTIAN BREDIES AND MARTIN HOLLER

With these prerequisites, the finite dimensional optimization problem for artifact-free
JPEG decompression reads as

(3.4) min
u∈U

TGV2
α(u) + IUD

(u),

with

IUD
(u) =

{
0 if u ∈ UD,

∞ else.

Now in order to solve (3.4) numerically with the primal-dual algorithm described in sub-
section 2.2, we formulate an equivalent saddle-point problem. For that purpose, we define X
and Y as

X := U × V, Y := V ×W,

equipped with the norms

‖(u, v)‖2X = ‖u‖2U + ‖v‖2V , ‖(p, q)‖2Y = ‖p‖2V + ‖q‖2W ,

resulting from inner products (·, ·)X , (·, ·)Y , the functions F : Y → R, G : X → R,

(3.5) F (v,w) = α1‖v‖1 + α0‖w‖1, G(u, v) = IUD
(u),

and the operator K : X → Y ,

(3.6) K =

[∇ − I
0 E

]
,

with I : V → V denoting the identity. A saddle point formulation of problem (3.4) can now
be obtained as follows.

Proposition 3.1. The discrete minimization problem (3.4) related to artifact-free JPEG
decompression possesses a solution and is equivalent to

(3.7) min
x∈X

F (Kx) +G(x).

Further there exists a solution to the dual problem of (3.7), characterized by

(3.8) max
y∈Y

−G∗(−K∗y)− F ∗(y),

as well as to the saddle point problem, given by

(3.9) min
x∈dom(G)

max
y∈dom(F ∗)

(Kx, y)Y − F ∗(y) +G(x).

In addition, x̂, ŷ are solutions to the primal and the dual problem, respectively, if and only if
(x̂, ŷ) solves the saddle point problem.

Proof. Existence of a solution to (3.4) can be obtained similar to how it is obtained in the
continuous setting (see [9]), and the equivalence to the primal problem (3.7) is obvious. Given
that F is continuous, existence of a solution to the dual problem as well as equality of theD
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primal and the dual problem at optimal points follow immediately from [18, Theorem III.4.1].
The equivalence of the saddle point problem then follows from [18, Proposition III.3.1].

Note that G∗ and F ∗ are given by

G∗(u∗, v∗) = sup
u∈UD

(u∗, u)U + I{0}(v∗),

where

I{0}(v) =
{
0 if v = 0,

∞ else,

and
F ∗(p, q) = I{‖·‖∞≤α1}(p) + I{‖·‖∞≤α0}(q),

where

I{‖·‖∞≤λ}(e) =

{
0 if ‖e‖∞ ≤ λ,

∞ else.

Further, the operator K∗ denotes the adjoint of K and is given by

K∗ =
[− div 0
− I − div

]
.

By using standard arguments from convex analysis, we can also obtain an optimality
condition for the discrete saddle point problem that will be helpful when deriving a stopping
criterion for the algorithm later on (see also [9, Theorem 3.3] for optimality conditions in the
general, infinite dimensional setting).

Proposition 3.2. There exists a solution to (3.9), and (x̂, ŷ) = (û, v̂, p̂, q̂) being optimal is
equivalent to the following:

• For all 0 ≤ i < N , 0 ≤ j < M ,⎧⎪⎪⎨
⎪⎪⎩

p̂i,j = α1
(∇û− v̂)i,j
|(∇û− v̂)i,j |V if (∇û− v̂)i,j �= 0 and |p̂i,j|V ≤ α0 else,

q̂i,j = α0
(E v̂)i,j
|(E v̂)i,j |W if (E v̂)i,j �= 0 and |q̂i,j|W ≤ α1 else,

• p̂+ div q̂ = 0, and
• û ∈ UD and div p̂ = S∗C∗ŵ with ŵ ∈ Ũ such that⎧⎪⎨

⎪⎩
ŵc
i,j ≥ 0 if (CSû)ci,j = sup(Jc

i,j) �= inf(Jc
i,j),

ŵc
i,j ≤ 0 if (CSû)ci,j = inf(Jc

i,j) �= sup(Jc
i,j),

ŵc
i,j = 0 if (CSû)ci,j ∈ int(Jc

i,j).

3.2. Practical implementation. We solve the saddle point problem (3.9) using the primal-
dual algorithm presented in subsection 2.2. As we will see, all necessary steps during one
iteration reduce to simple arithmetic operations and the evaluation of a forward and inverse
blockwise cosine transformation, for which highly optimized code already exists. This makes
the algorithm fast and also easy to parallelize. Also, we can obtain a suitable stopping rule
ensuring optimality.D
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2860 KRISTIAN BREDIES AND MARTIN HOLLER

Using standard arguments from convex analysis, the proximal map (I + σ∂F ∗)−1 can be
given as

(I + σ∂F ∗)−1(p, q) =
(
projα1

(p),projα0
(q)
)
,

where, for E ∈ {V,W}, e ∈ E,

(3.10) (projλ(e))i,j =
ei,j

max(1,
|ei,j |E

λ )
.

Similarly, the evaluation of (I + τ∂G)−1 is the identity for v and the projection on the data
set

UD = {u ∈ U |CSu ∈ D}
of u in x = (u, v). As the following lemma shows, in the particular setting for JPEG decom-
pression, this projection can be reduced to a projection on

UC = {u ∈ Ũ |Cu ∈ D}
by

PUD
(u) = u+ S̃∗ (PUC

(Su)− Su) ,

where S̃∗ is the adjoint of a reweighted subsampling operator S̃ : U → Ũ , and is given locally
by replication of r ∈ R, i.e.,

S̃∗r =

⎛
⎜⎝
r . . . r
...

...
r . . . r

⎞
⎟⎠ .

Lemma 3.1. Let H1,H2 be two Hilbert spaces and B : H1 → H2 be a bounded linear operator
such that BB∗ = c I with c ∈ (0,∞). With D ⊂ H2 a nonempty, closed, convex set and

VD = {u ∈ H1 |Bu ∈ D}
we get that for all û ∈ H1,

PVD
(û) = û+

1

c
B∗ (PD(Bû)−Bû) ,

with PVD
and PD being the projection operators onto VD and D, respectively.

Proof. Take û ∈ H1. Then,

B

(
û+

1

c
B∗(PD(Bû)−Bû)

)
= PD(Bû) ∈ D,

and thus it is left to show that(
û− û− 1

c
B∗ (PD(Bû)−Bû) , u− û− 1

c
B∗ (PD(Bû)−Bû)

)
H1

≤ 0

for all u ∈ VD. Note that we have

(Bû− PD(Bû), v − PD(Bû))H2 ≤ 0 for all v ∈ D.D
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Using this we get, for all u ∈ VD,(
û− û− 1

c
B∗(PD(Bû)−Bû

)
, u− û− 1

c
B∗(PD(Bû)−Bû

))
H1

=
1

c
(B∗ (Bû− PD(Bû)) , u− û− 1

c
B∗ (PD(Bû)−Bû))H1

=
1

c
(Bû− PD(Bû), Bu− PD(Bû))H2 ≤ 0.

Orthogonality of C then allows us to reduce (I + σ∂G)−1 to

(I + τ∂G)−1(u, v) = (u+ S̃∗(projUC
(Su)− Su

)
, v),

where

projUC
(u) = C∗w,

with

wc
i,j =

⎧⎪⎨
⎪⎩
uci,j if (Cu)ci,j ∈ Jc

i,j,

sup(Jc
i,j) if (Cu)ci,j > sup(Jc

i,j),

inf(Jc
i,j) if (Cu)ci,j < inf(Jc

i,j).

Altogether, the concrete implementation of the primal-dual algorithm for JPEG decom-
pression can be given in Algorithm 2. Note that the stepsize restriction στ ≤ 1

12 results from

combining the estimates ‖∇‖ ≤ √8, ‖E‖ ≤ √8 to get ‖K‖2 < 12 (see [4]). As one can see,
all steps of Algorithm 2 can be evaluated by simple, mostly pixelwise operations making each
iteration step fast.

Stopping criterion. In order to validate our numerical solution, we seek a suitable stopping
rule. Our goal is to estimate optimality of the iterates in terms of the objective function. The
basis for that is the following observation, which holds for any optimal solution of the primal
problem (3.7) x̂ and any x ∈ X, y ∈ Y :

(3.11)
0 ≤ F (Kx)− F (Kx̂) = F (Kx)−

(
sup
z∈Y

(x̂,K∗z)X − F ∗(z)
)

≤ F (Kx)− (x̂,K∗y)X + F ∗(y).

As the following proposition shows, the last term of the above inequalities can be suitably
estimated using the iterates of Algorithm 2.

Proposition 3.3. Take 1 < γ, 1 ≤ r ≤ ∞, (xn, yn)n = ((un, vn, pn, qn))n to be the iterates
of Algorithm 2 and (x̂, ŷ) = (û, v̂, p̂, q̂) to be a saddle point of (3.9). Denoting Jc

i,j = [lci,j, o
c
i,j ],

define

(3.12)

G(xn, yn) = F (Kxn) + Tn‖div2 q̃n − S∗S̃ div2 q̃n‖r′

+
∑
i,j,c

(
oci,j + lci,j

2
(−CS̃ div2 q̃n)

c
i,j +

oci,j − lci,j
2

|(−CS̃ div2 q̃n)
c
i,j |
)
,
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2862 KRISTIAN BREDIES AND MARTIN HOLLER

Algorithm 2. Scheme of implementation for JPEG decompression.

1: function TGV-JPEG(Jcomp)
2: (Jc

i,j)i,j,c ← Decoding of JPEG-Object Jcomp

3: d← Midpoints of (Jc
i,j)i,j,c

4: u← S̃∗C∗d
5: v ← 0, u← u, v ← 0, p← 0, q ← 0
6: choose σ, τ > 0 such that στ ≤ 1/12
7: repeat
8: p← projα1

(p+ σ(∇u− v))
9: q ← projα0

(q + σ(Ev)
10: u+ ← u+ τ(div p)
11: v+ ← v + τ(p+ div q)
12: u+ ← u+ + S̃∗(projUC

(Su+)− Su+)
13: u← (2u+ − u), v ← (2v+ − v)
14: u← u+, v ← v+
15: until Stopping criterion fulfilled
16: return u+
17: end function

where q̃n := βnqn, with βn := α1
max(α1,‖div qn‖∞) , and Tn = γ‖un − S̃∗Sun‖r. Then,

G(xn, yn)→ 0 as n→∞
and, additionally,

(3.13) G(xn, yn) ≥ F (Kxn)− TGV2
α(û) ≥ 0

whenever Tn ≥ ‖û− S̃∗Sû‖r, which is eventually the case.
Proof. At first we show convergence of G(xn, yn) to zero, which follows from convergence

of the iterates, the optimality conditions given in Proposition 3.2, and strong duality, as shown
in the proof of Proposition 3.1. Indeed, as βn → 1 and

div2 q̃n = div2 βnqn → div2 q̂ = − div p̂ = −S∗C∗ŵ for n→∞
and some ŵ ∈ Ũ , it follows from this identity as well as S̃S∗ = I that ‖div2 q̃n−S∗S̃ div2 q̃n‖r′ →
0 as n→∞.

Now, a straightforward, pointwise calculation shows that, for w ∈ Ũ ,

(3.14) sup
d∈D

(d,w)Ũ =
∑
i,j,c

(
oci,j + lci,j

2
wc
i,j +

oci,j − lci,j
2

|wc
i,j |
)
.

This implies in particular that w �→ supd∈D(d,w)Ũ is continuous, and, using the optimality
conditions of Proposition 3.2, we hence get, for n→∞,

sup
d∈D

(d,−CS̃ div2 q̃n)Ũ → sup
d∈D

(d, ŵ)Ũ = sup
u∈UD

(u, S∗C∗ŵ)U = sup
u∈UD

(u,div p̂)U = G∗(−K∗(p̂, q̂)).
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Continuity of x �→ F (Kx) further implies that

F (Kxn)→ F (Kx̂),

and hence, by strong duality, it follows that, for n→∞,

G(xn, yn) = F (Kxn) + Tn‖div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
d∈D

(d,−CS̃ div2 q̃n)Ũ

→ F (Kx̂) +G∗(−K∗ŷ) = F (Kx̂) +G(x̂)− (−G∗(−K∗ŷ)− F ∗(ŷ)) = 0.

In order to get the estimate (3.13) we insert xn = (un, vn), ỹn = (− div q̃n, q̃n) in (3.11).
Since, due to our choice of βn and the projections in Algorithm 2, ‖div q̃n‖∞ ≤ α1 as well as
‖q̃n‖∞ ≤ α0, the last term in (3.11) is given as

(3.15) F (Kxn)− (x̂,K∗ỹn)X + F ∗(ỹn) = F (Kxn) + (û,− div2 q̃n)U .

Using that both S̃S∗ and SS̃∗ are the identity we can estimate

(û,− div2 q̃n)U =
[
(û− S̃∗Sû+ S̃∗Sû,− div2 q̃n + S∗S̃ div2 q̃n − S∗S̃ div2 q̃n)U

]
=
[
(û− S̃∗Sû,− div2 q̃n + S∗S̃ div2 q̃n)U + (S̃∗Sû,−S∗S̃ div2 q̃n)U

]
≤ ‖û− S̃∗Sû‖r‖div2 q̃n − S∗S̃ div2 q̃n‖r′ + (Sû,−S̃ div2 q̃n)U(3.16)

≤ ‖û− S̃∗Sû‖r‖div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
u∈UD

(Su,−S̃ div2 q̃n)U

= ‖û− S̃∗Sû‖r‖div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
v∈D

(v,−CS̃ div2 q̃n)Ũ ,

where the supremum in the last expression is given as in (3.14). Combining this with the
estimates in (3.16), (3.15), and (3.11) and assuming that ‖û − S̃∗Sû‖r ≤ Tn, the estimate
(3.13) follows. At last, we note that, since γ > 1 and un → û as n → ∞, ‖û − S̃∗Sû‖r ≤ Tn

is satisfied after a finite number of iterations.

This allows us, for given ε > 0, to use G(xn, yn) < ε as a stopping criterion. Note also
that if no supsampling is performed, i.e., S is the identity, the estimate (3.13) holds without
any assumptions on Tn.

3.3. Numerical experiments. We now present a numerical evaluation of the proposed
method for artifact-free JPEG decompression. To allow for an additional numerical evaluation
beyond the results presented in this section, we included the source code of our decompres-
sion algorithm in the supplementary material of the paper (see M102387 01.zip [local/web
156KB]). We tested the method for several lossy JPEG compressed images, where the mem-
ory requirement of each JPEG compressed image (including lossless compression) is given in
bits per pixel (bpp). Note that we consider 8-bit grayscale and 24-bit true color images, i.e.,
an uncompressed grayscale and color image requires 8 and 24 bpp, respectively. For quanti-
tative evaluation, we include SSIM [33] and PSNR values in the figure captions. While these
measures are certainly important for an objective evaluation, their usefulness for a qualitative
comparison with respect to compression artifacts is quite limited (consider, for instance, GibbsD
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artifacts arising in �2 approximation). We thus regard these error measurements only as sup-
plementary information and rather focus on a judgement of visual image quality, supported
by showing difference maps when comparing different methods.

For decompression, we fix the ratio between α0 and α1 for the evaluation of the TGV2
α

functional (cf. (2.3)) as α0
α1

=
√
2 based on empirical observations. As a stopping criterion we

use either the iteration number, if this is necessary for comparability, or a normalized version
of the modified primal-dual gap G introduced in (3.12), which is given by

(3.17) G(xn, yn) = 1

8k8l
G(xn, yn),

with (xn, yn) the current iterates of Algorithm 2. The parameters in the definition of G are
fixed to r = r′ = 2, as this resulted in the lowest values of G in practice, and γ = 1.001.
We point out that, while γ > 1 is required by Proposition 3.3, we observed that the estimate
(3.13) is in practice satisfied even for γ = 0. This is, however, not the case in the application
to JPEG 2000 decompression, and we ask for the reader’s patience until section 4.3 for a more
detailed discussion. The reason for normalizing the modified primal-dual gap is to make it
image size independent and, taking into account (3.13), to get an estimate on the average
pixelwise difference

[|(∇un − vn)i,j |V + |(Evn)i,j|W
]− [|(∇û− v̂)i,j|V + |(E v̂)i,j|W

]
,

where again (û, v̂) denote solutions of the primal problem (3.7). Considering this estimate,
it is important to note that in the numerical computations we process our images within the
range [0,255]; thus a pixelwise error of, e.g., less than one results in a reconstruction that is
almost not distinguishable from the optimal solution.

As a first example, Figure 1 depicts the standard decompression of two JPEG compressed
images, corrupted by blocking and ringing artifacts, and their improved decompression ob-
tained with our TGV-based method. As a stopping criterion we require the normalized modi-
fied primal-dual gap to be below ε = 10−1, which resulted in 1668 iterations for the top image
and 1139 iterations for the bottom image. As one can see, the blocking and ringing artifacts
appearing in the standard decompression have been removed in the improved version, while
edges are kept sharp, leading to more natural and visually more appealing images. This is also
reflected in improved SSIM and PSNR values, as can be seen in the figure caption. Neverthe-
less, as argued at the beginning of this section, the significant gain in visual image quality by
removing compression artifacts is not fully captured by these quantitative measures.

Next, Figure 2 compares different orders of TGV regularization on a synthetic test image,
in particular to first order TV regularization, as proposed in [5, 1, 36], with the implementation
being that of [5]. The original, uncompressed image and a surface plot of the region marked
in red is shown on the top. The image was then compressed to 0.56 bpp. The lines below
depict, from top to bottom, results obtained with the standard decompression method, a
TV, TGV2

α, and TGV3
α regularized decompression. Each line shows a magnification of the

region marked in blue (left), a surface plot of the region marked in red (middle), and a
difference image in logarithmic scale (right). The TV and TGV3

α regularized decompressions
were obtained with an implementation similar to that presented in subsection 3.2 for secondD
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Figure 1. Left: Standard decompression. Right: TGV based reconstruction obtained with normalized mod-
ified primal-dual gap below 10−1 as a stopping criterion. Top: Parrot image at 0.3 bpp (256 × 256 pixels,
1668 iterations). Bottom: Guitar image at 1.06 bpp (256 × 256 pixels, 1139 iterations). [SSIM/PSNR] val-
ues: Parrot standard: [0.890/26.96], parrot TGV: [0.908/27.25], Guitar standard: [0.944/26.53], Guitar-TGV:
[0.954/26.86].

order TGV regularization. To ensure optimality, 5000 iterations were performed with each
method. The surface plots clearly show artifacts in the standard decompressed version but
also a staircasing in the TV regularized result. Comparing second and third order TGV
regularization, the surface plots indicate that indeed third order TGV performs a piecewise
quadratic rather than a piecewise linear approximation of the image. As can be seen in theD
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2866 KRISTIAN BREDIES AND MARTIN HOLLER

Figure 2. Top: Original image with red region plotted as surface. Below: Blue section (left), surface
plot (center), and difference image (right) for different decompression methods at 0.56 bpp. Top to bottom:
Standard, TV, TGV2

α, TGV3
α regularized decompression. [SSIM/PSNR] values: Standard: [0.966/34.54], TV:

[0.989/36.25], TGV2
α: [0.993/36.60], TGV3

α: [0.991/36.47].D
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Table 1
Computation times in seconds to perform 1000 iterations for different devices and image sizes. CPU: AMD

Phenom 9950. GPUs: Nvidia Quadro FX 3700 (compute capability 1.1), Nvidia GTX 280 (compute capability
1.3), Nvidia GTX 580 (compute capability 2.0). Note that on the Quadro FX 3700 and GTX 280, not enough
memory was available to perform the algorithm for the 3200 × 2400 pixel image. For reference we have also
included computation times for standard JPEG decompression on the CPU at the bottom of the table.

Device 512 × 512 1600 × 1200 3200× 2400

CPU Single-core 53.22 672.51 1613.44
CPU Quad-core 28.32 263.70 812.18
GPU Quadro FX 3700 4.92 35.52 -
GPU Nvidia GTX 280 2.2 10.22 -
GPU Nvidia GTX 580 1.2 6.6 25.70

(Standard JPEG, Single-core) 0.011 0.075 0.301

difference images, depending on the image structure, this locally improves or decreases the
approximation of the original data.

3.4. A GPU implementation. As already discussed in [6], we also developed a parallel
implementation of the reconstruction method for multicore CPUs and GPUs, using OpenMP
[29] and Nvidia’s Cuda [26], respectively. For the GPU implementation we partly used kernel
functions adapted to the compute capability of the device. The blockwise DCT was performed
on the CPU and the GPU using FFTW [19] and a block-DCT kernel provided by the Cuda
SDK, respectively. Computation times of those implementations for multiple image sizes
are given in Table 1, taken from [6]. The relative time cost of particular iteration steps
is compared in Table 2. As one can see, especially the GPU implementation yields a high
acceleration and makes the method suitable for practical applications. The given computation
times correspond to the computation of 1000 iterations, which is motivated by the number
of iterations resulting from a normalized modified primal-dual gap below 10−1 as a stopping
criterion. Let us remark, however, that, since the decrease of the TGV-value of the image is
typically very high, especially during the first iterations of the algorithm, and since un ∈ UD

can be ensured for any iteration step image un, one can also use the images obtained after only
a few iterations as (intermediate or final) reconstruction. This yields a practicable method
that allows one to improve given JPEG images in almost real time.

4. Color JPEG 2000 decompression.

4.1. Discrete setting. In this section we deal with the discrete implementation of the
decompression model for JPEG 2000 images as described in [9, subsection 4.3]. For more
detailed information on JPEG 2000 coding we also refer the reader to [24, section 10.5.2]
and [20, section J.10]. Essentially, the lossy part of JPEG 2000 compression is based on
a biorthogonal wavelet transform using either CDF 9/7 or Le Gall 5/3 wavelets, followed
by quantization of the resulting coefficients. As a consequence, the set of all images whose
compression results in the same, given file will be defined by imposing constraints on the
wavelet coefficients. However, as the quantization procedure of JPEG 2000 is more involved
than that of JPEG, it will not be possible to obtain finite bounds for all coefficients.D
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2868 KRISTIAN BREDIES AND MARTIN HOLLER

Table 2
Relative computation times in percent for different iteration steps. The data was obtained by reconstructing

a 1600 × 1200 pixel image with 1000 iterations.

Iteration step CPU GPU{
p← projα1

(p+ σ(∇u− v))

q ← projα0
(q + σ(E(v))

}
52% 32%{

u+ ← u+ τ (div p)

v+ ← v + τ (p+ div q)

}
19% 29%{

u+ ← u+ + S̃∗(projUC
(Su+)− Su+)

}
20% 21%{

u← (2u+ − u)

v ← (2v+ − v)

}
9% 18%

For the sake of simplicity, we consider quadratic images and hence assume the finite
dimensional space of discrete color images to be given as U = R

N×N×3, with N ∈ N. As
described in [9, subsection 4.3], for any given resolution level R ∈ Z, we can obtain two dual
Riesz bases of L2((0, 1) × (0, 1)), denoted by

(4.1) (ΦR,k)k ∪ (Ψj,k)j,k and (Φ̃R,k)k ∪ (Ψ̃j,k)j,k,

that correspond to either CDF 9/7 or Le Gall 5/3 wavelets. Possibly shifting resolution levels,
we assume that (Φ0,k)k, for 0 ≤ k ≤ N2 − 1, constitutes a basis of RN×N , and hence each
color component uc ∈ R

N×Nof u ∈ U is uniquely defined by the inner products

(uc, Φ0,k) for 0 ≤ k < N2, c ∈ {1, 2, 3}.

For a given JPEG 2000 compressed file, we can then obtain a resolution level R ∈ N and,
for each color component c ∈ {1, 2, 3}, data intervals

(4.2) (JΦ,c
R,k)k, (J

Ψ,c
j,k )j,k

such that the source image u ∈ U of the compression process satisfies

(4.3) (uc,ΦR,k) ∈ JΦ,c
R,k, (uc,Ψj,k) ∈ JΨ,c

j,k

for all j, k and c ∈ {1, 2, 3}. Due to the multiresolution framework of the wavelet basis, the
JΦ,c
R,k and JΨ,c

j,k provide the low resolution and detail information, respectively, about the image
to decompress. As a result of the JPEG 2000 coding, each of these intervals is either bounded
from both sides or contains all of R.

Note that we consider only the case where the whole image is processed as one tile. For
multiple tiles, data fidelity for each tile can be obtained independently as for separate images,
while the TGV functional will be evaluated globally over all tiles. We further assume the same
resolution level R for each color component. A generalization of our model to a color dependent
resolution level R(c), as is possible within the JPEG 2000 standard, is straightforward but
will be omitted for the sake of simplicity.D
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The componentwise wavelet transform operator of order R, which is denoted by W =
(W 1,W 2,W 3) : U → U , is now defined by repeatedly filtering each color component with the
finite filters (hn)n or (gn)n, followed by subsampling. The filters (hn)n depend on the type of
wavelet basis and correspond to the scaling functions (Φj,k)j,k as described in [9, subsection
4.3.1], while the filters (gn)n are defined by

gn = (−1)nh1−n

and correspond to the wavelets (Ψj,k)j,k. Filtering both horizontally and vertically with (hn)n,
for instance, decreases the resolution level by one step, while involving the filters (gn)n results
in horizontal, vertical, or diagonal detail information. Note that we use symmetric boundary
extension for the filtering operations. In total, the filtering operations map the inner products
(uc,Φ0,k), describing an image u ∈ U , to inner products as in (4.3) that can be compared with
the given JPEG 2000 data.

Using the dual filters (h̃n)n and (g̃n)n, which correspond to the scaling function and mother
wavelet, respectively, of the dual wavelet basis as described in [9, subsection 4.3.1], the inverse
wavelet transform operator

W−1 = ((W 1)−1, (W 2)−1, (W 3)−1)

can be defined componentwise by upsampling and filtering with the dual filters, again using
symmetric boundary extension.

Suitably summing up all data intervals as defined in (4.2) to

(Jc
i,j)i,j,c, with 0 ≤ i, j < N , c ∈ {1, 2, 3},

the discrete data set for the JPEG 2000 decompression process can then be given as

(4.4) UD = {u ∈ U | (Wu)ci,j ∈ Jc
i,j , 0 ≤ i, j < N, c ∈ {1, 2, 3}}.

As in subsection 3.1 we consider a discrete version of the TGV functional of order two
defined on U as in (2.3). Again, with these prerequisites, the discrete minimization problem
for artifact-free JPEG 2000 decompression can be written as

(4.5) min
u∈U

TGV2
α(u) + IUD

(u).

Now as the wavelet transformation operator W is not orthogonal in general, we cannot
use the same solution strategy as for the JPEG case since a closed form of the projection to
the data set is no longer available. Hence we use a slight reformulation of the minimization
problem which will result in the introduction of an additional dual variable for the data
constraint. For that purpose, first note that, with D = {w ∈ U |wc

i,j ∈ Jc
i,j}, the convex

indicator function for the data set UD can be written as IUD
(u) = ID(Wu). Defining the

spaces X := U × V , Y := V ×W , and Z = Y × U , and using again the function F : Y → R

and the operator K : X → Y as in (3.5) and (3.6), we define F : Z → R and K : X → Z by

F(z) = F(x,w) = F (x) + ID(w)D
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2870 KRISTIAN BREDIES AND MARTIN HOLLER

and

K =

⎡
⎣∇ −I
0 E
W 0

⎤
⎦ .

Then, the optimization problem for JPEG 2000 decompression (4.5) can be posed as

(4.6) min
x∈X

F(Kx).

Existence of a solution to this problem as well as equivalence to a dual and saddle point
problem are summarized in the following proposition.

Proposition 4.1. There exists a solution û to (4.5) and û is optimal if and only if there
exists v̂ such that x̂ = (û, v̂) solves (4.6). Further, there exists a solution to the dual problem,
given by

(4.7) max
z∈Z
−I{0}(−K∗z)− F∗(z),

and the saddle point problem

(4.8) min
x∈X

max
z∈Z

(Kx, z)− F∗(z),

and x̂, ẑ are solutions to the primal problem (4.6) and the dual problem (4.7), respectively, if
and only if (x̂, ẑ) solves the saddle point problem (4.8).

Proof. Existence of a solution to problem (4.5) follows by similar argumentation as in
the infinite dimensional setting (see [9]). Equivalence of (4.5) to the primal problem (4.6) is
obvious. Hence, following [18, Proposition III.3.1] it suffices to show existence of a solution to
the dual problem and equality of the primal and dual problem at optimal points, to conclude
all claims. Using [3, Corollary 2.3] this follows provided that⋃

λ≥0

λ[dom(F)−K(dom(0))] = Z,

where 0 : X → 0 is the zero mapping. But this is satisfied since, given any w0 ∈ UD fixed,
any (p, q, w) can be written as⎛

⎝p
q
w

⎞
⎠ =

⎛
⎝p+∇W−1(w0 −w)

q
w0

⎞
⎠−K

(
W−1(w0 − w)

0

)
∈ dom(F)−K(dom(0)).

Again, optimality conditions for the discrete saddle point problem will be helpful for a
stopping criterion later on and follow by standard arguments (see [9, Theorem 3.3]).

Proposition 4.2. Let the assumptions of Proposition 4.1 be satisfied. Then, there exists a
solution to (4.8) and (x̂, ẑ) = (û, v̂, p̂, q̂, ŵ) solves (4.8) if and only if the following hold:

•
(− div p̂+W ∗ŵ
−p̂− div q̂

)
=

(
0
0

)
.
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• For all 0 ≤ i < N , 0 ≤ j < N ,⎧⎪⎪⎨
⎪⎪⎩

p̂i,j = α1
(∇û− v̂)i,j
|(∇û− v̂)i,j |V if (∇û− v̂)i,j �= 0 and |p̂i,j|V ≤ α0 else,

q̂i,j = α0
(E v̂)i,j
|(E v̂)i,j |W if (E v̂)i,j �= 0 and |q̂i,j|W ≤ α1 else.

• û ∈ UD and ⎧⎪⎨
⎪⎩
ŵc
i,j ≥ 0 if (Wû)ci,j = sup(Jc

i,j) �= inf(Jc
i,j),

ŵc
i,j ≤ 0 if (Wû)ci,j = inf(Jc

i,j) �= sup(Jc
i,j),

ŵc
i,j = 0 if (Wû)ci,j ∈ int(Jc

i,j).

4.2. Practical implementation. To solve (4.8) numerically, we again employ the abstract
primal-dual algorithm given in subsection 2.2. For that purpose, we need an explicit form
of W ∗, the adjoint of W , and the proximal mapping (I + σ∂F∗)−1. We further discuss the
estimation of ‖K‖.

The adjoint of W . Since the filters (hn)n, (gn)n for the forward wavelet transform are
symmetric, and also the boundary extension in the evaluation of W is symmetric, W ∗ can be
obtained by applying W−1 with (hn)n, (gn)n instead of (h̃n)n, (g̃n)n.

The proximal mapping (I+σ∂F∗)−1. First note that F∗ can be decomposed as F∗(y∗, w∗) =
F ∗(y∗) + I∗D(w

∗), and hence (I + σ∂F∗)−1 can be written as

(I + σ∂F∗)−1(y,w) =

(
(I + σ∂F ∗)−1(y)
(I + σ∂I∗D)−1(w)

)
,

where, as already discussed in subsection 3.1, (I + σ∂F ∗)−1(y) is given as

(4.9) (I + σ∂F ∗)−1(y) = (I + σ∂F ∗)−1(p, q) =
(
projα1

(p),projα0
(q)
)
,

with projα1
,projα0

as in (3.10). As I∗D can also be decomposed to

I∗D(w∗) =
∑
i,j,c

I∗Jc
i,j
((w∗)ci,j),

the resolvent (I+σ∂I∗D)−1(w) can be obtained componentwise: In case J = [l, o] is a bounded
interval, a calculation already done in the proof of Proposition 3.3 again yields

(4.10) I∗J(r∗) = sup
r∈J

(r, r∗) =
l + o

2
r∗ +

∣∣∣∣o− l

2
r∗
∣∣∣∣ .

From this, one can deduce that r∗ = (I + σ∂I∗J)−1(r) is equivalent to a shrinkage operation
according to

(4.11)

⎧⎪⎨
⎪⎩
r∗ = r − σ l+o

2 − o−l
2 σ if r − σ l+o

2 > o−l
2 σ,

r∗ = r − σ l+o
2 + o−l

2 σ if r − σ l+o
2 < − o−l

2 σ,

r∗ = 0 if |r − σ l+o
2 | ≤ o−l

2 σ.D
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2872 KRISTIAN BREDIES AND MARTIN HOLLER

In the case J = R, it is immediate that

I∗J(r∗) = I{0}(r∗) and (I + σ∂I∗J)−1(r) = 0.

Hence, denoting by N the set of all indices (i, j, c) such that Jc
i,j is bounded, i.e, is of the form

Jc
i,j = [lci,j , o

c
i,j ], with lci,j , o

c
i,j ∈ R, we get that

(I + σ∂F∗)−1(x,w) =

⎛
⎝ projα1

(v)
projα2

(w)
shrinkJ,N (w, σ)

⎞
⎠ ,

with the shrinkage operator shrinkJ,N defined as

(4.12) (shrinkJ,N (w, σ))ci,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩
wc
i,j − σoci,j if wc

i,j > σoci,j ,

wc
i,j − σlci,j if wc

i,j < σlci,j ,

0 if wc
i,j ∈ [σlci,j , σo

c
i,j ],

if (c, i, j) ∈ N ,

0 else.

The norm of K. An estimate on ‖K‖ needs an estimate on ‖W‖. Even though such an
estimate can be obtained analytically, ‖W‖ depends on the level of wavelet decomposition and
can get quite high. For example, using a decomposition level of 5 and the CDF 9/7 filters, we
can estimate ‖K‖ ≤ 2839.97 and, choosing equal stepsizes, consequently get

σ = τ ≈ 0.000352.

Compared to the JPEG case, where σ = τ ≈ 0.2965, this is clearly too small for efficient
numerical solution. Even though our estimate on ‖W‖ certainly was not optimal, one can get
lower bounds on ‖W‖ in particular situations which still yield impracticable small stepsizes. To
overcome this difficulty, we propose choosing the stepsize adaptively as explained in subsection
2.2 and defined in (2.9). In practice, the adaptive stepsize choice reduces the stepsize only a
few times during the first iterations and allows stepsizes in the range of 0.3, and consequently
it significantly accelerates convergence.

A scheme of implementation for the JPEG 2000 decompression process can then be given
in Algorithm 3. Note that there J denotes the collection of all data intervals and d the
matrix where each entry is the midpoint of the corresponding interval (0 if the interval is
R). Further, ∇, E ,div,div are again the componentwise gradient and divergence operators as
defined in subsection 3.1.

Stopping rule. In order to validate our numerical solution, we again seek a suitable stop-
ping rule that allows us to estimate optimality in terms of the objective function. However, as,
in contrast to the JPEG decompression setting, we cannot ensure the current iterates being
contained in the data set UD, we cannot expect to get an estimate on

0 ≤ F(Kxn)− F(Kx̂),

as F(Kxn) might be infinity. Our solution is to relax the data constraint as follows. Given
some constants (Cc

i,j)(i,j,c)∈N , with N the set of indices where the intervals are bounded, i.e.,D
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Algorithm 3. Scheme of implementation for JPEG 2000 decompression.

1: function TGV-JP2(Jcomp)
2: (d, J)← Decoding of JPEG 2000 object Jcomp

3: N ← J
4: u←W−1(d)
5: v ← 0, u← u, v ← 0, p← 0, q ← 0, w ← 0
6: choose σ, τ > 0
7: repeat
8: p← projα1

(p+ σ(∇u− v))
9: q ← projα0

(q + σEv)
10: w ← shrinkJ,N(w + σWu, σ)
11: u+ ← u− τ(− div p+W ∗w)
12: v+ ← v − τ(−p− div q)
13: u← (2u+ − u), v ← (2v+ − v)

14: σ+ ← S(στ, ‖(u+,v+)−(u,v)‖X
‖K((u+,v+)−(u,v))‖Z ), τ+ ← σ+

15: u← u+, v ← v+
16: until Stopping criterion fulfilled
17: return u+
18: end function

Jc
i,j = [lci,j , o

c
i,j ] for (i, j, c) ∈ N , we define

IDC
(w) =

∑
wc

i,j /∈Jc
i,j

Cc
i,j max{wc

i,j − oci,j, l
c
i,j − wc

i,j}.

Note that IDC
is a relaxed version of ID, as coefficients outside of the data intervals are

penalized with Cc
i,j instead of infinity. An easy calculation shows that

I∗DC
(w∗) =

∑
(i,j,c)∈N

I{|·|≤Cc
i,j}((w

∗)ci,j) +
lci,j + oci,j

2
wc
i,j +

∣∣∣∣o
c
i,j − lci,j

2
wc
i,j

∣∣∣∣+ ∑
(i,j,c)/∈N

I{0}(wc
i,j);

in particular, I∗DC
(w∗) = I∗D(w∗) if |wc

i,j | ≤ Cc
i,j for all (i, j, c) ∈ N . Now given x̂ = (û, v̂) and

ẑ = (p̂, q̂, ŵ) as an optimal solution to the saddle point problem (4.8) and choosing Ĉc
i,j = |ŵc

i,j |
for all (i, j, c) ∈ N , we can estimate for any x = (u, v) ∈ X

F (Kx) + ID
Ĉ
(Wu) = sup

s=(p,q,w)
(Kx, s)Z − F ∗(p, q)− I∗D

Ĉ
(w)

≥ (Kx, ẑ)Z − F ∗(p̂, q̂)− I∗D
Ĉ
(ŵ)

≥ (Kx̂, ẑ)Z − F ∗(p̂, q̂)− I∗D(ŵ)
= sup

s=(p,q,w)
(Kx̂, s)Z − F ∗(p, q)− I∗D(w)

= F(Kx̂)D
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2874 KRISTIAN BREDIES AND MARTIN HOLLER

from which we can proceed as in the JPEG setting to get, for any z ∈ Z,

(4.13)
0 ≤ F (Kx) + ID

Ĉ
(Wu)− F(Kx̂) = F (Kx) + ID

Ĉ
(Wu)−

(
sup
s∈Z

(Kx̂, s)Z − F∗(s)
)

≤ F (Kx) + ID
Ĉ
(Wu)− (Kx̂, z)Z + F∗(z).

This allows us to define a suitable stopping rule as follows.
Proposition 4.3. Let γ > 1, 1 ≤ r ≤ ∞, xn = (un, vn), zn = (pn, qn, wn) be the iterates of

Algorithm 3 and (û, v̂), (p̂, q̂, ŵ) be an optimal solution to (4.8). Then, defining

(4.14)

G(xn, zn) : = F (Kxn) + IDCn
(Wun) + Tn‖div2 q̃n −W ∗wn‖r′

+
∑

(i,j,c)∈N

lci,j + oci,j
2

(wn)
c
i,j +

∣∣∣∣o
c
i,j − lci,j

2
(wn)

c
i,j

∣∣∣∣,
with (Cn)

c
i,j = γ|(wn)

c
i,j |, Tn := γ‖un‖r, and q̃n = βnqn, with βn := α1

max(α1,‖div qn‖∞) , we get
that

G(xn, zn)→ 0 as n→∞
and, additionally,

(4.15) 0 ≤ F (Kxn) + ID
Ĉ
(Wun)− TGV2

α(û) ≤ G(xn, zn)
whenever Tn ≥ ‖û‖r and (Cn)

c
i,j ≥ |ŵc

i,j| for all 0 ≤ i < N , 0 ≤ j < N , c ∈ {1, 2, 3}, which is
eventually the case.

Proof. The claimed convergence to zero follows, with techniques similar to those employed
in the proof of Proposition 3.3, from convergence of the iterates, the optimality conditions
given in Proposition 4.2, and strict duality as shown in the proof of Proposition 4.1. Now
inserting xn = (un, vn), z̃n = (− div q̃n, q̃n, wn) in (4.13) the last term reduces to

F (Kx) + ID
Ĉ
(Wu)− (Kx̂, z)Z + F∗(z) = F (Kxn) + ID

Ĉ
(Wun)

− (û,div2 q̃n +W ∗wn)U + sup
s∈D

(s,wn)U .(4.16)

As, due to the shrinkage operator in Algorithm 3, all indices of wn corresponding to unbounded
intervals are zero, the supremum in the above expression can be written explicitly as

sup
s∈D

(s,wn)U =
∑
i,j,c

lci,j + oci,j
2

(wn)
c
i,j +

∣∣∣∣o
c
i,j − lci,j

2
(wn)

c
i,j

∣∣∣∣.
Combining this with (4.16) and the estimate (4.13) and assuming that Tn ≥ ‖û‖r and (Cn)

c
i,j ≥

|ŵc
i,j|, the estimate (4.15) follows. Finally, due to convergence of the iterates and γ > 1, both

Tn ≥ ‖û‖r and (Cn)
c
i,j ≥ |ŵc

i,j| are satisfied after finitely many iterations.
This allows us, for given ε > 0, to use G(xn, yn) < ε as stopping criterion and provides, at

least in the limit, a suitable estimate of the error in terms of functional values. Note that we
cannot expect to get the estimate

G(xn, zn) ≥ F (Kxn)− TGV2
α(û) ≥ 0

since, as already mentioned, the iterates (un)n are only contained in the data set UD in the
limit, and thus it is possible that F (Kxn) < TGV2

α(û). This was also observed in numerical
experiments.D
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4.3. Numerical experiments. The aim of this subsection is to provide numerical results
obtained with our framework for improved decompression of JPEG 2000 images. We used
Algorithm 3 with adaptive stepsize choice, θ = 0.95, and a stepsize initialization of σ = τ = 1/3
for all experiments in this section.

As stopping rule, we use a normalization of the modified primal-dual gap G as in (4.14),
defined by

(4.17) G(xn, yn) = G(xn, yn)
N2

,

with N2 the number of image pixels. As for the application to JPEG decompression, the
normalization is motivated by making G image size independent and getting an estimate on
an average pixel error; remembering that, in the limit, we have the estimate

0 ≤ F (xn) + IDCn
(Wun)− TGV2

α(û) ≤ G(xn, yn).

In contrast to the JPEG decompression setting, we did not implement CPU or GPU
optimized code for the TGV-based JPEG 2000 decompression algorithm. Considering com-
putation times, however, one could expect that each iteration step of an optimized JPEG
2000 decompression scheme would take about as long as for the JPEG decompression setting.
Indeed, from the computational viewpoint, the only considerable difference is that instead of
a Block-DCT transform, a wavelet transform is used.

Primal-dual gap parameters. As for the application to JPEG decompression, we again
have free choice of the parameters γ and r for evaluation of the modified primal-dual gap:
Figure 3 evaluates different choices of γ and r. As can be seen in the left plot the choice
γ = 0 violates the estimate (4.15), but the choice γ = 1.001, r = 2 does not. The observation
that, in contrast to JPEG decompression, the choice γ = 0 is not feasible can be explained by
the fact that this time the unbounded data part, and consequently the choice of γ, has much
more influence. As can be seen in Figure 3 on the right, even not violating estimate (4.15),
the choices γ = 1.001 and r = 2 result again in the lowest modified primal-dual gap. Thus,
we used this choice for all subsequent experiments.

Experimental results for decompression. We now consider numerical results obtained
with the proposed method for different JPEG 2000 compressed images. If not mentioned
otherwise, we always require the normalized modified primal-dual gap to be below 10−1 as
stopping criterion and again fix the ratio between α0 and α1 for the evaluation of the TGV2

α

functional as α0
α1

=
√
2 based on empirical observations.

Figure 4 compares the standard reconstruction with the TGV-based reconstruction. As
one can see, in the TGV-based reconstruction, all wavelet artifacts have been removed while
edges are kept sharp. In general the reconstruction quality is strongly improved and yields
more natural and visually more appealing images. The two top rows of Figure 4 show a
compression and reconstruction of the same parrot image, once without tiling and once using
four tiles. Even at the same bit rate, the image with tiling looks worse, as the tile boundaries
are clearly visible. In the improved reconstruction, these artificial edges as well as the stronger
wavelet artifacts have been removed completely. But also the improved reconstruction qualityD
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Figure 3. Left: Comparison of modified primal-dual gap for γ = 1.001, r = 2, and γ = 0 to difference of
TGV(uk)+IDCk

(uk) and optimal TGV value (obtained with adaptive stepsize and 15000 iterations). As one can
see, the modified primal-dual gap with γ = 0 violates the estimate G(xk, yk) ≥ TGV(uk)+IDCk

(Wuk)−TGV(û).
Right: Difference of modified primal-dual gap for different choices of γ, r to modified primal-dual gap obtained
with γ = 0.

is slightly worse when using multiple tiles. SSIM values are again higher for the proposed
method. For the two parrot image, however, the standard method yields higher PSNR values.
This is not in accordance with the gain in visual image quality by removing ringing and
blocking artifacts and can be explained by the �2 distance being a measure of absolute rather
than qualitative differences. The larger number of iterations (3975, 4580, and 5056 for the two
parrots and the peppers image, respectively), compared to JPEG reconstruction, necessary to
satisfy the stopping rule might be due to the unboundedness of some data intervals for JPEG
2000 decompression. However, as we will see in Figure 6, this bound is merely important
to ensure optimality; in practical applications a much lower iteration number is sufficient to
obtain a reconstruction visually almost indistinguishable from the optimal one.

Figure 5 allows a more detailed comparison of the standard and TGV-based reconstruction
for a color test image. Again, compression artifacts have been removed and the TGV-based
reconstruction yields a much higher visual image quality. Also, as one can see in the difference
images, the total energy of the error has been significantly reduced with our method and the
error is of a less visible type.

Figure 6 now allows us to compare the reconstruction quality for the parrot image by
performing fewer iterations. It depicts the standard decompression and reconstructions ob-
tained using 100 iterations, G(xn, yn) < 1 (836 iterations), and again G(xn, yn) < 0.1 (3975
iterations) as stopping rule. As one can see, even after 100 iterations the JPEG 2000 artifacts
are already removed and the image is comparable to the optimal solution at 4111 iterations.
This is also indicated by the SSIM and PSNR values depicted in the figure caption. While
the SSIM values of the reconstructed images coincide up to the third decimal for all three
stopping criteria, the highest PSNR value is achieved already after 100 iterations. However,
in contrast to JPEG decompression, for such suboptimal reconstructions a perfect fit to dataD
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Figure 4. Left: Standard decompression. Right: TGV-based reconstruction obtained with normalized
modified primal-dual gap below 10−1 as stopping criterion. From top to bottom: Parrot image at 0.3 bpp (256 ×
256 pixels, 3975 iterations), parrot image with tiling at 0.3 bpp (256×256 pixels, 4580 iterations), peppers image
at 0.15 bpp (512 × 512 pixels, 5056 iterations). [SSIM/PSNR] values: Parrot standard: [0.935/30.17], parrot
TGV [0.936/29.67], Tiled parrot standard: [0.914/27.56], Tiled parrot TGV: [0.916/26.94], peppers standard:
[0.957/27.03], peppers TGV [0.960/27.26].D
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2878 KRISTIAN BREDIES AND MARTIN HOLLER

Figure 5. Left: Standard decompression. Right: TGV-based reconstruction. Top: Color test image at 0.6
bpp (256× 256 pixels, 4144 iterations). Bottom: Visualization of the pointwise reconstruction error (logarithmic
scale). [SSIM/PSNR] values: Standard: [0.966/30.16], TGV: [0.987/32.43].

cannot be ensured and is not satisfied in practice.

As the last experiment in this section, we aim at comparing our method to other ex-
isting variational approaches. Such a comparison can, however, not be carried out for the
decompression of actual JPEG 2000 images since, as mentioned in the introduction, existing
variational methods are not capable of processing actual JPEG 2000 compressed data. Still,
the methods of [34, 35, 14, 27, 15] are quite related, as they provide variational approaches for
wavelet inpainting. To this aim, the works [34, 14, 27, 15] employ TV regularization, while the
approach of Zhang and Chan [35] uses a nonlocal total variation (NLTV) as image prior. Fig-
ure 7 compares second order TGV regularization to both TV and NLTV regularization. ForD
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Figure 6. Decompression of parrot image (0.3 bpp, 256× 256 pixels) using only a few iterations. Top left:
Standard decompression; top right: TGV regularized decompression after 100 iterations; bottom left and right:
TGV regularized decompression obtained with G(xn, yn) < 1 (836 iterations) and G(xn, yn) < 0.1 (3975 itera-
tions) as stopping criterion, respectively. [SSIM/PSNR] values: Standard: [0.935/30.17], TGV 100 iterations:
[0.936/29.91], TGV G(xn, yn) < 1: [0.936/29.73], TGV G(xn, yn) < 0.1: [0.936/29.67].
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2880 KRISTIAN BREDIES AND MARTIN HOLLER

Figure 7. Reconstruction from 10% of the highest wavelet coefficients of the parrot image. Top left: Zero-fill
inverse wavelet transform. Top right: Original parrot image. Lines 2–4: Variational reconstruction and error
plot. Line 2: TV regularized. Line 3: NLTV regularized. Line 4: TGV regularized. [SSIM/PSNR] values:
Inverse wavelet transform: [0.922/33.67], TV: [0.889/30.38], NLTV: [0.912/30.65], TGV: [0.924/32.65].D
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the TV approach, we use the same primal-dual based implementation as for the TGV meth-
ods. For the NLTV approach, we use the implementation provided on the webpage of one
of the authors (see http://math.sjtu.edu.cn/faculty/xqzhang/). To make the NLTV imple-
mentation applicable, we generated wavelet data by performing a CDF 9/7 wavelet transform
and keeping only 10% of the coefficients. Reconstruction with all methods was then carried
out by fixing the known wavelet coefficients and not putting any restrictions on the unknown
coefficients. The results can be found in Figure 7, which shows the original, fully sampled
image, the direct inverse by setting the unknown coefficients to zero, results obtained with
different regularization approaches, and error maps. While all methods are able to remove
wavelet artifacts, the TV method shows a typical staircasing behavior. This effect is reduced
in the NLTV method, which improves image quality; however, parts of the parrot head and
the background still show artificial piecewise constant regions. It is also notable that, at the
bottom left corner of the image, the NLTV method yields quite a large deviation from the
original image. This might be explained by the fact that the NLTV implementation uses an
iterative update of the weights, a procedure which makes the overall problem nonconvex and
hence does not allow convergence guarantees. It is also notable that the TGV-based method
significantly outperforms the other variational methods in terms of SSIM and PSNR error
measures; however, the straightforward inverse wavelet transform still yields the best PSNR
values.

5. Variational image zooming.

5.1. Discrete framework. This section deals with a discrete version of the variational
zooming approach as described in [9, subsection 4.4]. For simplicity, we consider only grayscale
images and define U = R

N×N , N ∈ N, to be the space of discrete, high resolution images.
Given a Riesz basis (ai,j)i,j of U , we define a subsampling operator A : RN×N → R

M×M with
M < N as

(Au)i,j = (ai,j, u)U for 0 ≤ i, j < M.

Our goal is to perform a TGV regularized inversion of this type of subsampling, i.e., given
low resolution image data (di,j)i,j, to find an image u ∈ U minimizing the TGV2

α function as
in (2.3) such that

(Au)i,j = di,j for all 0 ≤ i, j < M.

A particular case of such a setting, which has also been considered in [7], arises when
choosing (ai,j)i,j to be a wavelet basis of U , which is, for a given resolution level R, again
denoted by

(5.1) (ΦR,k)k ∪ (Ψj,k)j,k.

Then, possibly shifting resolution levels, we can choose M = 2−RN and define A to map high
resolution images u ∈ U to inner products with the scaling functions, i.e., Au = ((u,ΦR,k)U )k
for 0 ≤ k < M2. As these inner products correspond to a local averaging, we interpret each
(u,ΦR,k) as pixel value, and hence A indeed maps images u ∈ U to low resolution images

Au ∈ R
2−RN×2−RN (see also [9, Figure 5]). In particular, when choosing (ai,j)i,j to be a Haar

wavelet basis, (u,ΦR,k) is a local average on a patch of size 2R at position k.D
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Alternatively, one can also incorporate data from a given JPEG or JPEG 2000 compressed
file to obtain a combined decompression and zooming approach. Choosing (ai,j)i,j for 0 ≤
i, j < N to be either a blockwise cosine basis or a tilewise wavelet basis with CDF 9/7 or
Le Gall 5/3 wavelets, we can assume that a given file describes only a low resolution image
u ∈ R

M×M by providing interval bounds Ji,j on the coefficients (ai,j , u)U for 0 ≤ i, j < M
and reconstruct a high resolution image u ∈ U such that (Au)i,j ∈ Ji,j for 0 ≤ i, j < M .

In both cases, the proposed zooming approach can be realized by solving

(5.2) min
u∈U

TGV2
α(u) + IUD

(u),

where

(5.3) UD = {u ∈ U | (Au)i,j ∈ Ji,j for 0 ≤ i, j < M},

with Ji,j either being point intervals or intervals that are given from a compressed JPEG or
JPEG 2000 file.

Now since the setting we used for the discrete minimization problem for JPEG 2000
decompression does not exclude the case of point intervals, all results, such as existence of a
solution and the optimality condition, apply. Consequently, also the saddle point problem

(5.4) min
x∈X

max
z∈Z

(Kx, z) − F∗(z),

with X,Z,K,F defined as in subsection 4.1, where UD is now given as in (5.3), is equivalent to
(5.2) and can be solved by the primal-dual algorithm (Algorithm 3). Also, the considerations
concerning the norm of K and, consequently, the stepsizes σ, τ as well the estimates on the
modified primal-dual gap G defined in (4.14) directly apply to the variational zooming model.
In applications where the basis (ai,j)i,j is orthogonal, such as when (ai,j)i,j is a block cosine
basis or a Haar wavelet basis, also the simpler algorithmic framework of JPEG compression as
in section 3.1 applies. The modified primal-dual gap given there, however, has to be modified
accordingly to account for unbounded intervals.

5.2. Numerical experiments. This section presents numerical results for variational im-
age zooming and combined decompression and zooming. As stopping rule for our experiments,
we require the normalized modified primal-dual gap as in (4.17) to be below 10−1 for all ex-
periments. Motivated by the discussion in subsection 4.3 we again use adaptive stepsizes
initialized with σ = τ = 1/3 and γ = 1.001, and r = 2 for the evaluation of the modified
primal-dual gap. However, in contrast to the decompression setting, we now fix the ratio
between α0 and α1 for evaluation of the TGV functional to 4 rather than

√
2 since, as we

experienced, this choice improves reconstruction quality in zooming applications.
Figure 8 shows results for the fourfold magnification of a patch of the Barbara image

containing a stripe structure and a synthetic test image. For better comparability, we used
the original image rather than a downsampled version. Thus, the downsampling procedure is
not known and cannot favor any particular method, but also no original data is available. As
one can see for the Barbara image, a Lanczos 2 filter [17] based zooming leads to blurring of
the stripes, while our method yields a reconstruction appearing much sharper. Using the CDFD
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Figure 8. Top left: Low resolution and box-upsampled patch of Barbara images. Top right: 4 times
magnifications by linear filtering with Lanczos 2 filter. Center left and right: 4 times magnification by TGV-
based variational zooming using the Haar (1948 iterations) and CDF 9/7 wavelet (1773 iterations) to model
subsampling, respectively. Bottom: 4 times magnification with box-upsampling (left) and TGV-based variational
zooming using the Haar wavelet (right, 4680 iterations) of a test image.
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Figure 9. Upsampling by pixel repetition (left) and TGV2
α regularized, combined decompression and zooming

(right) for a low resolution, JPEG (top, 3276 iterations) and JPEG 2000 (bottom, 11893 iterations) compressed
image (both compressed to 2.96 bpp). Image by [22], licensed under CC-BY-2.0 (http://creativecommons.org/
licenses/by/2.0/). [SSIM/PSNR] values: JPEG standard: [0.854/26.63], JPEG TGV: [0.931/31.58], JPEG
2000 standard: [0.853/24.23], JPEG 2000 TGV: [0.913/31.15].

9/7 wavelets results in the best reconstruction quality. In particular, we observe that not only
are the edges preserved, but also the geometrical information is extended in a natural manner
for the CDF 9/7 wavelet (as opposed to the Haar wavelet, where “geometrical staircasing”
occurs). For the test image at the bottom of Figure 8, we can observe that, as one would
expect, the Haar wavelet based approach keeps the block structure of the edges of the objects,
but it leads to sharp object boundaries and naturally smooths homogeneous regions.

Figure 9 then shows results for the combined decompression and eightfold magnification ofD
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JPEG and JPEG 2000 decompressed images. As one can see, even in the difficult situation of
having only highly subsampled and compressed data available, our method performs reason-
ably well. While with standard box upsampling the artifacts resulting from compression are
magnified, they do not appear in the TGV regularized upsampled images. Also, sharp bound-
aries of the hand are recovered reasonably well. Fine texture is, of course, lost due to high
subsampling. As can also be seen in the figure caption, the gain in SSIM and PSNR values is
quite significant for both JPEG and JPEG 2000 combined decompression and zooming.

6. Conclusions. We have presented different applications of a general variational model
for TGV regularized image reconstruction. After the model was analyzed in the function
space setting in Part I [9], we have focused on the discrete setting and have obtained a
practical realization for JPEG and JPEG 2000 decompression and a variational zooming
method. In particular, a uniform algorithmic framework allowing us to obtain a globally
convergent algorithm for all applications has been presented. To ensure a reasonably fast
convergence and optimality of the obtained solutions, we have proposed an adaptive stepsize
strategy and a duality-based stopping criterion. For JPEG decompression, we have also
developed a multicore CPU and GPU implementation that shows our approach to be suited
for practical application. Numerical experiments further allow us to compare results obtained
with TV and second and third order TGV regularization and confirm a high visual quality of
our obtained reconstruction.
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