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Abstract

In the present contribution the sliding mode control (SMC) problem for a phase-
field model of Caginalp type is considered. First we prove the well-posedness and
some regularity results for the phase-field type state systems modified by the state-
feedback control laws. Then, we show that the chosen SMC laws force the system to
reach within finite time the sliding manifold (that we chose in order that one of the
physical variables or a combination of them remains constant in time). We study
three different types of feedback control laws: the first one appears in the internal
energy balance and forces a linear combination of the temperature and the phase to
reach a given (space dependent) value, while the second and third ones are added
in the phase relation and lead the phase onto a prescribed target. While the control
law is non-local in space for the first two problems, it is local in the third one, i.e.,
its value at any point and any time just depends on the value of the state.

Key words: phase field system, nonlinear boundary value problems, phase transi-
tion, sliding mode control, state-feedback control law.
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2 Sliding modes for a phase-field system

1 Introduction

Sliding mode control (SMC) has for many years been recognized as one of the fundamental
approaches for the systematic design of robust controllers for nonlinear complex dynamic
systems that operate under uncertainty. Moreover, SMC is nowadays considered a classical
tool for the regulation of continuous - or discrete - time systems in finite-dimensional
settings (cf., e.g., the monographs [1, 10, 11, 14, 19, 33, 34, 36]).

The main advantage of sliding mode control is that it allows the separation of the
motion of the overall system in independent partial components of lower dimensions, and
consequently it reduces the complexity of the control problem. The design of feedback
control systems with sliding modes implies the design of suitable control functions en-
forcing motions along ad-hoc manifolds. Hence, the main idea behind this scheme is first
to identify a manifold of lower dimension (called the sliding manifold) where the control
goal is fulfilled and such that the original system restricted to this sliding manifold has a
desired behavior, and then to act on the system through the control in order to constrain
the evolution on it, that is, to design a SMC-law that forces the trajectories of the system
to reach the sliding surface and maintains them on it.

Sliding mode controls, while being relatively easy to design, feature properties of both
robustness with respect to unmodelled dynamics and insensitivity to external disturbances
that are quite attractive in many applications. Hence, in the last years there has been
a growing interest in the extension of the well developed methods for finite-dimensional
systems described by ODEs (cf., e.g., [24–27]) to the control of infinite-dimensional dy-
namical systems. While in some early works [27–29] only special classes of evolutions were
considered, the theoretical development in a general Hilbert space setting or for PDE sys-
tems has gained attention only in the last ten years. In this respect, we can quote the
papers [6], [23], and [35] dealing with sliding modes control for semilinear PDEs. In par-
ticular, in [6] the stabilization problem of a one-dimensional unstable heat conduction
system (rod) modeled by a parabolic partial differential equation, powered with a Dirich-
let type actuator from one of the boundaries was considered. A delay-independent SMC
strategy was proposed in [35] to control a class of quasi-linear parabolic PDE systems
with time-varying delay, while in [23] the authors study a sliding mode control law for a
class of parabolic systems where the control acts through a Neumann boundary condition
and the control space is finite-dimensional.

In the present contribution we would like to employ – to the best of our knowledge for
the first time in the literature – a SMC technique for a nonlinear PDE system of phase-
field type. In particular, we consider the following rather simple version of the phase-field
system of Caginalp type (see [5]):

∂t
(
ϑ+ ℓϕ

)
− κ∆ϑ = f in Q := (0, T )× Ω (1.1)

∂tϕ− ν∆ϕ + F ′(ϕ) = γϑ in Q (1.2)

where Ω is the three-dimensional domain in which the evolution takes place, T is some
final time, ϑ denotes the relative temperature around some critical value that is taken to
be 0 without loss of generality, and ϕ is the order parameter. Moreover, ℓ, κ, ν and γ are
positive constants, f is a source term and F ′ represents the derivative of a double-well
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potential F . Typical examples are

Freg(r) =
1

4
(r2 − 1)2 , r ∈ R (1.3)

Flog(r) =
(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c0 r

2 , r ∈ (−1, 1) (1.4)

Fobs(r) = I(r)− c0 r
2 , r ∈ R (1.5)

where c0 > 1 in (1.4) in order to produce a double well, while c0 is an arbitrary positive
number in (1.5), and the function I in (1.5) is the indicator function of [−1, 1], i.e., it takes
the values 0 or +∞ according to whether or not r belongs to [−1, 1]. The potential (1.3)
and (1.4) are the usual classical regular potential and the so-called logarithmic potential,
respectively. More generally, the potential F could be just the sum

F = β̂ + π̂,

where β̂ is a convex function that is allowed to take the value +∞, and π̂ is a smooth
perturbation (not necessarily concave). In such a case, β̂ is supposed to be proper and
lower semicontinuous so that its subdifferential is well-defined and can replace the deriva-
tive which might not exist. This happens in the case (1.5) and equation (1.2) becomes a
differential inclusion.

The above system is complemented by initial conditions like ϑ(0) = ϑ0 and ϕ(0) = ϕ0

and suitable boundary conditions. Concerning the latter, as very usual we take the
homogeneous Neumann condition for both ϑ and ϕ, that is,

∂nϑ = 0 and ∂nϕ = 0 on Σ := (0, T )× Γ

where Γ is the boundary of Ω and ∂n is the (say, outward) normal derivative.

Equations (1.1)–(1.2) yield a system of phase field type. Such systems have been
introduced (cf. [5]) in order to include phase dissipation effects in the dynamics of moving
interfaces arising in thermally induced phase transitions. In our case, we move from the
following expression for the total free energy

F(ϑ, ϕ) =

∫

Ω

(
−
c0
2
ϑ2 − γϑϕ+ F (ϕ) +

ν

2
|∇ϕ|2

)
(1.6)

where c0 and γ stand for specific heat and latent heat coefficients, respectively, with a
terminology motivated by earlier studies (see [9]) on the Stefan problem; we refer to the
monography [13] which deals with phase change models as well. In this connection, let
us introduce the enthalpy e by

e = −
δF

δϑ
(− the variational derivative of F with respect to ϑ)

that is e = c0ϑ+ γϕ. Then, the governing balance and phase equations are given by

∂te+ div q = f̃ (1.7)

∂tϕ+
δF

δϕ
= 0 (1.8)

where q denotes the thermal flux vector, f̃ represents some heat source and the variational
derivative of F with respect to ϕ appears in (1.8). Hence, (1.8) reduces exactly to (1.2)
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along with the homogeneous Neumann boundary condition for ϕ. Moreover, if we assume
the classical Fourier law q = −κ̃∇ϑ, then (1.7) is nothing but the usual energy balance

equation of the Caginalp model [5]. By setting ℓ := γ/c0, κ := κ̃/c0, f := f̃ /c0, we
easily see that (1.1) follows from (1.7) and the Neumann boundary condition for ϑ is a
consequence of the no-flux condition q · n = 0 on the boundary. We also point out that
the above phase field system has received a good deal of attention in the last decades and
it can be deduced as a special gradient-flow problem (cf., e.g., [30] and references therein).

As already noticed, the well-posedness, the long-time behavior of solutions, and also
the related optimal control problems have been widely studied in the literature. We refer,
without any sake of completeness, e.g., to [4, 12, 16, 20, 22] and references therein for the
well-posedness and long time behavior results and to [7, 8, 17, 18] for the related optimal
control problems.

The present paper is also related to the control problems, but it goes in the direction
of designing sliding mode controls for the above phase-field system. Indeed our main
objective is to find out some state-feedback control laws (ϑ, ϕ) 7→ u(ϑ, ϕ) that can be
inserted in one of the equations in order that the dynamics of the system modified in this
way forces the value (ϑ(t), ϕ(t)) of the solution to reach some manifold of the phase space
in a finite time and then lie there with a sliding mode.

The first analytical difficulty consists in deriving the equations governing the sliding
modes and the conditions for this motion to exist. The problem needs the development
of special methods, since the conventional theorems regarding existence and uniqueness
of solutions are not directly applicable. Moreover, we need to manipulate the system
through the control in order to constrain the evolution on the desired sliding manifold.
In particular, we study three cases.

In the first one, a feedback control is added to the internal energy balance equation
(1.1) in order to force a linear relationship between ϑ and ϕ; in the second case, a pre-
scribed distribution ϕ∗ of the order parameter is forced by means of a feedback control
added to the phase dynamics (1.2). Notice that both these choices can be considered
physically meaningful in the framework of phase transition processes, since in both cases
the quantities we are forcing to reach time-independent values may have a physical mean-
ing. In the first problem, we can take the internal energy as a particular case, while the
target ϕ∗ we force for the phase parameter in the second problem could represent one
of the so called pure phases (e.g., pure water or pure ice in a water-ice phase change
process). Moreover, in both cases we have reduced the problem to a simplified dynamics
involving only the evolution of ϕ in the first case and only of ϑ in the second one (cf. also
Remark 2.8).

In each of the above problems, the control law we introduce is non-local in space, i.e.,
the value at (t, x) of the control depends on the whole state (ϑ(t, · ), ϕ(t, · )) at the time t
and not only on the value (ϑ(t, x), ϕ(t, x)). The objective of the third problem is to design
a control law that reaches the same target as in the second one and is local at the same
time. However, such a problem looks much more difficult and we can ensure the existence
of the desired sliding mode only under a suitable compatibility condition on Ω.

The paper is organized as follows. In the next section, we list our assumptions, state
the problem in a precise form and present our results. The last two sections are devoted
to the corresponding proofs. Section 3 deals with well-posedness and regularity, while the
existence of the sliding modes is proved in Section 4.
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2 Statement of the problem and results

In this section, we describe the problem under study and present our results. As in the
Introduction, Ω is the body where the evolution takes place. We assume

Ω ⊂ R
3 to be open, bounded, connected, and smooth

and write |Ω| for its Lebesgue measure. Moreover, Γ and ∂n still stand for the boundary
of Ω and the outward normal derivative, respectively. Given a finite final time T > 0, we
set for convenience Q := (0, T )×Ω. Now, we specify the assumptions on the structure of
our system. We assume that

ℓ, κ, ν, γ ∈ (0,+∞) (2.1)

β̂ : R → [0,+∞] is convex, proper and l.s.c. with β̂(0) = 0 (2.2)

π̂ : R → R is a C1 function and π̂ ′ is uniformly Lipschitz. (2.3)

We set for brevity
β := ∂β̂ and π := π̂ ′ (2.4)

and denote by D(β) and D(β̂) the effective domains of β and β̂ , respectively. Next, in
order to simplify notations, we set

V := H1(Ω), H := L2(Ω), W := {v ∈ H2(Ω) : ∂nv = 0} (2.5)

and endow the spaces V and H with their standard norms ‖ · ‖V and ‖ · ‖H. On the
contrary, we write ‖ · ‖W for the norm in W defined by

‖v‖2W = ‖v‖2H + |Ω|4/3‖∆v‖2H for every v ∈ W (2.6)

and we term CΩ the best constant realizing the inequality

‖v‖∞ ≤ CΩ ‖v‖W for every v ∈ W. (2.7)

The reason of this choice will be explained later on (see the forthcoming Remark 2.11).
Now, we just notice that ‖ · ‖W is equivalent to the norm induced on W by the standard
one in H2(Ω) (thanks to the regularity theory of elliptic equations) and that the constant
CΩ actually exists due to the continuous embedding H2(Ω) ⊂ C0(Ω) (since Ω ⊂ R

3 is
bounded and smooth) and only depends on Ω (see, e.g., [15]). Finally, for the norms both
in L∞(Ω) and in L∞(Q) we use the same symbol ‖ · ‖∞ whenever no confusion can arise.

Furthermore, let

Sign : H → 2H be the subdifferential of the map ‖ · ‖H : H → R (2.8)

i.e.,

Sign v =
v

‖v‖H
if v ∈ H and v 6= 0 (2.9)

Sign 0 is the closed unit ball of H . (2.10)

Thus, β and Sign are maximal monotone operators on R and H , respectively (see, e.g., [2,
Thm. 2.8, p. 47]). In the sequel, we use the same symbol β to denote the maximal
monotone operator induced on L2-spaces.
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Yosida regularizations of β and Sign. Let us introduce the Yosida regularization
βε : R → R and Signε : H → H at level ε > 0 (see, e.g., [2, formulas (2.26), p. 37]) as well
as the Moreau regularization of ‖ · ‖H (see, e.g., [2, formula (2.38), p. 48])

‖v‖H, ε := min
w∈H

{
1
2ε
‖w − v‖2H + ‖w‖H

}
=

∫ ‖v‖H

0

min{s/ε, 1} ds for v ∈ H. (2.11)

For the reader’s convenience, we sketch the justification of the last equality of (2.11). We
write ‖ · ‖ instead of ‖ · ‖H for simplicity. For w ∈ H and y ≥ 0 we set

G(w) :=
1

2ε
‖w − v‖2 + ‖w‖ and g(y) :=

1

2ε
(y − ‖v‖)2 + y

and observe that the triangle inequality
∣∣‖w‖−‖v‖

∣∣ ≤ ‖w− v‖ yields G(w) ≥ g(‖w‖) for
every w ∈ H . Now, from one side, one easily checks that

min
y≥0

g(y) =
1

2ε
‖v‖2 if ‖v‖ ≤ ε and min

y≥0
g(y) = ‖v‖ −

ε

2
if ‖v‖ > ε.

This means that miny≥0 g(y) coincides with the right-hand side of (2.11). On the other
hand, we have

G(0) =
1

2ε
‖v‖2 in any case, and G

(
(1− ε/‖v‖)v

)
= ‖v‖ −

ε

2
if ‖v‖ > ε.

Thus, minw∈H G(w) = miny≥0 g(y) and (2.11) is proved. Next, we recall that βε and Signε
are monotone and that (see, e.g., [2, Prop. 2.2 (ii), p. 38] and [2, Thm. 2.9, p. 48] for some
of these properties)

Signε v is the gradient at v of the C1 functional ‖ · ‖H,ε (2.12)

Signε v =
v

max{ε, ‖v‖H}
for every v ∈ H (2.13)

(Signε v, v)H ≥ ‖v‖H −
ε

4
for every v ∈ H (2.14)

|βε(r)| ≤ |β◦(r)| for every r ∈ D(β), where

β◦(r) is the element of β(r) having minimum modulus. (2.15)

We point out that the Young inequality has been used to derive (2.14).

At this point, we describe the state system modified by the state-feedback control
law and we study two cases. In the first one, a feedback control is added to the first
equation (1.1) in order to force a linear relationship between ϑ and ϕ; in the second case,
a prescribed distribution of the order parameter is forced by means of a feedback control
that is added to equation (1.2). In principle, for the data, we require that

f ∈ L2(Q), ϑ0 ∈ V, ϕ0 ∈ V and β̂(ϕ0) ∈ L1(Ω). (2.16)

Given ρ > 0 and some target that depends on the case we want to consider, we look for
a quadruplet (ϑ, ϕ, ξ, σ) satisfying at least the regularity requirements

ϑ, ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.17)

ξ ∈ L2(0, T ;H) and σ ∈ L∞(0, T ;H), (2.18)
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and solving the related system we introduce at once. We notice that the homogeneous
Neumann boundary conditions for both ϑ and ϕ are contained in (2.17) (see the definition
(2.5) of W ). The problems corresponding to the cases sketched above are the following.

Given η∗ ∈ W and α ∈ R, the first system is

∂t
(
ϑ+ ℓϕ

)
− κ∆ϑ = f − ρσ a.e. in Q (2.19)

∂tϕ− ν∆ϕ + ξ + π(ϕ) = γϑ a.e. in Q (2.20)

ξ ∈ β(ϕ) a.e. in Q (2.21)

σ(t) ∈ Sign(ϑ(t) + αϕ(t)− η∗) for a.a. t ∈ (0, T ) (2.22)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 . (2.23)

In the sequel, we also term such problem Problem (A).

The second problem, which we call Problem (B), depends on a given ϕ∗ ∈ W and
consists in the equations

∂t
(
ϑ+ ℓϕ

)
− κ∆ϑ = f a.e. in Q (2.24)

∂tϕ− ν∆ϕ + ξ + π(ϕ) = γϑ− ρσ a.e. in Q (2.25)

ξ ∈ β(ϕ) a.e. in Q (2.26)

σ(t) ∈ Sign(ϕ(t)− ϕ∗) for a.a. t ∈ (0, T ) (2.27)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 . (2.28)

The last case, termed Problem (C), is the same as the previous one with the following
difference: the non-local operator Sign is replaced by the local sign : R → 2R defined by

sign r :=
r

|r|
if r 6= 0 and sign 0 := [−1, 1]. (2.29)

Notice that sign is the subdifferential of the real function r 7→ |r| and thus is maximal
monotone. For the sake of clarity, we write Problem (C), explicitly. Given ϕ∗ ∈ W , we
look for a quadruplet (ϑ, ϕ, ξ, σ) satisfying

∂t
(
ϑ+ ℓϕ

)
− κ∆ϑ = f a.e. in Q (2.30)

∂tϕ− ν∆ϕ + ξ + π(ϕ) = γϑ− ρσ a.e. in Q (2.31)

ξ ∈ β(ϕ) a.e. in Q (2.32)

σ ∈ sign(ϕ− ϕ∗) a.e. in Q (2.33)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 . (2.34)

Here are our results on the well-posedness of the above problems.

Theorem 2.1. Assume (2.1)–(2.3), (2.16),

η∗ ∈ W and α ∈ R. (2.35)

Then, for every ρ > 0, Problem (A) has at least a solution (ϑ, ϕ, ξ, σ) satisfying (2.17)–
(2.18) and the estimates

‖ϑ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖H1(0,T ;H)∩L2(0,T ;W )

+ ‖ξ‖L2(0,T ;H) + ‖σ‖L∞(0,T ;H) ≤ C1 (2.36)

‖ϑ‖H1(0,T ;H)∩L2(0,T ;W ) ≤ C2

(
ρ1/2 + 1

)
(2.37)
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where C1 and C2 depend only on the quantities involved in assumptions (2.1)–(2.3), (2.16)
and (2.35). Moreover, the solution is unique if α = ℓ. Furthermore, if in addition

ϕ0 ∈ W and β◦(ϕ0) ∈ H (2.38)

then, there exists a solution that also satisfies

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) and ξ ∈ L∞(0, T ;H) (2.39)

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ C3

(
ρ1/2 + 1

)
(2.40)

where C3 depends on the norms related to (2.38) as well. In particular, ϕ is bounded.
Finally, the component ϑ of any solution satisfying all the above regularity requirements
is bounded whenever ϑ0 ∈ V ∩ L∞(Ω) and f ∈ L∞(0, T ;H).

Theorem 2.2. Assume (2.1)–(2.3), (2.16), as well as

ϕ∗ ∈ W and β◦(ϕ∗) ∈ H . (2.41)

Then, for every ρ > 0, Problem (B) has at least a solution (ϑ, ϕ, ξ, σ) satisfying (2.17)–
(2.18) and the estimates

‖ϑ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖σ‖L∞(0,T ;H) ≤ C4 (2.42)

‖ϑ‖H1(0,T ;H)∩L2(0,T ;W ) + ‖ϕ‖H1(0,T ;H)∩L2(0,T ;W )

+ ‖ξ + ρσ‖L2(0,T ;H) ≤ C5

(
ρ1/2 + 1

)
(2.43)

where C4 and C5 depend only on the quantities involved in assumptions (2.1)–(2.3), (2.16)
and (2.41). Furthermore, the components ϑ and ϕ of the solution are uniquely determined,
and ξ and σ are uniquely determined as well if β is single-valued.

A similar result holds for Problem (C). We present the corresponding statement in a
more accurate form for a reason that will be clear later on.

Theorem 2.3. Assume (2.1)–(2.3), (2.16) and (2.41). Then, for every ρ > 0, Prob-
lem (C) has at least a solution (ϑ, ϕ, ξ, σ) satisfying (2.17)–(2.18). Furthermore, the
components ϑ and ϕ of the solution are uniquely determined, and ξ and σ are uniquely
determined as well if β is single-valued. Finally, if the conditions

f ∈ H1(0, T ;H), ϑ0 ∈ W, ϕ0 ∈ W and β◦(ϕ0) ∈ H (2.44)

are assumed in addition, then (2.39) holds as well as

ϑ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ). (2.45)

In particular, both ϕ and ϑ are bounded. Moreover, the estimates

‖ϕ− ϕ∗‖∞ ≤ ρCstr CΩ|Ω|
7/6 + C6 (2.46)

‖ϑ‖∞ ≤ ρCstr CΩ|Ω|
7/6 + C7 (2.47)

hold true with a structural constant Cstr depending only on the physical parameters ℓ, κ,
ν and γ, the constant CΩ given by (2.7) and some constants C6 and C7 depending on the
structure of the systems, Ω, T and on the norms of the data involved.
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Remark 2.4. The above results are quite general. In particular, both potentials (1.3)
and (1.4) are certainly allowed and the multi-valued potential (1.5) has to be excluded just
in the parts of Theorems 2.2 and 2.3 regarding uniqueness for the pair (ξ, σ), which might
be not uniquely determined, in general. Concerning the constant Cstr of Theorem 2.3, we
will prove that we can take

Cstr = 2max
{61/2

ν
,

ℓ

κ1/2ν1/2
+

4ℓ

κ

}
. (2.48)

However, no sharpness is guaranteed at all.

For each of the first two problems, the existence of the desired sliding mode is ensured
for ρ large enough. For every T > 0 we have indeed

Theorem 2.5. Assume (2.1)–(2.3), (2.16), (2.35), (2.38) and f ∈ L∞(0, T ;H). Then,
for some ρ∗ > 0 and for every ρ > ρ∗, there exist a solution (ϑ, ϕ, ξ, σ) to problem (2.19)–
(2.23) and a time T ∗ ∈ [0, T ) such that

ϑ(t) + αϕ(t) = η∗ a.e. in Ω for every t ∈ [T ∗, T ]. (2.49)

Theorem 2.6. Assume (2.1)–(2.3), (2.16) and (2.41). Then, for some ρ∗ > 0 and
for every ρ > ρ∗, there exist a solution (ϑ, ϕ, ξ, σ) to problem (2.24)–(2.28) and a time
T ∗ ∈ [0, T ) such that

ϕ(t) = ϕ∗ a.e. in Ω for every t ∈ [T ∗, T ]. (2.50)

Remark 2.7. In the proof we give in Section 4, we compute possible values of ρ∗ and T ∗

that fit the conclusions of our results. For Problems (A) and (B), we can take respectively

ρ∗ := C2
A + 2CA +

2

T
‖ϑ0 + αϕ0 − η∗‖H and T ∗ :=

2‖ϑ0 + αϕ0 − η∗‖H
ρ− C2

A − 2CA

ρ∗ := 2CB +
2

T
‖ϕ0 − ϕ∗‖H and T ∗ :=

2‖ϕ0 − ϕ∗‖H
ρ− 2CB

where the constants CA and CB are constructed in the proofs of Theorems 2.1 and 2.2 in
order that

‖f − (ℓ− α)∂tϕ− κα∆ϕ− κ∆η∗‖L∞(0,T ;H) ≤ CA
(
ρ1/2 + 1

)

‖γϑ+ ν∆ϕ∗ − β◦(ϕ∗)− π(ϕ)‖L∞(0,T ;H) ≤ CB .

More precisely, we refer to (4.6)–(4.8) and (4.11)–(4.13) and we notice that our starting
point in those proofs is the validity of the analogous estimates for the solutions to the
approximating problems obtained by replacing the monotone operators by their Yosida
regularizations. It follows that the above values of ρ∗ and T ∗ depend continuously on the
potentials and on the physical parameters of the systems. We also observe that the time
T ∗ is roughly proportional to 1/ρ in both cases, whence it tends to zero as ρ tends to
infinity, i.e., the sliding mode can be forced to start as soon as one desires by prescribing
a sufficiently big factor ρ in front of the feedback control.

Remark 2.8. The minimal value of T ∗ of the first statement (if it is positive) also satisfies
the following property: the function t 7→ ‖ϑ(t) + αϕ(t) − η∗‖H is strictly decreasing
on [0, T ∗]. A similar remark holds for the function t 7→ ‖ϕ(t) − ϕ∗‖H in the second
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statement (and in the next one, at least under some reinforcement of the assumptions,
as shown in Remark 4.2). In each case, the dynamics of the system is simpler after the
time T ∗, since one of the unknowns can be eliminated by using the sliding mode condition.
For instance, in the second situation, the evolution of ϑ after T ∗ is ruled just by the heat
equation.

The situation for Problem (C) is different, since we can ensure the existence of the
desired sliding mode for ρ large enough only if further conditions are fulfilled. Namely,
we need a restriction involving the structure of the system and the domain Ω (that is why
we have written the statement of Theorem 2.3 in that form). Our result only involves the
component ϕ of the solution, and we recall that ϕ is uniquely determined.

Theorem 2.9. Assume (2.1)–(2.3), (2.16), (2.41), (2.44) and

∆ϕ∗ ∈ L∞(Ω) and β◦(ϕ∗) ∈ L∞(Ω). (2.51)

Let Cstr and CΩ be the constants appearing in (2.47) and in (2.7), respectively, and assume
that

γ CstrCΩ|Ω|
7/6 < 1. (2.52)

Then, for some ρ∗ > 0 and for every ρ > ρ∗, the following is true: if (ϑ, ϕ, ξ, σ) is a
solution to problem (2.30)–(2.34), there exists a time T ∗ ∈ [0, T ) such that

ϕ(t) = ϕ∗ a.e. in Ω for every t ∈ [T ∗, T ]. (2.53)

Remark 2.10. Assume that the constants Cstr, CΩ and C7 realize the inequalities (2.47)
and (2.52) (i.e., in contrast with the situation of Remark 2.7, just such inequalities are
required as a starting point). Then, as shown in the proof we perform in the last section,
possible values of ρ∗ and T ∗ that fit the conclusion of the above theorem are given by
(here L is the Lipschitz constant of π)

ρ∗ :=
γC7 + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ +M∗

π +M0/T

1− γ CstrCΩ|Ω|7/6
and T ∗ :=

M0

ρ− A(ρ)

where M∗
π := L(M0 + ‖ϕ∗‖∞) + |π(0)| , M0 := ‖ϕ0 − ϕ∗‖∞ and

A(ρ) := γ
(
CstrCΩ|Ω|

7/6ρ+ C7

)
+ ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ +M∗

π .

In particular, the last two sentences of Remark 2.7 also apply to the present case.

Remark 2.11. In order to understand the meaning of (2.52), let us assume that the
structure of the system is chosen, so that the physical constants are fixed, and let us
think of a class of open sets having the same shape. Precisely, we fix an open set Ω0 of
measure 1 and assume that Ω = x0 + λRΩ0 for some x0 ∈ R

3, λ > 0 and some rotation
R ∈ SO(3). Then λ = |Ω|1/3 and one easily checks that our definition (2.6) of ‖ · ‖W
yields CΩ = CΩ0

|Ω|−1/2, since the H-norms of v and of ∆v are properly balanced in the
norm ‖v‖W under a rescaling of a function v. Then, the smallness condition (2.52) means
that |Ω| is small enough. Indeed, the left-hand side of (2.52) becomes γCstrCΩ0

|Ω|2/3 in
the chosen class of domains.

In performing our a priori estimates in the remainder of the paper, we often account
for the Hölder inequality and the elementary inequalities (for arbitrary a, b ≥ 0)

(a+ b)1/2 ≤ a1/2 + b1/2, (a+ b)2 ≤ 2a2 + 2b2 and ab ≤ δa2 +
1

4δ
b2 (2.54)
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where δ > 0 in the latter (Young’s inequality). Moreover, we repeatedly use the notation

Qt := (0, t)× Ω . (2.55)

For simplicity, we usually omit dx, ds, etc. in integrals. More precisely, we explicitly
write, e.g., ds only if the variable s actually appears in the function under the integral
sign. Finally, while a particular care is taken in computing some constants, we follow
a general rule to denote less important ones, in order to avoid boring calculations. The
small-case symbol c stands for different constants independent of ρ but depending on Ω,
the final time T , the shape of the nonlinearities and on the constants and the norms of
the functions involved in the assumptions of our statements. The dependence on ρ will
be always written explicitly, indeed. Hence, the meaning of c might change from line to
line and even in the same chain of equalities or inequalities. On the contrary, we mark
precise constants which we can refer to by using different symbols, e.g., capital letters,
mainly with indices, like in (2.7).

3 Proof of the well-posedness results

This section is devoted to the proof of Theorems 2.1–2.3. However, as far as existence is
concerned, we confine ourselves to derive the formal a priori estimates that lead to the
desired regularity and just sketch how a completely rigorous proof could be performed.

3.1 Proof of Theorem 2.1

We start with problem (2.19)–(2.23) and transform it into an equivalent system in new
unknown functions. In order to argue in terms of the variable which the operator Sign
applies to, we set

η := ϑ+ αϕ− η∗ (3.1)

then, η has to satisfy the analog of (2.17) and the new problem is the following

∂t
(
η + (ℓ− α)ϕ

)
− κ∆η + κα∆ϕ = f + κ∆η∗ − ρσ a.e. in Q (3.2)

∂tϕ− ν∆ϕ + ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q (3.3)

ξ ∈ β(ϕ) a.e. in Q (3.4)

σ(t) ∈ Sign(η(t)) for a.a. t ∈ (0, T ) (3.5)

η(0) = ϑ0 + αϕ0 − η∗ and ϕ(0) = ϕ0 . (3.6)

First a priori estimate. We multiply (3.2) and (3.3) by η and ∂tϕ, respectively, sum
up and integrate over Qt with an arbitrary t ∈ (0, T ]. Then, we add ν

∫
Qt
ϕ∂tϕ =



12 Sliding modes for a phase-field system

(ν/2)
∫
Ω
(|ϕ(t)|2 − |ϕ0|

2) to both sides. With the help of (2.16) and (2.8), we infer that

1

2

∫

Ω

|η(t)|2 + κ

∫

Qt

|∇η|2 − κα

∫

Qt

∇ϕ · ∇η + ρ

∫ t

0

‖η(s)‖H ds

+

∫

Qt

|∂tϕ|
2 +

ν

2

∫

Ω

|∇ϕ(t)|2 +

∫

Ω

β̂(ϕ(t)) +
ν

2

∫

Ω

|ϕ(t)|2

≤ c− (ℓ− α)

∫

Qt

∂tϕ η +

∫

Qt

(
f + κ∆η∗

)
η

−

∫

Qt

π(ϕ) ∂tϕ+ γ

∫

Qt

(
η − αϕ+ η∗

)
∂tϕ+ ν

∫

Qt

ϕ∂tϕ.

Now, it is straightforward to use the linear growth of π that follows from Lipschitz con-
tinuity, the Young and Hölder inequalities, (2.16), (2.35), and the Gronwall lemma to
deduce that

‖η‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖β̂(ϕ)‖L∞(0,T ;L1(Ω)) ≤ c . (3.7)

Second a priori estimate. We write (3.3) as

− ν∆ϕ(t) + ξ(t) = g1(t) and ξ(t) ∈ β(ϕ(t)) for a.a. t ∈ (0, T )

with an obvious meaning of g1 and treat t as a parameter. We formally multiply by ∆ϕ(t)
(the correct proof deals with the regularized problem) and find ‖∆ϕ(t)‖H ≤ ‖g1(t)‖H for
a.a. t ∈ (0, T ). Then, we use (3.7), (2.3), (2.35) (which imply ‖g1‖L2(0,T ;H) ≤ c), elliptic
regularity and a comparison in the above equation, in order to conclude that

‖ϕ‖L2(0,T ;W ) + ‖ξ‖L2(0,T ;H) ≤ c . (3.8)

Third a priori estimate. We write (3.2) as

∂tη − κ∆η + ρσ = g2 with ‖g2‖L2(0,T ;H) ≤ c (3.9)

where we used (3.7)–(3.8), (2.16) and (2.35) once more. Then, we multiply by ∂tη and
integrate over Qt. Thanks to the chain rule property (stated, e.g., in [3, Lemme 3.3,
p. 73]) and to the fact that η(0) ∈ V , we obtain

∫

Qt

|∂tη|
2 +

κ

2

∫

Ω

|∇η(t)|2 + ρ‖η(t)‖H = c(1 + ρ) +

∫

Qt

g2 ∂tη

whence immediately

‖∂tη‖L2(0,T ;H) + ‖η‖L∞(0,T ;V ) ≤ c
(
ρ1/2 + 1

)
. (3.10)

Fourth a priori estimate. We behave as we did for (3.8). From (3.9) we have

− κ∆η(t) + ρσ(t) = g3(t) := g2(t)− ∂tη(t) for a.a. t ∈ (0, T ).

Then, we formally multiply by −∆η(t) and notice that ∇σ(t) · ∇η(t) ≥ 0 a.e. in Ω (at
least formally; the inequality we need if Sign were replaced by Signε would immediately
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follow from (2.13)). Hence, we get κ1/2‖∆η(t)‖H ≤ ‖g3(t)‖H for a.a. t ∈ (0, T ). By owing
to (3.9), (3.10) and elliptic regularity, we deduce that

‖η‖L2(0,T ;W ) ≤ c
(
ρ1/2 + 1

)
. (3.11)

Consequence. Estimates (3.7)–(3.11) and assumption (2.35) imply for ϑ = η−αϕ+η∗

‖ϑ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c and ‖ϑ‖H1(0,T ;H)∩L2(0,T ;W ) ≤ c
(
ρ1/2 + 1

)
. (3.12)

Existence for Problem (A). The above a priori estimates are rigorous for the solution
to the approximating problem obtained by replacing β and Sign by the corresponding
Yosida regularizations. Namely, one writes

ξ = βε(ϕ) a.e. in Q and σ(t) = Signε(η(t)) for a.a. t ∈ (0, T ) (3.13)

in place of (3.4)–(3.5). The approximating problem is more regular and has a solution
(ηε, ϕε, ξε, σε). To see that, one can rewrite the approximating problem by eliminating
the time derivative ∂tϕ in (3.2) on accout of (3.3). One obtains the Cauchy problem for
a system of the form

∂t(η, ϕ) +A(η, ϕ) +Bε(η, ϕ) = F

where A is an unbounded operator in H := H×H , Bε : H → H is a Lipschitz continuous
perturbation and F is a source term. Namely, A acts as follows

A : (η, ϕ) 7→
(
−κ∆η + λ∆ϕ,−ν∆ϕ

)
for (η, ϕ) ∈ D(A) := W ×W

where λ := κα + (ℓ− α)ν.

Now, let us introduce the following inner product in H

(
(η, ϕ), (η̃, ϕ̃)

)
H
:=

∫

Ω

ηη̃ +
(λ2
κν

+ 1
)∫

Ω

ϕϕ̃.

Then, we have for (η, ϕ) ∈ D(A)

(
A(η, ϕ), (η, ϕ)

)
H
=

∫

Ω

(
κ|∇η|2 − λ∇η · ∇ϕ+

λ2

κ
|∇ϕ|2

)
+ ν

∫

Ω

|∇ϕ|2

≥
κ

2

∫

Ω

|∇η|2 +
λ2

2κ

∫

Ω

|∇ϕ|2 + ν

∫

Ω

|∇ϕ|2 ≥
κ

2

∫

Ω

|∇η|2 + ν

∫

Ω

|∇ϕ|2.

This shows that A is monotone in H with respect to that inner product. Then, maximal
monotonicy follows since the range of A+ IdH is the whole of H due to the Lax-Milgram
theorem and elliptic regularity. Therefore, the approximating problem has a solution
(see, e.g., [31, Cor. 4.1 p. 181]). So, by starting from the analogs of the above formal a
priori estimates (that is, from the rigorous ones, for which properties (2.12)–(2.14) have
to be used) and owing to standard weak, weakstar and strong compactness results (see,
e.g., [32, Sect. 8, Cor. 4]), we have for a subsequence at least

ηε → η weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

and strongly in C0([0, T ];H) (3.14)

ϕε → ϕ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

and strongly in C0([0, T ];H) (3.15)

ξε → ξ weakly in L2(0, T ;H) (3.16)

σε → σ weakly star in L∞(0, T ;H). (3.17)
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We stress that ξε := βε(ϕε) and σε := Signε(ηε), i.e., the same as in (3.13), where the
subscripts ε were omitted for convenience. Here, ξ and σ have the meaning given by
(3.16)–(3.17). Clearly, the limits ϕ, ξ and σ and the function ϑ computed from (3.1)
satisfy the regularity requirements and the estimates of the statement (see also (3.12)).
Moreover, it follows that π(ϕε) converges to π(ϕ) strongly in L2(Q) and that ξ and σ
satisfy (3.4)–(3.5) (because β and Sign induce maximal monotone operators on L2(Q) and
L2(0, T ;H), respectively, and then they are weakly-strongly closed; see, e.g., [2, Cor. 2.4,
p. 41]). Hence, (η, ϕ, ξ, σ) solves the original problem (3.2)–(3.6).

Uniqueness for Problem (A). We assume α = ℓ and show that the solution is unique.
Let (ηi, ϕi, ξi, σi), i = 1, 2, be two solutions. We write equations (3.2)–(3.3) for both of
them and take the differences. If we set η := η1 − η2 and analogously define ϕ, ξ and σ,
we obtain

∂tη − κ∆η + κℓ∆ϕ+ ρσ = 0 (3.18)

∂tϕ− ν∆ϕ + ξ = γ(η − ℓϕ) + π(ϕ2)− π(ϕ1). (3.19)

Now, we multiply these equations by η and (κℓ2/ν)ϕ, respectively, sum up and integrate
over Qt. As π is Lipschitz continuous, we have

1

2

∫

Ω

|η(t)|2 +
κℓ2

2ν

∫

Ω

|ϕ(t)|2 + κ

∫

Qt

(
|∇η|2 − ℓ∇ϕ · ∇η + ℓ2|∇ϕ|2

)

+ ρ

∫ t

0

(
σ(s), η(s)

)
H
ds+

κℓ2

ν

∫

Qt

ξϕ ≤ c

∫

Qt

(
|η|2 + |ϕ|2

)
.

The last two terms on the left-hand side are nonnegative by monotonicity and the integral
involving the gradients is estimated from below this way

∫

Qt

(
|∇η|2 − ℓ∇ϕ · ∇η + ℓ2|∇ϕ|2

)
≥

1

2

∫

Qt

(
|∇η|2 + ℓ2|∇ϕ|2

)
. (3.20)

At this point, we combine and apply the Gronwall lemma. We conclude that η = 0 and
ϕ = 0, i.e., η1 = η2 and ϕ1 = ϕ2. By comparison in (3.2) and (3.3) written for both
solutions, we deduce that σ1 = σ2 and ξ1 = ξ2, respectively.

Further regularity. We assume (2.38) and prove (2.39). To this end, it suffices to
perform the estimate corresponding to (2.39) on the component ϕε of the solution to the
approximating problem sketched above, uniformly with respect to ε. This can be done
by a heavy calculation involving difference quotients. Therefore, we confine ourselves to
derive a formal a priori estimate. We write equations (3.3)–(3.4) by replacing β by its
Yosida regularization βε in the latter, and formally differentiate with respect to time. By
writing ϕ instead of ϕε for simplicity, we have (see (3.7), (3.10), and (2.3))

∂2t ϕ− ν∆∂tϕ+ β ′
ε(ϕ)∂tϕ = g3 with ‖g3‖L2(0,T ;H) ≤ c

(
ρ1/2 + 1

)
. (3.21)

Now, we multiply by ∂tϕ and integrate over Qt. We obtain

1

2

∫

Ω

|∂tϕ(t)|
2 + ν

∫

Qt

|∇∂tϕ|
2 +

∫

Qt

β ′
ε(ϕ) |∂tϕ|

2 =

∫

Qt

g3 ∂tϕ+
1

2

∫

Ω

|∂tϕ(0)|
2.

As β ′
ε is nonnegative by monotonicity, the only term that needs some treatment is the

last one on the right-hand side. We formally have from (3.3), the modified (3.4) and the
initial conditions

∂tϕ(0) = ν∆ϕ0 − βε(ϕ0)− π(ϕ0) + γϑ0 . (3.22)
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On the other hand, (2.15) implies that ‖βε(ϕ0)‖H ≤ ‖β◦(ϕ0)‖H . Therefore, on account
of (2.38), ‖∂tϕ(0)‖H remains bounded and the estimate

‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c
(
ρ1/2 + 1

)

follows uniformly with respect to ε. Thus, the same estimate holds for the limiting ϕ. At
this point, by comparison in (3.3), we get a bound for the sum −ν∆ϕ+ ξ in L∞(0, T ;H)
and the argument used to derive (3.8) (where t is just a parameter) completes the regular-
ity (2.39) and the estimate (2.40). In order to conclude the proof of Theorem 2.1, we have
to prove that the component ϑ of any solution satisfying all the regularity requirements
of the statement is bounded whenever we assume that ϑ0 ∈ L∞(Ω) and f ∈ L∞(0, T ;H),
in addition. To this end, it suffices to write (2.19) in the form

∂tϑ− κ∆ϑ = f − ρσ − ℓ∂tϕ

and observe that the right-hand side of this equation belongs to L∞(0, T ;H). Then, we
can argue, e.g., as in [21, Thm. 7.1, p. 181] with r = ∞ and q = 2, where the case of
the Dirichlet boundary conditions is treated in detail: by a careful check, the reader can
make the necessary modifications to adapt the procedure to the case of the homogeneous
Neumann boundary conditions. �

3.2 Proof of Theorem 2.2

As the argument is quite similar to the previous one, we proceed quickly. Also in this case,
we introduce new unknowns and transform the problem. Let us recall the assumption
(2.41) on ϕ∗ and set

η := ϑ+ ℓϕ, χ := ϕ− ϕ∗ and ξ∗ := β◦(ϕ∗). (3.23)

Then, η and χ have to satisfy the analog of (2.17) and the new problem is the following

∂tη − κ∆η + κℓ∆χ = f − κℓ∆ϕ∗ a.e. in Q (3.24)

∂tχ− ν∆χ + ξ − ξ∗ + π(χ+ ϕ∗)

= γ(η − ℓχ− ℓϕ∗) + ν∆ϕ∗ − ξ∗ − ρσ a.e. in Q (3.25)

ξ ∈ β(χ+ ϕ∗) a.e. in Q (3.26)

σ(t) ∈ Sign(χ(t)) for a.a. t ∈ (0, T ) (3.27)

η(0) = ϑ0 + ℓϕ0 and χ(0) = ϕ0 − ϕ∗. (3.28)

First a priori estimate. We multiply (3.24) by η and (3.25) by (κℓ2/ν)χ, integrate
over Qt and sum up. Then, we rearrange a little and use the Lipschitz continuity of π
and the Young inequality. Using also (2.41), we obtain

1

2

∫

Ω

|η(t)|2 +
κℓ2

2ν

∫

Ω

|χ(t)|2 + κ

∫

Qt

(
|∇η|2 − ℓ∇η · ∇χ+ ℓ2|∇χ|2

)

+
κℓ2

ν

∫

Qt

(ξ − ξ∗)χ+
κℓ2ρ

ν

∫ t

0

(
σ(s), χ(s)

)
H
ds

≤ c

∫

Qt

(
|η|2 + |χ|2 + 1

)
.
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Now, we observe that (3.20) can be applied and that the last two terms on the above
left-hand side are nonnegative by monotonicity. Thus, by applying the Gronwall lemma,
we conclude that

‖η‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c . (3.29)

Second a priori estimate. We observe that (3.25) looks like

∂tχ− ν∆χ + ξ + ρσ = g1 with ‖g1‖L2(0,T ;H) ≤ c .

Therefore, multiplication by ∂tχ and integration over Qt yield
∫

Qt

|∂tχ|
2 +

ν

2

∫

Ω

|∇χ(t)|2 +

∫

Ω

β̂ (χ(t) + ϕ∗) + ρ‖χ(t)‖H

≤ c(1 + ρ) +

∫

Qt

g1∂tχ ≤ c (1 + ρ) +
1

2

∫

Qt

|∂tχ|
2.

We immediately deduce that

‖χ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
ρ1/2 + 1

)
. (3.30)

Further a priori estimates. We want to obtain

‖η‖H1(0,T ;H)∩L2(0,T ;W ) + ‖χ‖H1(0,T ;H)∩L2(0,T ;W ) + ‖ξ + ρσ‖L2(0,T ;H) ≤ c
(
ρ1/2 + 1

)
. (3.31)

To this end, we argue as we did for (3.8)–(3.11) with just one modification of our argument
concerning the pointwise estimate of ‖∆χ(t)‖H . We still multiply by ∆χ(t). However,
since ϕ∗ is not supposed to be a constant, this requires some care and cannot be as simple
as for (3.8). In order to be more precise on this delicate point, we consider the solution
to the ε-problem obtained by replacing β and Sign with their Yosida regularizations
βε and Signε. For simplicity, we avoid stressing the time t for a while. We write the
regularized (3.25) in the form

−∆χ +
1

ν
βε(χ+ ϕ∗) +

ρ

ν
Signε χ = g2 with

g2 :=
1

ν

(
−∂tχ− π(χ+ ϕ∗) + γ(η − ℓχ− ℓϕ∗) + ν∆ϕ∗

)

and read −∆χ as −∆(χ + ϕ∗) + ∆ϕ∗ when multiplying the second term of the equation
by −∆χ. Owing to (2.13) (which also implies ‖Signε χ‖H ≤ 1) and to the elementary
inequalities (2.54), we obtain

‖∆χ‖2H +
1

ν

∫

Ω

β ′
ε(χ+ ϕ∗)|∇(χ+ ϕ∗)|2 +

ρ

ν

∫

Ω

|∇χ|2

max{ε, ‖χ‖H}

= −

∫

Ω

g2∆χ−
1

ν

∫

Ω

βε(χ+ ϕ∗)∆ϕ∗

= −

∫

Ω

g2∆χ+

∫

Ω

(
−∆χ +

ρ

ν
Signε χ− g2

)
∆ϕ∗

= −

∫

Ω

(g2 +∆ϕ∗)∆χ+

∫

Ω

(
−g2 +

ρ

ν
Signε χ

)
∆ϕ∗
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≤ (‖g2‖H + ‖∆ϕ∗‖H)‖∆χ‖H + ‖g2‖H ‖∆ϕ∗‖H +
ρ

ν
‖∆ϕ∗‖H

≤
1

2
‖∆χ‖2H +

3

2
‖g2‖

2
H + c (ρ+ 1) .

By recalling the meaning of g2, we conclude that we have for a.a. t ∈ (0, T )

‖∆χ(t)‖2H ≤
3

ν2
‖−∂tχ(t)− π(χ(t) + ϕ∗) + γ(η(t)− ℓχ(t)− ℓϕ∗) + ν∆ϕ∗‖2H

+ c (ρ+ 1) . (3.32)

Thus, the right bound for ∆χ in L2(0, T ;H) follows from (3.29)–(3.30). Then, ξ + ρσ is
estimated in L2(0, T ;H) by comparison in (3.25) and the complete (3.31) can be achieved
like in the previous proof, as said at the beginning.

Existence for Problem (B). One can proceed as for Problem (A). Indeed, we have
proved quite similar estimates (notice that (3.31) also yields ‖ξ‖L2(0,T ;H) ≤ c(ρ+ 1) since
‖σ‖L∞(0,T ;H) ≤ 1 by the definition of Sign) which are completely rigorous when performed
on the solution to the approximating problem obtained by replacing β and Sign by their
Yosida regularizations. Moreover, the proof of the existence of a solution to the approxi-
mating problem is similar to the one performed for Problem (A).

Uniqueness for Problem (B). Let (ηi, ϕi, ξi, σi), i = 1, 2, be two solutions and define
ηi and χi according to (3.23). By proceeding in the same way as we did for Problem (A),
we easily obtain η1 = η2 and χ1 = χ

2, whence ϑ1 = ϑ2 and ϕ1 = ϕ2, i.e., the first sentence
of Theorem 2.2 about uniqueness. Now, assume β to be single-valued. Then, ξ1 = ξ2 since
ϕ1 = ϕ2. Finally, by comparison in (2.25), we also deduce that σ1 = σ2. This concludes
the proof of Theorem 2.2. �

3.3 Proof of Theorem 2.3

As we did for Problem (B), we introduce the new unknowns η and χ by means of (3.23)
and deal with the following new problem:

∂tη − κ∆η + κℓ∆χ = f − κℓ∆ϕ∗ a.e. in Q (3.33)

∂tχ− ν∆χ + ξ − ξ∗ + π(χ+ ϕ∗)

= γ(η − ℓχ− ℓϕ∗) + ν∆ϕ∗ − ξ∗ − ρσ a.e. in Q (3.34)

ξ ∈ β(χ+ ϕ∗) a.e. in Q (3.35)

σ ∈ signχ a.e. in Q (3.36)

η(0) = ϑ0 + ℓϕ0 and χ(0) = ϕ0 − ϕ∗. (3.37)

Existence and uniqueness for Problem (C). This problem differs from Problem (B)
just in (3.36), where sign appears in place of the non-local operator Sign. Therefore, both
existence and partial uniqueness can be obtained by the same argument.

It remains to prove the regularity part of Theorem 2.3 and the estimates. For the
regularity of ϕ and ξ, one could combine the techniques used for Problems (A) and (B),
while the regularity of ϑ is classical, on account of (2.44) and of the regularity of ∂tϕ
already proved. However, the forthcoming argument also shows the desired regularity.
What needs much more care is the control of the constants entering (2.46)–(2.47). This
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forces us to perform a number of a priori estimates which we derive just formally, for
brevity.

First a priori estimate. As we did for (3.29), we multiply (3.33) by η and (3.34) by
(κℓ2/ν)χ, integrate over Qt and sum up. Then, we owe to (3.20), the Lipschitz continuity
of π, the Young inequality and the Gronwall lemma. We obtain

‖η‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c . (3.38)

Second a priori estimate. We write (3.34) as

∂tχ− ν∆χ + ξ + ρσ = g1 with ‖g1‖L2(0,T ;H) ≤ c

and multiply it by ∂tχ. As for (3.30), we have

‖χ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
ρ1/2 + 1

)
. (3.39)

Third a priori estimate. There holds

‖∆χ(t)‖2H ≤
3

ν2
‖−∂tχ(t)− π(χ(t) + ϕ∗) + γ(η(t)− ℓχ(t)− ℓϕ∗) + ν∆ϕ∗‖2H

+ c (ρ+ 1) (3.40)

i.e., the same as (3.32). Inequality (3.40) can be proved with the same calculations that
led to (3.32) with obvious changes in the proof (like ‖signε χ‖H ≤ |Ω|1/2 in place of
‖Signε χ‖H ≤ 1, whence just a different value of the final c). From this and the previous
estimates, we deduce that

‖∆χ‖L2(0,T ;H) ≤ c
(
ρ1/2 + 1

)
. (3.41)

Fourth a priori estimate. Now, we multiply (3.33) by ∂tη, integrate over Qt and get
∫

Qt

|∂tη|
2 +

κ

2

∫

Ω

|∇η(t)|2 =
κ

2

∫

Ω

|∇η(0)|2 +

∫

Qt

(f − κℓ∆χ− κℓ∆ϕ∗)∂tη.

From (2.16) and (3.40), we immediately infer that

‖η‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
(
ρ1/2 + 1

)
. (3.42)

Fifth a priori estimate. We start from (3.34) and smooth the monotone nonlinearities
by replacing them with their Yosida approximations. By differentiating with respect to
time, we have

∂2t χ− ν∆∂tχ+
{
β ′
ε(χ+ ϕ∗) + ρ sign′

ε(χ)
}
∂tχ = g3 (3.43)

where g3 := γ(∂tη − ℓ∂tχ)− π′(χ+ ϕ∗)∂tχ, and we can read the initial value

∂tχ(0) = ν∆ϕ0 − βε(ϕ0)− π(ϕ0) + γϑ0 − ρ signε(ϕ0 − ϕ∗). (3.44)

Notice that

‖g3‖L2(0,T ;H) ≤ c
(
ρ1/2 + 1

)
and ‖∂tχ(0)‖H ≤ ρ |Ω|1/2 + c (3.45)
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thanks to (2.38). Thus, by multiplying (3.43) by ∂tχ, integrating over Qt, observing that
β ′
ε and sign′

ε are nonnegative, and using (3.39) for ∂tχ and (3.45), we obtain

1

2

∫

Ω

|∂tχ(t)|
2 + ν

∫

Qt

|∇∂tχ|
2 ≤

∫

Qt

|g3| |∂tχ|+
1

2

∫

Ω

|∂tχ(0)|
2 ≤

ρ2|Ω|

2
+ c ρ+ c .

We deduce the following estimates for ∂tχ

‖∂tχ‖
2
L∞(0,T ;H) ≤ ρ2|Ω|+ c ρ+ c and ‖∇∂tχ‖

2
L2(0,T ;H) ≤

ρ2|Ω|

2ν
+ c ρ+ c . (3.46)

Sixth a priori estimate. We use (3.38), (3.40) and (3.46). We deduce that

‖∆χ‖2L∞(0,T ;H) ≤
6ρ2 |Ω|

ν2
+ c ρ+ c .

Now, we recall the definition (2.6) of ‖ · ‖W . Thus, we also have

‖χ‖2L∞(0,T ;W ) ≤
6ρ2 |Ω|7/3

ν2
+ c ρ+ c .

Finally, we apply (2.7). We conclude that χ ∈ L∞(Q) and that

‖χ‖2∞ ≤
6ρ2C2

Ω |Ω|7/3

ν2
+ c ρ+ c

whence also (by the first elementary inequality (2.54))

‖χ‖∞ ≤
61/2 ρCΩ |Ω|7/6

ν
+ c

(
ρ1/2 + 1

)
≤ 2

61/2 ρCΩ |Ω|7/6

ν
+ c . (3.47)

Hence, if we choose the last value of c as C6, we see that (2.46) holds with Cstr as in (2.48).

Seventh a priori estimate. On account of the regularity of f in (2.44), we formally
differentiate (3.33) with respect to time and test the resulting equation by ∂tη. As ∂tη(0),
which is recovered from (3.33), is bounded in H by a constant due to (2.44), we obtain
by (3.42)

1

2

∫

Ω

|∂tη(t)|
2 + κ

∫

Qt

|∇∂tη|
2 =

1

2

∫

Ω

|∂tη(0)|
2 + κℓ

∫

Qt

∇∂tη · ∇∂tχ+

∫

Qt

∂tf ∂tη

≤ c + κ

∫

Qt

|∇∂tη|
2 +

κℓ2

4

∫

Q

|∇∂tχ|
2.

Owing to the second of (3.46), we infer that

‖∂tη‖
2
L∞(0,T ;H) ≤

κℓ2ρ2|Ω|

4ν
+ c ρ+ c . (3.48)

Eighth a priori estimate. By recalling that ϑ = η − ℓχ − ℓϕ∗ by (3.23), the first
inequality in (3.46) and estimate (3.48) yield

‖∂tϑ‖L∞(0,T ;H) ≤ Ĉ ρ |Ω|1/2 + cρ1/2 + c where Ĉ :=
κ1/2ℓ

2ν1/2
+ ℓ . (3.49)



20 Sliding modes for a phase-field system

Once such an estimate is obtained, we can recover a bound for ∆ϑ from (2.30) and repeat
for ϑ what we have done for χ. Here is the quick sequence of deductions. First, we have

‖∆ϑ‖L∞(0,T ;H) ≤
1

κ

(
‖f‖L∞(0,T ;H) + ‖∂tϑ‖L∞(0,T ;H) + ℓ‖∂tχ‖L∞(0,T ;H)

)

≤
Ĉ + ℓ

κ
ρ|Ω|1/2 + cρ1/2 + c

and we derive

‖ϑ‖2L∞(0,T ;W ) ≤ ‖ϑ‖2L∞(0,T ;H) + |Ω|4/3‖∆ϑ‖2L∞(0,T ;H)

≤ 4
(Ĉ + ℓ)2

κ2
ρ2|Ω|7/3 + c(ρ+ 1) .

Therefore

‖ϑ‖∞ ≤ CΩ 2
Ĉ + ℓ

κ
ρ|Ω|7/6 + c

(
ρ1/2 + 1

)
≤ CΩ 4

Ĉ + ℓ

κ
ρ|Ω|7/6 + c

so that (2.47) holds with the last value of c as C7 and Cstr as in (2.48) (recall the value

of Ĉ in (3.49)).

4 Existence of sliding modes

This section is devoted to the proof of Theorems 2.5, 2.6 and 2.9. The argument we use
to prove the existence of sliding modes in the first two cases relies on the following lemma,
which ensures the existence of an extinction time T ∗ for a real function.

Lemma 4.1. Let a0, b0, ψ0, ρ ∈ R be such that

a0, b0, ψ0 ≥ 0 and ρ > a20 + 2b0 + 2
ψ0

T
(4.1)

and let ψ : [0, T ] → [0,+∞) be an absolutely continuous function satisfying ψ(0) = ψ0

and
ψ′ + ρ ≤ a0 ρ

1/2 + b0 a.e. in the set P := {t ∈ (0, T ) : ψ(t) > 0}. (4.2)

Then, the following conclusions hold true.

i) If ψ0 = 0, then ψ vanishes identically.

ii) If ψ0 > 0, there exists T ∗ ∈ (0, T ) satisfying T ∗ ≤ 2ψ0/(ρ − a20 − 2b0) such that ψ is
strictly decreasing in (0, T ∗) and ψ vanishes in [T ∗, T ].

Proof. Assumption (4.2) and the Young inequality imply that

ψ′ ≤ −s0 a.e. in P, where s0 :=
1

2
ρ−

1

2
a20 − b0 (4.3)

and we notice that (4.1) implies

s0 >
ψ0

T
. (4.4)
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In particular, s0 > 0. Moreover, if 0 ≤ t1 < t2 ≤ T and (t1, t2) ⊆ P , then

ψ(t1) = ψ(t2)−

∫ t2

t1

ψ′(t) dt ≥ ψ(t2) + s0(t2 − t1) ≥ s0(t2 − t1) > 0. (4.5)

Now, we prove the lemma.

i) By contradiction, let P be non-empty. So, we can pick a connected component of it.
This is an open interval (a, b) and we can apply (4.5) to obtain ψ(a) > 0. Thus, a > 0
since ψ0 = 0, whence ψ > 0 also in (a′, a] for some a′ < a. This contradicts the definition
of connected component.

ii) As ψ0 > 0, we can define the strictly positive number T ∗ by setting

T ∗ := sup{t ∈ (0, T ) : ψ(s) > 0 for every s ∈ (0, t)}.

By (4.5) with t1 = 0 and t2 = T ∗ and (4.4), we have ψ0 ≥ s0T
∗, whence T ∗ ≤ ψ0/s0 < T ,

i.e., the first conditions of the statement. Furthermore, ψ′ ≤ −s0 < 0 in (0, T ∗), so that ψ
is strictly decreasing in this interval. Finally, we have to show that ψ vanishes in [T ∗, T ]
and we argue by contradiction by assuming that P ∩ (T ∗, T ) 6= ∅ and picking a connected
component of this set. This is an open interval (a, b), with T ∗ ≤ a < b ≤ T , in principle.
However, a = T ∗ would contradict the definition of T ∗, whence a > T ∗. Therefore, by
applying (4.5) with t1 = a and t2 = b, we obtain ψ(a) > 0 and the definition of connected
component is contradicted as in the previous case.

Proof of Theorem 2.5. Let (ϑ, ϕ, ξ, σ) be a solution to problem (2.19)–(2.23) given
by (3.14)–(3.17). We show that this solution fulfills the requirements of the statement.
First of all, we observe that estimates (2.36)–(2.37) and (2.40) hold for the approximating
solution, by construction. Moreover, f ∈ L∞(0, T ;H) by assumption. Hence, we can
write the modified (3.2) in the form

∂tηε − κ∆ηε + ρσε = gε := f − (ℓ− α)∂tϕε − κα∆ϕε + κ∆η∗ (4.6)

‖gε‖L∞(0,T ;H) ≤ C
(
ρ1/2 + 1

)
(4.7)

where C depends only on the structure and the data involved in the statement. At this
point, we set

ρ∗ := C2 + 2C +
2

T
‖ϑ0 + αϕ0 − η∗‖H (4.8)

and assume ρ > ρ∗. We also set

ψ(t) := ‖η(t)‖H and ψε(t) := ‖ηε(t)‖H for t ∈ [0, T ]. (4.9)

Now, by assuming h ∈ (0, T ) and t ∈ (0, T − h), we multiply (4.6) by σε and integrate
over (t, t+ h)× Ω. We obtain

∫ t+h

t

(
∂tηε(s), σε(s)

)
H
ds+ κ

∫ t+h

t

∫

Ω

∇ηε · ∇σε + ρ

∫ t+h

t

‖σε(s)‖
2
H ds

=

∫ t+h

t

(
gε(s), σε(s)

)
H
ds. (4.10)

As (2.11) and (2.12) imply that

(
∂tηε(t), σε(t)

)
H
=

d

dt

∫ ψε(t)

0

min{s/ε, 1} ds for a.a. t ∈ (0, T )
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we have for the first term of (4.10)

∫ t+h

t

(
∂tηε(s), σε(s)

)
H
ds =

∫ ψε(t+h)

ψε(t)

min{s/ε, 1} ds.

The second integral in (4.10) is nonnegative. Indeed, (2.13) implies

∇ηε(t) · ∇σε(t) =
|∇ηε(t)|

2

max{ε, ‖ηε(t)‖H}
≥ 0 a.e. in Ω, for a.a. t ∈ (0, T ).

As ‖σε(s)‖H ≤ 1 for every s and (4.7) holds, we deduce from (4.10)

∫ ψε(t+h)

ψε(t)

min{s/ε, 1} ds+ ρ

∫ t+h

t

‖σε(s)‖
2
H ds ≤ hC

(
ρ1/2 + 1

)
.

At this point, we let ε tend to zero. As we are assuming that (3.14) and (3.17) hold at
least for a subsequence, we infer that

ψ(t+ h)− ψ(t) + ρ

∫ t+h

t

‖σ(s)‖2H ds

≤ lim
εց0

∫ ψε(t+h)

ψε(t)

min{s/ε, 1} ds+ ρ lim inf
εց0

∫ t+h

t

‖σε(s)‖
2
H ds ≤ hC

(
ρ1/2 + 1

)

for every h ∈ (0, T ) and t ∈ (0, T − h). This implies that

ψ′(t) + ρ‖σ(t)‖2H ≤ C
(
ρ1/2 + 1

)
for a.a. t ∈ (0, T ).

As ‖σ(t)‖H = 1 if ‖η(t)‖ > 0 by (2.9), we can apply the lemma with a0 = b0 = C and
we observe that our condition ρ > ρ∗ completely fits the assumptions by (4.8). Thus, we
find T ∗ ∈ [0, T ) such that η(t) = 0 for every t ∈ [T ∗, T ], i.e., (2.49). �

Proof of Theorem 2.6. By arguing as in the previous proof, we pick a solution
(ϑ, ϕ, ξ, σ) to problem (2.24)–(2.28) obtained as the limit of the solution (ϑε, ϕε, ξε, σε)
of the corresponding approximating problem and show that all the requirements of the
statement are fulfilled. We introduce the functions η and χ defined by (3.23) and the
analogs ηε and χ

ε, and owe to (2.42)–(2.43) for the approximating solution. Therefore,
we can rewrite the equation approximating (3.25) in the form

∂tχε − ν∆χε + βε(χε + ϕ∗)− βε(ϕ
∗) + ρσε

= gε := γ(ηε − ℓχε − ℓϕ∗) + ν∆ϕ∗ − βε(ϕ
∗)− π(χε + ϕ∗) (4.11)

with
‖gε‖L∞(0,T ;H) ≤ C (4.12)

where C depends only on the structure and the data involved in the statement. At this
point, we set

ρ∗ := 2C +
2

T
‖ϕ0 − ϕ∗‖H (4.13)

and assume ρ > ρ∗. We also set

ψ(t) := ‖χ(t)‖H and ψε(t) := ‖χε(t)‖H for t ∈ [0, T ]. (4.14)
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Now, we multiply (4.11) by σε and integrate over (t, t+ h)× Ω as before. We obtain
∫ t+h

t

(
∂tχε(s), σε(s)

)
H
ds+ ν

∫ t+h

t

∫

Ω

∇χε · ∇σε

+

∫ t+h

t

(
βε(χε(s) + ϕ∗)− βε(ϕ

∗), Signε(χε(s))
)
H
ds+ ρ

∫ t+h

t

‖σε(s)‖
2
H ds

=

∫ t+h

t

(
gε(s), σε(s)

)
H
ds. (4.15)

The first two terms and the left-hand side can be dealt with as in the previous proof. The
third integral on the left-hand side is nonnegative since the two factors of the product have
the same sign. Therefore, by arguing as above and then letting ε tend to zero, we obtain

ψ′(t) + ρ‖σ(t)‖2H ≤ C.

As ‖σ(t)‖H = 1 if ‖χ(t)‖ > 0 by (2.9), we can apply the lemma with a0 = 0 and b0 = C
since ρ > ρ∗ (see (4.13)). Thus, we find T ∗ ∈ [0, T ) such that χ(t) = 0 for every t ∈ [T ∗, T ].
This condition coincides with (2.50). �

Proof of Theorem 2.9. For Problem (C) we use a different argument since we cannot
apply Lemma 4.1. Our method relies on a comparison technique on χ := ϕ− ϕ∗, where
(ϑ, ϕ, ξ, σ) is the solution we are dealing with, by introducing the solution w of an ordi-
nary Cauchy problem with a well-chosen right-hand side. The function χ has the same
regularity of ϕ and satisfies

∂tχ− ν∆χ + ξ − ξ∗ + π(χ+ ϕ∗) + ρ σ = γϑ+ ν∆ϕ∗ − ξ∗ a.e. in Q (4.16)

where ξ∗ := β◦(ϕ∗) (4.17)

ξ ∈ β(χ+ ϕ∗) and σ ∈ signχ a.e. in Q (4.18)

∂nχ = 0 a.e. on Σ and χ(0) = χ
0 := ϕ0 − ϕ∗. (4.19)

Our starting point is just estimate (2.47), i.e., we only suppose that the constants Cstr,
CΩ and C7 satisfy it and do not require that they are constructed as in the proof of
Theorem 2.3. In order to introduce the ingredients of the Cauchy problem mentioned
above, we set for convenience

M0 := ‖χ0‖∞ and M∗
π := L(M0 + ‖ϕ∗‖∞) + |π(0)| (4.20)

M(ρ) := ρCstrCΩ|Ω|
7/6 + C7 (4.21)

A(ρ) := γM(ρ) + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ +M∗
π (4.22)

where L is the Lipschitz constant of π. We observe that (cf. (2.47))

‖ϑ‖∞ ≤M(ρ) and |π(ϕ∗ ± r)| ≤M∗
π a.e. in Ω for every r ∈ [0,M0]. (4.23)

We assume (2.52) and define ρ∗ as the solution to ρ = A(ρ) +M0/T , i.e.,

ρ∗ :=
γC7 + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ +M∗

π +M0/T

1− γ CstrCΩ|Ω|7/6
. (4.24)

We claim that ρ∗ fulfills the properties of the statement. So, we fix ρ > ρ∗ and consider
any solution of the transformed problem according to (4.16)–(4.19). We observe that our
assumption ρ > ρ∗ implies

ρ > A(ρ) +
M0

T
, whence also ρ > A(ρ) (4.25)
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and we can set

T ∗ :=
M0

ρ− A(ρ)
. (4.26)

Hence, (4.25) ensures that the definition of T ∗ is meaningful and that T ∗ ≥ 0. More
precisely, T ∗ = 0 if M0 = 0, i.e., ϕ0 = ϕ∗, and T ∗ > 0 otherwise. The first inequality in
(4.25) implies that T ∗ < T . The rest of the proof is devoted to prove that χ(t) = 0 for
every t ∈ [T ∗, T ]. This is done by comparison arguments, as mentioned at the beginning.
We introduce the ordinary Cauchy problem

w′ + ρζ = A(ρ), ζ ∈ signw and w(0) =M0 . (4.27)

As A(ρ)/ρ ∈ [0, 1) ⊂ sign 0 by (4.25), one checks that its unique solution is given by

w(t) =
(
M0 − (ρ−A(ρ))t

)+
for t ∈ [0, T ]. (4.28)

Notice that 0 ≤ w ≤ M0 and that w vanishes on [T ∗, T ] by the definition (4.26) of T ∗.
Thus, by also reading w as a space independent function defined in Q rather than in (0, T ),
it suffices to prove that |χ| ≤ w a.e. in Q. To this end, we observe that w trivially satisfies
the homogeneous Neumann boundary condition and write (4.27) in the following forms

∂tw − ν∆w + π(ϕ∗ + w) + ρζ = A(ρ) + π(ϕ∗ + w) (4.29)

∂tw − ν∆w − π(ϕ∗ − w)− ρ(−ζ) = A(ρ)− π(ϕ∗ − w) (4.30)

with ζ ∈ signw or, equivalently, − ζ ∈ sign(−w) .

We set ψ := (χ − w)+, the positive part of χ − w, and multiply the difference between
(4.16) and (4.29) by ψ. By accounting for (4.23) and the definition (4.22) of A(ρ), we
have

1

2

∫

Ω

|ψ(t)|2 + ν

∫

Qt

|∇ψ|2 +

∫

Qt

(ξ − ξ∗)ψ + ρ

∫

Qt

(σ − ζ)ψ

+

∫

Qt

(
π(ϕ∗ + χ)− π(ϕ∗ + w)

)
ψ

=

∫

Qt

(
γϑ+ ν∆ϕ∗ − ξ∗ −A(ρ)− π(ϕ∗ + w)

)
ψ

≤

∫

Qt

(
γM(ρ) + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ −A(ρ) +M∗

π

)
ψ = 0.

Now, we observe that the integrals on the left-hand side involving ξ and σ are nonnegative:
indeed, where ψ 6= 0, we have ψ > 0 and χ > w, whence ϕ∗ + χ > ϕ∗ + w ≥ ϕ∗, so that
ξ ≥ ξ∗ and σ ≥ ζ . On the other hand, we have

∫

Qt

(
π(ϕ∗ + χ)− π(ϕ∗ + w)

)
ψ ≥ −L

∫

Qt

|χ− w|ψ = −L

∫

Qt

|ψ|2.

Therefore, we deduce that ∫

Ω

|ψ(t)|2 ≤ L

∫

Qt

|ψ|2. (4.31)

By applying the Gronwall lemma, we conclude that ψ = 0, i.e., χ ≤ w. Now, we set
ψ := (χ+w)−, the negative part of χ+w, add equations (4.16) and (4.30) to each other
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and multiply the resulting equality by −ψ. By accounting for (4.23) and the definition
(4.22) of A(ρ) once more, we obtain

1

2

∫

Ω

|ψ(t)|2 + ν

∫

Qt

|∇ψ|2 +

∫

Qt

(ξ − ξ∗)(−ψ) + ρ

∫

Qt

(
σ − (−ζ)

)
(−ψ)

+

∫

Qt

(
π(ϕ∗ + χ)− π(ϕ∗ − w)

)
(−ψ)

=

∫

Qt

(
−γϑ− ν∆ϕ∗ + ξ∗ − A(ρ) + π(ϕ∗ − w)

)
ψ

≤

∫

Qt

(
γM(ρ) + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ −A(ρ) +M∗

π

)
ψ = 0.

Also in this case, the integrals on the left-hand side involving ξ and σ are nonnegative:
indeed, where ψ 6= 0, we have ψ > 0 and χ < −w, whence ϕ∗ +χ < ϕ∗ −w ≤ ϕ∗, so that
ξ ≤ ξ∗ and σ ≤ −ζ . On the other hand, we have

∫

Qt

(
π(ϕ∗ + χ)− π(ϕ∗ − w)

)
(−ψ) ≥ −L

∫

Qt

|χ+ w|ψ = −L

∫

Qt

|ψ|2.

Hence, we deduce (4.31) with the new meaning of ψ and apply the Gronwall lemma. We
obtain ψ = 0, i.e., −χ ≤ w. Therefore, we have proved that |χ| ≤ w, and this implies
that χ(t) = 0 for every t ∈ [T ∗, T ]. �

Remark 4.2. As announced in Remark 2.8, we can show that the function ‖χ( · )‖H
is strictly decreasing while positive provided that ρ is large enough, at least under a
reinforcement of assumption (2.52). Indeed, with the notations of (2.46)–(2.47), we have
to require that

ρ > (γ + L)CstrCΩ|Ω|
7/6ρ+ C̃ (4.32)

where we have set

C̃ := γC7 + LC6 + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ + L‖ϕ∗‖∞ + |π(0)|.

Notice that (4.32) is true provided that

(γ + L)CstrCΩ|Ω|
7/6 < 1 and ρ >

C̃

1− (γ + L)CstrCΩ|Ω|7/6
.

We multiply (4.16) written at the time t by χ(t) and integrate over Ω. By ignoring some
nonnegative terms on the left-hand side, observing that σχ = |χ| by the definition of sign,
and owing to (2.46)–(2.47), we easily obtain

1

2

d

dt
‖χ(t)‖2H + ρ

∫

Ω

|χ(t)| ≤

∫

Ω

(
γϑ(t) + ν∆ϕ∗ + ξ∗ − π(χ(t) + ϕ∗)

)
χ(t)

≤
(
γ‖ϑ‖∞ + ν‖∆ϕ∗‖∞ + ‖ξ∗‖∞ + L‖χ‖∞ + L‖ϕ∗‖∞ + |π(0)|

) ∫

Ω

|χ(t)|.

≤
(
(γ + L)CstrCΩ|Ω|

7/6ρ+ C̃
) ∫

Ω

|χ(t)|.

Therefore, on account of (4.32), we conclude that (d/dt)‖χ(t)‖2H < 0 while ‖χ(t)‖1 > 0,
or equivalently ‖χ(t)‖H > 0.
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