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A THEORETICAL EXAMINATION OF DIFFUSIVE

MOLECULAR DYNAMICS

G. SIMPSON, M. LUSKIN, AND D.J. SROLOVITZ

Abstract. Diffusive molecular dynamics is a novel model for materials
with atomistic resolution that can reach diffusive time scales. The main
ideas of diffusive molecular dynamics are to first minimize an approxi-
mate variational Gaussian free energy of the system with respect to the
mean atomic coordinates (averaging over many vibrational periods), and
to then to perform a diffusive step where atoms and vacancies (or two
species in a binary alloy) flow on a diffusive time scale via a master equa-
tion. We present a mathematical framework for studying this algorithm
based upon relative entropy, or Kullback-Leibler divergence. This adds
flexibility in how the algorithm is implemented and interpreted. We
then compare our formulation, relying on relative entropy and absolute
continuity of measures, to existing formulations. The main difference
amongst the equations appears in a model for vacancy diffusion, where
additional entropic terms appear in our development.

1. Introduction

One of the outstanding challenges in atomistic simulation of condensed
systems, such as solids, liquids, and glasses, is access to experimentally
meaningful length and time scales. The spatial scales amenable to direct
molecular dynamics (MD) simulations have grown over time; MD simu-
lations on current large scale parallel computational facilities now reach
over 1012 atoms or approximately 1 µm3, [7]. Significantly larger length
scales can be achieved by application of multiscale modeling techniques
that combine atomistic simulations with continuum methods (see, for ex-
ample, [1, 2, 16, 22, 26, 28, 33]). With regard to time, MD simulations have
fundamental time scales associated with atomic vibration periods (∼ 10−13

s), but typical MD time steps are two orders of magnitude smaller. The
longest times that have been achieved in large scale MD simulations on
special purpose hardware is ∼ 10−3 s, [30]. More typically MD simulations
access times of less than than 10−8 s. Hence, reaching laboratory time scales
remains amongst the most important challenges in the application of MD
today.

Many approaches have been developed to address the molecular dynamics
time-scale challenge. Of these, methods based upon transition state theory
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have been widely applied and their continued development remains an ac-
tive area of research. Transition state theory-based methods rely on rare
event ideas in which the system explores a particular energy basin for a
long period of time and makes infrequent transitions from one basin to an-
other, [9, 13, 27, 31, 32]. Access to long time scales is provided by replacing
the true dynamics within the basin with a stochastic approximation and
the prediction of the times between the transitions to other basins. Such
methods rely on the transitions being sufficiently rare; i.e., the computa-
tional time required to characterize the dynamics within the basin is much
shorter than the time between inter-basin transits. The main difficulty with
this approach arises when the transitions between basins are not rare; for
example, at high temperature or in situations where there are low energy
barriers between basins. Another challenge arises in very large systems as
the time between rare events occurring somewhere in the system typically
scales inversely with system size. Nonetheless, progress has recently been
made to extend these methods to large systems, [11,12,34].

An important distinction between classes of “events” in many materials
science applications is between those that are displacive and those that are
diffusive. Displacive events are often collective and involve relative atomic
displacements that are small compared with a typical interatomic separa-
tion (∼ 2Å). Diffusive events, on the other hand, often involve a series of
atom or vacancy hops amongst atomic sites. In a solid, the time between
hops is commonly many orders of magnitude larger than the atomic vibra-
tion period. This type of scale separation is necessary for the application
of traditional transition state theory-based approaches. The motion of de-
fects in materials and many types of phase transformations occur through
a combination of displacive and diffusive events.

1.1. Diffusive Molecular Dynamics. One method that explicitly takes
advantage of this separation in scale between diffusive and displacive events
in atomistic simulations is the so-called Diffusive Molecular Dynamics (DMD)
method [15, 24]. The idea is to first minimize an approximate free energy
(including atomic bonding and atomic vibrational degrees of freedom) of the
system with respect to the mean atomic coordinates (averaging over many
vibrational periods), and then to perform a diffusive step where atoms and
vacancies flow on a diffusive time scale. This free energy is typically de-
scribed using the variational Gaussian (VG) method [14,18]. The time step
for such simulations is the relatively long (compared with vibrational) diffu-
sional time scale. In this approach, the search for transition state barriers is
replaced by the introduction of an empirical diffusion coefficient or mobility.
While this coefficient may be determined directly from atomistic simulation
for every local transition, it is commonly viewed as a constant across the en-
tire simulation; this constant can also be determined from purely atomistic
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calculations. This approach is physically sensible when most of the impor-
tant diffusive events are of the same type, as in an exchange of an atom for
a vacancy.

A key element of DMD is that, in contrast to traditional MD, each atomic
site has associated with it a continuous probability of occupancy by an atom.
See, for example, [19]. We denote this probability ci at atomic site i. In the
case of a single species (elemental) materials, ci close to zero corresponds to
site i being a vacancy with high probability, while ci close to one corresponds
to site i being occupied by an atom with high probability. Alloys can also
be described in this manner. For example, ci close to zero could correspond
to species A while ci close to one could correspond to species B. This can
be extended to multiple species, along with vacancies, by the introductions
of additional degrees of freedom. Such an extension of the state space, to
allow for longer time scale evolution, has also been explored in [29].

1.2. Relative Entropy. One of the tools we make use of in this analysis
is relative entropy, or the Kullback-Leibler divergence (KL), [6]. KL is one
of the many ways that the distance between two probability measures, such
as ensembles, can be computed. It is broadly used in information theory,
uncertainty quantification, statistical inverse problems, molecular dynamics,
and other applications; see, for instance, [3, 10, 17, 20, 21, 25] and references
therein.

Given two probability measures, ν and µ on a common state space, the
relative entropy distance between them is given by

(1.1) R(µ||ν) =

{

E
µ
[

log dµ
dν

]

µ ≪ ν,

∞ otherwise.

Here, µ ≪ ν if for any measurable set A such that ν(A) = 0, we have
µ(A) = 0 too. In this case, µ is said to be absolutely continuous with
respect to ν.

Relative entropy is a natural tool for this work as it can be directly con-
nected to the Helmholtz free energy of a system. Indeed, the statement that
R ≥ 0 is equivalent to the Gibbs-Bogoliubov inequality [25]. To motivate
this, consider the canonical ensembles associated with potential V (x) and

an approximate potential V̂ (x):

(1.2) ν(dx) = Z−1e−βV (x)dx, ν̂(dx) = Ẑ−1E−βV̂ (x)dx,

where Z is the partition function, β = (kBT )
−1, kB is the Boltzmann con-

stant and T is the absolute temperature. Assuming that ν̂ ≪ ν,

(1.3) R(ν̂||ν) = βEν̂ [V (x)− V̂ (x)]− log Ẑ + logZ.

Dividing through by β, and using R ≥ 0,

(1.4) − β−1 logZ ≤ βEν̂ [∆V ]− β−1 log Ẑ,
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which is the Gibbs-Bogoliubov inequality. Mathematical treatments of R
and its relationship to other popular measures of distance between proba-
bility measures can be found in [6, 8].

1.3. Outline. In this work, we formulate DMD using relative entropy, to-
wards the goal of constructing a rigorous mathematical foundation for the
algorithm. We also examine under what assumptions the necessary ab-
solute continuity will hold. This framework leads to naturally well posed
variational problems that are inherently bounded from below by virtue of
R being non-negative.

Our paper is outlined as follows. In Section 2 we give our formulation of
DMD using relative entropy. Then, in Section 3, we compare our expressions
with those of the existing formulations of DMD. Several additional explicit
calculations are given in the Appendix.

2. A Relative Entropy Formulation of DMD

To begin our description of DMD, we work in an extended state space
that includes both the positions of the atom sites, xi ∈ R

3, and the pres-
ence/absence of atoms, ai ∈ {0, 1}. For binary alloys, ai = 1 could corre-
spond to species A and ai = 0 could correspond to species B. In either case,
the total number of sites N is fixed and i = 1, . . . N . In what follows, we
give separate developments of the vacancy and the binary alloy problems.

2.1. DMD Potentials. We assume the existence of a potential V , that
describes atomic bonding, as in traditional MD. Here, we focus on the class
of pair potentials,

(2.1) V (x) =
∑

i<j

φ(|xi − xj |).

The associated DMD potential is

(2.2) VDMD(x,a) =
∑

i<j

aiajφ(|xi − xj |).

In an elemental material, the potentials V and VDMD are non-zero only when
both atom i and atom j are present (i.e., the interaction between an atom
and a vacancy is zero). In the case of a binary alloy (ignoring vacancies),
we would have

VAB(x,a) =
∑

i<j

aiajφAA(|xi − xj |)

+
∑

i<j

[ai(1− aj) + (1− ai)aj ]φAB(|xi − xj|)

+
∑

i<j

(1− ai)(1 − aj)φBB(|xi − xj |),

(2.3)

where φTiTj
is the pair potential between a pair of atoms of types Ti and

Tj ∈ {A,B}. More sophisticated potentials, such as the embedded atom
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method (EAM), can be used, but for the purpose of this work, it will suffice
to consider the pair potential.

2.2. Free Energy and Relative Entropy for the Vacancy Problem.

2.2.1. Canonical Ensemble. Letting D be a bounded, open subset of R3, we
now formulate the canonical ensemble for a “cNT” (fixed total composi-
tion, number of atomic sites and temperature) system, by introducing the
distribution

(2.4) ν(dx,a) = Z−1 exp {−β(VDMD − µ · a)} dx,

with µ = (µ1, . . . , µN ) is a set of chemical potentials. Chemical potential
µi is associated with site i; each site has its own reservoir. While this is in
the form of a generalized grand canonical ensemble, we view the chemical
potentials as Lagrange multipliers enforcing the constraints

(2.5) E
ν [ai] = ci, i = 1, . . . N.

It is in this way that our ν is akin to a canonical ensemble, with the mean
occupancy values, the c, fixed.

The partition function is

(2.6) Z =
∑

a

∫

D

exp {−β(VDMD(x,a) − µ · a)} dx,

and the ensemble averages require integration in space over D along with
summation over all possible configurations of a = (a1, . . . , aN ). We thus
assume:

Assumption 1. For potential V , bounded set D, and occupancies c with

ci ∈ (0, 1), the chemical potentials µi are finite and the partition function is

finite and positive.

We describe the distribution (2.4) as the “true” DMD distribution. The
associated free energy is

(2.7) F = −β−1 logZ + µ · c.

In DMD, the concentrations are allowed to evolve under

(2.8) ċi =
∑

j∈N(i)

kij

(
∂F

∂cj
−

∂F

∂ci

)

where kij is a mobility term, and N(i) includes neighbors of site i; both
are, a priori, unconstrained. We note that (2.8) is not the evolution studied
by Sarkar [23], due to the challenge of computing the partition function;
rather, they employ an approximate free energy. Nevertheless, we contend
that, were computational complexity not an obstacle, (2.8) is the desired
form of dynamics.
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As the ci evolve, the equilibrium positions of the atomic sites will also
change, and can be obtained by computing

(2.9) E
ν[xi].

2.2.2. Approximate Potential. Due to the computational challenge in eval-
uating the partition function, (2.6), an approximate potential is introduced,

V̂ , with a corresponding probability distribution, ν̂. This potential is then
tuned to provide a “best” approximation of ν by ν̂. Here, we consider the
following quadratic (harmonic) potential in the case of an elemental material
(including vacancies)

(2.10) V̂DMD(x,a;k,X) =
∑

i

aiki

2
|xi −Xi|

2 .

X and k are parameters approximating the mean atomic position and its
characteristic fluctuation. The approximate probability distribution is now

(2.11) ν̂(dx,a;k,X) = Ẑ−1 exp
{

−β(V̂DMD − µ̂ · a)
}

dx.

Again, the µ̂i are Lagrange multipliers which must satisfy the analog of
(2.5),

(2.12) E
ν̂ [ai] = ci.

For this case, we can provide expressions for both the partition function and
the µ̂i. The approximate partition function is

(2.13) Ẑ = ΠN
i=1

(

|D|+ eβµ̂iZi

)

, Zi ≡

∫

D

exp
{

−βki
2 |xi −Xi|

2
}

dxi,

where |D| is the volume of the computational domain. The chemical poten-
tials µ̂i, defined by (2.12), satisfy (see (A.2))

E
ν̂ [ai] =

eβµ̂iZi

|D|+ eβµ̂iZi
= ci.(2.14)

These can then be solved for each i to obtain:

(2.15) µ̂i = β−1 log

(
ci

1− ci
·
|D|

Zi

)

.

The expression for the chemical potentials, (2.15), can also be used to write
a simplified expression for the partition function:

(2.16) Ẑ = |D|NΠN
i=1

1

1− ci
.

The approximate free energy is now given by

−β−1 log Ẑ + µ̂ · c = β−1
N∑

i=1

ci log ci + (1− ci) log(1− ci)

+ (ci − 1) log |D| − ci logZi.

(2.17)
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Note that because D is a bounded set, Xi is not exactly the mean

position of atomic site i. See Appendix A for details.

2.2.3. Relative Entropy and the Generalized Variational Approach. The ba-
sis for optimizing (2.10) so that ν̂ provides the best match to ν is in-
spired by the Gibbs-Bogoliubov inequality and the variational Gaussian ap-
proach [14, 18]. As alluded to in the introduction, this is closely related to
the relative entropy metric.

Let us assume that V , the primitive potential in this problem, is bounded
on the set D.1 In particular, we assume

Assumption 2. There exists a constant C > 0 such that for all x ∈ DN

and for all a,

(2.18) |VDMD(x,a)| ≤ C.

Under these assumptions, we have the necessary absolute continuity to
proceed with using R:

Proposition 1. Subject to Assumptions 1 and 2, ν̂ ≪ ν with Radon-

Nikodym derivative

(2.19)
dν̂

dν
(x,a) =

Z

Ẑ
exp

{

β(VDMD − V̂DMD + β(µ̂− µ) · a
}

and

R(ν̂||ν) = βEν̂ [∆V ] + β(µ̂− µ) · Eν̂[a] + logZ − log Ẑ < ∞.(2.20)

Proof. Let A be any measurable subset of the state space, ({0, 1}×D)N , of
the form

(2.21) A = ΠN
i=1(ai ×Bi)

where each Bi is a Lebesgue measurable subset of D ⊂ R
d. If ν(A) = 0,

then

0 =

∫

B1×B2...×BN

exp {−β(VDMD(x,a)− µ · a)} dx ≥ e−βC−β
∑

i|µi|Πi|Bi|,

where |Bi| is the Lebesgue measure of the set Bi and C is the constant from
Assumption 2. Since the µi are assumed to be finite, we can thus infer that
the only way ν(A) = 0 is if at least one of the Bi has Lebesgue measure
zero, regardless of the particular site occupancy values, ai. Then, since the
ki defining V̂DMD are finite,

ν̂(A) = Ẑ−1

∫

B1×B2...×BN

exp
{

−β(V̂DMD(x,a)− µ̂ · a)
}

dx

≤ Ẑ−1eβ
∑

i|µ̂i|Πi|Bi| = 0.

(2.22)

1While this formally excludes potentials which diverge near the origin, such as the
Lennard-Jones potential, such divergences are routinely avoided by choosing a cut-off at
an appropriately small interatomic separation.
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Since this holds for all sets of type (2.21), we conclude it that for all mea-
surable subsets of ({0, 1}×D)N for which ν(A) = 0 we must have ν̂(A) = 0.
This gives us absolute continuity of the measures.

The Radon-Nikodym derivative is then given by (2.19) and R is given by
(2.20). By our assumptions, R will be finite. �

Since R ≥ 0, we can use (2.12) and (2.17) to express (2.20) as

F ≤ Eν̂ [∆V ] + β−1
N∑

i=1

ci log ci + (1− ci) log(1− ci)− ci logZi

+ (ci − 1) log |D|.

(2.23)

We thus define the approximate DMD free energy, which is an upper bound
on the true DMD free energy, as

F̂ ≡ Eν̂ [∆V ] + β−1
N∑

i=1

ci log ci + (1− ci) log(1− ci)− ci logZi

+ (ci − 1) log |D|.

(2.24)

The DMD algorithm for the vacancy problem proceeds in two steps:

(1) Find a minimizer of F̂ over k and X, with Xi ∈ D and ki ≥ 0.

(2) Approximate the dynamics of (2.8), substituting F̂ for F .

Thus, since the Gibbs-Bogliubov inequality is equivalent to the statement
that the relative entropy is non-negative, the first step in the above algorithm
is to find the best approximation, with respect to relative entropy, of ν over
a class of distributions of type ν̂.

2.3. Free Energy and Relative Entropy for a Binary Mixture. Mir-
roring our examination of the vacancy problem, we consider the analogous
formulation for a binary alloy.

2.3.1. Canonical Ensemble. For a binary mixture, many of the calculations
are similar, or even simpler, than for the case of an elemental material with
vacancies. First, we formulate the νAB distribution:

(2.25) νAB(dx,a) = Z−1
AB exp {−β(VAB − µ · a)} dx.

We continue to assume Assumption 1 holds, adapted to the binary mixture
case.

2.3.2. Approximate Ensemble. Now, instead of the approximate potential
given by (2.10) for the vacancy problem, we assume

(2.26) V̂AB =
∑

i

ki

2
|xi −Xi|

2 .

The distinction here is that because each site always contains an atom of
species A or B, the potential is always non-zero. In contrast, the potential
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associated with a vacancy is always zero and a vacancy is never subject to
a force. Proceeding with the potential (2.26), we find

(2.27) ν̂AB(dx,a;k,X) = Ẑ−1
AB exp

{

−β(V̂AB − µ̂ · a)
}

dx,

where the chemical potentials are chosen to satisfy E
ν̂AB [ai] = ci. In this

case

(2.28) ẐAB = ΠN
i=1

(

1 + eβµ̂i

)

Zi,

where Zi defined as in (2.13). Hence, we can immediately write the chemical
potential as

(2.29) µ̂i = β−1 log

(
ci

1− ci

)

.

The free energy is then given by

(2.30) − β−1 log Ẑ + µ · c = β−1
N∑

i=1

ci log ci + (1− ci) log(1− ci)− logZi.

2.3.3. Relative Entropy for the Binary Mixture. We next consider the rela-
tive entropy minimization problem for the binary mixture, requiring ν̂AB ≪
νAB. Using the same approach as in the vacancy case, we will also assume
the boundedness of VAB, in the same spirit as Assumption 2:

Proposition 2. Under Assumptions 1 and 2 for the binary mixture case,

ν̂AB ≪ νAB with the associated Radon-Nikodym derivative, and

(2.31) R(ν̂AB||νAB) = βEν̂AB[∆V ] +β(µ̂−µ) · c− log ẐAB+ logZAB < ∞.

As before, we can reformulate this as a free energy statement,

−β−1 logZAB + µ · c
︸ ︷︷ ︸

FAB

≤ E
ν̂AB [∆V ] + β−1

N∑

i=1

ci log ci + (1− ci) log(1− ci)− logZi

︸ ︷︷ ︸

F̂AB

.
(2.32)

The simulation now proceeds as above, with a minimizer R over k and X

while the ci evolve.

3. Discussion

3.1. Relation to Existing DMD Formulations.
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3.1.1. Vacancy Problem. We compare (2.24) to the DMD free energy for the
vacancy problem found in [15, 23, 24]. Indeed, if one rewrites equation (3)
from the original 2011 DMD paper [15] for the case of the pair potential
(in the classical approximation – i.e., for Planck’s constant equals zero), the
expression is:

F2011 =
∑

i<j

cicj

(

2π
βki

) d
2

(

2π
βkj

) d
2

∫∫

R2d
φ(|xi − xj |)e

−
βki
2

|xi−Xi|
2

e
−

βki
2

|xj−Xj |
2

dxidxj

+ β
−1

N
∑

i=1

d

2
ci

(

log
βki
2π

− 1
)

+ ci log ci + (1 − ci) log(1 − ci).

(3.1)

Some of the differences between (3.1) and (2.24) can be reconciled by the
use of a mean field approximation, by which (2.2) is replaced with

(3.2) VDMD,mf =
∑

i<j

cicjφ(|xi − xj |)

where the ci take continuous values between 0 and 1. This approximation
simplifies some of the computations. For instance, the µi are now explicit:

(3.3) µi = β−1 log

(
ci

1− ci

)

,

and the numerical estimation of Eν̂ [VDMD] is simplified. Notice that (3.3) is
the same quantity as we obtained in our examination of the binary mixture,
(2.29). This will hold generically when the potential for our distribution,
whether true or approximate, does not explicitly depend on a. Furthermore,
in the mean field case, the finiteness of the partition function, assumed in
Assumption 1, is implied by boundedness of the mean field potential over the
set D for all c ∈ [0, 1]N ; thus, an assumption like Assumption 2 is required.

However, the mean field approximation does not fully account for the
differences. Part of the discrepancy may be attributed to the choice of the
state space; Sarkar et al. [15, 24] use ({0, 1} × R

d)N . Formally, as D → R
d,

(3.4) Zi →

(
2π

βki

) d
2

, E
ν̂ [V̂DMD] → β−1 d

2

N∑

j=1

cj,

and (2.24) tends to

(3.5) F̂ → F2011 + β−1
N∑

i=1

(ci − 1) log |D| ,

where we have not taken |D| to the limit in the last expression. This de-
pendence on |D| is a finite size correction to the free energy. As D → R

d,
this becomes unbounded. However, this term does not alter the algorithm
since we are only concerned with differences of free energies rather than
absolute magnitudes. Indeed, during the first part of the algorithm, where
a local minimizer of F̂ is sought over k and X with fixed c, there are no
contributions ∝ log |D|. And in the second part of the algorithm, under the
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dynamics of type (2.8), where F̂ is used in place of F , the log |D| terms
cancel one another.

The log |D| terms also cancel under the more sophisticated dynamics used
in [4, 15,24]. There, the dynamics are given by the master equation

(3.6) ċi =
∑

j∈N(i)

νe−βQm

{

cj(1− ci)e
−β(fi−fj) − ci(1− cj)e

−β(fj−fi)
}

,

with

(3.7) fi ≡
∂F̂

∂ci
− β−1 log

(
ci

1− ci

)

.

Because of the differentiation with respect to ci in the previous expression,
the log |D| term does not appear in the differences, fi − fj.

A more substantive difference between the existing DMD literature and
our analysis is the notion of the ensemble averaged site positions. As derived
in the Appendix (A.3),

E
ν̂ [xi] =

∫

D
xidxi + eβµ̂i

∫

D
xi exp

{

−βki
2 |xi −Xi|

2
}

dxi

|D|+ eβµ̂i

∫

D
exp

{

−βki
2 |xi −Xi|

2
}

dxi

= (1− ci)

∫

D
xidxi

|D|
+ ci

∫

D
xi exp

{

−βki
2 |xi −Xi|

2
}

dxi

Zi
,

(3.8)

where we have used (2.15) to simplify the expression. For simulations in
computational domains that are symmetric about the origin, such as D =
(−L,L)d or a hypersphere, the first term in this expression vanishes and
E
ν̂[xi] → ciXi.
An alternative notion of mean position could be useful in this case. Con-

sider:

(3.9)
E
ν̂ [aixi]

Eν̂ [ai]
=

1

Zi

∫

D

xi exp
{

−βki
2 |xi −Xi|

2
}

dxi,

where we have made use of (A.4). Now, as D tends to R
d, (3.9) recovers

Xi. This weighted averaging is inspired by the mathematical theory of
multiphase flow (see, for instance, [5]).

Working with R
d is inherently problematic, as the measures defined as

in (2.4) and (2.11) do not lead to well defined probability measures, even
under the mean field approximation. Consider, for example, ν̂ with N = 1.
For this problem the partition function would be

(3.10)
1∑

a1=0

∫

Rd

exp

{

−β
a1k1

2
|xi −Xi|

2 + βµ̂1a1

}

dx1 = ∞,

since, in the case a1 = 0, we are integrating dx1 over the whole space.
However, we contend that while (3.1) may give rise to physically con-

sistent simulations, it is not based on a variational principle, and instead,
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practitioners should use (2.11). In order to make use of R and arrive at a
variational formulation, it is essential that the distributions be well defined
probability distributions, with finite partition functions and that absolute
continuity holds. We note that this is not an artifact of our mathemati-
cal analysis based on relative entropy. As the Gibbs-Bogliubov inequality
is a restatement of the non-negativity of relative entropy, it has the same
underlying assumptions of absolute continuity and well defined measures.

One way to correct (3.8) is to alter the choice of (2.10). Suppose we
mimic what is done in the binary mixture (which does not suffer from these
problems), and took

(3.11) V̂DMD =
∑

i

ki

2
|xi −Xi|

2 .

We would replicate (2.28) for the partition function and, with this revised
value, the free energy would be

(3.12) F̂DMD = E
ν̂ [∆V ] + β−1

N∑

i=1

ci log ci + (1− ci) log(1− ci)− logZi.

Now, as D → R
d, we obtain

F̂DMD ≈ E
ν̂[VDMD] + β−1

N∑

i=1

ci log ci + (1− ci) log(1− ci)

+
d

2

(

log
βki

2π
− 1

)

.

(3.13)

This formulation has the advantage that Eν̂ [xi] → Xi as D → R
d. However,

notice now that there is no ci multiplying the last expression in (3.13), as
in (3.1).

3.1.2. Binary Mixture Problem. As noted, if we make a mean field approx-
imation, then as D → R

d, we recover the expression found in [4], which we
do not reproduce here.

3.2. Advantages of Relative Entropy. One of the main advantages of
the formulation given here is that the question of relative entropy mini-
mization is a rigorously defined variational problem, forcing us to confront
problems such as that associated with domain size. Indeed, for DMD we
have

Theorem 1. Given K ∈ (0,∞) and the open bounded subset D of Rd, let

(3.14) AD,K =
{
γ of the form (2.11) | Xi ∈ D̄, ki ∈ [0,K]

}
.

Then if {γn} is a minimizing sequence of R(·||ν), it has a subsequential limit

such that

(3.15) lim
n→∞

R(γn||ν) = R(γ⋆||ν) = inf
γ∈A

R(γ||ν)
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and

(3.16) γn
TV
→ γ⋆.

Note that by our previous assumptions on V and µ, that they are bounded
on D for ci ∈ (0, 1), we are assured that the elements of AD,K are absolutely
continuous with respect to such a ν, and have finite Dkl.

Proof. We claim AD,K is weakly compact; see Appendix B. Therefore, any

sequence has a weak limit, γnk

w
→ γ⋆. Then, by the lower semicontinuity

of R(·||ν) (Proposition 2.1 of [20]) we have (3.15), then we can infer (3.16)
(Lemma 2.4 of [20]). �

Thus, the free energy minimization part of the algorithm is well posed in
the sense that if we take a minimizing sequence it has a subsequential limit.

Another advantage of this formulation of the problem is that it allows one
to consider more general parameterizations of the synthetic distribution, ν̂.
Indeed, one could imagine any distribution parameterized by some collection
of variables, denoted collectively by p, and proceed as above; first, one
finds a local minimizer of R(ν̂p||ν). Using that, the free energy gradients
with respect to c are computed at this stationary point, and this drives the
dynamic evolution of the ci’s. Provided this admissible class is closed (in
some sense), we are ensured that its minimization problem is well posed too.

3.3. Open Problems and Future Work. Here, we have presented a
mathematical framework for DMD, and we have given particular attention
to the question of free energy minimization. One point we have not ad-
dressed is the temporal evolution problem, and how the master equation
will be influenced by the use of the approximate free energy in place of the
true DMD free energy. Indeed, we note that while the minimization of free
energy ensures that ν̂ is close to ν in the sense of relative entropy (and hence,
total variation), we cannot conclude that

(3.17)

∣
∣
∣
∣
∣

∂F

∂ci
−

∂F̂

∂ci

∣
∣
∣
∣
∣
,

errors in the dynamics of both (2.8) and (3.6) are small. As of now, this
remains an unconstrained approximation that merits investigation. It can
be shown that

(3.18)
∂F

∂ci
= µi,

and, at a minimizer of R,

(3.19)
∂F̂

∂ci
= µ̂i + β Covν̂ (∆V, ∂ciµ̂ · a) .

Calculations of these can be found in the appendix. Similar expressions hold
under the mean field approximation.
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The validity of the mean field approximation used in [4, 15, 24] remains
to be explored. As noted, this dramatically simplifies the calculations and
immediately gives the “true” chemical potentials (3.3). The solvability in
the general case is also an open problem.

Finally, there is the question of how, or in what sense, does DMD, as
a model, approximate any specific, more primitive MD model, such as
Langevin dynamics. More specifically, since DMD removes the stochas-
tic nature of primitive MD models, replacing the displacive dynamics with
a finite-temperature, energy minimization, DMD is deterministic. Simi-
larly, the stochastic or random walk-like diffusive dynamics in primitive MD
becomes deterministic in DMD. The question of when this is and is not
acceptable remains to be explored.

Appendix A. Detailed Calculations

A.1. Partition Functions. To obtain the approximate partition function
(2.13), we employ the following procedure:

Ẑ =
∑

a

∫

DN

exp
{

−β(V̂ (x,a;k,X) − µ̂ · a)
}

dx

= ΠN
i=1

{
∑

ai

∫

D

exp
{

−βaiki
2 |xi −Xi|

2 + βµ̂iai

}

dxi

}

= ΠN
i=1

{

|D|+ eµ̂i

∫

D

exp
{

−βki
2 |xi −Xi|

2
}

dxi

}

= ΠN
i=1

{

|D|+ eµ̂iZi

}

.

(A.1)

A.2. Chemical Potentials. To obtain (2.15), we apply (A.1) to obtain

E
ν̂[ai] =

ΠN
j 6=i

{
|D|+ eβµ̂jZi

}

Ẑ

{
∑

ai

∫

D

ai exp
{

−βaiki
2 |xi −Xi|

2 + βµ̂iai

}

dxi

}

=
eβµ̂iZi

|D|+ eβµ̂iZi
.

(A.2)

Since E
ν̂ [ai] = ci, we solve for µ̂i in terms of ci.

A.3. Mean Position. The expectation value of the atomic position xi is

E
ν̂[xi] =

ΠN
j 6=i

{
|D|+ eβµ̂jZi

}

Ẑ

{
∑

ai

∫

D

xi exp
{

−βaiki
2 |xi −Xi|

2 + βµ̂iai

}

dxi

}

=
1

|D|+ eβµ̂iZi

(∫

D

xidxi + eβµ̂i

∫

D

xi exp
{

−βki
2 |xi −Xi|

2
}

dxi

)

(A.3)
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and the weighted mean position is given by

E
ν̂[aixi] =

ΠN
j 6=i

{
|D|+ eβµ̂jZi

}

Ẑ

{
∑

ai

∫

D

aixi exp
{

−βaiki
2 |xi −Xi|

2 + βµ̂iai

}

dxi

}

=
1

|D|+ eβµ̂iZi

(

eβµ̂i

∫

D

xi exp
{

−βki
2 |xi −Xi|

2
}

dxi

)

.

(A.4)

A.4. Mean Potential. The expectation value of the mean potential V̂DMD

is obtained as follows:

E
ν̂[V̂DMD] =

N∑

j=1

E
ν̂

[
ajkj

2
|xj −Xj|

2

]

=

N∑

j=1

ΠN
k 6=j

{
|D|+ eβµ̂kZk

}

Ẑ
eβµ̂j

∫

D

kj

2
|xj −Xj|

2 exp
{

−
βkj
2 |xj −Xj |

2
}

dxj

=

N∑

j=1

cjkj

2Zj

∫

D

|xj −Xj|
2 exp

{

−
βkj
2 |xj −Xj|

2
}

dxj .

(A.5)

A.5. Free Energy Gradients. The DMD free energy gradient, with re-
spect to ci, is computed as follows

∂F

∂ci
= −β−1 1

Z

∂Z

∂ci
+

∂µ

∂ci
· c+ µi

= −β−1 1

Z

{
∑

∫

β
∂µ

∂ci
· a exp {−βVDMD + µ · a} dx

}

+
∂µ

∂ci
· c+ µi

= −
∂µ

∂ci
· Eν [a] +

∂µ

∂ci
· c+ µi = µi.

This is (3.18). The gradient of F̂ with respect to any of the parameters
defining ν̂ vanishes at the minimizer of R. To see this, recall that since we
have a minimizer of R,

∂R(ν̂||ν)

∂p
= 0

for any parameter, p, such as ki and Xi. Since we can write

β−1R = F̂ − F
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and F does not depend on the parameters, when a derivative is taken with
respect to ci, chain rule terms involving the parameters vanish at the mini-
mizers. Therefore,

∂F̂

∂ci
= −β−1 1

Ẑ

∂Ẑ

∂ci
+

∂µ̂

∂ci
· c+ µ̂i +

∂Eν̂ [∆V ]

∂ci

= µ̂i +
1

Ẑ

∑

ai

∫

∆V β(∂ciµ̂ · a) exp
{

−βV̂ + βµ̂ · a
}

−
1

Z
E
ν̂ [∆V ]

(
∑

ai

∫

β(∂ciµ̂ · a) exp
{

−βV̂ + βµ̂ · a
}
)

,

and this gives us (3.19).

Appendix B. Weak Compactness of the set of Measures

Lemma 1. The set AD,K is weakly compact, in the sense that if {γn} is

any sequence in AD,K, it has a weakly converging subsequence in AD,K .

Proof. Given any sequence of γn ∈ AD,K , we have sequences (X(n),k(n)) ∈

D̄N × [0,K]N . Since the set is compact, it has a convergent subsequence,

X
(nm)
i → X

(⋆)
i , k

(nm)
i → k

(⋆)
i

Let γ⋆ be the measure associated with X(⋆) and k(⋆). Clearly, γ⋆ ∈ AD,K.
Given any bounded continuous function f on the set X, we will now show

E
γnm [f ] → E

γ⋆ [f ].

From (2.16), so long as the ci ∈ (0, 1) Zn = Z⋆. For brevity, let

V̂DMD(x,a;X
(nm),k(nm)) = V̂ (m)(x,a) → V̂ (⋆)(x,a)

µ̂(X(nm),k(nm)) = µ̂
(m) → µ̂

(⋆)

Therefore, when we take differences,

|Eγnm [f ]− E
γ⋆ [f ]|

≤
1

Z⋆

∑

a

∫

DN

|f(x,a)|
∣
∣
∣e−βV̂ (m)(x,a)+βµ̂(m)·a − e−βV̂ (⋆)(x,a)+βµ̂(⋆)·a

∣
∣
∣

≤
1

Z⋆

∑

a

∫

DN

|f(x,a)| e−βV̂ (⋆)(x,a)+βµ̂(⋆)·a
∣
∣
∣e−β(V̂ (m)(x,a)−V̂ (⋆)(x,a))+β(̂µ(m)−µ

(⋆))·a − 1
∣
∣
∣

Since x and a are elements of bounded sets, and

e−β(V̂ (m)(x,a)−V̂ (⋆)(x,a))+β(̂µ(m)−µ
(⋆))·a

depends continuously upon X(m) and k(m), we then have there exists some
constant such that for all x ∈ D̄ and a ∈ {0, 1},
∣
∣
∣e−β(V̂ (m)(x,a)−V̂ (⋆)(x,a))+β(̂µ(m)−µ

(⋆))·a − 1
∣
∣
∣ ≤ C

(∣
∣
∣X

(m) −X(⋆)
∣
∣
∣+
∣
∣
∣k

(m) − k(⋆)
∣
∣
∣

)
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Therefore,

|Eγnm [f ]− E
γ⋆ [f ]| ≤ C

(∣
∣
∣X

(m) −X(⋆)
∣
∣
∣+
∣
∣
∣k

(m) − k(⋆)
∣
∣
∣

)

E
γ⋆ [|f |]

and we have weak convergence.
�
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