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OPTIMAL CONTROL OF A SEMIDISCRETE

CAHN-HILLIARD-NAVIER-STOKES SYSTEM WITH

NON-MATCHED FLUID DENSITIES ∗

MICHAEL HINTERMÜLLER, TOBIAS KEIL, DONAT WEGNER †

Abstract. This paper is concerned with the distributed optimal control of a time-discrete Cahn–
Hilliard/Navier–Stokes system with variable densities. It focuses on the double-obstacle potential
which yields an optimal control problem for a family of coupled systems in each time instance of
a variational inequality of fourth order and the Navier–Stokes equation. By proposing a suitable
time-discretization, energy estimates are proved and the existence of solutions to the primal system
and of optimal controls is established for the original problem as well as for a family of regularized
problems. The latter correspond to Moreau–Yosida type approximations of the double-obstacle
potential. The consistency of these approximations is shown and first order optimality conditions for
the regularized problems are derived. Through a limit process, a stationarity system for the original
problem is established which is related to a function space version of C-stationarity.

Key words. Cahn-Hilliard, limiting C-stationarity, mathematical programming with equi-
librium constraints, Navier-Stokes, non-matched densities, non-smooth potentials, optimal control,
semidiscretization in time, Yosida regularization.
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1. Introduction. In this paper we are concerned with the optimal control of
two (or more) immiscible fluids with non-matched densities. For the mathematical
formulation of the fluid phases, we use phase field models which have recently been
used successfully in applications involving, e.g., phase separation phenomena (see, e.g.,
[4, 14, 30]). Some of the strengths of phase field approaches are due to their ability
to overcome both, analytical difficulties of topological changes, such as, e.g., droplet
break-ups or the coalescence of interfaces, and numerical challenges in capturing the
interface dynamics. In this context, a so-called order parameter depicts the concentra-
tion of the fluids, attaining extreme values at the pure phases and intermediate values
within a thin (diffuse) interface layer, and it is associated with decreasing/minimizing
a suitably chosen energy.

A renowned diffuse interface model is the Cahn-Hilliard system which was first
introduced by Cahn and Hilliard in [9]. In the presence of hydrodynamic effects, the
system has to be enhanced by an equation which captures the behavior of the fluid.
In [28], Hohenberg and Halperin published a first basic model for immiscible, viscous
two-phase flows. Their so-called ’model H’ combines the Cahn-Hilliard system with
the Navier-Stokes equation. It is however restricted to the case where the two fluids
possess nearly identical densities, i.e., matched densities. Recently, Abels, Garcke
and Grün [2] obtained the following diffuse interface model for two-phase flows with

∗This research was supported by the German Research Foundation DFG through the SPP 1506
and the SFB-TRR 154 and by the Research Center MATHEON through project C-SE5 and D-OT1
funded by the Einstein Center for Mathematics Berlin.

†Institute for Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany.

1

http://arxiv.org/abs/1506.03591v1


2 Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system

non-matched densities:

∂tϕ+ v∇ϕ− div(m(ϕ)∇µ) = 0,(1.1a)

−∆ϕ+ ∂Ψ0(ϕ)− µ− κϕ = 0,(1.1b)

∂t(ρ(ϕ)v) + div(v ⊗ ρ(ϕ)v) − div(2η(ϕ)ǫ(v)) +∇p

+div(v ⊗ J)− µ∇ϕ = 0,(1.1c)

divv = 0,(1.1d)

v|∂Ω = 0,(1.1e)

∂nϕ|∂Ω = ∂nµ|∂Ω = 0,(1.1f)

(v, ϕ)|t=0 = (va, ϕa),(1.1g)

which is supposed to hold in the space-time cylinder Ω × (0,∞), where ∂Ω denotes
the boundary of Ω. This system is thermodynamically consistent in the sense that it
allows for the derivation of local entropy or free energy inequalities.

In the above model, v represents the velocity of the fluid and p describes the
fluid pressure. The symmetric gradient of v is defined by ǫ(v) := 1

2 (∇v +∇v⊤). The
density ρ of the mixture of the fluids depends on the order parameter ϕ which reflects
the mass concentration of the fluid phases. More precisely,

ρ(ϕ) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2
ϕ,(1.2)

where ϕ ranges in the interval [−1, 1], and 0 < ρ1 ≤ ρ2 are the given densities of
the two fluids under consideration. This is one of the main distinctions compared
to the model with matched densities, where ρ is a fixed constant. The quantity µ
denotes the chemical potential in the Cahn-Hilliard system and helps to split the
fourth-order in space differential operator into two second-order operators. Another
important difference between (1.1) and model ’H’ is the presence of a relative flux J :=
− ρ2−ρ1

2 m(ϕ)∇µ which corresponds to the diffusion of the two phases and additionally
complicates the analytical situation. The viscosity and mobility coefficients of the
system, η and m, depend on the actual concentration of the two fluids at each point
in time and space. The initial states are given by va and ϕa, and κ > 0 is a positive
constant. Furthermore, Ψ0 represents the convex part of the homogeneous free energy
density contained in the Ginzburg-Landau energy model which is associated with the
Cahn-Hilliard part of (1.1). Usually, the homogeneous free energy density serves
the purpose of restricting the order parameter ϕ to the physically meaningful range
[−1, 1] and to capture the spinodal decomposition of the phases. For this reason, it
is typically non-convex and maintains two local minima near or at −1 and 1.

Depending on the underlying applications, different choices have been investi-
gated in the literature. In their original paper [9], Cahn and Hilliard considered the
logarithmic form Ψ(ϕ) = (1 + ϕ) ln(1 + ϕ) + (1 − ϕ) ln(1 − ϕ) − κ

2ϕ
2 which also

plays an important role in the Flory-Huggins solution theory of the thermodynamics
of polymer solutions. Another possible choice is the smooth double-well potential
Ψ(ϕ) = κ

2 (1 − ϕ2)2, see e.g. [12, 16]. It permits pure phases but fails to restrict
the order parameter to [−1, 1]. Therefore, it is perhaps a less relevant choice in ma-
terial science. In [35], Oono and Puri found that in the case of deep quenches of,
e.g. binary alloys, the double-obstacle potential, is better suited than the other free
energy models mentioned above. A similar observation appears to be true in the case
of polymeric membrane formation under rapid wall hardening. The double-obstacle
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potential Ψ(ϕ) = I[−1,1](ϕ) −
κ
2ϕ

2, with I[−1,1] denoting the indicator function of
the interval [−1, 1] in R, combines the advantage of the existence of pure phases and
the exclusiveness of the interval [−1, 1] at the cost of losing differentiability (when
compared, e.g., to the double-well potential). As a consequence, (1.1b) becomes a
variational inequality which complicates the analytical and numerical treatment of
the overall model.

In this paper we study the optimal control of a time discrete coupled Cahn-
Hilliard-Navier-Stokes (CHNS) system with the double-obstacle potential. For this
purpose, we introduce a distributed control u which enters the Navier-Stokes equation
(1.1c) on the right-hand side and aims to minimize an objective functional J subject
to the control-version CHNS(u) of the Cahn-Hilliard-Navier-Stokes system:

minimize J (ϕ, µ, v, u) over (ϕ, µ, v, u)

subject to (s.t.) u ∈ Uad, (ϕ, µ, v, u) satisfies CHNS(u),

where Uad is a given set of admissible controls.
Regarding physical applications, we point out that the CHNS system is used to

model a variety of situations. These range from the aforementioned solidification
process of liquid metal alloys, cf. [14], or the simulation of bubble dynamics, as in
Taylor flows [4], or pinch-offs of liquid-liquid jets [29], to the formation of polymeric
membranes [45] or proteins crystallization, see e.g. [30] and references within. Fur-
thermore, the model can be easily adapted to include the effects of surfactants such
as colloid particles at fluid-fluid interfaces in gels and emulsions used in food, phar-
maceutical, cosmetic, or petroleum industries [5, 37]. In many of these situations an
optimal control context is desirable where the system is influenced in such a way that
a prescribed system behavior needs to be guaranteed.

In the literature, the classical case of two-phase flows of liquids with matched
densities is well investigated, see e.g. [28]. When it comes to the modeling of fluids
with different densities, then the literature presents various approaches, ranging from
quasi-incompressible models with non-divergence free velocity fields, see e.g. [32], to
possibly thermodynamically inconsistent models with solenoidal fluid velocities, cf.
[13]. We refer to [7, 8, 18] for additional analytical and numerical results for some of
these models. In [1], Abels, Depner and Garcke derived an existence result for the
given system (1.1) with a logarithmic potential, and in the recent preprint [19] system
(1.1) with smooth potentials (thus excluding the double-obstacle homogeneous free
energy density) is considered in a fully discrete and an alternative semi-discrete in
time setting including numerical simulations.

The optimal control problem associated to the Cahn-Hilliard-Navier-Stokes sys-
tem with matched densities and a non-smooth homogeneous free energy density
(double-obstacle potential) has been previously studied by the first and last author of
this work in [27]. We also mention the recent preprint [17] which treats the control of
a nonlocal Cahn-Hilliard-Navier-Stokes system in two dimensions. Apart from these
contributions the literature on the optimal control of the coupled CHNS-system with
non-matched densities is - to the best of our knowledge - essentially void. Neverthe-
less, we mention that there are numerous publications concerning the optimal control
of the phase separation process itself, i.e. the distinct Cahn-Hilliard system, see e.g.
[10, 11, 21, 25, 43, 44].

We point out that the presence of a non-smooth homogeneous free energy density
associated with the underlying Ginzburg-Landau energy in the Cahn-Hilliard system
gives rise to an optimal control problem for the Navier-Stokes system coupled to
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the Cahn-Hilliard variational inequality. In particular, due to the presence of the
variational inequality constraint, classical constraint qualifications (see, e.g., [46]) fail
which prevents the application of Karush-Kuhn-Tucker (KKT) theory in Banach space
for the first-order characterization of an optimal solution by (Lagrange) multipliers. In
fact, it is known [22, 27] that the resulting problem falls into the realm of mathematical
programs with equilibrium constraints (MPECs) in function space. Even in finite
dimensions, this problem class is well-known for its constraint degeneracy [33, 36].
As a result, stationarity conditions for this problem class are no longer unique (in
contrast to KKT conditions); compare [22, 23] in function space and, e.g., [39] in
finite dimensions. They rather depend on the underlying problem structure and/or
on the chosen analytical approach. In this work, we utilize a Yosida regularization
technique with a subsequent passage to the limit with the Yosida parameter in order
to derive conditions of C-stationarity type. This technique is reminiscent of the one
pioneered by Barbu in [6], but for different problem classes.

The remainder of the paper is organized as follows. In section 2 we introduce the
semi-discrete Cahn-Hilliard-Navier-Stokes system and assign it to the corresponding
optimal control problem. In section 3 we show the existence of feasible points to
the original optimal control problem, as well as to regularized problems. Section 4 is
concerned with the existence of globally optimal solutions, and section 5 deals with
the consistency of the chosen regularization technique. In section 6 we derive first-
order optimality conditions for the regularized problems using a classical result from
non-linear optimization theory. Then a limiting process leads to a stationarity system
for the original problem. The latter is the content of section 7.

2. The semi-discrete CHNS-system and the optimal control problem.

As a first step towards the numerical treatment of the underlying Cahn-Hilliard-
Navier-Stokes system, we study a semi-discrete (in time) variant. For our subsequent
analysis we start by fixing the associated function spaces and by invoking our working
assumptions.

For this purpose, let Ω ⊂ R
N , N = 2, 3, be a bounded domain with smooth

boundary ∂Ω ∈ C2(Ω). In particular, Ω satisfies the cone condition, cf. [3, Chapter
IV, 4.3].

For k ∈ N and 1 ≤ p ≤ ∞ we introduce the following Sobolev spaces:

Hk
0,σ(Ω;R

N ) =
{
f ∈ Hk(Ω;RN ) ∩H1

0 (Ω;R
N ) : divf = 0, a.e. on Ω

}
,

W
k,p

(Ω) =

{
f ∈W k,p(Ω) :

∫

Ω

fdx = 0

}
,

W
k,p

∂n (Ω) =
{
f ∈W

k,p
(Ω) : ∂nf|∂Ω = 0 on ∂Ω

}
,

where ’a.e.’ stands for ’almost everywhere’. Here, W k,p(Ω) and W k,p
0 (Ω) denote

the usual Sobolev space, see [3]. For p = 2, we also write Hk(Ω) respectively Hk
0 (Ω)

instead. Unless otherwise noted, (·, ·) represents the L2-inner product, ‖·‖ the induced

norm, and 〈·, ·〉 := 〈·, ·〉
H

−1
,H

1 the duality pairing between H
1
(Ω) and H

−1
(Ω). For

a Banach space W , we denote by W ∗ its topological dual, and L(W,W ∗) defines the
space of all linear and continuous operators fromW toW ∗. In our notation for norms,
we do not distinguish between scalar- or vector-valued functions. The inner product
of vectors is denoted by ’·’, the vector product is represented be ’⊗’ and the tensor
product for matrices is written as ’:’.
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Remark 2.1. Before we present the semi-discrete system and assuming integra-
bility in time, from (1.1a) we get

∫

Ω

∂tϕdx = −

∫

Ω

v∇ϕdx +

∫

Ω

div(m(ϕ)∇µ)dx = 0,

Hence utilizing (1.1g) the integral mean of ϕ satisfies

1

|Ω|

∫

Ω

ϕdx ≡
1

|Ω|

∫

Ω

ϕadx =: ϕa,

i.e., it is constant in time. By assuming ϕa ∈ (−1, 1), we exclude the uninteresting
case |ϕa| = 1. This can be achieved by considering the shifted system (1.1), where ϕ

is replaced by its projection onto L
2
(Ω). Consequently, we need to work with shifted

variables such as, e.g. m(y + ϕa), which we again denote by m(y) in a slight misuse
of notation.

Motivated by physics, we assume throughout that the mobility and viscosity
coefficients are strictly positive as specified in Assumption 2.2 below. Furthermore,
we extend the connection (1.2) between ϕ and ρ to all of R, as our studies include
certain double-well type potentials which allow for values of ϕ outside the physically
relevant interval [−1, 1].

Assumption 2.2.
1. The coefficient functions m, η ∈ C2(R) in (1.1c) and (1.1a) as well as their

derivatives up to second order are bounded, i.e. there exist constants 0 < b1 ≤
b2 such that for every x ∈ R, it holds that b1 ≤ min{m(x), η(x)} and

max{m(x), η(x), |m′(x)|, |η′(x)|, |m′′(x)|, |η′′(x)|} ≤ b2.

2. The initial state satisfies (va, ϕa) ∈ H2
0,σ(Ω;R

N )×
(
H

2

∂n(Ω) ∩K

)
where

K :=
{
v ∈ H

1
(Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω

}
,

with −1− ϕa =: ψ1 < 0 < ψ2 := 1− ϕa.
3. The density ρ depends on the order parameter ϕ via

ρ(ϕ) = max

{
ρ1 + ρ2

2
+
ρ2 − ρ1

2
(ϕ+ ϕa), 0

}
≥ 0.

We note that by Remark 2.1 the pure phases are attained at x when ϕ(x) = ψ1

or ϕ(x) = ψ2, and the max-operator in Assumption 2.2.3 ensures that the density
remains always non-negative. The latter is necessary to derive appropriate energy
estimates.

With these assumptions we now state the semi-discrete Cahn-Hilliard-Navier-
Stokes system. For the sake of generality, we additionally introduce a distributed
force on the right-hand side of the Navier-Stokes equation, which will later serve the
purpose of a distributed control. Below and throughout the paper, τ > 0 denotes
the time step-size and M ∈ N the total number of time instances in the semi-discrete
setting.

Definition 2.1 (Semi-discrete CHNS-system). Let Ψ0 : H
1
(Ω) → R be a convex

functional with subdifferential ∂Ψ0. Fixing (ϕ−1, v0) = (ϕa, va) we say that a triple

(ϕ, µ, v) = ((ϕi)
M−1
i=0 , (µi)

M−1
i=0 , (vi)

M−1
i=1 )
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in H
2

∂n(Ω)
M × H

2

∂n(Ω)
M × H1

0,σ(Ω;R
N )M−1 solves the semi-discrete CHNS system

with respect to a given control u = (ui)
M−1
i=1 ∈ L2(Ω;RN )M−1, denoted as (ϕ, µ, v) ∈

SΨ(u), if it holds for all φ ∈ H
1
(Ω) and ψ ∈ H1

0,σ(Ω;R
N ) that

〈
ϕi+1 − ϕi

τ
, φ

〉
+ 〈vi+1∇ϕi, φ〉 − 〈div(m(ϕi)∇µi+1), φ〉 = 0,(2.1)

〈−∆ϕi+1, φ〉+ 〈∂Ψ0(ϕi+1), φ〉 − 〈µi+1, φ〉 − 〈κϕi, φ〉 = 0,(2.2)
〈
ρ(ϕi)vi+1 − ρ(ϕi−1)vi

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

+ 〈div(vi+1 ⊗ ρ(ϕi−1)vi), ψ〉H−1
0,σ ,H

1
0,σ

−

〈
div(vi+1 ⊗

ρ2 − ρ1
2

m(ϕi−1)∇µi), ψ

〉

H−1
0,σ ,H

1
0,σ

+ (2η(ϕi)ǫ(vi+1), ǫ(ψ))

− 〈µi+1∇ϕi, ψ〉H−1
0,σ ,H

1
0,σ

= 〈ui+1, ψ〉H−1
0,σ ,H

1
0,σ
.(2.3)

The first two equations are supposed to hold for every 0 ≤ i+1 ≤M − 1 and the last
equation holds for every 1 ≤ i+ 1 ≤M − 1.

Remark 2.3. In general, the subdifferential of a convex function Ψ0 can be
a set-valued mapping, see, e.g., [15]. In this case, by equation (2.2) there exists
β ∈ ∂Ψ0(ϕi+1) such that

〈−∆ϕi+1, φ〉+ 〈β, φ〉 − 〈µi+1, φ〉 − 〈κϕi, φ〉 = 0, ∀φ ∈ H
1
(Ω).

We note that in the above system the boundary conditions specified in (1.1) are
included in the respective function spaces.

It is interesting to note that our semi-discretization of (1.1) in time involves three
time instances (i− 1, i, i+ 1). Equations (2.1) and (2.2), however, do not involve the
velocity at the ”old” time instance i− 1. As a consequence, (ϕ0, µ0) are characterized
by the (decoupled) Cahn-Hilliard system only. At the final time instance, however, the
coupling of the Cahn-Hilliard and the Navier-Stokes system is maintained; otherwise,
we have little hope to derive some energy estimates for the system.

Finally, we present the optimal control problem for the semi-discrete CHNS sys-
tem. For its formulation, let Uad ⊂ L2(Ω;RN )M−1 and J : X → R be a Fréchet
differentiable function, with

X := H
1
(Ω)M ×H

1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 × L2(Ω;RN )M−1.

Further requirements on Uad and J are made explicit in connection with the existence
result, Theorem 4.1, below.

Definition 2.2. The optimal control problem is given by

min J (ϕ, µ, v, u) over (ϕ, µ, v, u) ∈ X

s.t. u ∈ Uad, (ϕ, µ, v) ∈ SΨ(u).
(PΨ)

In many applications, J is given by a tracking-type functional and Uad by uni-
lateral or bilateral box constraints.
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3. Existence of feasible points. In this section, we prove the existence of
feasible points for the optimization problem (PΨ). As stated earlier, for deriving
stationarity conditions we will later on approximate the double-obstacle potential by
a sequence of smooth potentials of double-well type. Therefore, we consider here the
following two types of free energy densities.

Assumption 3.1. The functional Ψ0 : H
1
(Ω) → R is convex, proper and lower-

semicontinuous. It has one of the two subsequent properties:

1. Either it is given by Ψ0(ϕ) :=
∫
Ω ψ0(ϕ(x))dx where ψ0 : R → R := R∪{+∞}

represents the double-obstacle potential,

ψ0(z) :=





+∞ if z < ψ1,
0 if ψ1 ≤ z ≤ ψ2,
+∞ if z > ψ2.

2. Or it originates from a double-well type potential and satisfies:
(a) Ψ0 is Fréchet differentiable with {Ψ′

0(ϕ)} = ∂Ψ0(ϕ) ⊂ L2(Ω) for every

ϕ ∈ H
1
(Ω);

(b) There exists Bu ∈ R such that Ψ0(ϕ) ≤ Bu for every ϕ ∈ K.

Additionally, we assume that the functional Ψ(ϕ) := Ψ0(ϕ)−
∫
Ω
κ
2ϕ(x)

2dx, κ > 0,
is bounded from below by a constant Bl ∈ R.

We start by studying the semi-discrete CHNS system for a single time step. For

this purpose, assume that the pair (ϕ̃, ṽ) ∈ H
1
(Ω) ×H1

0,σ(Ω;R
N ) is given. We then

show the existence of a point (ϕ, µ, v) which solves a slightly modified system. The-
orem 3.5 collects the results for all time steps via an induction argument. Finally,
Theorem 3.7 shows that the modified system equals the original CHNS system under
suitable assumptions.

The starting point for our considerations is an energy estimate for the generalized
system. This estimate will be useful to establish the boundedness of the feasible set.
We note that in what follows, C, C1 and C2 denote generic constants which may take
different values at different occasions.

Lemma 3.1 (Energy estimate for a single time step). Let ϕ̃ ∈ H
1
(Ω), ṽ ∈

H1
0,σ(Ω;R

N ), Θv ∈ (H1
0,σ(Ω;R

N ))∗, Θµ,Θϕ ∈ H
−1

(Ω), ν ∈ H1(Ω;RN ), f0, f−1 ∈
L2(Ω), f0, f−1 ≥ 0 be given such that

f0 − f−1

τ
+ divν = 0 a.e. on Ω.(3.1)

In case of the double-obstacle potential suppose additionally that ϕ̃ ∈ K.

Then, if (ϕ, µ, v) ∈ H
1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ) solves the system

〈
ϕ− ϕ̃

τ
, φ

〉
+ 〈v∇ϕ̃, φ〉 − 〈div(m(ϕ̃)∇µ), φ〉 = 〈Θµ, φ〉 , ∀φ ∈ H

1
(Ω),(3.2)

−〈µ, φ〉 − 〈κϕ̃, φ〉+ 〈−∆ϕ, φ〉 + 〈∂Ψ0(ϕ), φ〉 = 〈Θϕ, φ〉 , ∀φ ∈ H
1
(Ω),(3.3)

〈
f0v − f−1ṽ

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

+ 〈div(v ⊗ ν), ψ〉H−1
0,σ ,H

1
0,σ

+ (2η(ϕ̃)ǫ(v), ǫ(ψ))

−〈µ∇ϕ̃, ψ〉H−1
0,σ ,H

1
0,σ

= 〈Θv, ψ〉H−1
0,σ ,H

1
0,σ
, ∀ψ ∈ H1

0,σ(Ω;R
N ),(3.4)
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the following energy estimate holds true:

∫

Ω

f0 |v|
2

2
dx+

∫

Ω

|∇ϕ|
2

2
dx+Ψ(ϕ) +

∫

Ω

f−1
|v − ṽ|

2

2
dx+

∫

Ω

|∇ϕ−∇ϕ̃|
2

2
dx

+ τ

∫

Ω

2η(ϕ̃) |ǫ(v)|
2
dx+ τ

∫

Ω

m(ϕ̃) |∇µ|
2
dx+

∫

Ω

κ
(ϕ− ϕ̃)2

2

≤

∫

Ω

f−1 |ṽ|
2

2
dx+

∫

Ω

|∇ϕ̃|
2

2
dx+Ψ(ϕ̃) + g(ϕ, µ, v),(3.5)

where g is defined as

g(ϕ, µ, v) := 〈Θµ, µ〉+

〈
Θϕ,

ϕ− ϕ̃

τ

〉
+ 〈Θv, v〉H−1

0,σ ,H
1
0,σ
.(3.6)

Proof. First, we observe that

(div(v ⊗ ν), v) = ((divν)v + (ν · ∇)v, v)

=

∫

Ω

((divν)
v

2
+ (ν · ∇)v)vdx +

∫

Ω

(divν)
v

2
vdx

=

∫

Ω

div

(
ν
|v|2

2

)
+ (divν)

|v|2

2
dx =

∫

Ω

(divν)
|v|2

2
dx.(3.7)

Next, one verifies

(f0v − f−1ṽ, v) =

∫

Ω

f0 |v|
2

2
dx−

∫

Ω

f−1 |ṽ|
2

2
dx

+

∫

Ω

(f0 − f−1) |v|
2

2
dx+

∫

Ω

f−1 |v − ṽ|
2

2
dx.(3.8)

Testing (3.2),(3.3) and (3.4) with µ, ϕ−ϕ̃τ and v, respectively, summing up and inte-
grating by parts, we obtain

0 =

∫

Ω

f0 |v|
2
− f−1 |ṽ|

2

2τ
dx +

∫

Ω

f−1
|v − ṽ|

2

2τ
dx+

∫

Ω

(f0 − f−1) |v|
2

2τ
dx

+

∫

Ω

(divν)
|v|

2

2
dx+

∫

Ω

2η(ϕ̃) |ǫ(v)|
2
dx+

∫

Ω

m(ϕ̃) |∇µ|
2
dx

+
1

τ
〈∂Ψ0(ϕ), ϕ − ϕ̃〉

H
−1
,H

1 − κ

∫

Ω

ϕ̃
ϕ− ϕ̃

τ
dx

+
1

τ

∫

Ω

∇ϕ(∇ϕ −∇ϕ̃)dx− g(ϕ, µ, v),(3.9)

where we also use the previous equations (3.7) and (3.8). From the definition of the
subdifferential we infer

〈∂Ψ0(ϕ), ϕ− ϕ̃〉 ≥ Ψ(ϕ)−Ψ(ϕ̃) +
κ

2

∫

Ω

ϕ2 − ϕ̃2dx.(3.10)

Inserting (3.1),(3.10) into (3.9) and using 2a(a − b) = a2 − b2 + (a − b)2 once for
(a, b) = (∇ϕ,∇ϕ̃) and then for (a, b) = (ϕ̃, ϕ) we obtain the assertion.
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Remark 3.2. Note that the system (3.2)-(3.4) corresponds to the system (2.1)-
(2.3) for one time step only when choosing

ṽ = vi, ϕ̃ = ϕi, f0 = ρ(ϕi), f−1 = ρ(ϕi−1),

ν = ρ(ϕi−1)vi −
ρ2 − ρ1

2
m(ϕi−1)∇µi,

Θv = u, Θϕ = Θµ = 0.

Now we prove the existence of solutions to the system (3.2)-(3.4). The proof mainly
relies on the application of Schaefer’s fixed point theorem, also called the Leray-
Schauder principle, and combines arguments from [1, Lemma 4.3] and monotone op-
erator theory.

Theorem 3.2 (Existence of solutions to the CHNS system for a single time
step). Let the assumptions of Lemma 3.1 be satisfied. Then the system (3.2)-(3.4)

has a solution (ϕ, µ, v) ∈ H
1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ).

Proof. We start by defining

X := H
1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ),(3.11)

Y := H
−1

(Ω)×H
−1

(Ω)×H1
0,σ(Ω;R

N )∗,(3.12)

and the operators G1 : H
1
(Ω) → H

−1
(Ω), G2 : H

1
(Ω) ⇒ H

−1
(Ω), G3 : H1

0,σ(Ω;R
N ) →

H1
0,σ(Ω;R

N )∗, G : X ⇒ Y and F : X → Y (here and below ’⇒’ indicates a set-valued
mapping) via

G1(µ) := −div(m(ϕ̃)∇µ)−Θµ, G2(ϕ) := −∆ϕ+ ∂Ψ0(ϕ) −Θϕ,

G3(v) := −div(2η(ϕ̃)ǫ(v))−Θv,

G(ϕ, µ, v) := (G1(µ),G2(ϕ),G3(v))
⊤
, F(ϕ, µ, v) := (F1,F2,F3)

⊤,

with

F1(ϕ, µ, v) := −
ϕ− ϕ̃

τ
− v∇ϕ̃, F2(ϕ, µ, v) := µ+ κϕ̃,

F3(ϕ, µ, v) := −
f0v − f−1ṽ

τ
− div(v ⊗ ν) + µ∇ϕ̃.

Using this notation, the system (3.2)-(3.4) can be stated as

0 ∈ G(ϕ, µ, v) −F(ϕ, µ, v) ⊂ Y.(3.13)

By standard arguments, the mappings G1 and G3 are invertible and the respective

inverse mapping is continuous. Since the Laplace operator is invertible from H
1
(Ω)

to H
−1

(Ω) and the subdifferential ∂Ψ0 is maximal monotone (cf. [38, Theorem A]),

G2 is invertible, as well. Concerning the continuity of G−1
2 , let ξ1, ξ2 ∈ H

−1
(Ω) and

ϕ1, ϕ2 ∈ H
1
(Ω) satisfy ϕj = G−1

2 (ξj) for j = 1, 2. Using Poincaré’s inequality and the
monotonicity of ∂Ψ0, we immediately obtain

‖ϕ2 − ϕ1‖
2
H1 ≤ C(〈−∆(ϕ2 − ϕ1), ϕ2 − ϕ1〉+ 〈∂Ψ0(ϕ2)− ∂Ψ0(ϕ1), ϕ2 − ϕ1〉)

= C 〈ξ2 − ξ1, ϕ2 − ϕ1〉 ≤ C ‖ξ2 − ξ1‖H−1 ‖ϕ2 − ϕ1‖H1 ,

showing the continuity of G−1
2 .
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Due to the compact embedding of the space Y := L
3
2 (Ω) × L

3
2 (Ω)× L

3
2 (Ω;RN ),

into Y , the inverse of G is a compact operator from Y to X . Further, F : X → Y is
continuous. Hence, the operator F ◦ G−1 : Y → Y is compact.

In what follows, we show the existence of a solution δ∗ to the fixed point equation

δ∗ −F ◦ G−1(δ∗) = 0 ∈ Y .(3.14)

Then it immediately follows that G−1(δ∗) solves the system (3.2)-(3.4). In order to
apply Schaefer’s theorem with respect to the operator F ◦G−1 we verify the condition
that the set D :=

⋃
0≤λ≤1

{
δ ∈ Y |δ = λF ◦ G−1(δ)

}
is bounded. For this purpose,

assume that δ ∈ Y and λ ∈ [0, 1] satisfy

δ = λF ◦ G−1(δ),(3.15)

and define (ϕ, µ, v) := G−1(δ) ∈ X . Thus, (3.15) can be rewritten as

G(ϕ, µ, v) − λF(ϕ, µ, v) = 0(3.16)

which is equivalent to the following system of equations

〈
λ
ϕ− ϕ̃

τ
, φ

〉
+ 〈λv∇ϕ̃, φ〉 = 〈div(m(ϕ̃)∇µ), φ〉 + 〈Θµ, φ〉 , ∀φ ∈ H

1
(Ω),

〈λµ, φ〉+ 〈λκϕ̃, φ〉 = 〈−∆ϕ, φ〉+ 〈∂Ψ0(ϕ)), φ〉 − 〈Θϕ, φ〉 , ∀φ ∈ H
1
(Ω),

λ

〈
f0v − f−1ṽ

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

+ λ 〈div(v ⊗ ν), ψ〉H−1
0,σ ,H

1
0,σ

+ (2η(ϕ̃)ǫ(v), ǫ(ψ))

= λ 〈µ∇ϕ̃, ψ〉H−1
0,σ ,H

1
0,σ

+ 〈Θv, ψ〉H−1
0,σ ,H

1
0,σ
, ∀ψ ∈ H1

0,σ(Ω;R
N ).

Analogously to the proof of Lemma 3.1, we test this system by µ, ϕ−ϕ̃τ and v, respec-
tively, sum up the resulting equations and integrate by parts to derive

0 = λ

∫

Ω

f0 |v|
2 − f−1 |ṽ|

2

2τ
dx + λ

∫

Ω

f−1
|v − ṽ|2

2τ
dx+

∫

Ω

2η(ϕ̃) |ǫ(v)|
2
dx

+

∫

Ω

m(ϕ̃) |∇µ|2 dx+
1

τ

∫

Ω

∂Ψ0(ϕ)(ϕ − ϕ̃)dx − λκ

∫

Ω

ϕ̃
ϕ− ϕ̃

τ
dx

+
1

τ

∫

Ω

∇ϕ(∇ϕ −∇ϕ̃)dx − g(ϕ, µ, v),(3.17)

which leads to
∫

Ω

2η(ϕ̃) |ǫ(v)|
2
dx+

∫

Ω

m(ϕ̃) |∇µ|
2
dx+

1

τ
Ψ(ϕ) +

1

τ

∫

Ω

|∇ϕ|
2
dx − g(ϕ, µ, v)

≤ λ

∫

Ω

f−1 |ṽ|
2

2τ
dx+

1

τ

∫

Ω

|∇ϕ̃|2 dx+
1

τ
Ψ(ϕ̃).(3.18)

Note that for obtaining (3.17) we also make use of (3.1). The right-hand side of (3.18)
can be bounded by a constant C := C(N,Ω, τ, f−1, ṽ, ϕ̃) > 0 which is independent of
λ. Since Ψ is bounded from below, this leads to

∫

Ω

2η(ϕ̃) |ǫ(v)|2 dx+

∫

Ω

m(ϕ̃) |∇µ|2 dx+
1

τ

∫

Ω

|∇ϕ|2 dx ≤ C + g(ϕ, µ, v).(3.19)
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Due to Korn’s inequality, Poincaré’s inequality and from the boundedness of η(·) and
m(·), we infer

‖v‖
2
H1 + ‖µ‖

2
H1 + ‖ϕ‖

2
H1 ≤ C + g(ϕ, µ, v)

≤ C1 + C2(‖v‖H1 + ‖µ‖H1 + ‖ϕ‖H1),(3.20)

where C2 > 0 depends only on Θµ, Θϕ and Θv. The last inequality yields the
boundedness of (ϕ, µ, v) in X . Next, we derive bounds for F . In fact, we have

‖F1(ϕ, µ, v)‖L3/2 ≤ C(‖ϕ‖+ ‖ϕ̃‖+ ‖v‖H1 ‖ϕ̃‖H1),

‖F2(ϕ, µ, v)‖L3/2 ≤ C(‖µ‖+ ‖ϕ̃‖),

‖F3(ϕ, µ, v)‖L3/2 ≤ C(‖v‖H1 + ‖v‖H1 ‖ν‖H1 + ‖µ‖ ‖ϕ̃‖H1 + ‖ṽ‖H1).

Since ϕ̃, ṽ and ν are fixed, D is bounded in Y . Hence Schaefer’s theorem is applicable
implying that equation (3.14) admits a fixed point δ∗ ∈ Y . Then G−1(δ∗) solves the
system (3.2)-(3.4).

In our setting, the right-hand sides of the system (3.2)-(3.4) are square integrable
functions. This enables the derivation of higher regularity properties for the solutions
obtained in Theorem 3.2.

Lemma 3.3 (Regularity of solutions). Let the assumptions of Lemma 3.1 be
satisfied, and suppose additionally that Θµ,Θϕ ∈ L2(Ω), as well as f0, f−1 ∈ L3(Ω)
and ϕ̃ ∈ H2(Ω).

Then it holds that ϕ, µ ∈ H
2

∂n(Ω) and v ∈ H2(Ω;RN ), provided that (ϕ, µ, v) ∈

H
1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ) satisfies the system (3.2)-(3.4). Moreover, there exists

a constant C = C(N,Ω, b1, b2, τ, κ) > 0 such that

‖ϕ‖H2 + ‖µ‖H2 + ‖v‖H2

≤ C(‖ϕ‖+ ‖µ‖+ ‖ϕ̃‖+ ‖Θϕ‖+ ‖Θµ‖+ ‖v‖H1 ‖ϕ̃‖H2 + ‖Ψ′
0(ϕ)‖).(3.21)

In case of the double-obstacle potential, it also holds that ϕ ∈ K and the term ‖Ψ′
0(ϕ)‖

in the above inequality is dropped.
Proof. Equation (3.3) is equivalent to

∆ϕ+ g1 ∈ ∂Ψ0(ϕ) in H
−1

(Ω)(3.22)

with g1 := µ+ κϕ̃+Θϕ. By Sobolev‘s embedding theorem g1 is in L2(Ω). In case of
the double-well type potential, Assumption 3.1.2 (a) then implies g2 := −g1+Ψ′

0(ϕ) ∈
L2(Ω) and ∆ϕ = g2. Applying [34, Theorem 2.3.6] and [34, Remark 2.3.7], we deduce

that ϕ ∈ H
2
(Ω) is the unique solution of the Neumann problem

∆ϕ = g2 in Ω, ∂nϕ|∂Ω = 0 on ∂Ω.

Furthermore, [34, Theorem 2.3.1] yields the existence of a constant C := C(N,Ω)
such that

‖ϕ‖H2 ≤ C(‖ϕ‖+ ‖g2‖) ≤ C(‖ϕ‖ + ‖µ‖+ κ ‖ϕ̃‖+ ‖Θϕ‖+ ‖Ψ′
0(ϕ)‖).(3.23)

In case of the double-obstacle potential, (3.22) is equivalent to the variational inequal-
ity problem:

Find ϕ ∈ K : 〈−∆ϕ− g1, φ− ϕ〉 ≥ 0, ∀φ ∈ K.(3.24)
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Then the assertion follows from the subsequent lemma.
Lemma 3.4. If ϕ ∈ K solves the variational inequality problem (3.24) with g1 ∈

L2(Ω), then ϕ ∈ H
2

∂n(Ω) and there exists a constant C = C(N,Ω) > 0 such that
‖ϕ‖H2 ≤ C ‖g1‖ .

For the sake of completeness we provide a proof in the appendix. It closely follows
the lines of argumentation of [31, Chapter IV].

Regarding µ, we argue similarly. Indeed, first note that by Sobolev‘s embedding
theorem and Hölder’s inequality g3 := ϕ−ϕ̃

τ + v∇ϕ̃ −Θµ − µ is an element of L2(Ω).
Furthermore, the coefficient function m(ϕ̃) is contained in H2(Ω) and W 1,6(Ω), re-
spectively (cf. [31, II, Lemma A.3]). Equation (3.2) is equivalent to

m(ϕ̃)∆µ+∇(m(ϕ̃))∇µ − µ = g3 in H
−1

(Ω).(3.25)

Again by [34, Theorem 2.3.5] and [34, Theorem 2.3.1] µ ∈ H
2

∂n(Ω) and it holds that

‖µ‖H2 ≤ C(‖µ‖+ ‖g3‖) ≤ C(‖µ‖+ ‖ϕ‖+ ‖ϕ̃‖+ ‖v‖H1 ‖ϕ̃‖H2 + ‖Θµ‖),(3.26)

where C > 0 depends only on N,Ω, b1, b2, τ .
Finally, we show the desired regularity of v. Since div(ǫ(v)) = 1

2 (∆v +∇(div v)),
it holds that

div(2η(ϕ̃)ǫ(v)) = 2η′(ϕ̃)ǫ(v)∇ϕ̃ + η(ϕ̃)∆v,

and therefore by equation (3.4) that

∆v = η(ϕ̃)−1
[
div(v ⊗ ν)− 2η′(ϕ̃)ǫ(v)∇ϕ̃ +

1

τ
(f0v − f−1ṽ)− µ∇ϕ̃−Θv

]
(3.27)

Moreover, div(v ⊗ ν) = (Dv)ν + v div ν. By the assumptions all summands in the
second line of (3.27) belong to L2(Ω;RN ) and ν ∈ H1(Ω;RN ). Hence, we have

∆v = η(ϕ̃)−1 [(Dv)ν + v div ν − 2η′(ϕ̃)ǫ(v)∇ϕ̃ + f ] ,(3.28)

with ||f || ≤ C(z) for a constant C(z) > 0 depending only on

z = (N,Ω, η, τ, ||ϕ||H2 , ||ϕ̃||H2 , ||µ||H2 , ||Θv||).

In order to show v ∈ H2(Ω;RN ), we apply a bootstrap argument and well-known
regularity results for the stationary Stokes’ equation, cf. [41].

1. Since v ∈ H1
0,σ(Ω;R

N ), we have that (Dv)ν, ǫ(v)∇ϕ̃ and v div ν belong to

L3/2(Ω;RN ). Therefore, [41, Prop. 2.3, p. 35] and (3.28) show that v ∈ W 2,3/2(Ω;RN )
and that ||v||W 2,3/2 ≤ C(z) for a constant C depending only on z.

2. Next, v ∈ W 2,3/2(Ω;RN ) and the continuous embedding of W 1,3/2(Ω) into
L3(Ω) (which we denote by W 1,3/2(Ω) →֒ L3(Ω)) imply that (Dv)ν and ǫ(v)∇ϕ̃
belong to L2(Ω;RN ). Moreover, W 2,3/2(Ω) →֒ Lp(Ω) for every p < ∞. Hence
v div ν ∈ L2−ε(Ω;RN ) for every ε > 0. Applying [41, Prop. 2.3, p. 35] again yields
v ∈ W 2,2−ε(Ω;RN ) for all ε > 0 and ||v||W 2,2−ε ≤ C(ε, z).

3. Finally, having v ∈ W 2,2−ε(Ω;RN ) and since W 2,2−ε(Ω) →֒ L∞(Ω) for ε
sufficiently small, it follows that also v div ν belongs to L2(Ω;RN ). Thus, we arrive
at v ∈ H2(Ω;RN ) and ||v||H2 ≤ C(z).

This completes the proof.
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Our aim is to prove the existence of a solution to the semi-discrete CHNS system
with the help of Theorem 3.2. This result, however, is not directly applicable with the
setting of Remark 3.2, as f0, f−1 and ν need not satisfy equation (3.1). This is due to
the nonsmoothness of the density function and the fact that ϕ may attain values in
R (rather than [ψ1, ψ2]) for a double-well-type potential. We overcome this difficulty
by applying Theorem 3.2 with the setting

ṽ := vi, ϕ̃ := ϕi, f0 := ρ(ϕi), f−1 := ρ(ϕi−1),

ν := ν(vi, ϕi, ϕi−1, µi), Θv := ui+1, Θϕ := Θµ := 0,
(3.29)

where ν : H1
0,σ(Ω;R

N )×H
2
(Ω)3 → H1(Ω;RN ) is given by

ν(v, ϕ, ϕ̃, µ) :=

{
ρ(ϕ̃)v − ρ2−ρ1

2 m(ϕ̃)∇µ if ρ(ϕ), ρ(ϕ̃) > 0 a.e. in Ω,

G(ρ(ϕ)−ρ(ϕ̃)τ ) else.
(3.30)

Here G : L2(Ω) → H1(Ω;RN ), δ 7−→ ζ, is a solution operator to

−divζ = δ a.e. on Ω.(3.31)

A specific realization of G is obtained by first solving −∆ξ = δ in L2(Ω) with ξ = 0
on ∂Ω, yielding ξ ∈ H2(Ω) ∩ H1

0 (Ω), and then setting ζ := ∇ξ ∈ H1(Ω,RN ). We
next prove that there always exists a solution to the system (2.1),(2.2),(3.32) where
the semi-discrete Navier-Stokes equation (2.3) is replaced by

〈
ρ(ϕi)vi+1 − ρ(ϕi−1)vi

τ
, ψ

〉

H−1
0,σ ,H

1
0,σ

+ (2η(ϕi)ǫ(vi+1), ǫ(ψ))

+ 〈div(vi+1 ⊗ ν(vi, ϕi, ϕi−1, µi)), ψ〉H−1
0,σ ,H

1
0,σ

− 〈µi+1∇ϕi, ψ〉H−1
0,σ ,H

1
0,σ

= 〈ui+1, ψ〉H−1
0,σ ,H

1
0,σ
, ∀ψ ∈ H1

0,σ(Ω;R
N ).(3.32)

We point out that (3.32) coincides with (2.3) if

min{ρ(ϕi), ρ(ϕi−1)} > 0 a.e. on Ω.(3.33)

For the double-obstacle potential this always holds true, since ϕi is contained in the
interval [ψ1, ψ2]. Hence in this case ρ(ϕi) ≥ ρ(ψ1) = ρ1 > 0.

In Theorem 3.7 we show that for the double-well type potentials under consider-
ation ϕ remains in a close neighborhood of [ψ1, ψ2] and therefore condition (3.33) is
satisfied as well.

Proposition 3.5 (Existence of solution to a modified state system). Let ν :

H1
0,σ(Ω;R

N ) × H
1
(Ω)3 → H1(Ω;RN ) be defined by (3.30). Then for every u ∈

L2(Ω;RN )M−1 there exists a point (ϕ, µ, v) ∈ H
2

∂n(Ω)
M×H

2

∂n(Ω)
M×H1

0,σ(Ω;R
N )M−1

which solves the semi-discrete system (2.1),(2.2),(3.32). Moreover, every solution

(ϕ, µ, v) satisfies (ϕ, µ, v) ∈ H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1.

Proof. Standard arguments guarantee the existence of (ϕ0, µ0) ∈ H
1
(Ω)×H

1
(Ω)

such that (2.1)-(2.2) is satisfied for i = −1. Lemma 3.3 yields (ϕ0, µ0) ∈ H
2

∂n(Ω) ×

H
2

∂n(Ω).
If condition (3.33) holds true, then Assumption 2.2.3 and (2.1) imply

divν(vi, ϕi, ϕi−1, µi) =
ρ2 − ρ1

2
(∇ϕi−1vi − div(m(ϕi−1)∇µi))

= −
ρ2 − ρ1

2
(
ϕi − ϕi−1

τ
) = −

ρ(ϕi)− ρ(ϕi−1)

τ
.
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Consequently, if (ϕi, µi, vi) satisfies (2.1), then assumption (3.1) is always satisfied by
the definition of ν in the sense that

ρ(ϕi)− ρ(ϕi−1)

τ
+ divν(vi, ϕi, ϕi−1, µi) = 0 a.e. on Ω.(3.34)

Therefore, we can apply Theorem 3.2 with the setting (3.29) for i = 0 to guarantee

the existence of (ϕ1, µ1, v1) ∈ H
1
(Ω) × H

1
(Ω) × H1

0,σ(Ω;R
N ) such that the system

(2.1),(2.2),(3.32) is satisfied.

Now Lemma 3.3 yields (ϕ1, µ1, v1) ∈ H
2

∂n(Ω) × H
2

∂n(Ω) × H1
0,σ(Ω;R

N ). In the
case of the double-obstacle potential it additionally follows that ϕ1 ∈ K.

Repeated applications of Theorem 3.2 and Lemma 3.3 for each time step i =
1, ..,M − 2 prove the assertion.

As discussed above, this theorem directly guarantees the existence of a solution
to the semi-discrete CHNS system for the double-obstacle potential. Next we address
the boundedness of the solutions which is needed later on to ensure the existence of
optimal points for (PΨ). For this purpose, we apply the energy estimate of Lemma
3.1 at each time step.

Lemma 3.6 (Boundedness of the state). There exists a positive constant C =

C(N,Ω, b1, b2, τ, κ, va, ϕa, u) > 0 such that for every solution (ϕ, µ, v) ∈ H
2

∂n(Ω)
M ×

H
2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 of Theorem 3.5 it holds that

‖v‖
2
(H2)M + ‖µ‖

2
(H2)M + ‖ϕ‖

2
(H2)M+1 ≤ C.(3.35)

Furthermore, the operator L2(Ω,RN )M−1 ∋ u 7−→ C(N,Ω, b1, b2, τ, κ, va, ϕa, u) ∈ R

is bounded.
Proof. We define the functional E : H

1

0,σ(Ω)×H
1
(Ω)×H

1
(Ω) → R as follows:

E(v, ϕ, φ) :=

∫

Ω

ρ(φ) |v|
2

2
dx+

∫

Ω

|∇ϕ|
2

2
dx +Ψ(ϕ).(3.36)

Let j ∈ {1, ..,M − 2} be arbitrarily fixed. Then by repeatedly applying Lemma 3.1
with the setting (3.29) for i = j, j − 1, .., 0, we conclude that

E(vj+1, ϕj+1, ϕj) + τ

∫

Ω

2η(ϕj) |ǫ(vj+1)|
2
dx+ τ

∫

Ω

m(ϕj) |∇µj+1|
2
dx

≤ E(vj , ϕj , ϕj−1) + (uj+1, vj+1)

≤ E(vj−1, ϕj−1, ϕj−2) + (uj, vj) + (uj+1, vj+1)

:

≤ E(v0, ϕ0, ϕ−1) +

j+1∑

i=1

(ui, vi) .

By Assumptions 2.2 and 3.1 this yields

∫

Ω

|∇ϕj+1|
2

2
dx+Ψ(ϕj+1) + 2τb1

∫

Ω

|ǫ(vj+1)|
2
dx+ τb1

∫

Ω

|∇µj+1|
2
dx

≤ E(v0, ϕ0, ϕ−1) +

M−1∑

i=1

‖ui‖ ‖vi‖ ≤ C1 + C2 ‖u‖(L2)M−1 ‖v‖(H1)M ,(3.37)
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where C1 depends only on the initial data (N,Ω, Bl, Bu, va, ϕa). Due to Korn’s in-
equality and Poincaré’s inequality, this ensures

‖vj+1‖
2
H1 + ‖µj+1‖

2
H1 + ‖ϕj+1‖

2
H1 ≤ C1 + C2 ‖u‖(L2)M−1 ‖v‖(H1)M .

Since j ∈ {1, ..,M − 1} is arbitrarily chosen, we infer

‖v‖
2
(H1)M + ‖µ‖

2
(H1)M + ‖ϕ‖

2
(H1)M+1 ≤ C1 + C2

(
‖u‖(L2)M−1 ‖v‖(H1)M

)
.(3.38)

Hence (ϕ, µ, v) is bounded inH
1
(Ω)M×H

1
(Ω)M×H1

0,σ(Ω;R
N )M−1. Then the bound-

edness in the respective H2-spaces follows directly by applying Lemma 3.3 for each
time step.

Next we address the case of the double-well potential and show that for appro-
priate double-well type potentials the order parameter of a solution to the system
(2.1),(2.2),(3.32) is always greater than ψ1 − ε for some small ε > 0.

Theorem 3.7. Let u ∈ L2(Ω;RN )M−1 be given and
{
Ψ

(k)
0

}
k∈N

a sequence of

functions which satisfies the following two conditions:

1. For every k ∈ N Ψ
(k)
0 fulfills Assumption 3.1.

2. If
{
ϕ̂(k)

}
k∈N

is a sequence in H
1
(Ω) such that there exists C > 0 with

Ψ
(k)
0

(
ϕ̂(k)

)
≤ C for k ∈ N, then

∥∥∥max(−ϕ̂(k) + ψ1, 0)
∥∥∥
L1

→ 0, as k → ∞.

Furthermore, let
{
(ϕ(k), µ(k), v(k))

}
k∈N

be a sequence of solutions to the systems

(2.1),(2.2),(3.32) with Ψ0 = Ψ
(k)
0 . Then

∥∥∥max(−ϕ(k) + ψ1, 0)
∥∥∥
L∞

→ 0, as k → ∞.

Proof. Employing Lemma 3.6, in particular inequality (3.37) from its proof, then

we see that for every i ∈ {−1, ..,M − 1} and k ∈ N it holds that Ψ(k)(ϕ
(k)
i ) ≤ C1.

Hence, we conclude

Ψ
(k)
0

(
ϕ
(k)
i

)
≤ C1 +

κ

2

∥∥∥ϕ(k)
i

∥∥∥
2

L2
≤ C2.

By assumption, this yields

∥∥∥max(−ϕ
(k)
i + ψ1, 0)

∥∥∥
L1

→ 0 for k → ∞.(3.39)

Next, we use the technique of [24, Proposition 2.4] and [24, Remark 2.5] to derive

that
∥∥∥max(−ϕ

(k)
i + ψ1, 0)

∥∥∥
L∞

→ 0 for k → ∞. We stay brief here and refer to [24]

for details on the technique. By Lemma 3.6 the sequence
{
ϕ(k)

}
k∈N

is bounded in

H
2
(Ω), and due to Sobolev’s embedding theorem it is also bounded in W 1,6(Ω) and

C0,β(Ω), β ≤ 1
2 , respectively. Thus, there exists a constant Cβ such that for every

k ∈ N we have
∥∥ϕ(k)

∥∥
C0,β ≤ Cβ .
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For fix k ∈ N assume that
∥∥∥max(−ϕ

(k)
i + ψ1, 0)

∥∥∥
L∞

> 0 and define the set G :=
{
ω ∈ Ω : ϕ

(k)
i (ω) ≤ ψ1 < 0

}
. Then let ωmax ∈ G satisfy

−ϕ
(k)
i (ωmax) + ψ1 =

∥∥∥−ϕ(k)
i + ψ1

∥∥∥
L∞(G)

=
∥∥∥max(−ϕ

(k)
i + ψ1, 0)

∥∥∥
L∞(Ω)

.

Due to the Hölder continuity of ϕ
(k)
i , for every x ∈ Ω which satisfies |x− ωmax|RN ≤

(
−ϕ

(k)
i (ωmax)+ψ1

2Cβ

) 1
β

it holds that

−ϕ
(k)
i (x) + ψ1 ≥ −ϕ

(k)
i (ωmax) + ψ1 −

∥∥∥ϕ(k)
i

∥∥∥
C(0,β)(Ω)

|ωmax − x|
β
RN

≥
−ϕ

(k)
i (ωmax) + ψ1

2
> 0.

As Ω satisfies the cone condition, there exists a finite cone Kr(ωmax) := K(ωmax) ∩
B(ωmax, r) of radius r and with vertex ωmax such thatKr(ωmax) ⊂ Ω. Hence the cone

KR(ωmax) with R := min

(
r,

(
−ϕ

(k)
i (ωmax)+ψ1

2Cβ

) 1
β

)
is contained in G. Consequently,

we find

∥∥∥max(−ϕ
(k)
i + ψ1, 0)

∥∥∥
L1(Ω)

≥

∫

KR(ωmax)

−ϕ
(k)
i + ψ1dx

≥

∫

KR(ωmax)

(
−ϕ

(k)
i (ωmax) + ψ1

)

2
dx

≥
|KR(0)|

2

∥∥∥max(−ϕ
(k)
i + ψ1, 0)

∥∥∥
L∞(Ω)

In combination with (3.39) this proves the assertion.
We define ϕ− ∈ R as

ϕ− := inf {ϕ ∈ R : ρ(ϕ) > 0} < ψ1.(3.40)

Let u ∈ L2(Ω;RN )M−1 be given and let
{
Ψ

(k)
0

}
k∈N

be a sequence of double-well type

potentials which approximates the double-obstacle potential in a certain sense, i.e.,
it satisfies condition 2 of Theorem 3.7. Then Theorem 3.7 ensures that there exists
k∗ ∈ N such that for every k ≥ k∗ the solutions (ϕ(k), µ(k), v(k)) to the corresponding

systems (2.1),(2.2),(3.32) with Ψ0 = Ψ
(k)
0 satisfy

ϕ
(k)
i > ϕ−, ∀i = −1, ..,M − 1.(3.41)

Hence ρ(ϕ
(k)
i ) > 0 for every i = −1, ..,M − 1 and k ≥ k∗. Thus, (3.32) coincides with

(2.3), which leads to the subsequent theorem.
Theorem 3.8 (Existence of feasible points). Let u ∈ L2(Ω;RN )M−1. Let Ψ0

be the double-obstacle potential defined in Assumption 3.1.1 and let
{
Ψ

(k)
0

}
k∈N

be a

sequence which satisfies the conditions of Theorem 3.7.
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Then there exists k∗ ∈ N such that the system (2.1)-(2.3) admits a solution

(ϕ, µ, v) for every Ψ0 ∈
{
Ψ0

}
∪
{
Ψ

(k)
0

}
k≥k∗

. For this solution (ϕ, µ, v) the result

of Lemma 3.6 remains true.

In other words, the semi-discrete CHNS system (2.1)-(2.3) has a solution if the
double-well type potential under consideration is close enough to the double-obstacle
potential. In the following sections we always assume that this is the case. In Defi-
nition 7.1 below, we propose a specific regularization which satisfies the conditions of
Theorem 3.7.

4. Existence of globally optimal points. The previous section guarantees the
existence of feasible points for the optimal control problem (PΨ). Next we investigate
the existence of a solution to (PΨ). For this purpose, we need to impose additional
assumptions on the objective functional and the constraint set Uad.

Theorem 4.1 (Existence of global solutions). Suppose that J : H
2

∂n(Ω)
M ×

H
2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1×L2(Ω;RN )M−1 → R is convex and weakly lower-semi-

continuous and Uad is non-empty, closed and convex. Assume that either Uad is
bounded or J is partially coercive, i.e. for every sequence

{
(ϕ(k), µ(k), v(k), u(k))

}
k∈N

with limk→∞

∥∥u(k)
∥∥ = ∞ it holds that limk→∞ J (ϕ(k), µ(k), v(k), u(k)) = ∞. Then the

optimization problem (PΨ) admits a global solution.

Proof. By Theorem 3.5 the feasible set of the problem (PΨ) is non-empty and

contained in H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × Uad.

Let
{
(ϕ(k), µ(k), v(k), u(k))

}
k∈N

be an infimizing sequence of J in H
2

∂n(Ω)
M ×

H
2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × Uad with (ϕ(k), µ(k), v(k)) ∈ SΨ(u

(k)) such that

lim
k→∞

J (ϕ(k), µ(k), v(k), u(k)) = inf
u∈Uad,(ϕ,µ,v)∈SΨ(u)

J (ϕ, µ, v, u).(4.1)

Note that the infimum on the right-hand side may be −∞. The sequence
{
u(k)

}
k∈N

is bounded in the reflexive Banach space L2(Ω;RN )M−1. This follows either directly
from the boundedness of the set Uad or from the partial coercivity of J . Then

by Lemma 3.6 the sequence (ϕ(k), µ(k), v(k)) is bounded in H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×

H1
0,σ(Ω;R

N )M−1. Setting
{
w(k)

}
k∈N

:=
{
(ϕ(k), µ(k), v(k), u(k))

}
k∈N

, there exists a

weakly convergent subsequence
{
w(kl)

}
l∈N

with limit point w∗ := (ϕ∗, µ∗, v∗, u∗) ∈

H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1. Using the weak lower-semicontinuity of J ,

this implies

−∞ < J (w∗) ≤ lim inf
l→∞

J (w(kl)) = inf
u∈Uad,(ϕ,µ,v)∈SΨ(u)

J (ϕ, µ, v, u)

where the last equality holds due to (4.1). Since Uad is weakly closed, u∗ belongs to
Uad.

It remains to show that (ϕ∗, µ∗, v∗) ∈ SΨ(u
∗). For this purpose, we write l instead

of kl, and we start by considering the limit of
〈
−div(v

(l)
i+1 ⊗

ρ2−ρ1
2 m(ϕ

(l)
i−1)∇µ

(l)
i ), ψ

〉

for arbitrary i ∈ {0, ..,M − 2} and ψ ∈ H1(Ω;RN ). Using the triangle and Hölder’s
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inequality we derive

∥∥∥m(ϕ
(l)
i−1)∇µ

(l)
i · ∇ψ −m(ϕ∗

i−1)∇µ
∗
i · ∇ψ

∥∥∥
L4/3

≤
∥∥∥m(ϕ

(l)
i−1)(∇µ

(l)
i −∇µ∗

i ) · ∇ψ
∥∥∥
L4/3

+
∥∥∥(m(ϕ

(l)
i−1)−m(ϕ∗

i−1))∇µ
∗
i · ∇ψ

∥∥∥
L4/3

≤
∥∥∥m(ϕ

(l)
i−1)

∥∥∥
L∞

∥∥∥∇µ(l)
i −∇µ∗

i

∥∥∥
L4
‖∇ψ‖L2+

∥∥∥m(ϕ
(l)
i−1)−m(ϕ∗

i−1)
∥∥∥
L∞

‖∇µ∗
i ‖L4‖∇ψ‖L2 .

Since∇µ
(l)
i converges weakly to∇µ∗

i inH
1(Ω) andH1(Ω) is compactly embedded into

L4(Ω),
∥∥∥∇µ(l)

i −∇µ∗
i

∥∥∥
L4

tends to zero for l → ∞. Due to the compact embedding of

H2(Ω) into W 1,4(Ω), we have ϕ
(l)
i−1 → ϕ∗

i−1 strongly in W 1,4(Ω). Due to Assumption
2.2.1, m is Lipschitz continuous. Since W 1,4(Ω) can be embedded into L∞(Ω), we

infer
∥∥∥m(ϕ

(l)
i−1)−m(ϕ∗

i−1)
∥∥∥
L∞

→ 0.

Consequently, the sequence ρ2−ρ1
2 m(ϕ

(l)
i−1)∇µ

(l)
i ·∇ψ converges strongly in L4/3(Ω)

to ρ2−ρ1
2 m(ϕ∗

i−1)∇µ
∗
i · ∇ψ. By Sobolev’s embedding theorem and the weak con-

tinuity of the embedding operator, v
(l)
i+1 converges weakly in L4(Ω) to v∗i+1. Hence〈

div(v
(l)
i+1 ⊗

ρ2−ρ1
2 m(ϕ

(l)
i−1)∇µ

(l)
i ), ψ

〉
converges to

〈
div(v∗i+1 ⊗

ρ2−ρ1
2 m(ϕ∗

i−1)∇µ
∗
i ), ψ

〉

as l → ∞.
One proceeds analogously for the remaining terms in the system (2.1)-(2.3) which

do not depend on the subdifferential of Ψ0.

In this way we also show that ∆ϕ
(l)
i+1+µ

(l)
i+1+κϕ

(l)
i converges strongly in H

−1
(Ω)

to ∆ϕ∗
i+1 + µ∗

i+1 + κϕ∗
i for every i = −1, ..,M − 2. Furthermore, ϕ

(l)
i+1 → ϕ∗

i+1 in

H
1
(Ω), and for every l ∈ N it holds that ∆ϕ

(l)
i+1 + µ

(l)
i+1 + κϕ

(l)
i ∈ ∂Ψ0(ϕ

(l)
i+1). Due to

the maximal monotonicity of ∂Ψ0, this implies

∆ϕ∗
i+1 + µ∗

i+1 + κϕ∗
i ∈ ∂Ψ0(ϕ

∗
i+1)(4.2)

for every i = −1, ..,M − 2. In summary, we have shown (ϕ∗, µ∗, v∗) ∈ SΨ(u
∗). Hence

the w∗ is contained in the feasible set of the problem (PΨ) and therefore solves the
problem.

5. Convergence of minimizers. Now we turn our focus to the consistency of
the regularization, i.e. the convergence of a sequence of solutions to (PΨ(k)) with
Ψ(k) a double-well potential approaching the double-obstacle potential in the limit as
k → ∞, to a solution of (PΨ) with Ψ the double-obstacle potential. For this purpose,
we consider a sequence of functionals

{
Ψ(k)

}
k∈N

satisfying Assumption 3.1.2 and a

corresponding limit functional Ψ.
The following theorem provides conditions under which a sequence of globally

optimal solutions to (PΨ(k)) converge to a global solution of (PΨ), as k → ∞.
Theorem 5.1 (Consistency of the regularization). Let the assumptions of The-

orem 4.1 be fulfilled. The objective J : H
1
(Ω)M × H

1
(Ω)M × H1

0,σ(Ω;R
N )M−1 ×

L2(Ω;RN )M−1 → R is supposed to be upper-semicontinuous, and let
{
Ψ(k)

}
k∈N

be a sequence of potentials satisfying Assumption 3.1.2. Assume further that Ψ

is given such that for every sequence
{
(x(k), y(k))

}
k∈N

⊂ H
1
(Ω) × H

−1
(Ω) with

y(k) = Ψ(k)′(x(k)) and (x(k), y(k)) → (x(∞), y(∞)) strongly in H
1
(Ω) × H

−1
(Ω) it

holds that y(∞) ∈ ∂Ψ(x(∞)).



M. Hintermüller, T. Keil, D. Wegner 19

Then a sequence
{
(ϕ(k), µ(k), v(k), u(k))

}
k∈N

of global solutions to (PΨ(k)) in

H
2
(Ω)M ×H

2
(Ω)M ×H1

0,σ(Ω;R
N )M−1 × Uad converges to a global solution of (PΨ),

provided that
{
J (ϕ(k), µ(k), v(k), u(k))

}
k∈N

is assumed bounded, whenever Uad is un-
bounded.

Proof. First note that the sequence
{
u(k)

}
k∈N

is bounded in the reflexive Banach

space L2(Ω;RN )M−1. This follows either from the boundedness of the set Uad or from
the partial coercivity of J and the boundedness of

{
J (ϕ(k), µ(k), v(k), u(k))

}
k∈N

. By

Lemma 3.6, the sequence
{
(ϕ(k), µ(k), v(k))

}
k∈N

is bounded in H
2

∂n(Ω)
M×H

2

∂n(Ω)
M×

H1
0,σ(Ω;R

N )M−1. Hence there exists a weakly convergent sequence
{
w(kl)

}
l∈N

:=
{
(ϕ(kl), µ(kl), v(kl), u(kl))

}
l∈N

with limit point w:=(ϕ, µ, v, u)∈H
2

∂n(Ω)
M×H

2

∂n(Ω)
M×

H1
0,σ(Ω;R

N )M−1. Moreover, since Uad is weakly closed, u belongs to Uad.
As in the proof of Theorem 4.1, it can be shown that the limit point satisfies

(ϕ, µ, v) ∈ SΨ(u). The only difference is that inclusion (4.2) follows from the above
assumption instead of the maximal monotonicity.

Next, we prove that w is an optimal point of (PΨ). For this purpose, let (ϕ̂, µ̂, v̂, û)

be an optimal solution of (PΨ). We consider a sequence (ϕ̂(k), µ̂(k)) ∈ H
2

∂n(Ω)
M ×

H
2

∂n(Ω)
M such that

〈
ϕ̂
(k)
i+1 − ϕ̂

(k)
i

τ
, φ

〉
+
〈
v̂i+1∇ϕ̂

(k)
i , φ

〉
−
〈
div(m(ϕ̂

(k)
i )∇µ̂

(k)
i+1), φ

〉
= 0,

〈
−∆ϕ̂

(k)
i+1, φ

〉
+

〈(
Ψ

(k)
0

)′
(ϕ̂

(k)
i+1), φ

〉
−
〈
µ̂
(k)
i+1, φ

〉
−
〈
κϕ̂

(k)
i , φ

〉
= 0,

for every φ ∈ H
1
(Ω) and i ∈ {−1, ..,M − 2}, where v̂ corresponds to the previously

specified solution of (PΨ). Note that the operator L
(k)
a : H

1
(Ω)×H

1
(Ω) → H

−1
(Ω)×

H
−1

(Ω) defined by

L(k)
a (ϕ, µ) :=

(
−∆ϕ+

(
Ψ

(k)
0

)′
(ϕ)− µ, ϕ− div(a∇µ)

)
(5.1)

is monotone, coercive and continuous, if a ∈ H2(Ω) satisfies 0 < τb1 ≤ a(x) ≤

τb2 almost everywhere on Ω. Hence for fixed k ∈ N, the pair (ϕ̂
(k)
i+1, µ̂

(k)
i+1) of each

subsequent time step is uniquely determined as the solution to

L
(k)

m(ϕ̂
(k)
i )τ

(ϕ̂
(k)
i+1, µ̂

(k)
i+1) = (κϕ̂

(k)
i , ϕ̂

(k)
i − τ v̂i+1∇ϕ̂

(k)
i )(5.2)

where 0 < τb1 ≤ a := m(ϕ̂
(k)
i )h ≤ τb2 almost everywhere on Ω (cf. [40, Chapter

II, Theorem 2.2]. Then, by Lemma 3.3 the sequence (ϕ̂(k), µ̂(k), v̂)k∈N is bounded

in H
2
(Ω)M ×H

2
(Ω)M ×H1

0,σ(Ω;R
N )M−1. Consequently, there exists a subsequence

(denoted the same) which converges weakly in the associated product space to a limit
point (ϕ̂∗, µ̂∗, v̂). In accordance with the above observations, (ϕ̂∗

i+1, µ̂
∗
i+1) is the unique

solution to
〈
ϕ̂∗
i+1 − ϕ̂∗

i

τ
, φ

〉
+ 〈v̂i+1∇ϕ̂

∗
i , φ〉 −

〈
div(m(ϕ̂∗

i )∇µ̂
∗
i+1), φ

〉
= 0, ∀φ ∈ H

1
(Ω),

〈
−∆ϕ̂∗

i+1, φ
〉
+
〈
∂Ψ∗

0(ϕ̂
∗
i+1), φ

〉
−
〈
µ̂∗
i+1, φ

〉
− 〈κϕ̂∗

i , φ〉 = 0, ∀φ ∈ H
1
(Ω)
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for every i ∈ {−1, ..,M − 2}. Note that here we also use the prerequisite that y∗i+1 ∈

∂Ψ∗
0(ϕ̂

∗
i+1) when (y

(k)
i+1, ϕ̂

(k)
i+1) → (y∗i+1, ϕ̂

∗
i+1) with y(k)i+1 = Ψ

(k)
0

′
(ϕ̂

(k)
i+1). Since the

feasibility of (ϕ̂, µ̂, v̂, û) implies (ϕ̂, µ̂, v̂) ∈ SΨ(û), this yields ϕ̂
∗ = ϕ̂ and µ̂∗ = µ̂.

Now we show that µ̂(k) converges strongly in (H
2

∂n(Ω))
M to µ̂∗. For this purpose,

fix i ∈ {−1, ..,M − 2} and define

g
(k)
i :=

ϕ̂
(k)
i+1 − ϕ̂

(k)
i

τ
+ v̂i+1∇ϕ̂

(k)
i , g∗i :=

ϕ̂∗
i+1 − ϕ̂∗

i

τ
+ v̂i+1∇ϕ̂

∗
i .(5.3)

By the Rellich-Kondrachov theorem g
(k)
i converges strongly in L2(Ω) to g∗i . It further

holds that g
(k)
i − g∗i = div(m(ϕ̂

(k)
i )∇µ̂

(k)
i+1)− div(m(ϕ̂∗

i )∇µ̂
∗
i+1). Hence, we have

div(m(ϕ̂∗
i )∇(µ̂

(k)
i+1 − µ̂∗

i+1)) =g
(k)
i − g∗i − div((m(ϕ̂

(k)
i )−m(ϕ̂∗

i ))∇µ̂
(k)
i+1) =: δ

(k)
i .

Again by the Rellich-Kondrachov theorem m(ϕ̂
(k)
i ) converges strongly to m(ϕ̂∗

i ) in

W 1,5(Ω). Furthermore, ∇µ̂
(k)
i+1 is bounded in H1(Ω). As a consequence, δ

(k)
i → 0

strongly in L2(Ω). Applying [34, Theorem 2.3.1], we conclude

∥∥∥µ̂(k)
i+1 − µ̂∗

i+1

∥∥∥
H2

≤ C
∥∥∥δ(k)i

∥∥∥→ 0.

Next, we define û
(k)
i+1 ∈ L2(Ω;RN ) for all i ∈ {0, ..,M − 2} by

û
(k)
i+1 :=

ρ(ϕ̂
(k)
i )v̂i+1 − ρ(ϕ̂

(k)
i−1)v̂i

τ
+ div(v̂i+1 ⊗ ρ(ϕ̂

(k)
i−1)v̂i)

− div(v̂i+1 ⊗
ρ2 − ρ1

2
m(ϕ̂

(k)
i−1)∇µ̂

(k)
i )

− div(2η(ϕ̂
(k)
i )ǫ(v̂i+1))− µ̂

(k)
i+1∇ϕ̂

(k)
i .

Similarly to the proof of Theorem 4.1, it can be shown that û(k) converges strongly
in L2(Ω;RN )M−1 to û.

Summarizing, the sequence
{
(ϕ̂(k), µ̂(k), v̂, û(k))

}
k∈N

converges towards (ϕ̂, µ̂, v̂, û)

strongly in H
1
(Ω)M ×H

1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 × L2(Ω;RN )M−1. Employing the

continuity properties of the objective functional J , this yields

J (ϕ, µ, v, u) ≤ lim
k→∞

J (ϕ(k), µ(k), v(k), u(k)) ≤ lim
k→∞

J (ϕ̂(k), µ̂(k), v̂, û(k))

≤ J (ϕ̂, µ̂, v̂, û).(5.4)

Since (ϕ̂, µ̂, v̂, û) is optimal, the assertion holds true.
In summary, the optimal control problems under consideration are well-posed and

admit globally optimal solutions. Furthermore, the chosen regularization approach is
consistent in the sense of Theorem 5.1.

6. Stationarity conditions. Now we turn our attention to the derivation of
stationarity conditions for the optimal control problem. For smooth potentials Ψ0

stationarity or first-order optimality conditions for the problem (PΨ) can be derived
by applying classical results concerning the existence of Lagrange multipliers. The
latter approach is employed in the following theorem.
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Theorem 6.1 (First-order optimality conditions for smooth potentials). Let J :

H
1
(Ω)M×H

1
(Ω)M×H1

0,σ(Ω;R
N )M−1×L2(Ω;RN )M−1 → R be Fréchet differentiable

and let Ψ0 satisfy Assumption 3.1.2 such that Ψ′
0 maps H

2

∂n(Ω) continuously Frèchet-
differentiably into L2(Ω). Further, let z := (ϕ̄, µ̄, v̄, ū) be a minimizer of (PΨ). Then

there exist (p, r, q) ∈ L
2
(Ω)

M
× L

2
(Ω)

M
×H1

0,σ(Ω;R
N )

M−1
, p = (p−1, ...pM−2), r =

(r−1, ...rM−2), q = (q0, ...qM−2), such that

−
1

τ
(pi − pi−1) + a(m′(ϕi), µi+1, pi)− div(pivi+1)−∆tri−1

+Ψ′′
0(ϕi)

∗ri−1 − κri+1 −
1

τ
ρ′(ϕi)vi+1 · (qi+1 − qi)

− (ρ′(ϕi)vi+1 −
ρ2 − ρ1

2
m′(ϕi)∇µi+1)(Dqi+1)

⊤vi+2

+ 2η′(ϕi)ǫ(vi+1) : Dqi + div(µi+1qi) =
∂J

∂ϕi
(z),(6.1)

− ri−1 + b(m(ϕi−1), pi−1)− div(
ρ2 − ρ1

2
m(ϕi−1)(Dqi)

⊤vi+1)

− qi−1 · ∇ϕi−1 =
∂J

∂µi
(z),(6.2)

−
1

τ
ρ(ϕj−1)(qj − qj−1)− ρ(ϕj−1)(Dqj)

⊤vj+1

− (Dqj−1)(ρ(ϕj−2)vj−1 −
ρ2 − ρ1

2
m(ϕj−2)∇µj−1)

− div(2η(ϕj−1)ǫ(qj−1)) + pj−1∇ϕj−1 =
∂J

∂vj
(z),(6.3)

( ∂J
∂uk

(z)− qk−1

)M−1

k=1
∈
[
R+(Uad − ū)

]+
,(6.4)

for all i = 0, ...,M − 1 and j = 1, ...,M − 1. Here,
[
R+(Uad − ū)

]+
denotes the polar

cone of the set {r(w − u)|w ∈ Uad ∧ r ∈ R+}. Furthermore, we use the convention
that pi, ri, qi are equal to 0 for i ≥ M − 1 along with q−1 and ϕi, µi, vi for i ≥ M .

Moreover, a(f̂ , ŵ, p̂), b(m̂, p̂),∆t(r̂) ∈ H
2

∂n(Ω)
∗ are defined by 〈∆tr̂, ẑ〉 :=

∫
Ω r̂∆ẑdx,

〈a(f̂ , ŵ, p̂), ẑ〉 :=
∫
Ω
−p̂ div(f̂ ẑ∇ŵ)dx, 〈b(m̂, p̂), ẑ〉 :=

∫
Ω
−p̂div(m̂∇ẑ)dx, for func-

tions f̂ , m̂ ∈ C1(Ω), ŵ ∈ H1(Ω), r̂, p̂ ∈ L2(Ω) and ẑ ∈ H
2

∂n(Ω).

Proof. Utilizing the spaces X and Y and the set C given by

X := H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × L2(Ω;RN )M−1,

C := H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × Uad,

Y := (L
2
(Ω))∗

M
× (L

2
(Ω))∗

M
×H1

0,σ(Ω;R
N )∗

M−1
,
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for ϕ = (ϕ0, ..., ϕM−1), µ = (µ0, ..., µM−1), v = (v1, ..., vM−1), u = (u1, ..., uM−1) we
define a mapping g : X → Y by

g(ϕ, µ, v, u)

:=




(
1
τ (ϕi+1 − ϕi)− div(m(ϕi)∇µi+1) + vi+1 · ∇ϕi

)M−2

i=−1(
−µi+1 −∆ϕi+1 +Ψ′

0(ϕi+1)− κϕi
)M−2

i=−1(
1
τ (ρ(ϕi)vi+1 − ρ(ϕi−1)vi)− div(2η(ϕi)ǫ(vi+1))

+ div(vi+1 ⊗ (ρ(ϕi−1)vi −
ρ2−ρ1

2 m(ϕi−1)∇µi))− µi+1∇ϕi − ui+1

)M−2

i=0



.

Then, (PΨ) can be stated as min{J (ϕ, µ, v, u) : (ϕ, µ, v, u) ∈ C, g(ϕ, µ, v, u) = 0},
with z = (ϕ̄, µ̄, v̄, ū) an associated minimizer. The mapping g is continuously Frèchet
differentiable from X into Y . To see this, let us exemplarily consider the term
div(m(ϕi)∇µi+1). The other terms can be treated analogously. First note that
div(m(ϕi)∇µi+1) equals ∇m(ϕi) · ∇µi+1 + m(ϕi)∆µi+1 where m(ϕi) is given by
m(ϕi). Hence ∇m(ϕi) = m′(ϕi)∇ϕi. Assumption 2.2 implies that both superpo-
sition operators ϕ̃ 7→ m(ϕ̃), ϕ̃ 7→ m′(ϕ̃) are continuously Frèchet differentiable from
H2(Ω) →֒ L∞(Ω) into L∞(Ω) (cf. [42]). Therefore, the mappings (ϕ̃, µ̃) → m′(ϕ̃)∇ϕ̃ ·
∇µ̃ : H2(Ω) × H2(Ω) → L3(Ω) and (ϕ̃, µ̃) → m(ϕ̃)∆µ̃ : H2(Ω) × H2(Ω) → L2(Ω),
are continuously Frèchet differentiable. This shows the continuous Frèchet differen-
tiability of div(m(ϕi)∇µi+1). The Frèchet derivative of g in (ϕ, µ, v, u) applied to
(ϕδ, µδ, vδ, uδ) ∈ X is given by

g′(ϕ, µ, v, u)(ϕδ, µδ, vδ, uδ)

=




(
1
τ (ϕ

δ
i+1 − ϕδi )− div(m′(ϕi)ϕ

δ
i∇µi+1)− div(m(ϕi)∇µ

δ
i+1)

+vi+1 · ∇ϕ
δ
i + vδi+1 · ∇ϕi

)M−2

i=−1(
−µδi+1 −∆ϕδi+1 +Ψ′′

0(ϕi+1;ϕ
δ
i+1)− κϕδi

)M−2

i=−1



1
τ (ρ

′(ϕi)ϕ
δ
i vi+1 − ρ′(ϕi−1)ϕ

δ
i−1vi) +

1
τ (ρ(ϕi)v

δ
i+1 − ρ(ϕi−1)v

δ
i )

+ div(vi+1 ⊗ (ρ′(ϕi−1)ϕ
δ
i−1vi + ρ(ϕi−1)v

δ
i ))

− div(vi+1 ⊗ (ρ2−ρ12 m′(ϕi−1)ϕ
δ
i−1∇µi −

ρ2−ρ1
2 m(ϕi−1)∇µ

δ
i ))

+ div(vδi+1 ⊗ (ρ(ϕi−1)vi −
ρ2−ρ1

2 m(ϕi−1)∇µi))

− div(2η′(ϕi)ϕ
δ
i ǫ(vi+1))− div(2η(ϕi)ǫ(v

δ
i+1))

−µi+1∇ϕ
δ
i − µδi+1∇ϕi − uδi+1




M−2

i=0




.

Due to our convention for ϕ−1 and v0, we require that ϕδ−1 = 0 and vδ0 = 0. For
the application of a result due to Zowe and Kurcyusz [46] concerning the existence
of Lagrange multipliers, we show that g′(z) maps R+(C − z) ⊂ X onto Y . For this
purpose, let (Θci ,Θ

w
i ,Θ

v
i ) ∈ Y be arbitrarily fixed. We have to show that there exists
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a tuple (ϕδ, µδ, vδ, uδ) ∈ R+(C − z) such that

1

τ
(ϕδi+1 − ϕδi )− div(m′(ϕi)ϕ

δ
i∇µi+1)− div(m(ϕi)∇µ

δ
i+1)

+vi+1 · ∇ϕ
δ
i + vδi+1 · ∇ϕi = Θwi ,(6.5)

−µδi+1 −∆ϕδi+1 − κϕδi +Ψ′′
0(ϕi+1;ϕ

δ
i+1) = Θci ,(6.6)

1

τ
(ρ′(ϕi)ϕ

δ
i vi+1 − ρ′(ϕi−1)ϕ

δ
i−1vi) +

1

τ
(ρ(ϕi)v

δ
i+1 − ρ(ϕi−1)v

δ
i )

+ div(vi+1 ⊗ (ρ′(ϕi−1)ϕ
δ
i−1vi + ρ(ϕi−1)v

δ
i ))

− div(vi+1 ⊗ (
ρ2 − ρ1

2
m′(ϕi−1)ϕ

δ
i−1∇µi −

ρ2 − ρ1
2

m(ϕi−1)∇µ
δ
i ))

+ div(vδi+1 ⊗ (ρ(ϕi−1)vi −
ρ2 − ρ1

2
m(ϕi−1)∇µi))

− div(2η′(ϕi)ϕ
δ
i ǫ(vi+1))− div(2η(ϕi)ǫ(v

δ
i+1))

−µi+1∇ϕ
δ
i − µδi+1∇ϕi − uδi+1 = Θvi ,(6.7)

where (6.5) and (6.6) hold for i = −1, ...,M − 2 and (6.7) for all i = 0, ...,M − 1.

As in Theorem 3.2, standard arguments show the existence of (ϕδ0, µ
δ
0) ∈ H

2

∂n(Ω) ×

H
2

∂n(Ω) such that (6.5) and (6.6) are fulfilled for i = −1. Now we apply induction
over i. Therefore, let us assume that (6.5)–(6.7) hold for i < M − 1. In order to show
the existence of a solution to this system for i+ 1, we note that it can be written as

1

τ
(ϕδi+2 − ϕδi+1)− div(m(ϕi+1)∇µ

δ
i+2) + vδi+2 · ∇ϕi+1 = Θµ,

−µδi+2 −∆ϕδi+2 − κϕδi+1 +Ψ′′
0(ϕi+2;ϕ

δ
i+2) = Θϕ,

1

τ
(ρ(ϕi+1)v

δ
i+2 − ρ(ϕi)v

δ
i+1) + div(vδi+2 ⊗ (ρ(ϕi)vi+1 −

ρ2 − ρ1
2

m(ϕi)∇µi+1))

− div(2η(ϕi+1)ǫ(v
δ
i+2))− µδi+2∇ϕi+1 − uδi+2 = Θv,

for a triple (Θϕ,Θµ,Θv) ∈ (L
2
(Ω))∗ × (L

2
(Ω))∗ × H1

0,σ(Ω;R
N )∗ that only depends

on (ϕ, µ, v), on ϕδi , µ
δ
i and vδi for i < M − 1 and on (Θci+1,Θ

w
i+1,Θ

v
i+1). But now the

existence of a solution follows readily from Theorem 3.2 and from Lemma 3.3 when
choosing ν = ρ(ϕi)vi+1 −

ρ2−ρ1
2 m(ϕi)∇µi+1 as well as f0 = ρ(ϕi+1), f−1 = ρ(ϕi) and

uδi+2 = 0. Notice, here the functions ρ(ϕi+1),m(ϕi+1), η(ϕi+1) do not depend on the
unknown ϕδi+2. Further observe that we can always find a convex, affine functional

ψ : H
2

∂n(Ω) 7→ R with (Dψ)z = Ψ′′
0(ϕi+2; z) for all z ∈ H

2

∂n(Ω). Hence we deduce the
existence of a Lagrange multiplier (p, r, q) ∈ Y ∗ such that

J ′(ϕ̄, µ̄, v̄, ū)(ϕδ, µδ, vδ, uδ) = 〈g′(ϕ̄, µ̄, v̄, ū)(ϕδ, µδ, vδ, uδ), (p, r, q)〉

= 〈g′(ϕ̄, µ̄, v̄, ū)∗(p, r, q), (ϕδ, µδ, vδ, uδ)〉(6.8)

for all (ϕδ, µδ, vδ, uδ) ∈ H
2

∂n(Ω)
M × H

2

∂n(Ω)
M × H1

0,σ(Ω;R
N )M−1 × R+(Uad − ū).

In order to derive the desired system for (p, r, q) from this variational equation, the
adjoint of g′(ϕ̄, µ̄, v̄, ū) has to be calculated. Exemplarily, we show this calculation for
two terms. First, consider the term div(vi+1 ⊗ (ρ′(ϕi−1)ϕ

δ
i−1vi)) which gets tested by
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qi. Notice that for vector fields z(1), z(2), z(3) in H1(Ω;RN ) and with z(2)|∂Ω = 0 we
have

∫

Ω

z(3) · div(z(2) ⊗ z(1)) = −

∫

Ω

z(2) · (Dz(3))z(1),(6.9)

by Gauß’ theorem. Hence we get

〈div(vi+1 ⊗ ρ′(ϕi−1)ϕ
δ
i−1vi), qi〉 = −

∫

Ω

vi+1 · (Dqi)(ρ
′(ϕi−1)ϕ

δ
i−1vi)dx

= −

∫

Ω

ρ′(ϕi−1)ϕ
δ
i−1vi · (Dqi)

⊤vi+1dx.

Secondly, the term div(vi+1 ⊗− ρ2−ρ1
2 m(ϕi−1)∇µ

δ
i ) gets tested by qi. This yields

〈div(vi+1 ⊗−
ρ2 − ρ1

2
m(ϕi−1)∇µ

δ
i ), qi〉 =

∫

Ω

vi+1 · (Dqi)(
ρ2 − ρ1

2
m(ϕi−1)∇µ

δ
i )dx

=

∫

Ω

ρ2 − ρ1
2

m(ϕi−1)∇µ
δ
i · (Dqi)

⊤vi+1dx

=

∫

Ω

µδi div(−
ρ2 − ρ1

2
m(ϕi−1)(Dqi)

⊤vi+1)dx

since vi+1|∂Ω = 0. The other terms can be treated similarly. After collecting all terms
which contain ϕδi , µ

δ
i and vδi , respectively, it follows that

g′(ϕ̄, µ̄, v̄, ū)∗(p, r, q)

=







− 1
τ (pi − pi−1) + a(m′(ϕi), µi+1, pi)− div(pivi+1)−∆tri−1

+Ψ′′
0(ϕi)

∗ri−1 − κri+1 − ρ′(ϕi)vi+1 ·
1
τ (qi+1 − qi)

−(ρ′(ϕi)vi+1 −
ρ2−ρ1

2 m′(ϕi)∇µi+1)(Dqi+1)
⊤vi+2

+2η′(ϕi)ǫ(vi+1) : Dqi + div(µi+1qi)




M−1

i=0(
−ri−1 + b(m(ϕi−1), pi−1)− div(ρ2−ρ12 m(ϕi−1)(Dqi)

⊤vi+1)

−qi−1 · ∇ϕi−1

)M−1

i=1


−ρ(ϕi−1)
1
τ (qi − qi−1)− ρ(ϕi−1)(Dqi)

⊤vi+1

−(Dqi−1)(ρ(ϕi−2)vi−1 −
ρ2−ρ1

2 m(ϕi−2)∇µi−1)

− div(2η(ϕi−1)ǫ(qi−1)) + pi−1∇ϕi−1




M−1

i=1(
−qi−1

)M−1

i=1




.

Plugging this into (6.8) and using the fact that (ϕδ, µδ, vδ, uδ) can be chosen arbitrarily

in H
2

∂n(Ω)
M × H

2

∂n(Ω)
M × H1

0,σ(Ω;R
N )M−1 × R+(Uad − ū), we obtain the desired

system for (p, r, q).

The preceding theorem states first-order optimality conditions for problem (PΨ) in
the case of smooth double-well type potentials. In the following, we derive stationarity
conditions for a nonsmooth potential via a limit process; compare section 7. For this
purpose, the boundedness of the adjoint states is crucial. In order to guarantee this,
further regularity conditions on J are required.

Lemma 6.2. Suppose that the assumptions of Theorem 6.1 are fulfilled. Then
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(p, r) ∈ H
1
(Ω)M ×H

1
(Ω)M−1 and it holds that

a(m′(ϕi), µi+1, pi) = m′(ϕi)∇µi+1 · ∇pi ∈ H
1
(Ω)∗,

b(m(ϕi−1), pi−1) = − div(m(ϕi−1)∇pi−1) ∈ H
1
(Ω)∗,

−∆tri−1 = −∆ri−1 ∈ H
1
(Ω)∗.

Proof. We prove the claim by backward induction over i. For i =M − 1 we have
pM−1 = rM−1 = 0 by convention. Now, we take the induction step from i to i − 1

assuming that pi, ri ∈ H
1
(Ω). This higher regularity implies for ẑ ∈ H

2

∂n(Ω) that

〈a(m′(ϕi), µi+1, pi), ẑ〉 = −

∫

Ω

pi div(m
′(ϕi)ẑ∇µi+1)dx

=

∫

Ω

m′(ϕi)ẑ∇µi+1 · ∇pidx

≤ C||m′(ϕi)||L∞ ||∇µi+1||L4 ||∇pi||L2 ||ẑ||L4

≤ C||m′(ϕi)||L∞ ||µi+1||H2 ||pi||H1 ||ẑ||H1

because of ∇µi+1 · ~n = 0 on ∂Ω. Consequently, a(m′(ϕi), µi+1, pi) ∈ H
1
(Ω)∗. Equa-

tions (6.1) and (6.2) and the assumption yield that ∆tri−1, b(m(ϕi−1), pi−1) ∈

H
1
(Ω)∗. By standard regularity arguments one shows that ri−1 and pi−1 are in-

deed elements of H
1
(Ω) and the desired relations for b(m(ϕi−1), pi−1) and ∆tri−1

follow at once.
The next lemma is used in the subsequent theorem in order to prove the bound-

edness of the adjoint state.

Lemma 6.3. Let α > 0 be given and M1 and M2 be bounded subsets of H
1
(Ω)∗

and H1
0,σ(Ω;R

N )∗, respectively. Let M be the set of all tuples (p̂, r̂, q̂;Â;hp, hr, hq;ĉ, û;
m̂, η̂, ρ̂) with

(p̂, r̂, q̂) ∈ H
1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ),

Â ∈ L(H
1
(Ω);H

1
(Ω)∗) be monotone,

(hr, hp, hq) ∈ M1 ×M1 ×M2,

(ĉ, û) ∈ H
1
(Ω)×H1(Ω;RN ),

m̂, η̂, ρ̂ ∈ L∞(Ω) with 1/α ≥ m̂, η̂ ≥ α and ρ̂ ≥ 0 a.e. on Ω,

for which the following system is satisfied:

1

τ
p̂−∆r̂ + Âr̂ = hr,(6.10)

−r̂ − div(m̂∇p̂)− q̂ · ∇ĉ = hp,(6.11)

1

τ
ρ̂q̂ − div(2η̂ǫ(q̂))− (Dq̂)û + p̂∇ĉ = hq,(6.12)

1

τ

∫

Ω

ρ̂|q̂|2 − 〈(Dq̂)û, q̂〉 ≥ 0.(6.13)

Then the set {(p̂, r̂, q̂) : (p̂, r̂, q̂;Â;hp, hr, hq;ĉ, û;m̂, η̂, ρ̂) ∈ M} is bounded in H
1
(Ω)×

H
1
(Ω)×H1

0,σ(Ω;R
N ).
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In order to keep the flow of the presentation, we defer the proof to the appendix.
Employing the preceding results, we finally perform the limit process with respect

to the first-order optimality conditions of Theorem 6.1.
Theorem 6.4 (Stationarity conditions). Suppose that the following assumptions

are satisfied.

1. J ′ is a bounded mapping from H
1
(Ω)M ×H

1
(Ω)M ×H1

0,σ(Ω;R
N )M−1 ×Uad

into the space (H
1
(Ω)

M
×H

1
(Ω)

M
×H1

0,σ(Ω;R
N )

M−1
×L2(Ω;RN )M−1)∗ and

∂J
∂u satisfies the following weak lower-semicontinuity property

〈∂J
∂u

(ẑ), û
〉

≤ lim inf
n→∞

〈∂J
∂u

(ẑ(n)), û(n)
〉

for ẑ(n) = (ϕ̂(n), µ̂(n), v̂(n), û(n)) converging weakly in H
2

∂n(Ω)
M×H

2

∂n(Ω)
M×

H1
0,σ(Ω;R

N )M−1 × Uad to ẑ = (ϕ̂, µ̂, v̂, û).

2. For every n ∈ N let Ψ
(n)
0 : H

2

∂n(Ω) → R be a convex, lower-semicontinuous
and proper functional satisfying the assumptions of Theorem 6.1.

3. Let (ϕ(n), µ(n), v(n), u(n)) ∈ H
2

∂n(Ω)
M ×H

2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × Uad

be a minimizer for (PΨ(n)) and let (p(n), r(n), q(n)) ∈ H
1
(Ω)

M
×H

1
(Ω)

M
×

H1
0,σ(Ω;R

N )
M−1

be given as in Theorem 6.1 and Lemma 6.2.
Then there exists an element (ϕ, µ, v, u, p, r, q) and a subsequence denoted by{

(ϕ(m), µ(m), v(m), u(m), p(m), r(m), q(m))
}
m∈N

with

ϕ(m)→ϕ weakly in H
2

∂n(Ω)
M , µ(m)→µ weakly in H

2

∂n(Ω)
M−1,

v(m)→v weakly in H2(Ω;RN )M−1, u(m)→u weakly in L2(Ω;RN )M−1,

p(m)→p weakly in H
1
(Ω)M , r(m)→r weakly in H

1
(Ω)M−1,

q(m)→q weakly in H1
0,σ(Ω;R

N )M−1, Ψ
(m)
0

′′
(ϕ

(m)
i+1)

∗r
(n)
i →λi weakly in H

1
(Ω)∗,

for all i = −1, ...,M − 2 such that for z = (ϕ, µ, v, u) and q̃k := qk−1 it holds that

−
1

τ
(pi − pi−1) +m(ϕi)

′
∇µi+1 · pi − div(pivi+1)−∆ri−1

+ λi−1 − κri+1 −
1

τ
ρ(ϕi)

′
vi+1 · (qi+1 − qi)

− (ρ(ϕi)
′
vi+1 −

ρ2 − ρ1
2

m′(ϕi)∇µi+1)(Dqi+1)
⊤vi+2

+ 2η(ϕi)
′
ǫ(vi+1) : Dqi + div(µi+1qi) =

∂J

∂ϕi
(z),(6.14)

− ri−1 − div(m(ϕi−1)∇pi−1)− div(
ρ2 − ρ1

2
m(ϕi−1)(Dqi)

⊤vi+1)

− qi−1 · ∇ϕi−1 =
∂J

∂µi
(z),(6.15)

−
1

τ
ρ(ϕj−1)(qj − qj−1)− ρ(ϕj−1)(Dqj)

⊤vj+1

− (Dqj−1)(ρ(ϕj−2)vj−1 −
ρ2 − ρ1

2
m(ϕj−2)∇µj−1)

− div(2η(ϕj−1)ǫ(qj−1)) + pj−1∇ϕj−1 =
∂J

∂vj
(z),(6.16)

∂J

∂u
(z)− q̃ ∈

[
R+(Uad − u)

]+
.(6.17)
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Proof. 1. In the first step, we show the boundedness of
{
(p(n), r(n), q(n))

}
n∈N

in H
1
(Ω)

M
× H

1
(Ω)

M
× H1

0,σ(Ω;R
N )

M−1
. Moreover, the boundedness of the se-

quence
{
(ϕ(n), µ(n), v(n), u(n))

}
n∈N

in H
2

∂n(Ω)
M × H

2

∂n(Ω)
M × H2

0,σ(Ω;R
N )M−1 ×

L2(Ω;RN )M−1 follows from Lemma 3.6. For i = 0, ...,M − 1, j = 1, ...,M − 1 and
n ∈ N the adjoint system for (PΨ(n)) corresponding to (6.1)–(6.4) can be rewritten as

1

τ
p
(n)
i−1 −∆r

(n)
i−1 +Ψ

(n)
0

′′
(ϕ

(n)
i )∗r

(n)
i−1 = Θ

(n)
r,i−1,(6.18)

−r
(n)
j−1 − div(m(ϕ

(n)
j−1)∇p

(n)
j−1)− q

(n)
j−1 · ∇ϕ

(n)
j−1 = Θ

(n)
p,j−1,

1

τ
ρ(ϕ

(n)
j−1)q

(n)
j−1 − div(2η(ϕ

(n)
j−1)ǫ(q

(n)
j−1)) + p

(n)
j−1∇ϕ

(n)
j−1

−(Dqj−1)(ρ(ϕ
(n)
j−2)v

(n)
j−1 −

ρ2 − ρ1
2

m(ϕ
(n)
j−2)∇µ

(n)
j−1) = Θ

(n)
q,j−1,

where the functionals Θ
(n)
r , Θ

(n)
p and Θ

(n)
q are given by

Θ
(n)
r,i−1 =

∂J

∂ϕi
(z(n)) +

1

τ
p
(n)
i −

[
m′(ϕ

(n)
i )∇µ

(n)
i+1 · p

(n)
i − div(p

(n)
i v

(n)
i+1)− κr

(n)
i+1

−
1

τ
ρ(ϕ

(n)
i )

′
v
(n)
i+1 · (q

(n)
i+1 − q

(n)
i ) + 2η(ϕ

(n)
i )

′
ǫ(v

(n)
i+1) : Dq

(n)
i + div(µ

(n)
i+1q

(n)
i )

− (ρ(ϕ
(n)
i )

′
v
(n)
i+1 −

ρ2 − ρ1
2

m′(ϕ
(n)
i )∇µ

(n)
i+1)(Dq

(n)
i+1)

⊤v
(n)
i+2

]
,

Θ
(n)
p,i−1 =

∂J

∂µi
(z(n)) + div(

ρ2 − ρ1
2

m(ϕ
(n)
i−1)(Dq

(n)
i )⊤v

(n)
i+1),

Θ
(n)
q,i−1 =

∂J

∂vi
(z(n)) +

1

τ
ρ(ϕ

(n)
i−1)q

(n)
i − ρ(ϕ

(n)
i−1)(Dq

(n)
i )⊤v

(n)
i+1.

Here, z(n) denotes the tuple (ϕ(n), µ(n), v(n), u(n)). We prove the boundedness of
{
(p(n), r(n), q(n))

}
n∈N

in H
1
(Ω)

M
×H

1
(Ω)

M
×H1

0,σ(Ω;R
N )

M−1
by backward induc-

tion over i. If i ≥ M − 1, then (p
(n)
i , r

(n)
i , q

(n)
i ) = 0 by convention. In the induction

step assume that for i ∈ {0, ...,M−1} and for j≥ i the sequence
{
(p

(n)
j , r

(n)
j , q

(n)
j )

}
n∈N

is bounded in H
1
(Ω) ×H

1
(Ω) ×H1

0,σ(Ω;R
N ). This and the assumption on J imply

that
{
(Θ

(n)
p,i−1,Θ

(n)
r,i−1,Θ

(n)
q,i−1)

}
n∈N

is bounded in (H
1
(Ω) ×H

1
(Ω) × H1

0,σ(Ω;R
N ))∗.

To see this, we exemplarily consider first 2η(ϕ
(n)
i )

′
ǫ(v

(n)
i+1):Dq

(n)
i , which is bounded by

||2η(ϕ
(n)
i )

′
ǫ(v

(n)
i+1) : Dq

(n)
i ||L6/5 ≤ C||η(ϕ

(n)
i )

′
||L∞ ||ǫ(v

(n)
i+1)||L3 ||Dq

(n)
i ||L2

≤ C||η(ϕ
(n)
i )

′
||L∞ ||v

(n)
i+1||H2 ||q

(n)
i ||H1

and secondly − ρ2−ρ1
2 m′(ϕ

(n)
i )∇µ

(n)
i+1(Dq

(n)
i+1)

⊤v
(n)
i+2, which we bounded using

|| −
ρ2 − ρ1

2
m′(ϕ

(n)
i )∇µ

(n)
i+1(Dq

(n)
i+1)

⊤v
(n)
i+2||L6/5

≤ C|| −
ρ2 − ρ1

2
m′(ϕ

(n)
i )||L∞ ||∇µ

(n)
i+1||L6 ||Dq

(n)
i+1||L2 ||v

(n)
i+2||L6

≤ C|| −
ρ2 − ρ1

2
m′(ϕ

(n)
i )||L∞ ||µ

(n)
i+1||H2 ||q

(n)
i+1||H1 ||v

(n)
i+2||H2 .
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Consequently, these terms define continuous linear functionals on H
1
(Ω), that are

bounded independently of n. The other summands can be estimated similarly.
In case of i > 0 we apply Lemma 6.3 to

(p̂, r̂, q̂; Â;hp, hr, hq; ĉ, û; m̂, η̂, ρ̂)

:= (p
(n)
i−1, r

(n)
i−1, q

(n)
i−1; Ψ

(n)
0

′′
(ϕ

(n)
i )∗; Θ

(n)
p,i−1,Θ

(n)
r,i−1,Θ

(n)
q,i−1;

ϕ
(n)
i−1, ρ(ϕ

(n)
i−2)v

(n)
i−1 −

ρ2 − ρ1
2

m(ϕ
(n)
i−2)∇µ

(n)
i−1;−

ρ2 − ρ1
2

m(ϕ
(n)
i−1), η(ϕ

(n)
i−1), ρ(ϕ

(n)
i−1)).

Note that due to divv
(n)
i−1 = 0 we have

div û = ρ(ϕ
(n)
i−2)

′
v
(n)
i−1 · ∇ϕ

(n)
i−1 − div(

ρ2 − ρ1
2

m(ϕ
(n)
i−2)∇µ

(n)
i−1)

=
ρ2 − ρ1

2

[
v
(n)
i−1 · ∇ϕ

(n)
i−1 − div(m(ϕ

(n)
i−2)∇µ

(n)
i−1)

]

=
1

τ

ρ2 − ρ1
2

(ϕ
(n)
i−1 − ϕ

(n)
i−2) = −

1

τ
(ρ(ϕ

(n)
i−1)− ρ(ϕ

(n)
i−2)).

With the help of
∫
Ω〈(Dq̂)û, q̂〉 = −

∫
Ω q̂ · div(q̂ ⊗ û) (cf. (6.9)), (3.7) yields

1

τ

∫

Ω

ρ̂|q̂|2dx− 〈(Dq̂)û, q̂〉 =
1

τ

∫

Ω

ρ(ϕ
(n)
i−1)|q

(n)
i−1|

2 −
1

2
(ρ(ϕ

(n)
i−1)− ρ(ϕ

(n)
i−2))|q

(n)
i−1|

2dx

=
1

2τ

∫

Ω

(ρ(ϕ
(n)
i−2) + ρ(ϕ

(n)
i−1))|q

(n)
i−1|

2dx ≥ 0,

because of ρ(ϕ
(n)
i−2) ≥ 0 and ρ(ϕ

(n)
i−1) ≥ 0 almost everywhere. Hence Lemma 6.3 implies

the boundedness of (p
(n)
i−1, r

(n)
i−1, q

(n)
i−1) in H

1
(Ω)×H

1
(Ω)×H1

0,σ(Ω;R
N ).

The case i = 0 needs some modifications in order to be treated by Lemma 6.3

since (6.3) is not defined for i = 0. In this case we set (q̂, hq, ĉ, û, η̂)=(0, 0, 0, 0, η(ϕ
(n)
i ))

together with the definition of the remaining quantities as in the case i > 0. Now, by

Lemma 6.3 we conclude the boundedness of (p
(n)
i−1, r

(n)
i−1) in H

1
(Ω)×H

1
(Ω). Moreover,

from (6.18) it follows that also (Ψ
(n)
0

′′
(ϕ

(n)
i )∗r

(n)
i−1) remains bounded in H

1
(Ω)∗.

2. With the bounds derived in step 1 and with the usual compact embeddings of
Sobolev spaces, we can pass to a subsequence with the desired convergence properties.

3. Now we pass to the limit in the the adjoint systems corresponding to (6.1)–(6.4)

for (PΨ(n)). The limits for the equations (6.1) and (6.2) are considered in H
1
(Ω)∗

and the limit for (6.3) in H1
0,σ(Ω;R

N )∗. In the linear terms we can pass to the

limit at once. For m′(ϕ
(n)
i )∇µ

(n)
i+1 · p

(n)
i we have that m′(ϕ

(n)
i ) converges strongly in

L∞(Ω) to m′(ϕi), ∇µ
(n)
i+1 strongly in L6−ε(Ω) to ∇µi+1 and p

(n)
i weakly in L6(Ω)

to pi. Hence, m′(ϕ
(n)
i )∇µ

(n)
i+1 · p

(n)
i converges weakly in H

1
(Ω)∗ to m′(ϕi)∇µi+1 · pi.

For ρ2−ρ1
2 m′(ϕ

(n)
i )∇µ

(n)
i+1(Dq

(n)
i+1)

⊤v
(n)
i+2 we note that ρ2−ρ1

2 m′(ϕ
(n)
i ) and v

(n)
i+2 converge

strongly in L∞(Ω) to ρ2−ρ1
2 m′(ϕi) respectively vi+2, ∇µ

(n)
i+1 strongly in L6−ε(Ω) to

∇µi+1 andDq
(n)
i weakly in L2(Ω) toDqi. Therefore

ρ2−ρ1
2 m′(ϕ

(n)
i )∇µ

(n)
i+1(Dq

(n)
i+1)

⊤v
(n)
i+2

converges weakly in H
1
(Ω)∗ to ρ2−ρ1

2 m′(ϕi)∇µi+1(Dqi+1)
⊤vi+2.

For div(ρ2−ρ12 m(ϕ
(n)
i−1)(Dq

(n)
i )⊤v

(n)
i+1) we use that

ρ2−ρ1
2 m(ϕ

(n)
i−1) and v

(n)
i+1 converge

strongly in L∞(Ω) to ρ2−ρ1
2 m(ϕi−1) respectively vi+1, and q

(n)
i weakly in L6(Ω) to
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qi. As a consequence, div(ρ2−ρ12 m(ϕ
(n)
i−1)(Dq

(n)
i )⊤v

(n)
i+1) converges weakly in H

1
(Ω)∗

to div(ρ2−ρ12 m(ϕi−1)(Dqi)
⊤vi+1). For the convergence of div(2η(ϕ

(n)
i−1)ǫ(q

(n)
i−1)) note

that η(ϕ
(n)
i−1) converges strongly in L∞(Ω) to η(ϕi−1) and ǫ(q

(n)
i−1) weakly in L2(Ω) to

ǫ(qi−1). Hence, div(2η(ϕ
(n)
i−1)ǫ(q

(n)
i−1)) converges weakly in H1

0,σ(Ω;R
N )∗ to the limit

div(2η(ϕi−1)ǫ(qi−1)). Apart from Ψ
(n)
0

′′
(ϕ

(n)
i )∗r

(n)
i−1, all remaining terms appearing

on the left hand sides can be treated similarly. Moreover, our assumptions on J

imply that J ′(ϕ(n), µ(n), v(n), u(n)) converges weakly to J ′(ϕ, µ, v, u) in (H
2

∂n(Ω)
M ×

H
2

∂n(Ω)
M ×H1

0,σ(Ω;R
N )M−1 × L2(Ω;RN )M−1)∗.

Consequently, by (6.1) also Ψ′′
0(ϕ

(n)
i )∗r

(n)
i−1 converges weakly in (H

1
(Ω)∗)M to

some λi−1. Therefore, we arrive at the system (6.14)–(6.16). Finally, notice that

for all y ∈ Uad and with z(n) := (ϕ(n), µ(n), v(n), u(n)) and q̃
(n)
k := q

(n)
k−1 by the weak

lower-semicontinuity of ∂J
∂u and the weak and strong convergence of the sequences

involved we deduce that

〈∂J∂u (z)− q̃, y − u〉 = 〈∂J∂u (z), y〉 − 〈∂J∂u (z), u〉 − 〈q̃, y − u〉

≥ lim inf
n→∞

(
〈∂J∂u (z

(n)), y〉 − 〈∂J∂u (z
(n)), u(n)〉 − 〈q̃(n), y − u(n)〉

)

= lim inf
n→∞

(
∂J
∂u (z

(n))− q̃(n), y − u(n)〉
)

≥ 0,

due to the optimality of z(n) for (PΨ(n)). This shows (6.17) and finishes the proof.
Remark 6.1. We point out that a tracking-type functional, like, e.g.,

J (ϕ, µ, v, u) :=
1

2
‖ϕM−1 − ϕd‖

2
+
ξ

2
‖u‖

2
(L2)(M−1) , ξ > 0,

with ϕd ∈ L2(Ω) a desired final state, satisfies the assumptions of Theorem 6.4.
Remark 6.2. If the set Uad is bounded, Theorem 6.4 holds also true for a sequence{

(ϕ(n), µ(n), v(n), u(n))
}
n∈N

of stationary points for (PΨ(n)). If it is unbounded, then
the result can still be transferred to sequences of stationary points by assuming that
the sequence

{
u(n)

}
n∈N

is bounded in L2(Ω;RN )M−1.

7. Stationarity conditions in case of the double-obstacle potential. In
this section, we apply the developed theory to the initially stated optimal control
problem associated to the double-obstacle potential. For this purpose, let ψ0 be
defined as in Assumption 3.1.1 and set γ := ∂ψ0 ⊂ R × R. Then we define the
sequence of approximating double-well type potentials as follows.

Definition 7.1. Let a mollifier ζ ∈ C1(R) with supp ζ ⊂ [−1, 1],
∫
R
ζ = 1 and

0 ≤ ζ ≤ 1 a.e. on R, and a function θ : R+ → R+, with θ(α) > 0 and θ(α)
α → 0 as

α→ 0, be given. For the Yosida approximation γα with parameter α > 0 of γ define

ζα(s) :=
1

α
ζ
( s
α

)
, γ̃α := γα ∗ ζθ(α), ψ0α(s) :=

∫ s

0

γ̃α(t) dt,

Ψ0α(c) :=

∫

Ω

(ψ0α ◦ c)(t) dt.

Moreover, we set αn := n−1, Ψ
(n)
0 := Ψ0αn

.
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Remark 7.1. We note that Ψ
(n)
0

′
can be identified with the superposition oper-

ator corresponding to γ̃αn , cf. [25]. Since γ̃′αn
is bounded and since H

2

∂n(Ω) embeds

continuously into L2−δ(Ω) for δ > 0, it follows that Ψ
(n)
0

′
maps H

2

∂n(Ω) continuously
Frèchet-differentiably into L2(Ω), see, e.g., [20].

In order to obtain a stationarity condition for the optimal control problem of
CHNS with the double-obstacle potential we pass to the limit (with the Yosida param-
eter) in a sequence of optimal control problems with approximating double-well-type
potentials.

Theorem 7.2 (Limiting ε-almost C-stationarity). Let Ψ
(n)
0 , n ∈ N be the func-

tionals of Definition 7.1, and let the tuples (ϕ(m), µ(m),v(m), u(m), p(m), r(m), q(m)),
(ϕ, µ, v, u, p, r, q) and J be as in Theorem 6.4. Moreover, let Λ : R → R be a Lips-
chitz function with Λ(ψ1) = Λ(ψ2) = 0. For

a
(m)
i := Ψ

(m)
0

′
(ϕ

(m)
i ), λ

(m)
i := Ψ

(m)
0

′′
(ϕ

(m)
i )∗r

(m)
i−1

for i = 0, ...,M , and for ai denoting the limit of a
(m)
i , it holds that

( ai,Λ(ϕi) )L2 = 0, 〈λi,Λ(ϕi)〉 = 0,

( ai, ri−1 )L2 = 0, lim inf(λ
(m)
i , r

(m)
i−1 )L2 ≥ 0.

Moreover, for every ε > 0 there exist a measurable subset M ε
i of Mi := {x ∈ Ω : ψ1 <

ϕi(x) < ψ2} with |Mi \M
ε
i | < ε and

〈λi, v〉 = 0 ∀v ∈ H
1
(Ω), v|Ω\Mε

i
= 0.

Proof. 1. The subdifferential γ satisfies yΛ(x) = 0 if (x, y) ∈ γ. Since (ϕi, ai) ∈ γ
a.e. on Ω and since ai ∈ L2(Ω), integration yields the complementarity condition
( ai,Λ(ϕi) )L2 = 0.

2. Now we show that (λi,Λ(ϕi) )L2 = 0. It is well-known that the superposition

PK of the metric projection pK of R onto K := [ψ1, ψ2] maps H
1
(Ω) continuously into

itself. Denoting by LΛ the Lipschitz constant of Λ, it holds that |Λ(s)| ≤ LΛmin(|s−
ψ1|, |s−ψ2|) for s ∈ R. Using |γ̃′α(s)| ≤

1
α for all s and γ̃′α(s) = 0 for ψ1 + θ(α) ≤ s ≤

ψ2 − θ(α) (cf. [25]) yields

|(λ
(m)
i ,Λ(PK(ϕ

(m)
i )) )L2 |2 = |( r

(m)
i ,Ψ

(m)
0

′′
(ϕ

(m)
i )Λ(PK(ϕ

(m)
i )) )L2 |2

≤ || r
(m)
i ||2L2

∫

Ω

|γ̃′αm
(ϕ

(m)
i )Λ(PK(ϕ

(m)
i ))|2

≤

(
|Ω| || r

(m)
i ||L2 LΛ

θ(αm)

αm

)2

→ 0

as m→ ∞ and consequently

lim(λ
(m)
i ,Λ(ϕ

(m)
i ) )L2

= lim(λ
(m)
i ,Λ(PK(ϕ

(m)
i )) )L2 + lim〈λ

(m)
i ,Λ(ϕ

(m)
i )− Λ(PK(ϕ

(m)
i ))〉

H
1
(Ω)

= 0,

which implies 〈λi,Λ(ϕi)〉 = 0 since ϕ
(m)
i converges strongly to ϕi = PK(ϕi) in H

1
(Ω).
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3. Denoting gm(s) := γ̃αm(s)− γ̃′αm
(s)π(s) with s− pK(s) =: π(s) yields

( a
(m)
i , r

(m)
i−1 )L2 =

(
r
(m)
i−1 , γ̃αm(ϕ

(m)
i )

)
L2

=
(
r
(m)
i−1 , gm(ϕ

(m)
i )

)
L2 +

(
λ
(m)
i , ϕ

(m)
i − PK(ϕ

(m)
i )

)
L2 .

Since |gm(s)| = |γ̃αm(s)− γ̃′αm
(s)π(s)| ≤ C θ(αm)

αm
for m sufficiently large (cf. Lemma

4.2 in [25]), the first term on the right-hand side converges to 0 and the second one

as well because of the strong convergence of (ϕ
(m)
i ) and (PK(ϕ

(m)
i )) to ϕi in H

1
(Ω),

respectively.

4. The property lim inf(λ
(m)
i , r

(m)
i−1 )L2 ≥ 0 follows readily from the monotonicity

of Ψ
(m)
0

′′
(ϕ

(m)
i ).

5. The convergence properties of ϕ
(m)
i imply that the subset G := {x ∈ Ω :

ϕ
(m)
i (x) → ϕi(x) as m → ∞} of Ω has full measure (i.e. |G| = |Ω|). Therefore, for

every x ∈ G ∩Mi we can find m0(x) ∈ N with ψ1 + θ(αm) < ϕ
(m)
i (x) < ψ2 − θ(αm)

for all m ≥ m0(x). Thus, λ
(m)
i (x) = γ̃′αm

(ϕ
(m)
i (x))r

(m)
i (x) converges to 0 on G ∩Mi.

Using Egorov’s theorem shows that for every ε > 0 there exists a subsetM ε
i of G∩Mi

with |Mi \M
ε
i | < ε such that λ

(m)
i converges uniformly to zero on M ε

i . Hence, we

obtain 〈λi, v〉 = lim〈λ
(m)
i , v〉 = 0 for every v ∈ H

1
(Ω) with v|Ω\Mε

i
= 0.

In combination with the results from Theorem 6.4, Theorem 7.2 states stationarity
conditions corresponding to a function space version of C-stationarity for MPECs, cf.
[22, 23].

8. Conclusion. Our specific semi-discretization in time for the coupled CHNS
system with non-matched fluid densities represents a first step towards a numerical
investigation/realization of the problem. Most importantly, it preserves the strong
coupling of the Cahn-Hilliard and Navier-Stokes system which, in the case of non-
matched densities, is additionally enforced through the presence of the relative flux
J . As a result, well-posedness of the time discrete scheme is guaranteed and energy
estimates mirroring the physical fact of decreasing energies can be argued. Such an
energy property is not clear for the time continuous problem at this point in time and
might be the subject of further research.

Concerning the potential chosen in the Ginzburg-Landau energy, we note that
while the existence of global solutions to the optimal control problem can be shown
for both cases (i.e., for double-well and double obstacle potentials) simultaneously,
the derivation of stationarity conditions is more delicate. In fact, the double-obstacle
potential gives rise to a degenerate constraint system with the overall problem falling
into the realm of mathematical programs with equilibrium constraints (MPECs). In
our approach, the constraint degeneracy is handled by a Moreau-Yosida regulariza-
tion approach (resulting in an approximating sequence of double-well-type potentials)
and a subsequent limiting process leading to a function space version of so-called C-
stationarity. For the underlying problem class, our limiting version of C-stationarity
is currently the most (and, to the best of our knowledge, only) selective stationarity
system available. As an alternative analytical approach, one may want to pursue set-
valued analysis in order to derive stationarity conditions directly, i.e., from applying
variational geometry (contingent, critical and normal cones) and generalized differen-
tiation. This, however, is usually not possible by simple application of available tools,
but rather by expanding current technology. It, thus, may serve as a subject of our
future work on this problem class.
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Finally, we point out that the constructive nature of our derivation of stationar-
ity conditions facilitates a numerical implementation of the approach which can be
exploited in future investigations of these problem types, both, from a numerical, as
well as, from a practical point of view. In [26], this has already been effectively done
for the case of matched densities.

Appendix A. Proof of Lemma 3.4.

Proof. Let Lε : H
1
(Ω) → H

−1
(Ω) be defined by

〈Lε(ϕ), φ〉 := 〈−∆ϕ, φ〉

− 〈g1 +max(−g1, 0)θε(ϕ− ψ1) + min(−g1, 0)θε(ψ2 − ϕ), φ〉(A.1)

where φ ∈ H
1
(Ω) and θε is defined by

θε(x) :=





1 if x ≤ 0,
1− x

ε if 0 ≤ x ≤ ε,
0 if x ≥ ε.

Since g1 ∈ L2(Ω) and θε(ϕ− ψ1), θε(ψ2 − ϕ) ∈ L∞(Ω), it holds that

‖g1 +max(−g1, 0)θε(ϕ− ψ1) + min(−g1, 0)θε(ϕ− ψ2)‖ ≤ ‖g1‖ .(A.2)

We show that for every 0 < ε ≤ min(−ψ1, ψ2) there exists a unique ϕε ∈ H2
m ∩ K

such that

Lε(ϕε) = 0,(A.3)

In fact, for every w, v ∈ H
1
(Ω), it can be seen that

〈Lε(w)− Lε(v), w − v〉 ≥

∫

Ω

|∇w −∇v|
2
dx

where we use the monotonicity of θε. By Poincaré’s inequality there exists a constant
C > 0 such that

〈Lε(w)− Lε(v), w − v〉 ≥ ‖∇w −∇v‖
2
≥ C ‖w − v‖

2
H1 .

Consequently, Lε is strongly monotone and coercive. Since Lε is also continuous

on finite dimensional subspaces of H
1
(Ω), [31, III: Corollary 1.8] is applicable which

yields the existence of ϕε ∈ H
1
(Ω) with Lε(ϕε) = 0.

Due to the definition of Lε and inequality (A.2), we have ∆ϕε ∈ L2(Ω). By [34,
Theorem 2.3.6] and [34, Theorem 2.3.1] there exists a constant C1 > 0 such that

‖ϕε‖H2 ≤ C1 ‖∆ϕε‖+ ‖ϕε‖ .(A.4)

In combination with (A.2) and Poincaré’s inequality, this leads to

‖ϕε‖H2 ≤ C2 ‖g1‖ .(A.5)

Now, we set βε := ϕε −min(ϕε, ψ2) ≥ 0 and observe that

‖∇βε‖
2
=

∫

Ω1

∇(ϕε − ψ2)∇βεdx = 〈−∆ϕε, βε〉(A.6)
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where Ω1 := {x ∈ Ω : βε(x) > 0} = {x ∈ Ω : ϕε(x) > ψ2 ≥ ψ1 + ε}. By equation
(A.1) and (A.3), this leads to

‖∇βε‖
2 =

∫

Ω1

(g1 +max(−g1, 0)θε(ϕε − ψ1) + min(−g1, 0)θε(ψ2 − ϕε))βεdx

=

∫

Ω1

(g1 +min(−g1, 0))βεdx ≤ 0.

Thus, βε = 0 and therefore ϕε ≤ ψ2 almost everywhere in Ω.
In a similar way, we prove that ϕε − max(ϕε, ψ1) = 0 and therefore ϕε ≥ ψ1

almost everywhere on Ω. Hence ϕε is contained in H
2
(Ω) ∩ K. By inequality (A.5),

the sequence {ϕε}ε→0 is bounded in H
2
(Ω) and there exists a weakly convergent

subsequence (denoted the same) such that ϕε ⇀H
2 ϕ∗ with ‖ϕ∗‖H2 ≤ C2 ‖g1‖. Since

K is weakly closed, it contains ϕ∗.
For arbitrarily small 0 < δ ≤ min(−ψ1, ψ2), let v ∈ K be such that ψ1 + δ ≤ v ≤

ψ2 − δ almost everywhere in Ω. Using equation (A.3) and the monotonicity of Lε, we
infer

0 ≤ 〈Lε(v), v − ϕε〉 = 〈−∆v, v − ϕε〉 −

∫

Ω

(g1 +max(−g1, 0)θε(v − ψ1)

+ min(−g1, 0)θε(ψ2 − v))(v − ϕε)dx

= 〈−∆v, v − ϕε〉 −

∫

Ω

g1(v − ϕε)dx

for every 0 < ε < δ. For ε→ 0 this leads to

0 ≤ 〈−∆v, v − ϕ∗〉 −

∫

Ω

g1(v − ϕ∗)dx.

Since δ > 0 can be chosen arbitrarily small, the last relation holds for every v ∈ K

via a limiting process. Applying [31, III: Lemma 1.5] once more, this implies

0 ≤ 〈−∆ϕ∗, v − ϕ∗〉 −

∫

Ω

g1(v − ϕ∗)dx, ∀v ∈ K.

Due to the uniqueness of the solution for our variational inequality problem, this
yields the assertion.

Appendix B. Proof of Lemma 6.3.

Proof. Testing (6.10)–(6.12) by τ r̂, p̂ and q̂, respectively, and summing up we get

τ〈hr , r̂〉+ 〈hp, p̂〉+ 〈hq, q̂〉

= τ〈∇r̂,∇r̂〉+ τ〈Âr̂, r̂〉+ 〈m̂∇p̂,∇p̂〉

+
1

τ
〈ρ̂q̂, q̂〉 − 〈(Dq̂)û, q̂〉+ 〈2η̂ǫ(q̂), ǫ(q̂)〉

≥ τ ||r̂||2
H

1
(Ω)

+ C
(
||p̂||2

H
1
(Ω)

+ ||q̂||2H1
0,σ(Ω;RN )

)

for a positive constant C depending only on α and on the constants in Korn’s and
Poincaré’s inequalities. This estimate yields the assertion.
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[20] H. Goldberg, W. Kampowsky, and F. Tröltzsch, On Nemytskij operators in Lp-spaces of
abstract functions, Math. Nachr., 155 (1992), pp. 127–140.

[21] M. Hintermüller, M. Hinze, and M. H. Tber, An adaptive finite-element Moreau-Yosida-
based solver for a non-smooth Cahn-Hilliard problem, Optim. Methods Softw., 26 (2011),
pp. 777–811.

[22] M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints
in function space: C- and strong stationarity and a path-following algorithm, SIAM J.
Optim., 20 (2009), pp. 868–902.

[23] M. Hintermüller, B. S. Mordukhovich, and T. M. Surowiec, Several approaches for
the derivation of stationarity conditions for elliptic MPECs with upper-level control con-
straints, Math. Program., 146 (2014), pp. 555–582.

[24] M. Hintermüller, A. Schiela, and W. Wollner, The length of the primal-dual path in



M. Hintermüller, T. Keil, D. Wegner 35

Moreau-Yosida-based path-following methods for state constrained optimal control, SIAM
J. Optim., 24 (2014), pp. 108–126.

[25] M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn-Hilliard system
including the case of a double-obstacle homogeneous free energy density, SIAM J. Control
Optim., 50 (2012), pp. 388–418.

[26] M. Hintermüller and D. Wegner, Distributed and boundary control problems for the
semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau en-
ergies, Isaac Newton Institute preprint:NI14042-FRB, (2014).

[27] M. Hintermüller and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-
Stokes system, SIAM J. Control Optim., 52 (2014), pp. 747–772.

[28] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Reviews of
Modern Physics, 49 (1977), p. 435.

[29] J. Kim, K. Kang, and J. Lowengrub, Conservative multigrid methods for Cahn-Hilliard
fluids, J. Comput. Phys., 193 (2004), pp. 511–543.

[30] J. Kim and J. Lowengrub, Interfaces and multicomponent fluids, Encyclopedia of Mathemat-
ical Physics, (2004), pp. 135–144.

[31] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their
applications, vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original.

[32] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topologi-
cal transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 2617–2654.

[33] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with equilibrium constraints,
Cambridge University Press, Cambridge, 1996.

[34] A. Maugeri, D. K. Palagachev, and L. G. Softova, Elliptic and parabolic equations with
discontinuous coefficients, vol. 109 of Mathematical Research, Wiley-VCH Verlag Berlin
GmbH, Berlin, 2000.

[35] Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical systems.
i. modeling, Physical Review A, 38 (1988), p. 434.
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