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Abstract

This paper considers the problem of optimal recovery of an element u of a Hilbert space H
from measurements of the form ℓj(u), j = 1, . . . ,m, where the ℓj are known linear functionals on
H. Problems of this type are well studied [18] and usually are carried out under an assumption
that u belongs to a prescribed model class, typically a known compact subset of H. Motivated
by reduced modeling for solving parametric partial differential equations, this paper considers
another setting where the additional information about u is in the form of how well u can be
approximated by a certain known subspace Vn ofH of dimension n, or more generally, in the form
of how well u can be approximated by each of a sequence of nested subspaces V0 ⊂ V1 · · · ⊂ Vn
with each Vk of dimension k. A recovery algorithm for the one-space formulation was proposed
in [16]. Their algorithm is proven, in the present paper, to be optimal. It is also shown how
the recovery problem for the one-space problem, has a simple formulation, if certain favorable
bases are chosen to represent Vn and the measurements. The major contribution of the present
paper is to analyze the multi-space case. It is shown that, in this multi-space case, the set
of all u that satisfy the given information can be described as the intersection of a family of
known ellipsoids in H. It follows that a near optimal recovery algorithm in the multi-space
problem is provided by identifying any point in this intersection. It is easy to see that the
accuracy of recovery of u in the multi-space setting can be much better than in the one-space
problems. Two iterative algorithms based on alternating projections are proposed for recovery
in the multi-space problem and one of them is analyzed in detail. This analysis includes an a
posteriori estimate for the performance of the iterates. These a posteriori estimates can serve
both as a stopping criteria in the algorithm and also as a method to derive convergence rates.
Since the limit of the algorithm is a point in the intersection of the aforementioned ellipsoids,
it provides a near optimal recovery for u.
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1 Introduction

1.1 Background and motivation

The emergence of computational and experimental engineering has led to a spectrum of new mathe-
matical questions on how to best merge data driven and model based approaches. The development
of corresponding data-assimilation methodologies has been originally driven mainly by meteorologi-
cal research (see e.g. [12, 14]) but has meanwhile entered numerous areas in science and engineering
bringing, in particular, the role of reduced order modeling into the focus of attention [1].

The present paper addresses some principal mathematical aspects that arise when trying to
numerically capture a function u which is a state of a physical process with a known law, however
with unknown parameters. We are given measurements of this state and the question is how to
best merge these measurements with the model information to come up with a good approximation
to u.

A typical setting of this type occurs when all states of the physical process are described by a
specific parametric family of PDEs which is known to us, in a form

P(u, µ) = 0,

where µ is a vector of parameters ranging in a finite or infinite dimensional set P. Instead of
knowing the exact value of µ which would allow us to compute the state u = u(µ) by solving the
equation, we observe one of these states through some collection of measurements and we want
to use these measurements, together with the known parametric PDE, to numerically capture the
state, or perhaps even more ambitiously to capture the parameters. Since the solution manifold

M := {u(µ) : µ ∈ P},

to a parametric PDE is generally quite complicated, it is usually seen through a sequence of nested
finite dimensional spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn, dim(Vj) = j,

such that each Vj approximates M to a known tolerance εj. Construction of such spaces is some-
times referred to as model reduction. Various algorithms for generating such spaces, together with
error bounds εj , have been derived and analyzed. One of the most prominent of these is the reduced
basis method where the spaces are generated through particular solution instances u(µi) picked from
M, see [5, 2, 11, 19]. Other algorithms with known error bounds are based on polynomial approx-
imations in the parametric variable, see [7, 8].

Thus, the information that the state u we wish to approximate is on the manifold is replaced
by the information of how well u can be approximated by the spaces Vj. Of course, this is not
enough information to pin down u since we do not know where u is on the manifold, or in the
new formulation, which particular element of Vj provides a good approximation to u. However,
additional information about u is given by physical measurements which hopefully are enough to
approximately locate u. This type of recovery problem was formulated and analyzed in [16] using
an infinite dimensional Hilbert space setting which allows one to properly exploit the nature of the
continuous background model when assimilating observations. This is also the setting adopted in
the present paper.
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The achievements of the present paper are two-fold. First, we establish that the algorithm
proposed in [16] for estimating a state from a given set of observations and the knowledge of
its approximability from a space Vn is best possible in the sense of optimal recovery. Second,
and more importantly, we demonstrate the potential gain in accuracy for state recovery when
combining the approximability by each of the subspaces Vj in the given hierarchy. We refer to this
as the multi-space setting which will be seen to better exploit the information given by reduced
bases or polynomial constructions. We give algorithms and performance bounds for these recovery
algorithms in the multi-space setting when the observations are fixed and given to us. These
algorithms are online implementable, similar to the ones discussed in [16]. Let us mention that
one emphasis in [16] is on the selection of the measurement functionals in order to optimize the
recovery process, while in the present paper we consider such functionals as given and focus on
optimal recovery as explained above.

1.2 Conceptual preview

We study the above problems in the general framework of optimal recovery in a Hilbert space H
with inner product 〈·, ·〉 and norm ‖ · ‖. Under this setting, we are wanting to recover a function
u ∈ H from its measurements ℓi(u) = 〈u, ωi〉, where the ωi are known elements of H, i = 1, . . . ,m.
If we denote by W the space spanned by the ωi, i = 1, . . . ,m, then, the measurements determine
w = PWu where throughout this paper PX denotes the orthogonal projection onto X for any closed
subspace X ⊂ H. In going further, we think of measurements as simply providing the knowledge
of this projection. In particular, we assume that the ωj’s are linearly independent i.e., dimW = m.
Therefore, our problem is to find an approximation û(w) to u from the information w ∈ W . This
is equivalent to constructing a mapping A : W → H and setting û(w) = A(w) = A(PWu).

All elements of the orthogonal complement W⊥ of W have zero measurements. A first obser-
vation is that if all the information we have about u is that PWu = w, then we cannot recover u to
any guaranteed accuracy. Indeed, if u0 satisfies the measurements then u could be any of the func-
tions u0 + η, with η ∈W⊥, and each of these functions would be assigned the same approximation
û = û(w). Therefore, we need additional information about u to have a meaningful problem. A
typical assumption is that u is in some known compact set S ⊂ H. The recovery problem in this
case is known as optimal recovery. A classical setting is that H is the space L2 and S is a finite
ball in a Sobolev or Besov space, see e.g. [3, 17, 18].

In contrast to the case where S is a known Sobolev or Besov ball, our interest is in the setting
where S is the solution manifold M of a parametric PDE. As noted above, the typical way of
resolving M is through a finite sequence of spaces {V0, . . . , Vn} with Vk of dimension k where the
spaces are known to approximate M to some known accuracy. This leads us to the following two
settings:

The one-space problem: We assume that all what we know about M is that there is a space
Vn of dimension n which is an approximation to M with accuracy εn. Accordingly, we define

K := Kone := {u ∈ H : dist(u, Vn) ≤ εn}, (1.1)

and consider u ∈ K to be the only information we have about M. In this case, the information
(1.1) is the additional knowledge we have about u. We want to combine this knowledge with our
measurements PWu to construct a good approximation û to u. So in this case, the spaces Vn and
W are known and fixed.
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The multi-space problem: We assume that what we know aboutM is that there is a sequence of
spaces V0 ⊂ V1 ⊂ · · · ⊂ Vn such that each Vk has dimension k and approximates M with accuracy
εk, where ε0 ≥ ε1 ≥ · · · εn > 0. This leads us to define

K := Kmult :=

n
⋂

j=0

Kj , (1.2)

where

Kj := {u ∈ H : dist(u, Vj) ≤ εj}, j = 0, . . . , n.

In this case, the information u ∈ K is the additional knowledge we have about u. We want to
combine this knowledge with our measurements to construct a good approximation û to u. As
already noted, the multi-space problem is typical when applying reduced bases or polynomial
methods to parametric PDEs.

1.3 Performance criteria

This paper is concerned with approximating a function u ∈ H from the information that u ∈ K
and PWu = w in the two above settings. Note that in both settings, the set K is not compact. The
additional information provided by the measurements gives that u is in the class

Kw := {u ∈ K : PWu = w}.

This set is the intersection of K with the affine space

Hw := {u ∈ H : PWu = w} = w +W⊥.

Note that Kw may be an empty set for certain w ∈W .
Recall that an algorithm is a mapping A : W → H which assigns to any w ∈ W the approx-

imation û(w) = A(Pwu). In designing an algorithm, we are given the information of the spaces
(Vk)k=0,...,n and the error bounds (εk)k=0,...,n. There are several ways in which we can measure the
performance of an algorithm. Consider first the one-space problem. A first way of measuring the
performance of an algorithm is to ask for an estimate of the form

‖u−A(PWu)‖ ≤ CA(w) dist(u, Vn), u ∈ Kw. (1.3)

The best algorithm A, for a given fixed value of w, would give the smallest constant CA(w) and the
algorithm which gives this smallest constant is said to be instance optimal with constant CA(w).
In this case, the performance bound given by the right side of (1.3) depends not only on w but on
the particular u from Kw.

The estimate (1.3) also gives a performance bound for the entire class Kw in the form

sup
u∈Kw

‖u−A(PWu)‖ ≤ CA(w)εn.

This leads us to the notion of performance of a recovery algorithm A on any set S ⊂ H which is
defined by

EA(S) := sup
u∈S

‖u−A(PWu)‖.
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The class optimal performance on the set S is given by

E(S) := inf
A
EA(S), (1.4)

where the infimum is taken over all possible algorithms, i.e., all maps A : W → H. In particular,
class optimal performance is defined for both the single space or multi-space settings and for both
the sets Kw for each of individual w which gives the measure E(Kw) or the entire class K which
gives the performance E(K). The latter notion is the most meaningful when in applications it is
not known which measurements w ∈W will appear or will be available.

The present paper studies each of the above problems with the goal of determining the best
algorithms. For this purpose, we introduce for any closed subspaces V and W of H the quantity

µ(V,W ) := sup
η∈W⊥

‖η‖
‖η − PV η‖

= sup
η∈W⊥

‖η‖
‖PV ⊥η‖ . (1.5)

A simple calculation shows that µ(V,W ) = β(V,W )−1 where

β(V,W ) := inf
v∈V

‖PW v‖
‖v‖ = inf

v∈V
sup
w∈W

〈v,w〉
‖v‖‖w‖ .

Note that in the case where V = {0} we have µ(V,W ) = 1.
In §2 of the paper, we analyze the one space problem, that is, K = Kone. The inf-sup constant

β was used in [16], for the study of this problem, where the authors proposed an algorithm, in
the form of a certain linear mapping A∗ : w → A∗(w), then analyze its performance. While the
approach in [16] is based on variational arguments, ours is quite different and geometric in nature.
Our first goal is to establish that the algorithm proposed in [16] is both instance optimal and class
optimal. We show that for any function u ∈ H

‖u−A∗(PWu)‖ ≤ µ(Vn,W ) dist(u, Vn). (1.6)

Notice that if β(Vn,W ) = 0, the above estimate would give no bound on approximation as is to
be expected since Vn would contain elements of W⊥ and these cannot be distinguished by the
measurements. This would always be the case if n > m and so in going further we always work
under the assumption that n ≤ m.

Let us note that this is a modest improvement on the estimate in [16] which has the constant
µ(Vn,W ) + 1 rather than µ(Vn,W ) on the right side of (1.6). More importantly, we show that
the estimate (1.6) is best possible in the sense that the constant µ(Vn,W ) cannot be replaced by
a smaller constant. Another important remark, observed in [16], is that in (1.6), dist(u, Vn) can
be replaced by the smaller quantity dist(u, Vn ⊕ (W ∩ V ⊥

n )). We establish, with our approach, the
estimate

‖u−A∗(PWu)‖ ≤ µ(Vn,W ) dist(u, Vn ⊕ (W ∩ V ⊥
n )), (1.7)

which improves the constant given in [16]. We again show that µ(Vn,W ) is the best constant in
estimates of this form.

In view of (1.6), the algorithm A∗ provides the class estimate

EA∗(K) ≤ µ(Vn,W )εn. (1.8)
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We again show that this algorithm is class optimal in the sense that for the single space problem

E(K) = µ(Vn,W )εn.

Our analysis is based on proving lower bounds which show that the upper estimates (1.7) and (1.8)
cannot be improved. These lower bounds apply to both linear and nonlinear algorithms, that is,
(1.7) and (1.8) cannot be improved also using nonlinear mappings.

Another goal of our analysis of the one-space problem is to simplify the description of the
optimal solution through the choice of, what we call, favorable bases for the spaces Vn and W .
These favorable bases are then used in our analysis of the multi-space problem which is the object
of §3. One possible way of proceeding, in the multi-space case, is to examine the right side of (1.8)
for each of the spaces (Vk)k=0,...,n, and choose the one which gives the minimum value. This would
produce an algorithm A with the error bound

EA(K) ≤ min
0≤k≤n

µ(Vk,W )εk. (1.9)

Notice that the εk are decreasing but the µ(Vk,W ) are increasing as k gets larger. So these two
quantities are working against one another and the minimum may be assumed for an intermediate
value of k.

It turns out that the algorithm giving the bound (1.9) may be far from optimal and our main
achievements in §3 are to produce both algorithms and a priori performance bounds which in general
are better than that of (1.9). We show how the multi-space problem is connected to finding a point
in the intersection of a family of ellipsoids in H and propose an algorithm based on this intersection
property. Then, we give a priori bounds on the performance of our numerical algorithm, which are
shown to be, in general, better than (1.9).

2 The one-space problem

2.1 Preliminary remarks

We begin with some general remarks which can be applied to our specific problem. If S ⊂ H is
a bounded set and we wish to simultaneously approximate all of the elements in S, then the best
approximation is described by the center of the Chebyshev ball of S, which is defined as the smallest
closed ball that contains S. To describe this ball, we first define the Chebyshev radius

rad(S) := inf{r : S ⊂ B(v, r) for some v ∈ H}.

The following well known lemma says that the Chebyshev ball exists and is unique.

Lemma 2.1 If S is any bounded set in H with R := rad(S), then there exists a unique v∗ ∈ H
such that

S ⊂ B(v∗, R). (2.1)

Proof: For any v ∈ H, we define

RS(v) := inf {r : S ⊂ B(v, r)},
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which is a well-defined function from H to R. It follows from triangle inequality that RS : H → R

is continuous. It is also easily seen that

S ⊂ B(v,RS(v)).

By definition, rad(S) = infv∈HRS(v). Now, consider any infimizing sequence (vj)j∈N, i.e.,

lim
j→∞

RS(vj) = rad(S).

We claim that (vj)j∈N is a Cauchy sequence. To see this, define rj := RS(vj). For any fixed j and k
and any z ∈ S we define dj := vj − z and dk := vk − z. Then, ‖dj‖ ≤ rj, and ‖dk‖ ≤ rk. Therefore,

‖vj − vk‖2 = ‖dj − dk‖2 = 〈dj − dk, dj − dk〉
= 2〈dj , dj〉+ 2〈dk, dk〉 − 〈dj + dk, dj + dk〉

= 2‖dj‖2 + 2‖dk‖2 − 4
∥

∥

∥

1

2
(dj + dk)

∥

∥

∥

2

≤ 2r2j + 2r2k − 4
∥

∥

∥

1

2
(vj + vk)− z

∥

∥

∥

2
.

Since z ∈ S is arbitrary we get

‖vj − vk‖2 ≤ 2r2j + 2r2k − 4
[

RS
(1

2
(vj + vk)

)]2
≤ 2r2j + 2r2k − 4 rad(S)2.

Since rj , rk → rad(S), this shows that (vj)j∈N is a Cauchy sequence and has a limit v∗, which by
the continuity of v 7→ RS(v) satisfies RS(v

∗) = rad(S). The uniqueness of v∗ also follows from the
above inequality by contradiction. By using the continuity of v 7→ RS(v) one easily shows that
(2.1) holds. ✷

We sometimes say that v∗ in the above lemma is the center of S. For any bounded set S, the
diameter of S is related to its Chebyshev radius rad(S) by the inequalities

rad(S) ≤ diam(S) ≤ 2 rad(S).

For general sets S these inequalities cannot be improved. However, we have the following remark.

Remark 2.2 Let S be symmetric about a point z, i.e. whenever v ∈ S, then 2z − v ∈ S. Then,
the Chebyshev radius of S equals half its diameter, that is, diam(S) = 2 rad(S) and its center is z.

Remark 2.3 In the particular setting of this paper, for any given w ∈ W such that Kw is non-
empty, the optimal recovery u∗(w) over the class Kw is obviously given by the center of Kw, and
the class optimal performance is given by

E(Kw) = rad(Kw).

Remark 2.4 For a bounded, closed, convex set S ⊂ H (which is always the case in this paper)
its center u is in S. In fact, if this was not true, by translating S, we can assume u = 0. Let
s0 = argmins∈S ‖s‖. By convexity s0 exists, s0 6= 0, and 〈s, s0〉 ≥ 〈s0, s0〉, s ∈ S. Thus

sup
s∈S

‖s− s0‖2 = sup
s∈S

(〈s, s〉 − 2〈s, s0〉+ 〈s0, s0〉) ≤ sup
s∈S

‖s‖2 − ‖s0‖2

which contradicts the assumption that 0 is the center of S.
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2.2 Optimal bounds for the one-space problem

We next consider the case where the set K = Kone is given by (1.1), where Vn is a fixed and known
n dimensional space. In this section, we derive the algorithm proposed in [16], however from a dif-
ferent point of view emphasizing more the optimal recovery and geometric aspects of the problem.
This allows us to improve on their estimates some but, more importantly, it is also useful when
treating the multi-space problem.

In the event that β(Vn,W ) = 0, the space Vn contains elements from W⊥ which implies that if
w ∈ W is such that Kw is non-empty, then Kw is unbounded, or equivalently rad(Kw) is infinite,
which means that we cannot hope for any guaranteed performance over Kw. This is the case in par-
ticular when n > m. For this reason, in the rest of the paper, we always assume that β(Vn,W ) > 0,
which means in particular that n ≤ m.

Let w be any element from W . We claim that the map

u 7→ ‖u− PVn
u‖ = ‖PV ⊥

n
u‖,

admits a unique minimizer over the affine space Hw. To see this, we let u0 be any element from
Hw. It follows that every u ∈ Hw can be written as u = u0 + η for some η ∈ W⊥. Minimizing
‖PV ⊥

n
u‖ over Hw therefore amounts to minimizing the function

η 7→ f(η) := ‖PV ⊥
n
u0 + PV ⊥

n
η‖2,

over W⊥. We may write

f(η) := g(η) + ‖PV ⊥
n
η‖2,

where g is an affine function. Since we have assumed that β(Vn,W ) > 0, the inequalities

β(Vn,W )‖η‖ ≤ ‖PV ⊥
n
η‖ ≤ ‖η‖, η ∈W⊥.

show that η 7→ ‖PV ⊥
n
η‖ is an equivalent norm over W⊥. Therefore η 7→ f(η) is strongly convex

over W⊥ and therefore admits a unique minimizer

η∗ := argmin
η∈W⊥

f(η).

It follows that u∗ = u0 + η∗ satisfies

u∗ = u∗(w) := argmin
u∈Hw

‖u− PVn
u‖

and that this minimizer is unique.

Remark 2.5 If w is such that Kw is non-empty, there exists a u ∈ Hw such that ‖u−PVn
u‖ ≤ εn.

Therefore ‖u∗ − PVn
u∗‖ ≤ εn, that is, u

∗ ∈ Kw. In particular, u∗ minimizes ‖u − PVn
u‖ over all

u ∈ Kw.
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We next define

v∗ := v∗(w) := PVn
u∗.

From the definition of u∗, it follows that the pair (u∗, v∗) is characterized by the minimization
property

‖u∗ − v∗‖ = min
u∈Hw, v∈Vn

‖u− v‖, (2.2)

As the following remark shows, u∗ − v∗ has a certain double orthogonality property.

Remark 2.6 The element u∗ − v∗ is orthogonal to both spaces Vn and W⊥. The orthogonality to
Vn follows from the fact that v∗ = PVn

u∗. On the other hand, for any η ∈W⊥ and α ∈ R, we have

‖u∗ − v∗‖2 ≤ ‖u− PVn
u‖2, u := u∗ + αη,

and thus

‖u∗ − v∗‖2 ≤ ‖u∗ − v∗ + α(η − PVn
η)‖2 = ‖u∗ − v∗‖2 + 2α〈u∗ − v∗, η〉 + α2‖η − PVn

η‖2.

This shows that u∗ − v∗ is orthogonal to W⊥.

Remark 2.7 Conversely, if u ∈ Hw and v ∈ Vn are such that u − v is orthogonal to both spaces
Vn and W⊥, then u = u∗ and v = v∗. Indeed, from this orthogonality

‖u∗ − v∗‖2 = ‖u− v‖2 + ‖u∗ − v∗ − (u− v)‖2.

This gives that u, v is also a minimizing pair and from uniqueness of the minimizing pair u = u∗

and v = v∗.

The next theorem describes the smallest ball that contains Kw, i.e., the Chebyshev ball for this
set, and shows that the center of this ball is u∗(w).

Theorem 2.8 Let W and Vn be such that β(Vn,W ) > 0.
(i) For any w ∈ W such that Kw is non-empty, the Chebyshev ball for Kw is the ball centered at
u∗(w) of radius

R∗ = R∗(w) := µ(Vn,W )(ε2n − ‖u∗(w)− v∗(w)‖2)1/2. (2.3)

(ii) The optimal algorithm in the sense of (1.4) for recovering Kw from the measurement w is given
by the mapping A∗ : w 7→ u∗(w) and gives the performance bound

EA∗(Kw) = E(Kw) = µ(Vn,W )(ε2n − ‖u∗(w)− v∗(w)‖2)1/2. (2.4)

(iii) The optimal algorithm in the sense of (1.4) for recovering K is given by the mapping A∗ : w 7→
u∗(w) and gives the performance bound

EA∗(K) = E(K) = µ(Vn,W )εn. (2.5)
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Proof: In order for Kw to be nonempty, we need that ‖u∗ − v∗‖ ≤ εn. Any u ∈ Hw can be written
as u = u∗ + η where η ∈W⊥. Therefore,

u− PVn
u = u∗ − v∗ + η − PVn

η.

Because of the orthogonality in Remark 2.6, we have

‖u− PVn
u‖2 = ‖u∗ − v∗‖2 + ‖η − PVn

η‖2. (2.6)

Thus a necessary and sufficient condition for u to be in Kw is that

‖PV ⊥
n
η‖2 = ‖η − PVn

η‖2 ≤ ε2n − ‖u∗ − v∗‖2.

From the definition of µ(Vn,W ), this means that any u ∈ Kw is contained in the ballB(u∗(w), R∗(w)).
Now, if η is any element in W⊥ with norm R∗(w) which achieves the maximum in the definition of
µ(Vn,W ), then u∗± η is in Kw and since ‖η‖ = R∗(w) we see that the diameter of Kw is at least as
large as 2R∗(w). Since Kw is the translation of a symmetric set, we thus obtain (i) from Remark
2.2. The claim (ii) about A∗ being the optimal algorithm follows from Remark 2.3. Finally, the
performance bound (2.5) in the claim (iii) holds because the maximum of R∗(w) is achieved when
w = 0. ✷

Remark 2.9 The optimal mapping w 7→ A∗(w) = u∗(w) is independent of εn and the knowledge
of εn is not needed in order to compute A∗(w).

Remark 2.10 Since Kw is the intersection of the cylinder K with the affine space Hw, it has the
shape of an ellipsoid. The above analysis describes this ellipsoid as follows: a point u∗+ η is in Kw

if and only if ‖PV ⊥
n
η‖2 ≤ ε2n−‖u∗−v∗‖2. In the following section, we give a parametric description

of this ellipsoid using certain coordinate systems, see Lemma 2.14.

Remark 2.11 The elements u∗ and v∗ were introduced in [16] and used to define the algorithm
A∗ given in the above theorem. The analysis from [16] establishes the error bound

‖u− u∗(w)‖ ≤ (µ(Vn,W ) + 1) dist(u, Vn ⊕ (V ⊥
n ∩W )).

A sharper form of this inequality can be derived from our results. Namely, if u is any element in
H then we can define εn := ‖u− PVn

u‖ and w := PWu. Then, u ∈ Kw, for this choice of εn, and
so Theorem 2.8 applies and gives a recovery of u with the bound

‖u− u∗(w)‖ ≤ µ(Vn,W )(ε2n − ‖u∗ − v∗‖2)1/2 = µ(Vn,W )‖u− PVn
u− (u∗ − v∗)‖, (2.7)

where the second equality follows from (2.6). We have noticed in Remark 2.6 that u∗−v∗ ∈ V ⊥
n ∩W ,

and on the other hand we have that u− (u∗ − v∗) ∈ Vn +W⊥, which shows that

u∗ − v∗ = PV ⊥
n ∩Wu.

Therefore

PVn
u+ u∗ − v∗ = PVn⊕(V ⊥

n ∩W )u,

and (2.7) gives

‖u− u∗(w)‖ ≤ µ(Vn,W ) dist(u, Vn ⊕ (V ⊥
n ∩W )).
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Remark 2.12 Let us observe that given a space Vn with n < m we have (W ∩V ⊥
n ) 6= {0}, thus the

space V̄n := Vn ⊕ (W ∩ V ⊥
n ) is strictly larger than Vn. However µ(V̄n,W ) = µ(Vn,W ) because for

any η ∈W⊥, the projection of η onto W ∩V ⊥
n is zero. In other words we can enlarge Vn preserving

the estimate (2.5) for class optimality performance as long as we add parts of W that are orthogonal
to Vn.

2.3 The numerical implementation of the optimal algorithm

Let us next discuss the numerical implementation of the optimal algorithm for the one-space prob-
lem. Let ω1, . . . , ωm be any orthonormal basis for W . For theoretical reasons only, we complete
it to an orthonormal basis for H. So {ωi}i>m is a complete orthonormal system for W⊥. We can
write down explicit formulas for u∗ and v∗. Indeed, any u ∈ Hw can be written

u =
m
∑

i=1

wiωi +
∞
∑

i=m+1

xiωi,

where wi := 〈w,ωi〉, and (xi)i>m is any ℓ2 sequence. So, for any v ∈ Vn and u ∈ Hw, we have

‖u− v‖2 =
m
∑

i=1

(wi − vi)
2 +

∞
∑

i=m+1

(xi − vi)
2,

where vi := 〈v, ωi〉. Thus, for any v ∈ Vn, its best approximation u(v) from Hw is

u(v) :=

m
∑

i=1

wiωi +

∞
∑

i=m+1

viωi, (2.8)

and its error of approximation is

‖v − u(v)‖2 =

m
∑

i=1

(wi − vi)
2.

In view of (2.2) we have

v∗ = argmin
v∈Vn

‖v − u(v)‖2 = argmin
v∈Vn

m
∑

i=1

(wi − vi)
2 = argmin

v∈Vn

‖w − PW v‖2.

For any given orthonormal basis {φ1, · · · , φn} for Vn, we can find the coordinates of v∗ ∈ Vn in this
basis by solving the n× n linear system associated to the above least squares problem. Once v∗ is
found, the optimal recovery u∗ = u∗(w) is given, according to (2.8), by

u∗ = v∗ +
m
∑

i=1

(wi − v∗i )ωi,

where v∗i = 〈v∗, ωi〉. Note that we may also write

u∗ =
m
∑

i=1

wiωi +

∞
∑

i=m+1

〈v∗, ωi〉ωi = w + PW⊥v∗. (2.9)
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2.4 Liftings and favorable bases for Vn and W

It turns out that the above optimal algorithm has an even simpler description if we choose suitable
bases for Vn andW , which we call favorable bases. These bases will also be important in our analysis
of the multi-space problem. To describe this new geometric view, we introduce the description of
algorithms through liftings and see how the best algorithm of the previous section arises in this
context.

As noted earlier, any algorithm is a mapping A : W → H which takes w = PWu into û(w) =
A(w) = A(PWu). This image serves as the approximant of all of the u ∈ Kw. We can write any
u ∈ Kw as u = w + PW⊥u. So the problem is to find an appropriate mapping F : W → W⊥ and
take as the approximation

û(w) := A(w) := w + F (w).

At this stage F can be any linear or nonlinear mapping from W into W⊥. We call such mappings
F liftings.

According to (2.9), the optimal lifting F ∗ is defined by

F ∗(w) = PW⊥v∗(w) ∈ PW⊥Vn,

which is actually a linear mapping since v∗ depends linearly on w. The algorithm A∗(w) = w+F ∗(w)
was shown in the previous section to be optimal for each class Kw as well as for K. Note that this
optimality holds even if we open the competition to nonlinear maps F , respectively A.

We next show that F ∗ has a simple description as a linear mapping by introducing favorable
bases. We shall make use of the following elementary facts from linear algebra: if X and Y are
closed subspaces of a Hilbert space H, then:

• We have the equality

dim(PXY ) = dim(PYX).

This can be seen by introducing the cross-Gramian matrix G = (〈xi, yj〉), where (xi) and
(yj) are orthonormal bases for X and Y . Then G is the matrix representation of the pro-
jection operator PX from Y onto X with respect to these bases and Gt is the corresponding
representation of the projection operator PY from X onto Y . Hence,

dim(PXY ) = rank(G) = rank(Gt) = dim(PYX).

• The space Y can be decomposed into a direct orthogonal sum

Y = PYX ⊕ (Y ∩X⊥). (2.10)

For this, we need to show that Y ∩X⊥ = Z where Z ⊂ Y is the orthogonal complement of
PYX in Y . If y ∈ Z, then 〈y, PY x〉 = 0 for all x ∈ X. Since 〈y, x− PY x〉 = 0, if follows that
〈y, x〉 = 0, for all x ∈ X, and thus y ∈ Y ∩X⊥. Conversely if y ∈ Y ∩X⊥, then for any x ∈ X
〈y, PY x〉 = −〈y, x− PY x〉 = 0, which shows that y ∈ Z.

12



Now to construct the favorable bases we want, we begin with any orthonormal basis {φ1, . . . , φn}
of Vn and any orthonormal basis {ω1, . . . , ωm} of W . We consider the m×n cross-Gramian matrix

G := (〈ωi, φj〉),

which may be viewed as the matrix representation of the projection operator PW from Vn onto W
using these bases since PW (φj) =

∑m
i=1〈ωi, φj〉ωi. Note that the inf-sup condition β(Vn,W ) > 0

means that

dim(PWVn) = n,

or equivalently, the rank of G is equal to n. We perform a singular value decomposition of G, which
gives

G = USV t

where U = (ui,j) and V = (vi,j) are unitary m×m and n×n matrices, respectively, and where S is
an m×n matrix with entries si > 0 on the diagonal i = j, i = 1, . . . , n, and zero entries elsewhere.
This allows us to define new orthonormal bases {φ∗1, . . . , φ∗n} for Vn and {ω∗

1 , . . . , ω
∗
m} for W by

φ∗j =
n
∑

i=1

vi,jφi and ω∗
j =

m
∑

i=1

ui,jωi.

These new bases are such that

PW (φ∗j ) = sjω
∗
j , j = 1, . . . , n,

and have diagonal cross-Gramian, namely

〈ω∗
i , φ

∗
j 〉 = sjδi,j .

Therefore {ω∗
1 , . . . , ω

∗
n} and {ω∗

n+1, . . . , ω
∗
m} are orthonormal bases for the n-dimensional space

PWVn and respectively its orthogonal complement in W which is V ⊥
n ∩W according to (2.10).

By convention, we organize the singular values in decreasing order

0 < sn ≤ sn−1 ≤ · · · ≤ s1.

Since PW is an orthogonal projector, all of them are at most 1 and in the event where

s1 = s2 = · · · = sp = 1,

for some 0 < p ≤ n, then we must have

ω∗
j = φ∗j , j = 1, . . . , p.

This corresponds to the case where Vn ∩W is non-trivial and {ω∗
1 , . . . , ω

∗
p} forms an orthonormal

basis for Vn ∩W . We define p = 0 in the case where Vn ∩W = {0}.
We may now give a simple description of the optimal algorithm A∗ and lifting F ∗, in terms of

their action on the basis elements ω∗
j . For j = n + 1, . . . ,m, we know that ω∗

j ∈ V ⊥
n ∩W . From

Remark 2.7, it follows that the optimal pair (u∗, v∗) which solves (2.2) for w = ω∗
j is

u∗ = ω∗
j and v∗ = 0,
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and therefore

A∗(ω∗
j ) = ω∗

j and F ∗(ω∗
j ) = 0, j = n+ 1, . . . ,m.

For j = 1, . . . , n, we know that ω∗
j = PW (s−1

j φ∗j ). It follows that the optimal pair (u∗, v∗) which
solves (2.2) for w = ω∗

j is

u∗ = v∗ = s−1
j φ∗j .

Indeed, this follows from Remark 2.7 since this pair has u∗ − v∗ = 0 and hence has the double
orthogonality property. So, in this case,

A∗(ω∗
j ) = s−1

j φ∗j and F ∗(ω∗
j ) = s−1

j φ∗j − ω∗
j .

Note in particular that F ∗(ω∗
j ) = 0 for j = 1, . . . , p.

Remark 2.13 The favorable bases are useful when computing the inf-sup constant β(Vn,W ).
Namely, for an element v =

∑n
j=1 vjφ

∗
j ∈ Vn we find that PW v =

∑n
j=1 sjvjω

∗
j and so

β(Vn,W ) = min
v∈Vn

‖PW v‖
‖v‖ = min

v∈Vn

(

∑n
j=1 s

2
jv

2
j

∑n
j=1 v

2
j

)1/2
= min

j=1,...,n
sj = sn.

Correspondingly,

µ(Vn,W ) = s−1
n .

Recall that for the trivial space V0 = {0}, we have µ(V0,W ) = 1.

For further purposes, we complete the favorable bases into orthonormal bases of H by con-
structing particular orthonormal bases for V ⊥

n and W⊥. According to (2.10) we may write these
spaces as direct orthogonal sums

V ⊥
n = PV ⊥

n
(W )⊕ (V ⊥

n ∩W⊥),

and

W⊥ = PW⊥(Vn)⊕ (V ⊥
n ∩W⊥).

The second space V ⊥
n ∩ W⊥ in the above decompositions may be of infinite dimension and we

consider an arbitrary orthonormal basis (ψ∗
i )i≥1 for this space. For the first spaces in the above

decompositions, we can build orthonormal bases from the already constructed favorable bases.
For the space PV ⊥

n
(W ) we first consider the functions

PV ⊥
n
ω∗
i , i = 1, . . . ,m

These functions are 0 for i = 1, . . . , p since ω∗
i ∈ Vn for these values of i. They are equal to ω∗

i for
i = n+1, . . . ,m and to ω∗

i −siφ∗i for i = p+1, . . . , n, and these m−p functions are non-zero pairwise
orthogonal. Therefore an orthonormal basis of PV ⊥

n
(W ) is given by the normalized functions

(1− s2i )
−1/2(ω∗

i − siφ
∗
i ), i = p+ 1, . . . , n, and ω∗

i , i = n+ 1, . . . ,m.
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By a similar construction, we find that an orthonormal basis of PW⊥(Vn) is given by the normalized
functions

(1− s2i )
−1/2(φ∗i − siω

∗
i ), i = p+ 1, . . . , n.

Therefore bases for V ⊥
n and W⊥ are defined as union of these bases with the basis (ψ∗

i )i≥1 for
V ⊥
n ∩W⊥.
Finally, we close out this section, by giving a parametric description of the set Kw = Kw(Vn)

for the single space problem which shows in particular that this set is an ellipsoid.

Lemma 2.14 Given a single space Vn ⊂ H, the body

Kw := Kw(Vn) := Kone
w (Vn) := {u ∈ Kone(Vn) : PWu = w}

is a non-degenerate ellipsoid contained in the affine space Hw.

Proof: Using the favorable bases for W and W⊥, we can write any u ∈ Hw as

u =
m
∑

j=1

wjω
∗
j +

n
∑

j=p+1

xj(1− s2j)
−1/2(φ∗j − sjω

∗
j ) +

∑

i≥1

yjψ
∗
j ,

where the wj = 〈w,ω∗
j 〉 for j = 1, . . . ,m, are given, and the xj and yj are the coordinates of u−w

in the favorable basis of W⊥. We may now write

PV ⊥
n
u =

m
∑

j=1

wjPV ⊥
n
ω∗
j +

n
∑

j=p+1

xj(1− s2j)
−1/2PV ⊥

n
(φ∗j − sjω

∗
j ) +

∑

i≥1

yjψ
∗
j

=

m
∑

j=p+1

wj(ω
∗
j − sjφ

∗
j )−

n
∑

j=p+1

xj(1− s2j )
−1/2sj(ω

∗
j − sjφ

∗
j) +

∑

i≥1

yjψ
∗
j

=
m
∑

j=n+1

wj(ω
∗
j − sjφ

∗
j ) +

n
∑

j=p+1

(wj − xjsj(1− s2j)
−1/2)(ω∗

j − sjφ
∗
j ) +

∑

i≥1

yjψ
∗
j .

All terms in the last sum are pairwise orthogonal and therefore

‖PV ⊥
n
u‖2 =

m
∑

j=n+1

(1− s2j)w
2
j +

n
∑

j=p+1

(1− s2j)(wj − xjsj(1− s2j)
−1/2)2 +

∑

j≥1

y2j .

Now u ∈ Kw if and only if ‖PV ⊥
n
u‖2 ≤ ε2n, or equivalently

n
∑

j=p+1

s2j(xj − aj)
2 +

∑

j≥1

y2j ≤ C, (2.11)

with C := ε2n −∑m
j=n+1(1 − s2j )w

2
j and aj := (1 − s2j)

1/2s−1
j wj which is the equation of a non-

degenerate ellipsoid in Hw. ✷

Remark 2.15 The above equation (2.11) directly shows that the radius of Kw is equal to s−1
n C1/2

which is an equivalent expression of (2.3).
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3 The multi-space problem

In this section, we consider the multi-space problem as described in the introduction. We are
interested in the optimal recovery of the elements in the set K := Kmult as described by (1.2). For
any given w ∈W , we consider the set

Kw := Kmult
w := Kmult ∩Hw =

n
⋂

j=0

Kj
w,

where

Kj
w := Kj ∩Hw := {u ∈ Hw : dist(u, Vj) ≤ εj}.

In other words, Kj
w is the set in the one-space problem considered in the previous section. We have

seen that Kj
w is an ellipsoid with known center u∗j = u∗j (w) and known Chebyshev radius given by

(2.3) with n replaced by j, and u∗ and v∗ replaced by u∗j and v∗j in that formula.
Thus, Kw is now the intersection of n+1 ellipsoids. The optimal algorithm A∗, for the recovery

of Kw, is the one that would find the center of the Chebyshev ball of this set and its performance
would then be given by its Chebyshev radius. In contrast to the one-space problem, this center
and radius do not have simple computable expressions. The first results of this section provide an
a priori estimate of the Chebyshev radius in the multi-space setting by exploiting favorable bases.
This a priori analysis illustrates when a gain in performance is guaranteed to occur, although the
a priori estimates we provide may be pessimistic.

We then give examples which show that the Chebyshev radius in the multi-space case can be
far smaller than the minimum of the Chebyshev radii of the Kj

w for j = 0, . . . , n. These examples
are intended to illustrate that exploiting the multi-space case can be much more advantageous than
simply executing the one-space algorithms and taking the one with best performance, see (2.4).

The latter part of this section proposes two simple algorithmic strategies, each of them con-
verging to a point in Kw. These algorithms thus produce a near optimal solution, in the sense that
if A is the map corresponding to either one of them, we have

EA(Kw) ≤ 2EA∗(Kw) = 2E(Kw), w ∈W, (3.1)

and in particular
EA(K) ≤ 2E(K). (3.2)

Both of these algorithms are iterative and based on alternating projections. An a posteriori estimate
for the distance between a given iterate and the intersection of the ellipsoids is given and used both,
as a stopping criteria and to analyze the convergence rates of the algorithms.

3.1 A priori bounds for the radius of Kw

In this section, we derive a priori bounds for rad(Kmult
w ). Although these bounds may overestimate

rad(Kmult
w ), they allow us to show examples where the multi-space algorithm is significantly better

than simply chosing one space and using the one-space algorithm. Recall that for the one-space
problem, we observed that rad(Kone

w ) is largest when w = 0. The following results show that for the
multi-space problem rad(Kmult

w ) is also controlled by rad(Kmult
0 ), up to a multiplicative constant.

Note that Kmult
w is generally not a symmetric set, except for w = 0. In going further in this section

K and Kw will refer to the multi-space sets.
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Lemma 3.1 For the multi-space problem, one has

rad(Kw) ≤ 2 rad(K0), w ∈W. (3.3)

Therefore,
E(K) ≤ 2 rad(K0). (3.4)

Proof: Fix w ∈W and let ũ := ũ(w) be the center of the Chebyshev ball for Kw which by Remark
2.4, belongs to Kw. For any u ∈ Kw we have η := 1

2(u− ũ) is in W⊥ and also

dist(η, Vk) ≤
1

2
(dist(u, Vk) + dist(ũ, Vk)) ≤ εk, k = 0, 1, . . . , n.

Hence, η ∈ K0 which gives

‖u− ũ‖ = 2‖η‖ ≤ 2 rad(K0),

where we have used the fact that, by Remark 2.2, the best Chebyshev ball for K0 is centered at 0.
This proves (3.3). The estimate (3.4) follows from the definition of E(K). ✷

In view of the above Lemma 3.1, we concentrate on deriving a priori bounds for the radius of
the set K0. We know that K0 is the intersection of the ellipsoids Kj

0 for j = 0, 1, . . . , n, each of

which is centered at zero. We also know that the Chebyshev ball for Kj
0 is B(0, rad(Kj

0) and we
know from (2.4) that

rad(Kj
0) = µ(Vj ,W )εj , j = 0, 1, . . . , n,

which is a computable quantity. This gives the obvious bound

rad(K0) ≤ min
0≤k≤n

µ(Vk,W )εk. (3.5)

In the following, we show that we can improve on this bound considerably. Since K0 is symmetric
around the origin, we have

rad(K0) = argmax
η∈K0

‖η‖.

So we are interested in bounding ‖η‖ for each η ∈ K0.
Since the spaces Vj are nested, we can consider an orthonormal basis {φ1, . . . , φn} for Vn, for

which, {φ1, . . . , φj} is an orthonormal basis for each of the Vj for j = 1, . . . , n. We will use the
favorable bases constructed in the previous section in the case of the particular space Vn. Note
that if {φ∗1, . . . , φ∗n} is the favorable basis for Vn, we do not generally have that {φ∗1, . . . , φ∗j} is a
basis of Vj.

Let η be any element from K0. Since dist(η, Vn) ≤ εn, we may express η as

η =
n
∑

j=1

ηjφ
∗
j + e =

n
∑

j=1

αjφj + e, e ∈ V ⊥
n and ‖e‖ ≤ εn.

So,

‖η‖2 =

n
∑

j=1

η2j + ‖e‖2 =

n
∑

j=1

α2
j + ‖e‖2.
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The αj and ηj are related by the equations

n
∑

j=1

λi,jαj = ηi, i = 1, . . . , n,

where

λi,j := 〈φj , φ∗i 〉, 1 ≤ i, j ≤ n.

The fact that dist(η, Vk) ≤ εk for k = 0, . . . , n is expressed by the inequalities

n
∑

j=k+1

α2
j + ‖e‖2 ≤ ε2k, k = 0, . . . , n.

Since η ∈W⊥, we have that

0 = PW η =
n
∑

j=1

sjηjω
∗
j + PW e .

It follows that

n
∑

j=1

s2jη
2
j = ‖PW e‖2 ≤ ‖e‖2 ≤ ε2n.

We now return to the representation of K0 in the φj coordinate system. We know that all αj

satisfy |αj | ≤ εj−1. This means that the coordinates {α1, . . . , αn} of any point in K0 are in the
n-dimensional rectangle

R = [−ε0, ε0]× · · · × [−εn−1, εn−1].

It follows that each ηi satisfies the crude estimate

|ηi| ≤
n
∑

j=1

|λi,j ||αj | ≤
n
∑

j=1

|λi,j|εj−1 =: θi i = 1, . . . , n. (3.6)

The numbers θi are computable. The bound (3.6) allows us to estimate

rad(K0)
2 = sup

η∈K0

‖η‖2 ≤ ε2n + sup
{

n
∑

j=1

η2j : |ηj | ≤ θj and

n
∑

j=1

s2jη
2
j ≤ ε2n

}

Since the sj are non-increasing, the supremum on the right side takes the form

δθ2k +

n
∑

j=k+1

θ2j , 0 < δ ≤ 1,

where k is the largest integer such that

n
∑

j=k

s2jθ
2
j ≥ ε2n, (3.7)
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and δ is chosen so that

δs2kθ
2
k +

n
∑

j=k+1

s2jθ
2
j = ε2n. (3.8)

This gives us the following bound on the Chebyshev radius of K0.

rad(K0)
2 ≤ ε2n + δθ2k +

n
∑

j=k+1

θ2j := E2
n. (3.9)

Using this estimate together with Lemma 3.1, we have proven the following theorem.

Theorem 3.2 For the multi-space problem, we have the following estimates for Chebyshev radii.
For K0, we have

rad(K0) ≤ En,

where En :=
(

ε2n + δθ2k +
∑n

j=k+1 θ
2
j

)1/2
. For any w ∈W , we have

rad(Kw) ≤ 2En.

For K, we have the bound

rad(K) ≤ 2En.

We next compare the bound in (3.9) with the one space bound

rad(K0) ≤ µ(Vn,W )εn = s−1
n εn,

which is obtained by considering only the approximation property of Vn and not exploiting the
other spaces Vj , j < n, see (3.5). For this, we return to the definition of k from (3.7). We can write
each term that appears in (3.8) as γjε

2
n where

∑n
j=k γj = 1. In other words,

θ2j = γjs
−2
j ε2n, k < j ≤ n, θ2k = δ−1γks

−2
k ε2n.

Hence,

E2
n ≤ ε2n + s−2

n ε2n ≤ 2s−2
n ε2n,

which is at least as good as the old bound up to a multiplicative constant
√
2.

We finally observe that the bound En is obtained by using the entire sequence {V0, . . . , Vn}.
Similar bounds EΓ are obtained when using a subsequence {Vj : j ∈ Γ} for any Γ ⊂ {0, . . . , n}.
This leads to the improved bound

rad(K0) ≤ min{EΓ : Γ ⊂ {0, . . . , n}}.

In particular defining Ej = EΓ for Γ = {0, . . . , j} we find that

E2
j ≤ 2µ(Vj ,W )2ε2j .

Therefore

E∗
n ≤

√
2 min
j=0,...,n

µ(Vj ,W )εj ,

which shows that the new estimate is as good as (3.5) up to the multiplicative constant
√
2.
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3.2 Examples

One can easily find examples for which the Chebyshev radius of Kw is substantially smaller than
the minimum of the Chebyshev radii of the Kj

w, therefore giving higher potential accuracy in the
multi-space approach. As a simple example to begin this discussion, consider the case where

H = R
2, V0 = {0}, V1 = Re1, W = R(e1 + e2)

where e1 = (1, 0) and e2 = (0, 1). So, V1 and W are one dimensional spaces. Then, with the choices

ε0 = 1, ε1 =
1

2
, w =

(

√
3 + 1

4
,

√
3 + 1

4

)

,

it is easily seen that Kw is the single point
(√

3
2 ,

1
2

)

and has therefore null Chebyshev radius while

K0
w and K1

w have positive Chebyshev radii.
In more general settings we do not have such a simple description of Kw, however we now give

some additional examples that show that even the a priori estimates of the previous section can be
significantly better than the one space estimate as well as the estimate (3.5). We consider the two
extremes in the compatibility between the favorable basis {φ∗1, . . . , φ∗n} and the basis {φ1, . . . , φn}
which describes the approximation properties of the sequence {V0, . . . , Vn}.

Example 1: In this example we consider the case where the two bases coincide,

φ∗i = φi, i = 1, . . . , n.

Note that in this case the singular values {s1, . . . , sk} for the pair {Vk,W} coincide with the first
k singular values for the pair {Vn,W}. Therefore

µ(Vk,W ) = s−1
k , k = 0, . . . , n,

where we have set s0 := 1. We also have

θk = εk−1, k = 1, . . . , n.

We fix εn := ε and εn−1 := εn−2 := ε1/2 and the values sn := ε and sn−1 := sn−2 := ε1/2 and all
other εk := 1 and all other sk := 1. We examine what happens when ε is very small. The estimate
(1.9) would give the bound

min
0≤k≤n

µ(Vk,W )εk = min
0≤k≤n

s−1
k εk = 1,

as the bound for rad(K0) and E(K). On the other hand, since,

s2nε
2
n−1 = ε3 ≪ ε2 and s2n−1ε

2
n−2 = ε2,

the value of k in (3.7) is n−1. It follows that the error En in the multi-space method (3.9) satisfies

E2
n ≤ ε2n−2 + ε2n−1 + ε2n ≤ 3ε.

Hence, the error for the multi-space method can be arbitrarily small as compared to the error of
the one-space method.
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Example 2: We next consider the other extreme where the two bases are incoherent in the
sense that each entry in the change of basis matrix satisfies

|λi,j| ≤ C0n
−1/2, 1 ≤ i, j ≤ n.

We want to show that En can be smaller than the estimate in (3.5) in this case as well. To illustrate
how the estimates go, we assume that n ≥ 2 and |λi,j| = 1/

√
n, for all 1 ≤ i, j ≤ n. We will take

sn ≪ s = s1 = s2 = . . . = sn−1,

with the values of s and sn specified below. We define

ε0 := 1/2 and εj =
1

2(n − 1)
, j = 1, . . . , n− 1,

so that
∑n−1

j=0 εj = 1. It follows from the definiton of θk given in (3.6) that

θk = 1/
√
n := θ, k = 1, . . . , n.

With these choices, the best one space estimate (1.9) is

min{ε0, s−1εn−1, s
−1
n εn}. (3.10)

Now, we take εn very small and sn = ε2n. We then choose s so that

(s2 + s2n)θ
2 = ε2n. (3.11)

This gives k = n− 1 in (3.7) and so

E2
n = ε2n + θ2n−1 + θ2n ≤ 3n−1.

On the other hand, (3.11) says that s−1 = ε−1
n (n− ε2n)

−1/2. Thus, from (3.10), the best one space
estimate is

min{ε0, s−1εn−1, s
−1
n εn} = min

{1

2
,

1

2(n − 1)
√

n− ε2n
ε−1
n , ε−1

n

}

= 1/2,

provided εn ≤ n−3/2. Hence, the multi-space estimate (3.9) is better than the one space estimate
by at least the factor n−1/2 in this case.

3.3 Numerical algorithms

In this section, we discuss some possible numerical algorithms, based on convex optimization, for
the multi-space case. For any given data w ∈ W , such that Kw is not empty, these algorithms
produce, in the limit, an element A(w) which belongs to Kw, so that they are near optimal in the
sense of (3.1) and (3.2).

We recall that Kw is given by

Kw = Hw ∩ K0 ∩ K1 ∩ · · · ∩ Kn.
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One first observation is that although the set Kw may be infinite dimensional, we may reduce the
search for an element in Kw to the finite dimensional space

F := Vn +W,

which has dimension d = m+n−p, where p = dim(Vn∩W ). Indeed, if u ∈ Kw, then its projection
PFu onto F remains in Kw, since u− PFu ∈W⊥ ∩ V ⊥

n implies

PWPFu = PWu = w,

and

dist(PFu, Vj) ≤ dist(u, Vj) ≤ εj, j = 0, . . . , n.

Therefore, without loss of generality, we may assume that

H = F ,

and that the sets Hw and Kj that define Kw are contained in this finite dimensional space.
The problem of finding a point in the intersection of convex sets is sometimes referred to as

convex feasibility and has been widely studied in various contexts. We refer to [9, 10] for surveys on
various possible algorithmic methods. We restrict our discussion to two of them which have very
simple expressions in our particular case. Both are based on the orthogonal projection operators
onto the spaces Hw and Kj . Let us first observe that these projections are very simple to compute.
For the projection onto Hw, we use the orthonormal basis {ω1, . . . , ωm} of W . For any u ∈ F we
have

PHw
u = PW⊥u+ w = u−

m
∑

i=1

〈u, ωi〉ωi + w. (3.12)

For the projection onto Kj , we extend the basis {φ1, . . . , φn} into an orthonormal basis {φ1, . . . , φd}
of F . We then have

PKju =

j
∑

i=1

〈u, φi〉φi + α
(

d
∑

i=j+1

〈u, φi〉φi
)

, α := min
{

1, εj

(

d
∑

i=j+1

|〈u, φi〉|2
)−1/2}

.

We now describe two elementary and well-known algorithms.

Algorithm 1: sequential projections. This algorithm is a cyclical application of the above
operators. Namely, starting say from u0 = w, we define for k ≥ 0 the iterates

uk+1 := PKnPKn−1 · · ·PK1PK0PHw
uk.

We know from general results on alternate projections onto convex sets [4] that this sequence con-
verges towards a point u∗ ∈ Kw when Kw is not empty. We make further use of the following ob-
servation: the nestedness property V0 ⊂ V1 ⊂ . . . ⊂ Vn implies that uk belongs to K = K0∩ . . .∩Kn.

Algorithm 2: parallel projections. This algorithm combines the projections onto the sets
K according to

uk+1 := PHw

(

n
∑

j=0

γjPKj

)

uk,
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where the weights 0 < γj < 1 are such that γ0 + · · · + γn = 1, for example γj := 1
n+1 . It may be

viewed as a projected gradient iteration for the minimization over Hw of the differentiable function

F (u) :=

n
∑

j=0

γjFj(u), Fj(u) :=
1

2
dist(u,Kj)2.

Notice that the minimum of F is attained exactly at each point of K. Since ∇Fj(u) = u − PKju,
we find that

uk+1 = PHw
(uk −∇F (uk)).

Classical results on constrained minimization methods [15] show that this algorithm converges
toward a minimizer u∗ of F (u) over Hw which clearly belongs to Kw when Kw is not empty.

3.4 A posteriori estimate and convergence rates

Each of the above algorithms generates a sequence (uk)k≥1 of elements from F which are guaranteed
to converge to a point in Kw provided that this set is nonempty. We would like to have a bound
for dist(uk,Kw), since this would allow us to check the progress of the algorithm and also could
be utilized as a stopping criterion when we have gained sufficient accuracy. Here we restrict our
analysis to Algorithm 1.

We will use certain geometric properties of the set K, expressed by the following lemma.

Lemma 3.3 If u1, u2 ∈ K then the ball B := B(u0, r) centered at u0 :=
1
2 (u1 + u2) of radius

r :=
1

8
min

j=0,...,n
ε−1
j ‖PV ⊥

j
(u1)− PV ⊥

j
(u2)‖2 (3.13)

is completely contained in K.

Proof: For u1, u2 ∈ Kj the ball B(u0, r) is contained in Kj if and only if the ball in V ⊥
j centered at

PV ⊥

j
u0 with the radius r is contained in PV ⊥

j
(Kj) = {x ∈ V ⊥

j : ‖x‖ ≤ ǫj} := Bj. Let v
j
s := PV ⊥

j
(us)

for s = 0, 1, 2 and let δj := ‖vj1 − vj2‖. The parallelogram identity gives

‖vj0‖2 =
1

2
‖vj1‖2 +

1

2
‖vj2‖2 −

1

4
‖vj1 − vj2‖2,

so that ‖vj0‖2 ≤ ε2j − 1
4δ

2
j . Thus for

rj := εj −
√

ε2j −
1

4
δ2j = εj

(

1−
√

1−
δ2j
4ε2j

)

,

the ball in V ⊥
j centered at vj0 with radius rj is contained in Bj. Thus, with

ρ := min
j=0,1,...,n

rj ,

we have B(u0, ρ) ⊂ K. Since δj ≤ 2εj and (1 −
√
1− x) ≥ x/2 for 0 ≤ x ≤ 1 we get rj ≥ δ2j /(8εj)

and therefore ρ ≥ r from which (3.13) follows. ✷
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We have noticed that the iterates uk of Algorithm 1 all belong to K and we would like to
estimate their distance from the convex set Kw. Let PKw

(x) denote the point from Kw closest to
x. This is a well defined map. The following result gives an estimate for the distance of any u ∈ K
from Kw, in terms of its distance from the affine space Hw. This latter quantity is easily computed
using (3.12) which shows that

u− PHw
u = PWu− w =

m
∑

i=1

〈u, ωi〉ωi − w.

Lemma 3.4 Let u ∈ K be such that

α := dist(u,Hw) > 0.

Then
‖PHw

u− PKw
u‖ ≤ ρ = ρ(α) := max

j
µj(α+ 4

√
αεj), (3.14)

where µj = µ(Vj ,W ). Since u− PHw
u is orthogonal to PHw

u− PKw
u, we have

dist(u,Kw)
2 ≤ α2 + ρ(α)2.

Proof: We set u2 = PKw
u and η = u− u2 which we decompose as

η = (u− PHw
u) + (PHw

u− u2) =: η1 + η2.

We wish to show that ‖η2‖ ≤ ρ, where ρ is defined in (3.14). To this end, observe that η1 ∈ W
and η2 ∈ W⊥ so that this is an orthogonal decomposition. Moreover, using (1.5) and noting that
‖η1‖ = α, we have

‖PV ⊥

j
η‖ ≥ ‖PV ⊥

j
η2‖ − ‖PV ⊥

j
η1‖ ≥ β(Vj ,W )‖η2‖ − α. (3.15)

We infer from Lemma 3.3 that the ball B with center at u0 =
1
2(u+ u2) and radius

r =
1

8
min

j=0,1,...,n
ε−1
j ‖PV ⊥

j
η‖2

is contained in K. Let us suppose now that ‖η2‖ > ρ and derive a contradiction. Then, we obtain
from (3.15)

‖PV ⊥

j
η‖ > µ−1

j ρ− α ≥ µ−1
j µj(α+ 4

√
αεj)− α = 4

√
αεj ,

and thus

r >
1

8
min

j=0,1,...,n
ε−1
j 16αεj = 2α.

On the other hand, note that ‖u0 − PHw
u0‖ = 1

2‖u − PHw
u‖ = α/2. Therefore, PHw

u0 ∈ K and
hence in Kw. Moreover,

‖u− PHw
u0‖2 = α2 +

1

4
‖u2 − PHw

u‖2,

24



and

‖u− u2‖2 = α2 + ‖u2 − PHw
u‖2.

If u2 6= PHw
u, we have ‖u − PHw

u0‖ < ‖u − u2‖ which is a contradiction since u2 is the closest
point to u in Kw. If u2−PHw

u = 0 then η2 = 0 contradicting ‖η2‖ > ρ. This completes the proof. ✷

One immediate consequence of the above lemma is an a posteriori error estimate for the squared
distance to Kw

δk := dist(uk,Kw)
2,

in Algorithm 1. Indeed, we have observed that uk ∈ K and therefore

δk ≤ α2
k + ρ(αk)

2, αk := dist(uk,Hw).

This ensures the following accuracy with respect to the unknown u ∈ Kw:

‖u− uk‖ ≤
√

α2
k + ρ(αk)2 + 2 rad(Kw).

If we have an a priori estimate for the Chebyshev radius of Kw, such as the bound En from Theorem
3.2, one possible stopping criterion is the validity of

√

α2
k + ρ(αk)2 ≤ En.

This ensures that we have achieved accuracy ‖u−uk‖ ≤ 3En, however note that En can sometimes
be a very pessimistic bound for rad(Kw) so that significantly higher accuracy is reachable by more
iterations.

We can also use Lemma 3.4 to establish a convergence estimate for δk in Algorithm 1. For this
purpose, we introduce the intermediate iterates

uk+
1

2 := PHw
uk,

and the corresponding squared distance

δk+ 1

2

:= dist(uk+
1

2 ,Kw)
2.

Since the distance to Kw is non-increasing in each projection steps, it follows that

δk+1 ≤ δk+ 1

2

= δk − α2
k.

On the other hand, it easily follows from Lemma 3.4 that

δk − α2
k ≤ ρ(αk)

2 ≤ Aαk,

where A is a constant depending on ǫj’s, µj’s and ‖u‖. It is easily seen that this implies the validity
of the inequality

αk ≥
√

δk +A2/4−A/2 ≥ δk
√

A2 + 4δk
≥ δk√

A2 + 4δ0
:= cδk,
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and therefore

δk+1 ≤ δk − c2δ2k.

From this, one finds by induction that

δk ≤ Ck−1, k ≥ 1,

for a suitably chosen constant C := max{c−2, δ1} taking into account that for any t ≥ 1

C

t

(

1− Cc2

t

)

≤ C
(t− 1

t2

)

≤ C

t+ 1
.

✷

Remark 3.5 The above convergence rate O(k−1/2) for the distance between uk and Kw is quite
pessimistic, however, one can easily exhibit examples in which it indeed occurs due to the fact that
Hw intersects K at a single point of tangency. On the other hand, one can also easily find other
examples for which convergence of Algorithm 1 is exponential. In particular, this occurs whenever
Kw has an element lying in the interior of K.

References

[1] O. Bashir, O Ghattas, J. Hill, B. Van Bloemen Waanders, K. Willcox, Hessian-based model
reduction for large-scale data assimilation problems, in Computational Science – ICCS 2007,
Springer, Lecture Notes in Computer Science 4487, 1010-1017, 2007.

[2] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Convergence
Rates for Greedy Algorithms in Reduced Basis Methods, SIAM Journal of Mathematical Anal-
ysis 43, 1457-1472, 2011.

[3] B. Bojanov, Optimal recovery of functions and integrals. First European Congress of Mathe-
matics, Vol. I (Paris, 1992), 371-390, Progr. Math., 119, Birkhuser, Basel, 1994.

[4] L.M. Bregman, The relaxation method of finding the common point of convex sets and its appli-
cation to the solution of problems in convex programming, USSR Computational Mathematics
and Mathematical Physics 7, 200-217, 1967.

[5] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme, and G. Turinici, A Priori convergence of the
greedy algorithm for the parameterized reduced basis, Mathematical Modeling and Numerical
Analysis 46, 595-603, 2012.

[6] A. Cohen and R. DeVore, Approximation of high dimensional parametric pdes, to appear in
Acta Numerica, 2015.

[7] A. Cohen, R. DeVore and C. Schwab, Analytic Regularity and Polynomial Approximation of
Parametric Stochastic Elliptic PDEs, Analysis and Applications 9, 11-47, 2011.

[8] A. Chkifa, A. Cohen, R. DeVore, and C. Schwab, Sparse Adaptive Taylor Approximation
Algorithms for Parametric and Stochastic Elliptic PDEs, M2AN 47, 253-280, 2013.

26



[9] P.L. Combettes, The convex feasiblility problem in image recovery, in: Advances in imaging
an electron physics, 85 , 155-270, Academic Press, New York, 1996.

[10] P.L. Combettes and J.C. Pesquet, Proximal splitting methods in signal processing, in: Fixed-
point algorithms for inverse problems in science and engineering, 185-212, Springer Verlag,
New York, 2011.

[11] R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach
spaces, Constructive Approximation, 37, 455-466, 2013.

[12] R. Daley, Atmospheric Data Analysis, Cambridge University Press, 1991.

[13] M. von Golitschek, G. Lorentz, and Y. Makovos, Constructive Approximation, vol II, Springer
Verlag, 1996.

[14] J. M. Lewis, S. Lakshmivarahan, S. Dhall, Dynamic Data Assimilation : A Least Squares
Approach, Encyclopedia of Mathematics and its Applications 104, Cambridge University Press,
2006.

[15] E.S. Livitin and B.T. Polyak, Constrained minimization methods, USSR Comput. Math. Phys.
6, 1-50, 1966.

[16] Y. Maday, A.T. Patera, J.D. Penn and M. Yano, A parametrized-background data-weak ap-
proach to variational data assimilation: Formulation, analysis, and application to acoustics,
Int. J. Numer. Meth. Eng., submitted, 2014.

[17] C.A. Micchelli, T.J. Rivlin, Lectures on optimal recovery. Numerical analysis, Lancaster 1984
(Lancaster, 1984), 21-93, Lecture Notes in Math., 1129, Springer, Berlin, 1985.

[18] C.A. Micchelli, T.J. Rivlin, and S. Winograd, The optimal recovery of smooth functions, Nu-
merische Mathematik 26, 191-200, 1976.

[19] P. Wojtaszczyk On greedy algorithm approximating Kolmogorov widths in Banach spaces, J.
Math. Anal. Appl. 424, 685-695, 2015.

Peter Binev
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
binev@math.sc.edu

Albert Cohen
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