

Edinburgh Research Explorer

Randomized Iterative Methods for Linear Systems

Citation for published version:
Gower, R & Richtarik, P 2015, 'Randomized Iterative Methods for Linear Systems', SIAM Journal on Matrix
Analysis and Applications, vol. 36, no. 4, pp. 1660–1690. https://doi.org/10.1137/15M1025487

Digital Object Identifier (DOI):
10.1137/15M1025487

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIAM Journal on Matrix Analysis and Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1137/15M1025487
https://doi.org/10.1137/15M1025487
https://www.research.ed.ac.uk/en/publications/5c673b9e-8cf3-482c-8602-da8abcb903dd

RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS

ROBERT M. GOWER † PETER RICHTÁRIK ‡

Abstract. We develop a novel, fundamental and surprisingly simple randomized iterative method
for solving consistent linear systems. Our method has six different but equivalent interpretations:
sketch-and-project, constrain-and-approximate, random intersect, random linear solve, random up-
date and random fixed point. By varying its two parameters—a positive definite matrix (defining
geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a com-
prehensive array of well known algorithms as special cases, including the randomized Kaczmarz
method, randomized Newton method, randomized coordinate descent method and random Gaussian
pursuit. We naturally also obtain variants of all these methods using blocks and importance sam-
pling. However, our method allows for a much wider selection of these two parameters, which leads
to a number of new specific methods. We prove exponential convergence of the expected norm of the
error in a single theorem, from which existing complexity results for known variants can be obtained.
However, we also give an exact formula for the evolution of the expected iterates, which allows us to
give lower bounds on the convergence rate.

Key words. linear systems, stochastic methods, iterative methods, randomized Kaczmarz,
randomized Newton, randomized coordinate descent, random pursuit, randomized fixed point.

AMS subject classifications. 15A06, 15B52, 65F10, 68W20, 65N75, 65Y20, 68Q25, 68W40,
90C20

1. Introduction. The need to solve linear systems of equations is ubiquitous
in essentially all quantitative areas of human endeavour, including industry and sci-
ence. Linear systems are a central problem in numerical linear algebra, and play an
important role in computer science, mathematical computing, optimization, signal
processing, engineering, numerical analysis, computer vision, machine learning, and
many other fields.

For instance, in the field of large scale optimization, there is a growing interest in
inexact and approximate Newton-type methods for [7, 11, 1, 40, 39, 13], which can
benefit from fast subroutines for calculating approximate solutions of linear systems.
In machine learning, applications arise for the problem of finding optimal configura-
tions in Gaussian Markov Random Fields [32], in graph-based semi-supervised learning
and other graph-Laplacian problems [2], least-squares SVMs, Gaussian processes and
more.

In a large scale setting, direct methods are generally not competitive when com-
pared to iterative approaches. While classical iterative methods are deterministic,
recent breakthroughs suggest that randomization can play a powerful role in the de-
sign and analysis of efficient algorithms [38, 19, 22, 9, 41, 18, 21, 29] which are in
many situations competitive or better than existing deterministic methods.

1.1. Contributions. Given a real matrix A ∈ Rm×n and a real vector b ∈ Rm,
in this paper we consider the linear system

(1.1) Ax = b.

We shall assume throughout that the system is consistent: there exists x∗ for which
Ax∗ = b.

†School of Mathematics, The Maxwell Institute for Mathematical Sciences, University of
Edinburgh,(e-mail: gowerrobert@gmail.com)
‡School of Mathematics, The Maxwell Institute for Mathematical Sciences, University of Edin-

burgh, United Kingdom (e-mail: peter.richtarik@ed.ac.uk)

1

ar
X

iv
:1

50
6.

03
29

6v
4

 [
m

at
h.

N
A

]
 1

4
Se

p
20

15

2

We now comment on the main contribution of this work:
1. New method. We develop a novel, fundamental, and surprisingly simple

randomized iterative method for solving (1.1).
2. Six equivalent formulations. Our method allows for several seemingly

different but nevertheless equivalent formulations. First, it can be seen as a sketch-
and-project method, in which the system (1.1) is replaced by its random sketch, and
then the current iterate is projected onto the solution space of the sketched system.
We can also view it as a constrain-and-approximate method, where we constrain the
next iterate to live in a particular random affine space passing through the current
iterate, and then pick the point from this subspace which best approximates the op-
timal solution. Third, the method can be seen as an iterative solution of a sequence
of random (and simpler) linear equations. The method also allows for a simple geo-
metrical interpretation: the new iterate is defined as the unique intersection of two
random affine spaces which are orthogonal complements. The fifth viewpoint gives a
closed form formula for the random update which needs to be applied to the current
iterate in order to arrive at the new one. Finally, the method can be seen as a random
fixed point iteration.

3. Special cases. These multiple viewpoints enrich our interpretation of the
method, and enable us to draw previously unknown links between several existing
algorithms. Our algorithm has two parameters, an n × n positive definite matrix B
defining geometry of the space, and a random matrix S. Through combinations of
these two parameters, in special cases our method recovers several well known algo-
rithms. For instance, we recover the randomized Kaczmarz method of Strohmer and
Vershyinin [38], randomized coordinate descent method of Leventhal and Lewis [19],
random pursuit [25, 37, 36, 35] (with exact line search), and the stochastic Newton
method recently proposed by Qu et al [29]. However, our method is more general, and
leads to i) various generalizations and improvements of the aforementioned methods
(e.g., block setup, importance sampling), and ii) completely new methods. Random-
ness enters our framework in a very general form, which allows us to obtain a Gaussian
Kaczmarz method, Gaussian descent, and more.

4. Complexity: general results. When A has full column rank, our framework
allows us to determine the complexity of these methods using a single analysis. Our
main results are summarized in Table 1, where {xk} are the iterates of our method,
Z is a random matrix dependent on the data matrix A, parameter matrix B and
random parameter matrix S, defined as

(1.2) Z
def
= ATS(STAB−1ATS)†STA,

where † denotes the (Moore-Penrose) pseudoinverse1. Moreover, ‖x‖B def
=
√
〈x, x〉B ,

where 〈x, y〉B
def
= xTBy, for all x, y ∈ Rn. It can be deduced from the properties of

the pseudoinverse that Z is necessarily symmetric and positive semidefinite2.
As we shall see later, we will often consider setting B = I, B = A (if A is positive

definite) or B = ATA (if A is of full column rank). In particular, we first show that
the convergence rate ρ is always bounded between zero and one. We also show that
as soon as E [Z] is invertible (which can only happen if A has full column rank, which

1Every (not necessarily square) real matrix M has a real pseudoinverse. In particular, in this
paper we will use the following properties of the pseudoinverse: MM†M = M , M†MM† = M ,
(MTM)†MT = M†, (MT)† = (M†)T and (MMT)† = (M†)TM†.

2 Indeed, it suffices to use the identity (MMT)† = (M†)TM† with M = STAB−1/2.

3

E
[
xk+1 − x∗

]
=
(
I −B−1E [Z]

)
E
[
xk − x∗

]
Theorem 4.1

‖E
[
xk+1 − x∗

]
‖2B ≤ ρ2 · ‖E

[
xk − x∗

]
‖2B Theorem 4.4

E
[
‖xk+1 − x∗‖2B

]
≤ ρ · E

[
‖xk − x∗‖2B

]
Theorem 4.6

Table 1: Our main complexity results. The convergence rate is: ρ = 1 −
λmin(B−1/2E [Z]B−1/2).

then implies that x∗ is unique), we have ρ < 1, and the method converges. Besides
establishing a bound involving the expected norm of the error (see the last line of
Table 1), we also obtain bounds involving the norm of the expected error (second line
of Table 1). Studying the expected sequence of iterates directly is very fruitful, as
it allows us to establish an exact characterization of the evolution of the expected
iterates (see the first line of Table 1) through a linear fixed point iteration.

Both of these theorems on the convergence of the error can be recast as iteration
complexity bounds. For instance, using standard arguments, from Theorem 4.4 in
Table 1 we observe that for a given ε > 0 we have that

(1.3) k ≥ 1

1− ρ log

(
1

ε

)
⇒ ‖E

[
xk − x∗

]
‖B ≤ ε‖x0 − x∗‖B .

5. Complexity: special cases. Besides these generic results, which hold
without any major restriction on the sampling matrix S (in particular, it can be either
discrete or continuous), we give a specialized result applicable to discrete sampling
matrices S (see Theorem 5.2). In the special cases for which rates are known, our
analysis recovers the existing rates.

6. Extensions. Our approach opens up many avenues for further development
and research. For instance, it is possible to extend the results to the case when A is
not necessarily of full column rank. Furthermore, as our results hold for a wide range
of distributions, new and efficient variants of the general method can be designed for
problems of specific structure by fine-tuning the stochasticity to the structure. Similar
ideas can be applied to design randomized iterative algorithms for finding the inverse
of a very large matrix.

1.2. Background and Related Work. The literature on solving linear systems
via iterative methods is vast and has long history [17, 33]. For instance, the Kaczmarz
method, in which one cycles through the rows of the system and each iteration is
formed by projecting the current point to the hyperplane formed by the active row,
dates back to the 30’s [16]. The Kaczmarz method is just one example of an array
of row-action methods for linear systems (and also, more generally, feasibility and
optimization problems) which were studied in the second half of the 20th century [4].

Research into the Kaczmarz method was in 2009 reignited by Strohmer and Ver-
shynin [38], who gave a brief and elegant proof that a randomized thereof enjoys an
exponential error decay (also know as “linear convergence”). This has triggered much
research into developing and analyzing randomized linear solvers.

It should be mentioned at this point that the randomized Kaczmarz (RK) method
arises as a special case (when one considers quadratic objective functions) of the

4

stochastic gradient descent (SGD) method for convex optimization which can be traced
back to the seminal work of Robbins and Monro’s on stochastic approximation [31].
Subsequently, intensive research went into studying various extensions of the SGD
method. However, to the best of our knowledge, no complexity results with exponen-
tial error decay were established prior to the aforementioned work of Strohmer and
Vershynin [38]. This is the reason behind our choice of [38] as the starting point of
our discussion.

Motivated by the results of Strohmer and Vershynin [38], Leventhal and Lewis [19]
utilize similar techniques to establish the first bounds for randomized coordinate de-
scent methods for solving systems with positive definite matrices, and systems aris-
ing from least squares problems [19]. These bounds are similar to those for the RK
method. This development was later picked up by the optimization and machine
learning communities, and much progress has been made in generalizing these early
results in countless ways to various structured convex optimization problems. For a
brief up to date account of the development in this area, we refer the reader to [12,
28] and the references therein.

The RK method and its analysis have been further extended to the least-squares
problem [22, 41] and the block setting [23, 24]. In [21] the authors extend the ran-
domized coordinate descent and the RK methods to the problem of solving under-
determined systems. The authors of [21, 30] analyze side-by-side the randomized
coordinate descent and RK method, for least-squares, using a convenient notation in
order to point out their similarities. Our work takes the next step, by analyzing these,
and many other methods, through a genuinely single analysis. Also in the spirit of
unifying the analysis of different methods, in [26] the authors provide a unified analysis
of iterative Schwarz methods and Kaczmarz methods.

The use of random Gaussian directions as search directions in zero-order (derivative-
free) minimization algorithm was recently suggested [25]. More recently, Gaussian
directions have been combined with exact and inexact line-search into a single ran-
dom pursuit framework [35], and further utilized within a randomized variable metric
method [36, 37].

2. One Algorithm in Six Disguises. Our method has two parameters: i) an
n× n positive definite matrix B which is used to define the B-inner product and the
induced B-norm by

(2.1) 〈x, y〉B def
= 〈Bx, y〉, ‖x‖B def

=
√
〈x, x〉B ,

where 〈·, ·〉 is the standard Euclidean inner product, and ii) a random matrix S ∈
Rm×q, to be drawn in an i.i.d. fashion at each iteration. We stress that we do not
restrict the number of columns of S; indeed, we even allow q to vary (and hence, q is
a random variable).

2.1. Six Viewpoints. Starting from xk ∈ Rn, our method draws a random
matrix S and uses it to generate a new point xk+1 ∈ Rn. This iteration can be
formulated in six seemingly different but equivalent ways:

1. Sketching Viewpoint: Sketch-and-Project. xk+1 is the nearest point to xk

which solves a sketched version of the original linear system:

(2.2) xk+1 = arg min
x∈Rn

‖x− xk‖2B subject to STAx = ST b

This viewpoint arises very naturally. Indeed, since the original system (1.1) is assumed
to be complicated, we replace it by a simpler system—a random sketch of the original

5

system (1.1)—whose solution set {x | STAx = ST b} contains all solutions of the
original system. However, this system will typically have many solutions, so in order
to define a method, we need a way to select one of them. The idea is to try to
preserve as much of the information learned so far as possible, as condensed in the
current point xk. Hence, we pick the solution which is closest to xk.

2. Optimization Viewpoint: Constrain-and-Approximate. xk+1 is the best ap-
proximation of x∗ in a random space passing through xk:

(2.3) xk+1 = arg min
x∈Rn

‖x − x∗‖2B subject to x = xk +B−1ATSy, y is free

The above step has the following interpretation3. We choose a random affine space
containing xk, and constrain our method to choose the next iterate from this space.
We then do as well as we can on this space; that is, we pick xk+1 as the point which
best approximates x∗. Note that xk+1 does not depend on which solution x∗ is used in
(2.3) (this can be best seen by considering the geometric viewpoint, discussed next).

3. Geometric viewpoint: Random Intersect. xk+1 is the (unique) intersection of
two affine spaces:

(2.4) {xk+1} =
(
x∗ + Null

(
STA

)) ⋂ (
xk + Range

(
B−1ATS

))

First, note that the first affine space above does not depend on the choice of x∗ from
the set of optimal solutions of (1.1). A basic result of linear algebra says that the
nullspace of an arbitrary matrix is the orthogonal complement of the range space of
its transpose. Hence, whenever we have h ∈ Null

(
STA

)
and y ∈ Rq, where q is the

number of rows of S, then 〈h,ATSy〉 = 0. It follows that the two spaces in (2.4)
are orthogonal complements with respect to the B-inner product and as such, they
intersect at a unique point (see Figure 2.1).

4. Algebraic viewpoint: Random Linear Solve. Note that xk+1 is the (unique)
solution (in x) of a linear system (with variables x and y):

(2.5) xk+1 = solution of STAx = ST b, x = xk +B−1ATSy

This system is clearly equivalent to (2.4), and can alternatively be written as:

(2.6)

(
STA 0
B −ATS

)(
x
y

)
=

(
ST b
Bxk

)
.

Hence, our method reduces the solution of the (complicated) linear system (1.1) into
a sequence of (hopefully simpler) random systems of the form (2.6).

3Formulation (2.3) is similar to the framework often used to describe Krylov methods [20, Chapter
1], which is

xk+1 def
= arg min

x∈Rn
‖x− x∗‖2B subject to x ∈ x0 +Kk+1,

where Kk+1 ⊂ Rn is a (k + 1)–dimensional subspace. Note that the constraint x ∈ x0 +Kk+1 is an
affine space that contains x0, as opposed to xk in our formulation (2.3). The objective ‖x−x∗‖2B is a

generalization of the residual, where B = ATA is used to characterize minimal residual methods [27,
34] and B = A is used to describe the Conjugate Gradients method [15]. Progress from iteration to
the next is guaranteed by using expanding nested search spaces at each iteration, that is, Kk ⊂ Kk+1.
In our setting, progress is enforced by using xk as the displacement term instead of x0. This also
allows for a simple recurrence for updating xk to arrive at xk+1, which facilitates the analyses of
the method. In the Krylov setting, to arrive at an explicit recurrence, one needs to carefully select
a basis for the nested spaces that allows for short recurrence.

6

·
x∗

x∗ +Null
(
STA

)

·xk+1

·xk

xk +Range
(
B−1ATS

)

Fig. 2.1: The geometry of our algorithm. The next iterate, xk+1, arises as the intersection of two
random affine spaces: xk + Range

(
B−1ATS

)
and x∗ + Null

(
STA

)
(see (2.4)). The spaces are

orthogonal complements of each other with respect to the B-inner product, and hence xk+1 can
equivalently be written as the projection, in the B-norm, of xk onto x∗ + Null

(
STA

)
(see (2.2)),

or the projection of x∗ onto xk + Range
(
B−1ATS

)
(see (2.3)). The intersection xk+1 can also be

expressed as the solution of a system of linear equations (see (2.5)). Finally, the new error xk+1−x∗
is the projection, with respect to the B-inner product, of the current error xk−x∗ onto Null

(
STA

)
.

This gives rise to a random fixed point formulation (see (2.8)).

5. Algebraic viewpoint: Random Update. By plugging the second equation in (2.5)
into the first, we eliminate x and obtain the system (STAB−1ATS)y = ST (b−Axk).
Note that for all solutions y of this system we must have xk+1 = xk + B−1ATSy.
In particular, we can choose the solution y = yk of minimal Euclidean norm, which
is given by yk = (STAB−1ATS)†ST (b − Axk), where † denotes the Moore-Penrose
pseudoinverse. This leads to an expression for xk+1 with an explicit form of the
random update which must be applied to xk in order to obtain xk+1:

(2.7) xk+1 = xk −B−1ATS(STAB−1ATS)†ST (Axk − b)

In some sense, this form is the standard: it is customary for iterative techniques to
be written in the form xk+1 = xk + dk, which is precisely what (2.7) does.

6. Analytic viewpoint: Random Fixed Point. Note that iteration (2.7) can be
written as

(2.8) xk+1 − x∗ = (I −B−1Z)(xk − x∗)

where Z is defined in (1.2) and where we used the fact that Ax∗ = b. Matrix Z plays a
central role in our analysis, and can be used to construct explicit projection matrices
of the two projections depicted in Figure 2.1.

The equivalence between these six viewpoints is formally captured in the next
statement.

Theorem 2.1 (Equivalence). The six viewpoints are equivalent: they all produce
the same (unique) point xk+1.

Proof. The proof is simple, and follows directly from the above discussion. In
particular, see the caption of Figure 2.1.

7

2.2. Projection Matrices. In this section we state a few key properties of
matrix Z. This will shed light on the previous discussion and will also be useful later
in the convergence proofs.

Recall that S is a m× q random matrix (with q possibly being random), and that
A is an m× n matrix. Let us define the random quantity

(2.9) d
def
= Rank

(
STA

)

and notice that d ≤ min{q, n},

(2.10) dim
(
Range

(
B−1ATS

))
= d, and dim

(
Null

(
STA

))
= n− d.

Lemma 2.2. With respect to the geometry induced by the B-inner product, we
have that

(i) B−1Z projects orthogonally onto the d–dimensional subspace Range
(
B−1ATS

)

(ii) (I−B−1Z) projects orthogonally onto (n−d)–dimensional subspace Null
(
STA

)
.

Proof. For any matrix M , the pseudoinverse satisfies the identity M†MM† = M†.
Using this with M = STAB−1ATS, we get

(B−1Z)2 (1.2)
= B−1ATS(STAB−1ATS)†STAB−1ATS(STAB−1ATS)†STA

= B−1ATS(STAB−1ATS)†STA
(1.2)
= B−1Z,(2.11)

and thus both B−1Z and I−B−1Z are projection matrices. In order to establish that
B−1Z is an orthogonal projection with respect to the B-inner product (from which
it follows that I −B−1Z is), we will show that

B−1Z(B−1ATS) = B−1ATS, and B−1Zy = 0, ∀y ∈ Null
(
STA

)
.

The second relation is trivially satisfied. In order to establish the first relation, it is
enough to use two further properties of the pseudoinverse: (MTM)†MT = M† and
MM†M = M , both with M = B−1/2ATS. Indeed,

B−1Z(B−1ATS)
(1.2)
= B−1/2M(MTM)†MTM

= B−1/2MM†M

= B−1/2M = B−1ATS.

This lemma sheds additional light on Figure 2.1 as it gives explicit expressions
for the associated projection matrices. The result also implies that I − B−1Z is a
contraction with respect to the B-norm, which means that the random fixed point
iteration (2.8) has only very little room not to work. While I −B−1Z is not a strict
contraction, under some reasonably weak assumptions on S it will be a strict contrac-
tion in expectation, which ensures convergence. We shall state these assumptions and
develop the associated convergence theory for our method in Section 4 and Section 5.

3. Special Cases: Examples. In this section we briefly mention how by select-
ing the parameters S and B of our method we recover several existing methods. The
list is by no means comprehensive and merely serves the purpose of an illustration of
the flexibility of our algorithm. All the associated complexity results we present in
this section, can be recovered from Theorem 5.2, presented later in Section 5.

8

3.1. The One Step Method. When S is an m × m invertible matrix with
probability one, then the system STAx = ST b is equivalent to solving Ax = b, thus
the solution to (2.2) must be xk+1 = x∗, independently of matrix B. Our convergence
theorems also predict this one step behaviour, since ρ = 0 (see Table 1).

3.2. Random Vector Sketch. When S = s ∈ Rm is restricted to being a
random column vector, then from (2.7) a step of our method is given by

(3.1) xk+1 = xk − sT (Axk − b)
sTAB−1AT s

B−1AT s,

if AT s 6= 0 and xk+1 = xk otherwise. This is because the pseudo inverse of a scalar
α ∈ R is given by

α† =

{
1/α if α 6= 0

0 if α = 0.

Next we describe several well known specializations of the random vector sketch and
for brevity, we write the updates in the form of (3.1) and leave implicit that when
the denominator is zero, no step is taken.

3.3. Randomized Kaczmarz. If we choose S = ei (unit coordinate vector in
Rm) and B = I (the identity matrix), in view of (2.2) we obtain the method:

(3.2) xk+1 = arg min
x∈Rn

‖x− xk‖22 subject to Ai:x = bi.

Using (2.7), these iterations can be calculated with

(3.3) xk+1 = xk − Ai:x
k − bi

‖Ai:‖22
(Ai:)

T

Complexity. When i is selected at random, this is the randomized Kaczmarz
(RK) method [38]. A specific non-uniform probability distribution for S can yield
simple and easily interpretable (but not necessarily optimal) complexity bound. In
particular, by selecting i with probability proportional to the magnitude of row i of A,
that is pi = ‖Ai:‖22/‖A‖2F , it follows from Theorem 5.2 that RK enjoys the following
complexity bound:

(3.4) E
[
‖xk − x∗‖22

]
≤
(

1− λmin

(
ATA

)

‖A‖2F

)k
‖x0 − x∗‖22.

This result was first established by Strohmer and Vershynin [38]. We also provide
new convergence results in Theorem 4.4, based on the convergence of the norm of the
expected error. Theorem 4.4 applied to the RK method gives

(3.5) ‖E
[
xk − x∗

]
‖22 ≤

(
1− λmin

(
ATA

)

‖A‖2F

)2k

‖x0 − x∗‖22.

Now the convergence rate appears squared, which is a better rate, though, the expec-
tation has moved inside the norm, which is a weaker form of convergence.

Analogous results for the convergence of the norm of the expected error holds for
all the methods we present, though we only illustrate this with the RK method.

9

Re-interpretation as SGD with exact line search. Using the Constrain-and-Approximate
formulation (2.3), the randomized Kaczmarz method can also be written as

xk+1 = arg min
x∈Rn

‖x− x∗‖22 subject to x = xk + y(Ai:)
T , y ∈ R,

with probability pi. Writing the least squares function f(x) = 1
2‖Ax− b‖22 as

f(x) =

m∑

i=1

pifi(x), fi(x) =
1

2pi
(Ai:x− bi)2,

we see that the random vector ∇fi(x) = 1
pi

(Ai:x− bi)(Ai:)T is an unbiased estimator

of the gradient of f at x. That is, E [∇fi(x)] = ∇f(x). Notice that RK takes
a step in the direction −∇fi(x). This is true even when Ai:x − bi = 0, in which
case, the RK does not take any step. Hence, RK takes a step in the direction of
the negative stochastic gradient. This means that it is equivalent to the Stochastic
Gradient Descent (SGD) method. However, the stepsize choice is very special: RK
chooses the stepsize which leads to the point which is closest to x∗ in the Euclidean
norm.

3.4. Randomized Coordinate Descent: positive definite case. If A is
positive definite, then we can choose B = A and S = ei in (2.2), which results in

(3.6) xk+1 def
= arg min

x∈Rn
‖x− xk‖2A subject to (Ai:)

Tx = bi,

where we used the symmetry of A to get (ei)TA = Ai: = (A:i)
T . The solution to the

above, given by (2.7), is

(3.7) xk+1 = xk − (Ai:)
Txk − bi
Aii

ei

Complexity. When i is chosen randomly, this is the Randomized CD method
(CD-pd). Applying Theorem 5.2, we see the probability distribution pi = Aii/Tr (A)
results in a convergence with

(3.8) E
[
‖xk − x∗‖2A

]
≤
(

1− λmin (A)

Tr (A)

)k
‖x0 − x∗‖2A.

This result was first established by Leventhal and Lewis [19].
Interpretation. Using the Constrain-and-Approximate formulation (2.3), this method

can be interpreted as

(3.9) xk+1 = arg min ‖x− x∗‖2A subject to x = xk + yei, y ∈ R,

with probability pi. It is easy to check that the function f(x) = 1
2x

TAx−bTx satisfies:
‖x− x∗‖2A = 2f(x) + bTx∗. Therefore, (3.9) is equivalent to

(3.10) xk+1 = arg min f(x) subject to x = xk + yei, y ∈ R.

The iterates (3.7) can also be written as

xk+1 = xk − 1

Li
∇if(xk)ei,

where Li = Aii is the Lipschitz constant of the gradient of f corresponding to coor-
dinate i and ∇if(xk) is the ith partial derivative of f at xk.

10

3.5. Randomized Block Kaczmarz. Our framework also extends to new
block formulations of the randomized Kaczmarz method. Let R be a random subset
of [m] and let S = I:R be a column concatenation of the columns of the m×m identity
matrix I indexed by R. Further, let B = I. Then (2.2) specializes to

xk+1 = arg min
x∈Rn

‖x− xk‖22 subject to AR:x = bR.

In view of (2.7), this can be equivalently written as

(3.11) xk+1 = xk − (AR:)
T (AR:(AR:)

T)†(AR:x
k − bR)

Complexity. From Theorem 4.6 we obtain the following new complexity result:

E
[
‖xk − x∗‖22

]
≤
(
1− λmin

(
E
[
(AR:)

T (AR:(AR:)
T)†AR:

]))k ‖x0 − x∗‖22.

To obtain a more meaningful convergence rate, we would need to bound the
smallest eigenvalue of E

[
(AR:)

T (AR:(AR:)
T)†AR:

]
. This has been done in [23, 24]

when the image of R defines a row paving of A. Our framework paves the way for
analysing the convergence of new block methods for a large set of possible random
subsets R, including, for example, overlapping partitions.

3.6. Randomized Newton: positive definite case. If A is symmetric posi-
tive definite, then we can choose B = A and S = I:C , a column concatenation of the
columns of I indexed by C, which is a random subset of [n]. In view of (2.2), this
results in

(3.12) xk+1 def
= arg min

x∈Rn
‖x− xk‖2A subject to (A:C)Tx = bC .

In view of (2.7), we can equivalently write the method as

(3.13) xk+1 = xk − I:C((I:C)TAI:C)−1(I:C)T (Axk − b)

Complexity. Clearly, iteration (3.13) is well defined as long as C is nonempty with
probability 1. Such C is in [29] referred to by the name “non-vacuous” sampling. From
Theorem 4.6 we obtain the following convergence rate:

E
[
‖xk − x∗‖2A

]
≤ ρk‖x0 − x∗‖2A
=
(
1− λmin

(
E
[
I:C((I:C)TAI:C)−1(I:C)TA

]))k ‖x0 − x∗‖2A.(3.14)

The convergence rate of this particular method was first established and studied
in [29]. Moreover, it was shown in [29] that ρ < 1 if one additionally assumes that the
probability that i ∈ C is positive for each column i ∈ [n], i.e., that C is a “proper”
sampling.

Interpretation. Using formulation (2.3), and in view of the equivalence between
f(x) and ‖x−x∗‖2A discussed in Section 3.4, the Randomized Newton method can be
equivalently written as

xk+1 = arg min
x∈Rn

f(x) subject to x = xk + I:C y, y ∈ R|C|.

11

The next iterate is determined by advancing from the previous iterate over a subset
of coordinates such that f is minimized. Hence, an exact line search is performed in
a random |C| dimensional subspace.

Method (3.13) was fist studied by Qu et al [29], and referred therein as “Method 1”,
or Randomized Newton Method. The name comes from the observation that the
method inverts random principal submatrices of A and that in the special case when
C = [n] with probability 1, it specializes to the Newton method (which in this case
converges in a single step). The expression ρ defining the convergence rate of this
method is rather involved and it is not immediately obvious what is gained by per-
forming a search in a higher dimensional subspace (C > 1) rather than in the one-
dimensional subspaces (C = 1), as is standard in the optimization literature. Let
us write ρ = 1 − στ in the case when the C is chosen to be a subset of [n] of size
τ , uniformly at random. In view of (1.3), the method takes Õ(1/στ) iterations to
converge, where the tilde notation suppresses logarithmic terms. It was shown in [29]
that 1/στ ≤ 1/(τσ1). That is, one can expect to obtain at least superlinear speedup in
τ — this is what is gained by moving to blocks / higher dimensional subspaces. For
further details and additional properties of the method we refer the reader to [29].

3.7. Randomized Coordinate Descent: least-squares version. By choos-
ing S = Aei =: A:i as the ith column of A and B = ATA, the resulting iterates (2.3)
are given by

(3.15) xk+1 = arg min
x∈Rn

‖Ax− b‖22 subject to x = xk + y ei, y ∈ R.

When i is selected at random, this is the Randomized Coordinate Descent method
(CD-LS) applied to the least-squares problem: minx ‖Ax − b‖22. Using (2.7), these
iterations can be calculated with

(3.16) xk+1 = xk − (A:i)
T (Axk − b)
‖A:i‖22

ei

Complexity. Applying Theorem 5.2, we see that by selecting i with probability
proportional to magnitude of column i of A, that is pi = ‖A:i‖22/‖A‖2F , results in a
convergence with

(3.17) E
[
‖xk − x∗‖2ATA

]
≤ ρk‖x0 − x∗‖2ATA =

(
1− λmin

(
ATA

)

‖A‖2F

)k
‖x0 − x∗‖2ATA.

This result was first established by Leventhal and Lewis [19].
Interpretation. Using the Constrain-and-Approximate formulation (2.3), the CD-

LS method can be interpreted as

(3.18) xk+1 = arg min
x∈Rn

‖x− x∗‖2ATA subject to x = xk + yei, y ∈ R.

The CD-LS method selects a coordinate to advance from the previous iterate xk, then
performs an exact minimization of the least squares function over this line. This is

equivalent to applying coordinate descent to the least squares problem minx∈Rn f(x)
def
=

1
2‖Ax− b‖22. The iterates (3.15) can be written as

xk+1 = xk − 1

Li
∇if(xk)ei,

where Li
def
= ‖A:i‖22 is the Lipschitz constant of the gradient corresponding to coordi-

nate i and ∇if(xk) is the ith partial derivative of f at xk.

12

4. Convergence: General Theory. We shall present two complexity theo-
rems: we first study the convergence of ‖E

[
xk − x∗

]
‖ , and then move on to analysing

the convergence of E
[
‖xk − x∗‖

]
.

4.1. Two types of convergence. The following lemma explains the relation-
ship between the convergence of the norm of the expected error and the expected
norm of the error.

Lemma 4.1. Let x ∈ Rn be a random vector, ‖ · ‖ a norm induced by an inner
product and fix x∗ ∈ Rn. Then

∥∥E [x− x∗]
∥∥2

= E
[
‖x− x∗‖2

]
−E

[
‖x−E [x]‖2

]
.

Proof. Note that E
[
‖x−E [x] ‖2

]
= E

[
‖x‖2

]
−‖E [x] ‖2. Adding and subtracting

‖x∗‖2−2 〈E [x] , x∗〉 from the right hand side and grouping the appropriate terms yields
the desired result.

To interpret this lemma, note that E
[
‖x−E [x]‖2

]
=
∑n
i=1 E

[
(xi −E [xi])

2
]

=
∑n
i=1 Var(xi), where xi denotes the ith element of x. This lemma shows that the

convergence of x to x∗ under the expected norm of the error is a stronger form of
convergence than the convergence of the norm of the expected error, as the former
also guarantees that the variance of xi converges to zero, for i = 1, . . . , n.

4.2. The Rate of Convergence. All of our convergence theorems (see Table 1)
depend on the convergence rate

(4.1) ρ
def
= 1− λmin(B−1E [Z]) = 1− λmin(B−1/2E [Z]B−1/2).

To show that the rate is meaningful, in Lemma 4.2 we prove that 0 ≤ ρ ≤ 1. We also
provide a meaningful lower bound for ρ.

Lemma 4.2. The quantity ρ defined in (4.1) satisfies:

(4.2) 0 ≤ 1− E [d]

n
≤ ρ ≤ 1,

where d = Rank
(
STA

)
.

Proof. Since the mapping A 7→ λmax(A) is convex on the set of symmetric matri-
ces, by Jensen’s inequality we get

(4.3) λmax(E
[
B−1Z

]
) = λmax(B−1/2E [Z]B−1/2) ≤ E

[
λmax(B−1/2ZB−1/2)

]
.

Recalling from Lemma 2.2 that B−1Z is a projection, we get

B−1/2ZB−1/2(B−1/2ZB−1/2) = B−1/2ZB−1/2,

whence the spectrum ofB−1/2ZB−1/2 is contained in {0, 1}. Thus, λmax(B−1/2ZB−1/2) ≤ 1,
and from (4.3) we conclude that λmax(B−1E [Z]) ≤ 1. The inequality λmin(B−1E [Z]) ≥ 0
can be shown analogously using convexity of the mapping A 7→ −λmin(A). Thus

λmin(B−1E [Z]) = λmin(B−1/2E [Z]B−1/2) ∈ [0, 1]

and consequentially 0 ≤ ρ ≤ 1. As the trace of a matrix is equal to the sum of its
eigenvalues, we have

(4.4) E
[
Tr
(
B−1Z

)]
= Tr

(
E
[
B−1Z

])
≥ nλmin(E

[
B−1Z

]
).

13

As B−1Z projects onto a d–dimensional subspace (Lemma 2.2) we have Tr
(
B−1Z

)
=

d. Thus rewriting (4.4) gives 1−E [d] /n ≤ ρ.
The lower bound on ρ in item 1 has a natural interpretation which makes intuitive

sense. We shall present it from the perspective of the Constrain-and-Approximate
formulation (2.3). As the dimension (d) of the search space B−1ATS increases (see
(2.10)), the lower bound on ρ decreases, and a faster convergence is possible. For
instance, when S is restricted to being a random column vector, as it is in the RK (3.3),
CD-LS (3.16) and CD-pd (3.8) methods, the convergence rate is bounded with 1 −
1/n ≤ ρ. Using (1.3), this translates into the simple iteration complexity bound of
k ≥ n log(1/ε). On the other extreme, when the search space is large, then the lower
bound is close to zero, allowing room for the method to be faster.

We now characterize circumstances under which ρ is strictly smaller than one.

Lemma 4.3. If E [Z] is invertible, then ρ < 1, A has full column rank and x∗ is
unique.

Proof. Assume that E [Z] is invertible. First, this means that B−1/2E [Z]B−1/2

is positive definite, which in view of (4.1) means that ρ < 1. If A did not have full
column rank, then there would be 0 6= x ∈ Rn such that Ax = 0. However, we
then have Zx = 0 and also E [Z]x = 0, contradicting the assumption that E [Z] is
invertible. Finally, since A has full column rank, x∗ must be unique (recall that we
assume throughout the paper that the system Ax = b is consistent).

4.3. Exact Characterization and Norm of Expectation. We now state a
theorem which exactly characterizes the evolution of the expected iterates through
a linear fixed point iteration. As a consequence, we obtain a convergence result for
the norm of the expected error. While we do not highlight this in the text, this
theorem can be applied to all the particular instances of our general method we detail
throughout this paper.

For any M ∈ Rn×n let us define

(4.5) ‖M‖B def
= max
‖x‖B=1

‖Mx‖B .

Theorem 4.4 (Norm of expectation). For every x∗ ∈ Rn satisfying Ax = b we
have

(4.6) E
[
xk+1 − x∗

]
=
(
I −B−1E [Z]

)
E
[
xk − x∗

]
.

Moreover, the spectral radius and the induced B-norm of the iteration matrix I −
B−1E [Z] are both equal to ρ:

λmax(I −B−1E [Z]) = ‖I −B−1E [Z] ‖B = ρ.

Therefore,

(4.7) ‖E
[
xk − x∗

]
‖B ≤ ρk‖x0 − x∗‖B .

Proof. Taking expectations conditioned on xk in (2.8), we get

(4.8) E
[
xk+1 − x∗ | xk

]
= (I −B−1E [Z])(xk − x∗).

14

Taking expectation again gives

E
[
xk+1 − x∗

]
= E

[
E
[
xk+1 − x∗ | xk

]]

(4.8)
= E

[
(I −B−1E [Z])(xk − x∗)

]

= (I −B−1E [Z])E
[
xk − x∗

]
.

Applying the norms to both sides we obtain the estimate

‖E
[
xk+1 − x∗

]
‖B ≤ ‖I −B−1E [Z] ‖B ‖E

[
xk − x∗

]
‖B .

It remains to prove that ρ = ‖I − B−1E [Z] ‖B and then unroll the recurrence. Ac-
cording to the definition of operator norm (4.5), we have

‖I −B−1E [Z] ‖2B = max
‖B1/2x‖2=1

‖B1/2(I −B−1E [Z])x‖22.

Substituting B1/2x = y in the above gives

‖I −B−1E [Z] ‖2B = max
‖y‖2=1

‖B1/2(I −B−1E [Z])B−1/2y‖22

= max
‖y‖2=1

‖(I −B−1/2E [Z]B−1/2)y‖22

= λ2
max(I −B−1/2E [Z]B−1/2)

=
(

1− λmin(B−1/2E [Z]B−1/2)
)2

= ρ2,

where in the third equality we used the symmetry of (I−B−1E [Z]B−1) when passing
from the operator norm to the spectral radius. Note that the symmetry of E [Z]
derives from the symmetry of Z.

4.4. Expectation of Norm. We now turn to analysing the convergence of the
expected norm of the error, for which we need the following technical lemma.

Lemma 4.5. If E [Z] is positive definite, then

(4.9) 〈E [Z] y, y〉 ≥ (1− ρ)‖y‖2B , ∀y ∈ Rn.

Proof. As E [Z] and B are positive definite, we get

1− ρ = λmin(B−1/2E [Z]B−1/2) = max
t

{
t | B−1/2E [Z]B−1/2 − t · I � 0

}

= max
t
{t | E [Z]− t ·B � 0} .

Therefore, E [Z] � (1− ρ)B, and the result follows.
Theorem 4.6 (Expectation of norm). If E [Z] is positive definite, then

(4.10) E
[
‖xk − x∗‖2B

]
≤ ρk‖x0 − x∗‖2B ,

where ρ < 1 is given in (4.1).
Proof. Let rk = xk − x∗. Taking the expectation of (2.8) conditioned on rk we

get

E
[
‖rk+1‖2B | rk

] (2.8)
= E

[
‖(I −B−1Z)rk‖2B | rk

]

(2.11)
= E

[〈
(B − Z)rk, rk

〉
| rk
]

= ‖rk‖2B −
〈
E [Z] rk, rk

〉 (Lemma (4.5))

≤ ρ · ‖rk‖2B .

15

Taking expectation again and unrolling the recurrence gives the result.
The convergence rate ρ of the expected norm of the error is “worse” than the ρ2

rate of convergence of the norm of the expected error in Theorem 4.4. This should
not be misconstrued as Theorem 4.4 offering a “better” convergence rate than The-
orem 4.6, because, as explained in Lemma 4.1, convergence of the expected norm of
the error is a stronger type of convergence. More importantly, the exponent is not of
any crucial importance; clearly, an exponent of 2 manifests itself only in halving the
number of iterations.

5. Methods Based on Discrete Sampling. When S has a discrete distribu-
tion, we can establish under reasonable assumptions when E [Z] is positive definite
(Proposition 5.1), we can optimize the convergence rate in terms of the chosen prob-
ability distribution, and finally, determine a probability distribution for which the
convergence rate is expressed in terms of the scaled condition number (Theorem 5.2).

Assumption 5.1 (Complete Discrete Sampling). The random matrix S has a
discrete distribution. In particular, S = Si ∈ Rm×qi with probability pi > 0, where

STi A has full row rank and qi ∈ N, for i = 1, . . . , r. Furthermore S
def
= [S1, . . . , Sr] ∈

Rm×
∑r
i=1 qi is such that ATS has full row rank.

As an example of complete discrete sampling, if A has full column rank and each
row of A is not strictly zero, S = ei with probability pi = 1/n, for i = 1, . . . , n, then
S = I then S is a complete discrete sampling. In fact, from any basis of Rn we can
construct a complete discrete sampling in an analogous way.

When S is a complete discrete sampling, then STA has full row rank and (STAB−1ATS)† =
(STAB−1ATS)−1. Therefore we replace the pseudo-inverse in (2.7) and (2.8) by the
inverse. Furthermore, using a complete discrete sampling guarantees convergence of
the resulting method.

Proposition 5.1. Let S be a complete discrete sampling, then E [Z] is positive
definite.

Proof. Let

(5.1) D
def
= diag

(√
p1((S1)TAB−1ATS1)−1/2, . . . ,

√
pr((Sr)

TAB−1ATSr)
−1/2

)

which is a block diagonal matrix, and is well defined and invertible as STi A has full
row rank for i = 1, . . . , r. Taking the expectation of Z (1.2) gives

E [Z] =

r∑

i=1

ATSi(S
T
i AB

−1ATSi)
−1STi Api

= AT

(
r∑

i=1

Si
√
pi(S

T
i AB

−1ATSi)
−1/2(STi AB

−1ATSi)
−1/2√piSTi

)
A

=
(
ATSD

) (
DSTA

)
,(5.2)

which is positive definite because ATS has full row rank and D is invertible.
With E [Z] positive definite, we can apply the convergence Theorem 4.4 and 4.6, and
the resulting method converges.

5.1. Optimal Probabilities. We can choose the discrete probability distri-
bution that optimizes the convergence rate. For this, according to Theorems 4.6
and 4.4 we need to find p = (p1, . . . , pr) that maximizes the minimal eigenvalue of
B−1/2E [Z]B−1/2. Let S be a complete discrete sampling and fix the sample matrices

16

S1, . . . , Sr. Let us denote Z = Z(p) as a function of p = (p1, . . . , pr). Then we can
also think of the spectral radius as a function of p where

ρ(p) = 1− λmin(B−1/2E [Z(p)]B−1/2).

Letting

∆r
def
=

{
p = (p1, . . . , pr) ∈ Rr :

r∑

i=1

pi = 1, p ≥ 0

}
,

the problem of minimizing the spectral radius (i.e., optimizing the convergence rate)
can be written as

ρ∗
def
= min

p∈∆r

ρ(p) = 1− max
p∈∆r

λmin(B−1/2E [Z(p)]B−1/2).

This can be cast as a convex optimization problem, by first re-writing

B−1/2E [Z(p)]B−1/2 =

r∑

i=1

pi

(
B−1/2ATSi(S

T
i AB

−1ATSi)
−1STi AB

−1/2
)

=

r∑

i=1

pi
(
Vi(V

T
i Vi)

−1V Ti
)
,

where Vi = B−1/2ATSi. Thus

(5.3) ρ∗ = 1− max
p∈∆r

λmin

(
r∑

i=1

piVi(V
T
i Vi)

−1V Ti

)
.

To obtain p that maximizes the smallest eigenvalue, we solve

max
p,t

t

subject to

r∑

i=1

pi
(
Vi(V

T
i Vi)

−1V Ti
)
� t · I,(5.4)

p ∈ ∆r.

Despite (5.4) being a convex semi-definite program4, which is apparently a harder
problem than solving the original linear system, investing the time into solving (5.4)
using a solver for convex conic programming such as cvx [14] can pay off, as we show
in Section 7.4. Though for a practical method based on this, we would need to develop
an approximate solution to (5.4) which can be efficiently calculated.

5.2. Convenient Probabilities. Next we develop a choice of probability dis-
tribution that yields a convergence rate that is easy to interpret. This result is new
and covers a wide range of methods, including randomized Kaczmarz, randomized
coordinate descent, as well as their block variants. However, it is more general, and

4When preparing a revision of this paper, we have learned about the existence of prior work [6]
where the authors have also characterized the probability distribution that optimizes the convergences
rate of the RK method as the solution to an SDP.

17

covers many other possible particular algorithms, which arise by choosing a particular
set of sample matrices Si, for i = 1, . . . , r.

Theorem 5.2. Let S be a complete discrete sampling such that S = Si ∈ Rm
with probability

(5.5) pi =
Tr
(
STi AB

−1ATSi
)

‖B−1/2ATS‖2F
, for i = 1, . . . , r.

Then the iterates (2.7) satisfy

(5.6) E
[
‖xk − x∗‖2B

]
≤ ρkc ‖x0 − x∗‖2B ,

where

(5.7) ρc = 1− λmin

(
STAB−1ATS

)

‖B−1/2ATS‖2F
.

Proof. Let ti = Tr
(
STi AB

−1ATSi
)
, and with (5.5) in (5.1) we have

D2 =
1

‖B−1/2ATS‖2F
diag

(
t1(ST1 AB

−1ATS1)−1, . . . , tr(S
T
r AB

−1ATSr)
−1
)
,

thus

(5.8) λmin(D2) =
1

‖B−1/2ATS‖2F
min
i

{
ti

λmax(STi AB
−1ATSi)

}
≥ 1

‖B−1/2ATS‖2F
.

Applying the above in (5.2) gives

λmin

(
B−1/2E [Z]B−1/2

)
= λmin

(
B−1/2ATSD2STAB−1/2

)

= λmin

(
STAB−1ATSD2

)

≥ λmin

(
STAB−1ATS

)
λmin(D2)(5.9)

≥ λmin

(
STAB−1ATS

)

‖B−1/2ATS‖2F
,

where we used that if B,C ∈ Rn×n are positive definite λmin(BC) ≥ λmin(B)λmin(C).
Finally

(5.10) 1− λmin

(
B−1/2E [Z]B−1/2

)
≤ 1− λmin

(
STAB−1ATS

)

‖B−1/2ATS‖2F
.

The result (5.6) follows by applying Theorem 4.6.
The convergence rate λmin

(
STAB−1ATS

)
/‖B−1/2ATS‖2F is known as the scaled

condition number, and naturally appears in other numerical schemes, such as matrix
inversion [10, 8]. When Si = si ∈ Rn is a column vector then

pi =
(
(si)

TAB−1AT si
)
/‖B−1/2ATS‖2F ,

for i = 1, . . . r. In this case, the bound (5.8) is an equality and D2 is a scaled identity,
so (5.9) and consequently (5.10) are equalities. For block methods, it is different story,
and there is much more slack in the inequality (5.10). So much so, the convergence

18

rate (5.7) does not indicate any advantage of using a block method (contrary to
numerical experiments). To see the advantage of a block method, we need to use
the exact expression for λmin(D2) given in (5.8). Though this results in a somewhat
harder to interpret convergence rate, a matrix paving could be used explore this block
convergence rate, as was done for the block Kaczmarz method [24, 23].

By appropriately choosing B and S, this theorem applied to RK method (3.2),
the CD-LS method (3.15) and the CD-pd method (3.6), yields the convergence re-
sults (3.4), (3.17) and (3.8), respectively, for single column sampling or block methods
alike.

This theorem also suggests a preconditioning strategy, in that, a faster conver-
gence rate will be attained if S is an approximate inverse of B−1/2AT . For instance,
in the RK method where B = I, this suggests that an accelerated convergence can
be attained if S is a random sampling of the rows of a preconditioner (approximate
inverse) of A.

6. Methods Based on Gaussian Sampling. In this section we shall describe
variants of our method in the case when S is a Gaussian vector with mean 0 ∈ Rm
and a positive definite covariance matrix Σ ∈ Rm×m. That is, S = ζ ∼ N(0,Σ). This
applied to (2.7) results in iterations of the form

(6.1) xk+1 = xk − ζT (Axk − b)
ζTAB−1AT ζ

B−1AT ζ

Due to the symmetry of the multivariate normal distribution, there is a zero proba-
bility that ζ ∈ Null

(
AT
)

for any nonzero matrix A.
Unlike the discrete methods in Section 3, to calculate an iteration of (6.1) we

need to compute the product of a matrix with a dense vector ζ. This significantly
raises the cost of an iteration. Though in our numeric tests in Section 7, the faster
convergence of the Gaussian method often pays off for their high iteration cost.

To analyze the complexity of the resulting method let ξ
def
= B−1/2ATS, which is

also Gaussian, distributed as ξ ∼ N(0,Ω), where Ω
def
= B−1/2ATΣAB−1/2. In this

section we assume A has full column rank, so that Ω is always positive definite. The
complexity of the method can be established through

ρ = 1− λmin

(
E
[
B−1/2ZB−1/2

])
= 1− λmin

(
E

[
ξξT

‖ξ‖22

])
.(6.2)

We can simplify the above by using the lower bound

E

[
ξξT

‖ξ‖22

]
� 2

π

Ω

Tr (Ω)
,

which is proven in Lemma A.1 in the Appendix. Thus

(6.3) 1− 1

n
≤ ρ ≤ 1− 2

π

λmin(Ω)

Tr (Ω)
,

where we used the general lower bound in (4.2). Lemma A.1 also shows that E
[
ξξT /‖ξ‖22

]

is positive definite, thus Theorem 4.6 guarantees that the expected norm of the error
of all Gaussian methods converges exponentially to zero. This bound is tight upto

19

a constant factor. For illustration of this, in the setting with A = I = Σ we have
ξ ∼ N(0, I) and E

[
ξξT /‖ξ‖22

]
= 1

nI, which yields

1− 1

n
≤ ρ ≤ 1− 2

π
· 1

n
.

When n = 2, then in Lemma B.1 of the Appendix we prove that

E

[
ξξT

‖ξ‖22

]
=

Ω1/2

Tr
(
Ω1/2

) ,

which yields a very favourable convergence rate.

6.1. Gaussian Kaczmarz. Let B = I and choose Σ = I so that S = η ∼
N(0, I). Then (6.1) has the form

(6.4) xk+1 = xk − ηT (Axk − b)
‖AT η‖22

AT η

which we call the Gaussian Kaczmarz (GK) method, for it is the analogous method
to the Randomized Karcmarz method in the discrete setting. Using the formula-
tion (2.3), for instance, the GK method can be interpreted as

xk+1 = arg min
x∈Rn

‖x− x∗‖2 subject to x = xk +AT ηy, y ∈ R.

Thus at each iteration, a random normal Gaussian vector η is drawn and a search
direction is formed by AT η. Then, starting from the previous iterate xk, an exact line
search is performed over this search direction so that the euclidean distance from the
optimal is minimized.

6.2. Gaussian Least-Squares. Let B = ATA and choose S ∼ N(0,Σ) with
Σ = AAT . It will be convenient to write S = Aη, where η ∼ N(0, I). Then method
(6.1) then has the form

(6.5) xk+1 = xk − ηTAT (Axk − b)
‖Aη‖22

η

which we call the Gauss-LS method. This method has a natural interpretation
through formulation (2.3) as

xk+1 = arg min
x∈Rn

1

2
‖Ax− b‖22 subject to x = xk + yη, y ∈ R.

That is, starting from xk, we take a step in a random (Gaussian) direction, then
perform an exact line search over this direction that minimizes the least squares error.
Thus the Gauss-LS method is the same as applying the Random Pursuit method [36]
with exact line search to the Least-squares function.

6.3. Gaussian Positive Definite. When A is positive definite, we achieve an
accelerated Gaussian method. Let B = A and choose S = η ∼ N(0, I). Method (6.1)
then has the form

(6.6) xk+1 = xk − ηT (Axk − b)
‖η‖2A

η

20

which we call the Gauss-pd method.
Using formulation (2.3), the method can be interpreted as

xk+1 = arg min
x∈Rn

{
f(x)

def
= 1

2x
TAx− bTx

}
subject to x = xk + yη, y ∈ R.

That is, starting from xk, we take a step in a random (Gaussian) direction, then per-
form an exact line search over this direction. Thus the Gauss-pd method is equivalent
to applying the Random Pursuit method [36] with exact line search to f(x).

All the Gaussian methods can be extended to block versions. We illustrate this
by designing a Block Gauss-pd method where S ∈ Rn×q has i.i.d. Gaussian normal
entries and B = A. This results in the iterates

(6.7) xk+1 = xk − S(STAS)−1ST (Axk − b).

7. Numerical Experiments. We perform some preliminary numeric tests. Ev-
erything was coded and run in MATLAB R2014b. Let κ2 = ‖A‖‖A†‖ be the 2−norm
condition number, where A† is a pseudo-inverse of A. In comparing different methods
for solving overdetermined systems, we use the relative error measure ‖Axk−b‖2/‖b‖2,
while for positive definite systems we use ‖xk − x∗‖A/‖x∗‖A as a relative error mea-
sure. We run each method until the relative error is below 10−4 or until 300 seconds
in time is exceeded. We use x0 = 0 ∈ Rn as an initial point. In each figure we
plot the relative error in percentage on the vertical axis, starting with 100%. For the
horizontal axis, we use either wall-clock time measured using the tic-toc MATLAB
function or the total number of floating point operations (flops).

In implementing the discrete sampling methods we used the convenient probabil-
ity distributions (5.5).

All tests were performed on a Desktop with 64bit quad-core Intel(R) Core(TM)
i5-2400S CPU @2.50GHz with 6MB cache size with a Scientific Linux release 6.4
(Carbon) operating system.

Consistently across our experiments, the Gaussian methods almost always require
more flops to reach a solution with the same precision as their discrete sampling
counterparts. This is due to the expensive matrix-vector product required by the
Gaussian methods. While the results are more mixed when measured in terms of
wall clock time. This is because MATLAB performs automatic multi-threading when
calculating matrix-vector products, which was the bottleneck cost in the Gaussian
methods. As our machine has four cores, this explains some of the difference observed
when measuring performance in terms of number of flops and wall clock time.

7.1. Overdetermined linear systems. First we compare the methods Gauss-
LS, CD-LS, Gauss-Kaczmarz and RK methods on synthetic linear systems generated
with the matrix functions rand and sprandn, see Figure 7.1. The high iteration
cost of the Gaussian methods resulted in poor performance on the dense problem
generated using rand in Figure 7.1a. In Figure 7.1b we compare the methods on a
sparse linear system generated using the MATLAB sparse random matrix function
sprandn(m,n,density,rc), where density is the percentage of nonzero entries and
rc is the reciprocal of the condition number. On this sparse problem the Gaussian
methods are more efficient, and converge at a similar rate to the discrete sampling
methods.

In Figure 7.2 we test two overdetermined linear systems taken from the the Matrix
Market collection [3]. The collection also provides the right-hand side of the linear

21

time (s)
0 5 10 15

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

flops #109
0 5 10 15

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

(a) rand

time (s)
0 10 20

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

flops #109
0 5 10

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

(b) sprandn

Fig. 7.1: The performance of the Gauss-LS, CD-LS, Gauss-Kaczmarz and RK methods
on synthetic MATLAB generated problems (a) rand(n,m) with (m;n) = (1000, 500)
(b) sprandn(m,n,density,rc) with (m;n) = (1000, 500), density= 1/ log(nm) and
rc= 1/

√
mn. In both experiments dense solutions were generated with x∗ =rand(n, 1)

and b = Ax∗.

system. Both of these systems are very well conditioned, but do not have full column
rank, thus Theorem 4.6 does not apply. The four methods have a similar performance
on Figure 7.2a, while the Gauss-LS and CD-LS method converge faster on 7.2b as
compared to the Gauss-Kaczmarz and Kaczmarz methods.

Finally, we test two problems, the SUSY problem and the covtype.binary prob-
lem, from the library of support vector machine problems LIBSVM [5]. These problems
do not form consistent linear systems, thus only the Gauss-LS and CD-LS methods
are applicable, see Figure 7.3. This is equivalent to applying the Gauss-pd and CD-pd
to the least squares system ATAx = AT b, which is always consistent.

Despite the higher iteration cost of the Gaussian methods, their performance, in
terms of the wall-clock time, is comparable to performance of the discrete methods
when the system matrix is sparse.

7.2. Bound for Gaussian convergence. Now we compare the error over the
number iterations of the Gauss-LS method to theoretical rate of convergence given

22

time (s)
0 5 10

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

flops #108
0 5 10 15

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

(a) illc1033

time (s)
0 100 200 300

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

flops #1010
0 2 4 6

er
ro
r

10-2

10-1

100

101

102

Gauss LS
CD LS
Gauss Kaczmarz
Kaczmarz

(b) well1033

Fig. 7.2: The performance of the Gauss-LS, CD-LS, Gauss-Kaczmarz and RK methods
on linear systems (a) well1033 where (m;n) = (1850, 750), nnz = 8758 and κ2 = 1.8
(b) illc1033 where (m;n) = (1033; 320), nnz = 4732 and κ2 = 2.1, from the Matrix
Market [3].

by the bound (6.3). For the Gauss-LS method (6.3) becomes

1− 1

n
≤ ρ ≤ 1− 2

π
λmin

(
ATA

‖A‖2F

)
.

In Figures 7.4a and 7.4b we compare the empirical and theoretical bound on a random
Gaussian matrix and the liver-disorders problem [5]. Furthermore, we ran the
Gauss-LS method 100 times and plot as dashed lines the 95% and 5% quantiles.
These tests indicate that the bound it tight for well conditioned problems, such as
Figure 7.4a in which the system matrix has a condition number equal to 1.94. While
in Figure 7.4b the system matrix has a condition number of 41.70 and there is some
much more slack between the empirical convergence and the theoretical bound.

7.3. Positive Definite. First we compare the two methods Gauss-pd (6.6) and
CD-pd (3.7) on synthetic data in Figure 7.5. Using the MATLAB function hilbert,
we can generate positive definite matrices with very high condition number, see Fig-
ure 7.5(LEFT). Both methods converge slowly and, despite the dense system matrix,
the Gauss-pd method has a similar performance to CD-pd. In Figure (7.5)(RIGHT)

23

time (s)
0 200 400

er
ro
r

10-2

10-1

100

101

102
Gauss LS
CD LS

flops #1010
0 5 10 15

er
ro
r

10-2

10-1

100

101

102
Gauss LS
CD LS

(a) SUSY

time (s)
0 200 400

er
ro
r

100

101

102
Gauss LS
CD LS

flops #1010
0 5 10 15

er
ro
r

100

101

102
Gauss LS
CD LS

(b) covtype-libsvm-binary

Fig. 7.3: The performance of Gauss-LS and CD-LS methods on two LIBSVM
test problems: (a) SUSY: (m;n) = (5 × 106; 18) (b) covtype.binary: (m;n) =
(581, 012; 54).

we compare the two methods on a system generated by the MATLAB function
sprandsym (m, n, density, rc, type), where density is the percentage of nonzero
entries, rc is the reciprocal of the condition number and type=1 returns a positive
definite matrix. The Gauss-pd and the CD-pd method have a similar performance in
terms of wall clock time on this sparse problem.

To appraise the performance gain in using block variants, we perform tests using
two block variants: the Randomized Newton method (3.12), which we will now refer
to as the Block CD-pd method, and the Block Gauss-pd method (6.7). The size of
blocks q in both methods was set to q =

√
n. To solve the q × q system required in

the block methods, we use MATLAB’s built-in direct solver, sometimes referred to as
“back-slash”.

Next we test the Newton system ∇2f(w0)x = −∇f(w0), arising from four ridge-
regression problems of the form

(7.1) min
w∈Rn

f(w)
def
= 1

2‖Aw − b‖22 + λ
2 ‖w‖22,

using data from LIBSVM [5]. In particular, we set w0 = 0 and use λ = 1 as the
regularization parameter, whence ∇f(w0) = AT b and ∇2f(w0) = ATA+ I.

24

iterations
0 500 1000

e
r
r
o
r

10-10

105
Gauss LS
theo. Gauss LS

(a) rand(n,m)

iterations
0 500 1000 1500

e
r
r
o
r

10-4

102

Gauss LS
theo. Gauss LS

(b) liver-disorders

Fig. 7.4: A comparison between the Gauss-LS method and the theoretical bound

ρtheo
def
= 1 − λmin(ATA)/‖A‖2F on (a) rand(n,m) with (m;n) = (500, 50), κ2 = 1.94

and a dense solution generated with x∗ = rand(n, 1) (b) liver-disorders with
(m;n) = (345, 6) and κ2 = 41.70.

time (s)
0 0.1 0.2 0.3

e
r
r
o
r

10-2

10-1

100

101

102
Gauss pd
CD pd

flops #107
0 1 2

e
r
r
o
r

10-2

10-1

100

101

102
Gauss pd
CD pd

time (s)
0 20 40 60

e
r
r
o
r

10-2

10-1

100

101

102

Gauss pd
CD pd

flops #1010
0 1 2 3

e
r
r
o
r

10-2

10-1

100

101

102
Gauss pd
CD pd

Fig. 7.5: Synthetic MATLAB generated problem. The Gaussian methods are more
efficient on sparse matrices. LEFT: The Hilbert Matrix with n = 100 and condition
number ‖A‖‖A−1‖ = 6.5953× 1019. RIGHT: Sparse random matrix A = sprandsym

(n, density, rc, type) with n = 1000, density= 1/ log(n2) and rc = 1/n = 0.001.
Dense solution generated with x∗ =rand(n, 1).

In terms of wall clock time, The Gauss-pd method converged faster on all problems
accept the protein problem as compared to CD-pd. The two Block methods had a
comparable performance on the aloi and the SUSY problem. The Block Gauss-pd
method converged in one iteration on covtype.binary, and the Block CD-pd method
converged fast on the Protein problem.

We now compare the methods on two positive definite matrices from the Ma-
trix Market collection [3], see Figure 7.7. The right-hand side was generated using
rand(n,1). The Block CD-pd method converged much faster on both problems.
The lower condition number (κ2 = 12) of the gr 30 30-rsa problem resulted in
fast convergence of all methods, see Figure 7.7a. While the high condition num-
ber (κ2 = 4.3 · 104) of the bcsstk18 problem, resulted in a slow convergence for all
methods, see Figure 7.7b.

Despite the clear advantage of using a block variant, applying a block method
that uses a direct solver can be infeasible on very ill-conditioned problems. As an

25

time (s)
0 2 4

e
r
r
o
r

10-3

10-2

10-1

100

101

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #108
0 2 4

e
r
r
o
r

10-3

10-2

10-1

100

101

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(a) aloi

time (s)
0 1 2 3

e
r
r
o
r

10-3

10-2

10-1

100

101

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #109
0 1 2

e
r
r
o
r

10-3

10-2

10-1

100

101

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(b) protein

time (s)
0 0.5 1 1.5

e
r
r
o
r

10-6

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #106
0 1 2 3

e
r
r
o
r

10-6

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(c) SUSY

time (s)
0 0.05 0.1

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #106
0 1 2 3

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(d) covtype.binary

Fig. 7.6: The performance of Gaussian and Coordinate Descent pd methods on
four ridge regression problems: (a) aloi: (m;n) = (108, 000; 128) (b) protein:
(m;n) = (17, 766; 357) (c) SUSY: (m;n) = (5 × 106; 18) (d) covtype.binary:
(m;n) = (581, 012; 54).

example, applying the Block CD-pd to the Hilbert system, and using MATLAB back-
slash solver to solve the inner q× q systems, resulted in large numerical inaccuracies,
and ultimately, prevented the method from converging. This occurred because the
submatrices of the Hilbert matrix are also very ill-conditioned.

7.4. Comparison between Optimized and Convenient probabilities. We
compare the practical performance of using the convenient probabilities (5.5) against
using the optimized probabilities by solving (5.4). We solved (5.4) using the disci-
plined convex programming solver cvx [14] for MATLAB.

In Table 2 we compare the different convergence rates for the CD-pd method,
where ρc is the convenient convergence rate (5.7), ρ∗ the optimized convergence rate,
(1 − 1/n) is the lower bound, and in the final “optimized time(s)” column the time
taken to compute ρ∗. In Figure 7.8, we compare the empirical convergence of the
CD-pd method when using the convenient probabilities (5.5) and CD-pd-opt, the
CD-pd method with the optimized probabilities, on four ridge regression problems
and a uniform random matrix. We ran each method for 60 seconds.

In most cases using the optimized probabilities results in a much faster conver-
gence, see Figures 7.8a, 7.8c, 7.8d and 7.8e. In particular, the 7.401 seconds spent
calculating the optimal probabilities for aloi paid off with a convergence that was
55 seconds faster. The mushrooms problem was insensitive to the choice of proba-
bilities 7.8d. Finally despite ρ∗ being much less than ρc on covtype, see Table 2,
using optimized probabilities resulted in an initially slower method, though CD-pd-

26

time (s)
0 20 40 60

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #1010
0 1 2 3

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(a) gr 30 30-rsa

time (s)
0 50 100

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

flops #1011
0 1 2 3

e
r
r
o
r

10-4

10-2

100

102

Gauss pd
CD pd
Block CD pd
Block Gauss pd

(b) bcsstk18

Fig. 7.7: The performance of the Gauss-pd, CD-pd and the Block CD-pd methods
on two linear systems from the MatrixMarket (a) gr 30 30-rsa with n = 900, nnz =
4322 (density= 0.53%) and κ2 = 12. (b) bcsstk18 with n = 11948, nnz = 80519
(density= 0.1%) and κ2 = 4.3 · 1010.

data set ρc ρ∗ 1− 1/n optimized time(s)
rand(50,50) 1− 2 · 10−6 1− 3.05 · 10−6 1− 2.10−2 1.076

mushrooms-ridge 1− 5.86 · 10−6 1− 7.15 · 10−6 1− 8.93 · 10−3 4.632
aloi-ridge 1− 2.17 · 10−7 1− 1.26 · 10−4 1− 7.81 · 10−3 7.401

liver-disorders-ridge 1− 5.16 · 10−4 1− 8.25 · 10−3 1− 1.67 · 10−1 0.413
covtype.binary-ridge 1− 7.57 · 10−14 1− 1.48 · 10−6 1− 1.85 · 10−2 1.449

Table 2: Optimizing the convergence rate for CD-pd.

opt eventually catches up as CD-pd stagnates, see Figure 7.8b.
In Table 3 we compare the different convergence rates for the RK method. In

Figure 7.9, we then compare the empirical convergence of the RK method when using
the convenient probabilities (5.5) and RK-opt, the RK method with the optimized
probabilities by solving (5.4). The rates ρ∗ and ρc for the rand(500,100) problem
are similar, and accordingly, both the convenient and optimized variant converge at
a similar rate in practice, see Figure 7.9b. While the difference in the rates ρ∗ and
ρc for the liver-disorders is more pronounced, and in this case, the 0.83 seconds
invested in obtaining the optimized probability distribution paid off in practice, as the
optimized method converged 1.25 seconds before the RK method with the convenient
probability distribution, see Figure 7.9a.

We conclude from these tests that the choice of the probability distribution can
greatly affect the performance of the method. Hence, it is worthwhile to develop
approximate solutions to (5.3).

8. Conclusion. We present a unifying framework for the randomized Kaczmarz
method, randomized Newton method, randomized coordinate descent method and
random Gaussian pursuit. Not only can we recover these methods by selecting ap-
propriately the parameters S and B, but also, we can analyse them and their block
variants through a single Theorem 4.6. Furthermore, we obtain a new lower bound
for all these methods in Theorem 4.4, and in the discrete case, recover all known
convergence rates expressed in terms of the scaled condition number in Theorem 5.2.

The Theorem 5.2 also suggests a preconditioning strategy. Developing precondi-
tioning methods are important for reaching a higher precision solution on ill-conditioned

REFERENCES 27

data set ρc ρ∗ 1− 1/n optimized time(s)
rand(500,100) 1− 3.37 · 10−3 1− 4.27 · 10−3 1− 1 · 10−2 33.121

liver-disorders 1− 5.16 · 10−4 1− 4.04 · 10−3 1− 1.67 · 10−1 0.8316

Table 3: Optimizing the convergence rate for randomized Kaczmarz.

problems. For as we have seen in the numerical experiments, the randomized meth-
ods struggle to bring the solution within 10−2 relative error when the matrix is ill-
conditioned.

This is also a framework on which randomized methods for linear systems can
be designed. As an example, we have designed a new block variant of RK, a new
Gaussian Kaczmarz method and a new Gaussian block method for positive definite
systems. Furthermore, the flexibility of our framework and the general convergence
Theorems 4.6 and 4.4 allows one to tailor the probability distribution of S to a par-
ticular problem class. For instance, other continuous distributions such uniform, or
other discrete distributions such Poisson might be more suited to a particular class of
problems.

Numeric tests reveal that the new Gaussian methods designed for overdetermined
systems are competitive on sparse problems, as compared to the Kaczmarz and CD-
LS methods. The Gauss-pd also proved competitive as compared to CD-pd on all
tests. Though, when applicable, the combined efficiency of using a direct solver and
an iterative procedure, such as in Block CD-pd method, proved the most efficient.

The work opens up many possible future venues of research. Including inves-
tigating accelerated convergence rates through preconditioning strategies based on
Theorem 5.2 or by obtaining approximate optimized probability distributions (5.4).

Acknowledgments. The authors would like to thank Prof. Sandy Davie for use-
ful discussions relating to Lemma B.1, and Prof. Joel Tropp for invaluable suggestions
regarding Lemma A.1.

References.
[1] S Bellavia. “An Inexact Interior Point Method”. Journal of Optimization Theory

and Applications 96.1 (1998), pp. 109–121.
[2] Y. Bengio, O. Delalleau, and N. Le Roux. “Label Propagation and Quadratic

Criterion”. In: Semi-Supervised Learning. Ed. by O. Chapelle, B. Schölkopf, and
A. Zien. MIT Press, 2006, pp. 193–216.

[3] R. F. Boisvert et al. “Matrix Market : A Web Resource for Test Matrix Collec-
tions”. In: The Quality of Numerical Software: Assessment and Enhancement.
Ed. by R. Boisvert. London: Chapman & Hall, 1997, pp. 125–137.

[4] Y. Censor. “Row-Action Methods for Huge and Sparse Systems and Their Ap-
plications”. SIAM Review 23.4 (1981), pp. 444–455.

[5] C.-C. Chang and C.-J. Lin. “LIBSVM: A Library for Support Vector Ma-
chines”. ACM Transactions on Intelligent Systems and Technology 2.3 (Apr.
2011), pp. 1–27.

[6] L. Dai, M. Soltanalian, and K. Pelckmans. “On the Randomized Kaczmarz
Algorithm”. IEEE Signal Processing Letters 21.3 (2014), pp. 330–333.

[7] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. “Inexact Newton Methods”.
SIAM Journal on Numerical Analysis 19.2 (1982), pp. 400–408.

[8] J. W. Demmel. “The Probability that a Numerical Analysis Problem is Diffi-
cult”. Mathematics of Computation 50.182 (1988), pp. 449–449.

28 REFERENCES

[9] P. Drineas et al. “Faster Least Squares Approximation”. Numerische Mathe-
matik 117.2 (2011), pp. 219–249.

[10] A. Edelman. “On the Distribution of a Scaled Condition Number”. Mathematics
of Computation 58.197 (1992), pp. 185–185.

[11] S. C. Eisenstat and H. F. Walker. “Choosing the Forcing Terms in an Inexact
Newton Method”. SIAM Journal on Scientific Computing 17 (1994), pp. 16–32.

[12] O. Fercoq and P. Richtárik. “Accelerated, Parallel and Proximal Coordinate
Descent”. SIAM Journal on Optimization (arXiv:1312.5799) (2015).

[13] J. Gondzio. “Convergence Analysis of an Inexact Feasible Interior Point Method
for Convex Quadratic Programming”. SIAM Journal on Optimization 23.3 (2013),
pp. 1510–1527.

[14] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.1. http://cvxr.com/cvx. Mar. 2014.

[15] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for Solving
Linear Systems”. Journal of research of the National Bureau of Standards 49.6
(1952).

[16] M. S. Kaczmarz. “Angenaherte Auflosung von Systemen linearer Gleichun-
gen”. Bulletin International de l’Académie Polonaise des Sciences et des Lettres.
Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques
35 (1937), pp. 355–357.

[17] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers
in Applied Mathematics 16. SIAM, 1995.

[18] Y. T. Lee and A. Sidford. “Efficient Accelerated Coordinate Descent Methods
and Faster Algorithms for Solving Linear Systems”. Proceedings - Annual IEEE
Symposium on Foundations of Computer Science, FOCS (2013), pp. 147–156.

[19] D. Leventhal and A. S. Lewis. “Randomized Methods for Linear Constraints:
Convergence Rates and Conditioning”. Mathematics of Operations Research
35.3 (2010), p. 22.

[20] J. Liesen and Z. Strakos. Krylov Subspace Methods : Principles and Analysis.
Oxford: Oxford University Press, 2014, pp. 1–50.

[21] A. Ma et al. “Convergence Properties of the Randomized Extended Gauss-Seidel
and Kaczmarz methods”. arXiv:1503.08235 (2015), pp. 1–16.

[22] D. Needell. “Randomized Kaczmarz solver for noisy linear systems”. BIT 50.2
(2010), pp. 395–403.

[23] D. Needell and J. A. Tropp. “Paved with Good Intentions: Analysis of a Ran-
domized Block Kaczmarz Method”. Linear Algebra and Its Applications 441.Au-
gust (2012), pp. 199–221.

[24] D. Needell, R. Zhao, and A. Zouzias. “Randomized Block Kaczmarz Method
with Projection for Solving Least Squares”. arXiv:1403.4192 (2014).

[25] Y. Nesterov. Random Gradient-Free Minimization of Convex Functions. Tech.
rep. Louvain: ECORE Universite catholique de Louvain, 2011, pp. 1–34.

[26] P. Oswald and W. Zhou. “Convergence analysis for Kaczmarz-type methods in
a Hilbert space framework”. Linear Algebra and its Applications 478 (2015),
pp. 131–161.

[27] C. C. Paige and M. A. Saunders. “Solution of Sparse Indefinite Systems of
Linear Equations”. SIAM J. Numer. Anal. 12.4 (1975), pp. 617–629.

[28] Z. Qu and Richtárik. “Coordinate descent with arbitrary sampling I: algorithms
and complexity”. arXiv:1412.8060 (2014).

http://cvxr.com/cvx

REFERENCES 29

[29] Z. Qu et al. “SDNA: Stochastic Dual Newton Ascent for Empirical Risk Mini-
mization”. arXiv:1502.02268v1 (2015).

[30] A. Ramdas. “Rows vs Columns for Linear Systems of Equations - Randomized
Kaczmarz or Coordinate Descent ?” arXiv:1406.5295 (2014).

[31] H. Robbins and S. Monro. “A stochastic approximation method”. Annals of
Mathematical Statistics 22 (1951), pp. 400–407.

[32] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications.
Vol. 104. Monographs on Statistics and Applied Probability. London: Chapman
& Hall, 2005.

[33] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2003.

[34] Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems”. SIAM Journal on Scientific
and Statistical Computing 7.3 (1986), pp. 856–869.

[35] S. U. Stich, C. L. Müller, and B. Gärtner. “Optimization of Convex Functions
with Random Pursuit”. SIAM Journal on Optimization 23.2 (2014), pp. 1284–
1309.

[36] S. U. Stich. “Variable Metric Random Pursuit”. arXiv:1210.5114v3 (2014).
[37] S. U. Stich. “Convex Optimization with Random Pursuit”. PhD thesis. ETH

Zurich, 2014.
[38] T. Strohmer and R. Vershynin. “A Randomized Kaczmarz Algorithm with

Exponential Convergence”. Journal of Fourier Analysis and Applications 15.2
(2009), pp. 262–278.

[39] C. Wang and A. Xu. “An Inexact Accelerated Proximal Gradient Method and
a Dual Newton-CG Method for the Maximal Entropy Problem”. Journal of
Optimization Theory and Applications 157.2 (2013), pp. 436–450.

[40] X.-Y. Zhao, D. Sun, and K.-C. Toh. “A Newton-CG Augmented Lagrangian
Method for Semidefinite Programming”. SIAM Journal on Optimization 20.4
(2010), pp. 1737–1765.

[41] A. Zouzias and N. M. Freris. “Randomized Extended Kaczmarz for Solving
Least-Squares”. SIAM Journal on Matrix Analysis and Applications 34.2 (2013),
pp. 773–793.

Appendix A. A Bound on the Expected Gaussian Projection Matrix.

Lemma A.1. Let D ∈ Rn×n be a positive definite diagonal matrix, U ∈ Rn×n an
orthogonal matrix and Ω = UDUT . If u ∼ N(0, D) and ξ ∼ N(0,Ω) then

(A.1) E

[
ξξT

ξT ξ

]
= UE

[
uuT

uTu

]
UT ,

and

(A.2) E

[
ξξT

ξT ξ

]
� 2

π

Ω

Tr (Ω)
.

Proof. Let us write S(ξ) for the random vector ξ/‖ξ‖2 (if ξ = 0, we set S(ξ) = 0).
Using this notation, we can write

E
[
ξ(ξT ξ)−1ξT

]
= E

[
S(ξ)(S(ξ))T

]
= Cov [S(ξ)] ,

30 REFERENCES

where the last identity follows since E [S(ξ)] = 0, which in turn holds as the Gaussian
distribution is centrally symmetric. As ξ = Uu, note that

S(u) =
UT ξ

‖UT ξ‖2
=
UT ξ

‖ξ‖2
= UTS(ξ).

Left multiplying both sides by U we obtain US(u) = S(ξ), from which we obtain

Cov [S(ξ)] = UCov [S(u)]UT ,

which is equivalent to (A.1).

To prove (A.2), note first that M
def
= E

[
uuT /uTu

]
is a diagonal matrix. One can

verify this by direct calculation (informally, this holds because the entries of u are
independent and centrally symmetric). The ith diagonal entry is given by

Mii = E

[
u2
i∑n

j=1 u
2
j

]
.

As the map (x, y)→ x2/y is convex on the positive orthant, we can apply Jensen’s
inequality, which gives

E

[
u2
i∑n

j=1 u
2
j

]
≥ (E [|ui|])2

∑n
j=1 E

[
u2
j

] =
2

π

Dii

Tr (D)
,

which concludes the proof.

Appendix B. Expected Gaussian Projection Matrix in 2D.
Lemma B.1. Let ξ ∼ N(0,Ω) and Ω ∈ R2×2 be a positive definite matrix, then

(B.1) E

[
ξξT

ξT ξ

]
=

Ω1/2

Tr
(
Ω1/2

) .

Proof. Let Σ = UDUT and u ∼ N(0, D). Given (A.1) it suffices to show that

(B.2) Cov [S(u)] =
D1/2

Tr
(
D1/2

) ,

which we will now prove.
Let σ2

x and σ2
y be the two diagonal elements of D. First, suppose that σx = σy.

Then u = σxη where η ∼ N(0, I) and

E

[
uuT

uTu

]
=
σ2
x

σ2
x

E

[
ηηT

ηT η

]
=

1

n
I =

D1/2

Tr
(
D1/2

) .

Now suppose that σx 6= σy. We calculate the diagonal terms of the covariance matrix
by integrating

E

[
u2

1

u2
1 + u2

2

]
=

1

2πσxσy

∫

R2

x2

x2 + y2
e−

1
2 (x2/σ2

x+y2/σ2
y)dxdy.

Using polar coordinates x = R cos(θ) and y = R sin(θ) we have

(B.3)

∫

R2

x2

x2 + y2
e−

1
2 (x2/σ2

x+y2/σ2
y)dxdy =

∫ 2π

0

∫ ∞

0

R cos2(θ)e−
R2

2 C(θ)dRdθ,

REFERENCES 31

where C(θ)
def
=
(
cos(θ)2/σ2

x + sin(θ)2/σ2
y

)
. Note that

(B.4)

∫ ∞

0

Re−
C(θ)R2

2 dR = − 1

C(θ)
e−

C(θ)R2

2

∣∣∣∣
∞

0

=
1

C(θ)
.

This applied in (B.3) gives

E

[
u2

1

u2
1 + u2

2

]
=

1

2πσxσy

∫ 2π

0

cos2(θ)

cos(θ)2/σ2
x + sin(θ)2/σ2

y

dθ =
b

π

∫ π

0

cos2(θ)

cos2(θ) + b2 sin2(θ)
dθ,

where b = σx/σy. Multiplying the numerator and denominator of the integrand by
sec4(x) gives the integral

E

[
u2

1

u2
1 + u2

2

]
=
b

π

∫ π

0

sec2(θ)

sec(θ)2
(
1 + b2 tan2(θ)

)dθ.

Substituting v = tan(θ) so that v2 +1 = sec2(θ), dv = sec2(θ)dθ and using the partial
fractions

1

(v2 + 1) (1 + b2v2)
=

1

1− b2
(

1

v2 + 1
− b2

b2v2 + 1

)
,

gives the integral

∫
dv

(v2 + 1) (1 + b2v2)
=

1

1− b2 (arctan(v)− b arctan(bv))

=
1

1− b2 (θ − b arctan(b tan(θ))) .(B.5)

To apply the limits of integration, we must take care because of the singularity at
θ = π/2. For this, consider the limits

lim
θ→(π/2)−

arctan(b tan(θ)) =
π

2
, lim

θ→(π/2)+
arctan(b tan(θ)) = −π

2
.

Using this to evaluate (B.5) on the limits of the interval [0, π/2] gives

lim
t→(π/2)−

1

1− b2 (θ − b arctan(b tan(θ)))

∣∣∣∣
t

0

=
1

1− b2
π

2
(1− b) =

π

2(1 + b)
.

Applying a similar argument for calculating the limits from π/2+ to π, we find

E

[
u2

1

u2
1 + u2

2

]
=

2b

π

π

2(1 + b)
=

σx
σy + σx

.

Repeating the same steps with x swapped for y we obtain the other diagonal element,
which concludes the proof of (B.2).

32 REFERENCES

time (s)
0 20 40 60

e
r
r
o
r

10-10

105
CD pd
CD pd-opt

(a) aloi

time (s)
0 20 40 60

e
r
r
o
r

10-5

105
CD pd
CD pd-opt

(b) covtype.libsvm.binary

time (s)
0 0.5 1

e
r
r
o
r

10-10

105
CD pd
CD pd-opt

(c) liver-disorders-ridge

time (s)
0 20 40 60

e
r
r
o
r

10-10

105
CD pd
CD pd-opt

(d) mushrooms-ridge-opt

time (s)
0 20 40 60

e
r
r
o
r

10-10

105
CD pd
CD pd-opt

(e) uniform-random-50X50-opt

Fig. 7.8: The performance of CD-pd and optimized CD-pd methods on (a)
aloi: (m;n) = (108, 000; 128) (b) covtype.binary: (m;n) = (581, 012; 54) (c)
liver-disorders: (m;n) = (345, 6) (c)mushrooms: (m;n) = (8124, 112) (d)
uniform-random-50X50.

REFERENCES 33

time (s)
0 0.5 1 1.5

e
r
r
o
r

10-10

105
Kaczmarz
Kaczmarz-popt

(a) liver-disorders-popt-k

time (s)
0 0.1 0.2 0.3

e
r
r
o
r

10-10

105
Kaczmarz
Kaczmarz-popt

(b) rand(500,100)

Fig. 7.9: The performance of Kaczmarz and optimized Kaczmarz methods on (a)
liver-disorders: (m;n) = (345, 6) (b) rand(500,100)

