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Abstract

In this paper, we first study a sensitivity index that is based on higher moments and generalizes
the so-called Sobol one. Further, following an idea of Borgonovo (see [3]), we define and study a new
sensitivity index based on the Cramér von Mises distance. This index appears to be more general
than the Sobol one as it takes into account the whole distribution of the random variable and not
only the variance. Furthermore, we study the statistical properties of its Pick and Freeze estimator.

Keywords: Sensitivity analysis, Cramér von Mises distance, Pick and Freeze method, func-
tional delta-method.

1 Introduction
A very classical problem in the study of computer code experiments (see [26]) is the evaluation of the
relative influence of the input variables on some numerical result obtained by a computer code. In this
context, a sensitivity analysis is performed. Such a topic has been widely studied in the last decades and
is still challenging nowadays (see for example [27, 25, 13] and references therein). More precisely, the
result of the numerical code Y is seen as a function of the vector of the distributed input (Xi)i=1,··· ,d
(d ∈ N∗). Statistically speaking, we are dealing here with the following unnoisy non parametric model

Y = f(X1, . . . , Xd),

where f is a regular unknown numerical function on the state space E1 × E2 × . . . × Ed on which the
distributed variables (X1, . . . , Xd) are living. Generally, the random inputs are assumed to be independent
and a sensitivity analysis is performed using the so-called Hoeffding decomposition (see [29, 1]). In this
functional decomposition, f is expanded as an L2-sum of uncorrelated functions involving only a part of
the random inputs. This leads, for any subset v of Id := {1, . . . , d}, to an index called the Sobol index
([27]) that measures the amount of randomness (more precisely, the part of the variance) of Y due to the
subset of input variables (Xi)i∈v. Since nothing has been assumed on the nature of the inputs, one can
consider the vector (Xi)i∈v as a single input. Without loss of generality, we then consider the case where
v reduces to a singleton. More precisely, the numerator H2

v of the Sobol index related to the input Xv is

H2
v := Var (E [Y |Xv])

while the denominator of the index is nothing more than the variance of Y . Notice that we also have:

H2
v = E

[
(E[Y |Xv]− E[Y ])

2
]

= Var(Y )− E
[
(E[Y ]− E [Y |Xv])

2
]

(1)

In order to estimate H2
v , Sobol in [27] proposed to rewrite the variance of the conditional expectation as

a covariance (see equation (3)). Further, a well tailored design of experiment called the Pick and Freeze
scheme is considered [19]. More precisely, let Xv be the random vector such that Xv

v = Xv and Xv
i = X ′i

if i 6= v where X ′i is an independent copy of Xi. Then, setting

Y v := f(Xv), (2)

∗Institut de Mathématiques de Toulouse, 118 Route de Narbonne 31062 Toulouse Cedex 9. France.
firstname.lastname@math.univ-toulouse.fr
†ENAC - Ecole Nationale de l’Aviation Civile , Université de Toulouse, France

1

ar
X

iv
:1

50
6.

04
13

3v
2 

 [
m

at
h.

PR
] 

 3
0 

N
ov

 2
01

7



an obvious computation leads to the following relationship (see, e.g., [19])

Var(E[Y |Xv]) = Cov (Y, Y v) . (3)

The last equality leads to a natural Monte-Carlo estimator, the so-called Pick and Freeze estimator,

T vN,Cl =
1

N

N∑
j=1

YjY
v
j −

 1

2N

N∑
j=1

(Yj + Y vj )

2

where for j = 1, · · · , N , Yj (resp. Y vj ) are independent copies of Y (resp. Y v). The sharp statistical
properties and some functional extensions of the Pick and Freeze method are considered in [19, 18, 12].
Notice that the Sobol indices and their Monte-Carlo estimation are order two methods since they derive
from the L2-Hoeffding functional decomposition. This is their main drawback. As an illustration consider
the following example. Let X1 and X2 be two independent standardized random variables having the
same third and fourth moments with E

[
X5

1

]
6= E

[
X5

2

]
. Let us consider the following model

Y = X1 +X2 +X2
1X

2
2 .

One gets
Var (E [Y |X1]) = Var(X1 +X2

1 ) = Var(X2 +X2
2 ) = Var (E [Y |X2]) .

Y is an exchangeable function of the inputs but X1 and X2 do not share the same distribution. So
that, X1 and X2 should not have the same importance. That shows the need to introduce a sensitivity
index that takes into account all the distribution and not only the second order behavior. As pointed out
before, Sobol indices are based on an L2 decomposition. As a matter of fact, they are well adapted to
measure the contribution of an input on the deviation around the mean of Y . Nevertheless, it seems very
intuitive that the sensitivity of an extreme quantile of Y could depend on sets of variables that cannot
be captured using only the variances. Thus the same index should not be used for any task and we need
to define more general indices.
There are several ways to generalize the Sobol indices. For example, one can define new indices through
contrast functions based on the quantity of interest (see [16]). Unfortunately the Monte-Carlo estimators
of these indices are computationally very expensive. In [11], Da Veiga presents a way to define moment
independent measures through dissimilarity distances. These measures define a unified framework that
encompasses some known sensitivity indices. They are efficiently estimated in low dimensions but as
claimed by the author “it is well known that density estimation suffers from the curse of dimensionality”.
Now, as pointed out in [3, 5, 6, 24, 23], there are situations where higher order methods give a sharper
analysis on the relative influence of the input and allow finer screening procedures. Borgonovo et al.
propose and study an index based on the total variation distance (see [3, 5, 6]); while Owen et al. suggest
to use procedures based on higher moments (see [24, 23]).
Our paper follows these tracks. We will first revisit the work of Owen et al. by studying the asymptotic
properties of the multiple Pick and Freeze estimation. Further, we propose a new natural index based on
the Cramér von Mises distance between the distribution of the output Y and its conditional law when
an input is fixed. We will show that this approach leads to natural self-normalized indices. Indeed,
as for Sobol indices, the sum of all first order indices is uniformly bounded. Notice that these indices
take into account the whole output distribution instead of only the order two moments and contrary to
most of the other known indices, they are naturally defined for multivariate outputs. As a consequence,
they are well-tailored to perform a sensitivity analysis for any vectorial output. Furthermore, we show
that surprisingly a Pick and Freeze scheme is also available to estimate this new index. This scheme is
not really expensive and easy to implement. The sample size required for the estimation is of the same
order as the size needed for the classical Sobol index estimation allowing its use in concrete situations.
As a consequence, considering a sample with the appropriate size, one can provide simultaneously the
Cramér von Mises indices and the Sobol indices. Other advantage of the Cramér von Mises index with
respect to the general ones presented in [11] is that the theoretical statistical properties of its estimation
can be derived. Indeed, we prove a Central Limit Theorem for the estimator that allows one to exhibit
confidence intervals.
The paper is organized as follows. In the next section, we will study the statistical properties of the
multiple Pick and Freeze method proposed earlier by Owen et al ([24, 23]). Section 3 is devoted to the
new index built on the Cramér von Mises distance. In the last section, we give some numerical simulations
that illustrate the interest of the new index. Moreover, we revisit a real data example introduced in [10]
and studied in [15, 7].
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2 Higher-moment indices

In the sequel, for any integer k, the notation Ik stands for the set {1, . . . , k}. Following [24, 23], we
generalize the numerator of the Sobol index defined in (1) by considering higher order moments: for any
integer q > 2, and singleton v ∈ Id, we set

Hq
v := E [(E[Y |Xv]− E[Y ])

q
] .

Properties Obviously, Hq
v is non negative only for even q and

|Hq
v | 6 E [|Y − E[Y ]|q] .

Further, Hq
v is invariant by any translation of the output.

Estimation procedure In view of the estimation of Hq
v , we first notice that

Hq
v = E

[
q∏
i=1

(
Y v,i − E[Y ]

)]
=

q∑
l=0

(
q

l

)
(−1)q−lE [Y ]

q−l E

[
l∏
i=1

Y v,i

]

with the usual convention
∏0
i=1 Y

v,i = 1 and
(
q
l

)
= q!/l!(q− l)!. Here, Y v,1 = Y and for i = 2, . . . , q, Y v,i

is constructed independently as Y v defined in Equation (2).
Second, we use a Monte-Carlo scheme and consider the following Pick and Freeze design constituted by
a N -sample

(
Y v,ij

)
(i,j)∈Iq×IN

of
(
Y v,1, . . . , Y v,q

)
. The Monte-Carlo estimator is then

Hv
q,N =

q∑
l=0

(
q

l

)
(−1)q−l

(
P
v

1

)q−l
P
v

l

where for any N ∈ N∗, j ∈ IN and l ∈ Iq, we have defined

P vl,j =

(
q

l

)−1 ∑
k1<...<kl∈Iq

(
l∏
i=1

Y v,kij

)
and P

v

l =
1

N

N∑
j=1

P vl,j .

Notice that we generalize the estimation procedure of [18] and use all the available information by
considering the means over the set of indices k1, . . . , kl ∈ Id, kn 6= km.

Asymptotic properties of Hv
q,N

Theorem 2.1. Hv
q,N is strongly consistent and asymptotically Gaussian:

√
N
(
Hv
q,N −Hv

q

) L→
N→∞

N
(
0, σ2

)
where

σ2 = q
[
Var(Y ) + (q − 1)Cov(Y, Y v,2)

]( q∑
l=1

albl

)2

,

al =
l

q
E[Y ]l−1, l = 1, . . . , q

b1 = (−1)q−1q(q − 1)E[Y ]q−1 +

q−1∑
l=2

(
q

l

)
(−1)q−l(q − l)E[Y ]q−l−1E

[
l∏
i=1

Y v,i

]
and

bl =

(
q

l

)
(−1)q−lE[Y ]q−l, l = 1, . . . , q.
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Interpretation and comments The collection of all indices (Hq
v )q is much more informative than the

classical Sobol index with respect to v. Nevertheless, it has several drawbacks. First, these indices are
moment-based and it is well known that they are not stable when the moment order increases. Second,
they may be negative when q is odd. To overcome this fact, one may introduce E [|E[Y |Xv]− E[Y ]|q] but
the Pick and Freeze estimation procedure is then lost. Third, the Pick and Freeze estimation procedure
is computationally expensive and may be unstable: it requires a q×N -sample of the output Y . In order
to have a good idea of the influence of an input on the law of the output, we need to estimate the first
K − 1 indices Hq

v : H2
v , . . . , HK

v . Hence, we need to run the code K ×N times.
In a nutshell, these indices are not attractive in a practical point of view. In the next section, we then
introduce a new sensitivity index that is based on the conditional distribution of the output and requires
only 3 × N runs. Concretely, it compares the output distribution to the conditional one whereas the q
higher-order moment indices only compare the q-th output moment to the conditional one.

3 The Cramér von Mises index

In this section, the code will be denoted by Z = f(X1, . . . , Xd) ∈ Rk. It is worth noticing that here we
can consider multivariate outputs unlike in Section 2 and [7], e.g., Let F be the distribution function of
Z:

F (t) = P (Z 6 t) = E
[
1 {Z6t}

]
, for t = (t1, . . . , tk) ∈ Rk

and F v be the conditional distribution function of Z conditionally on Xv:

F v(t) = P (Z 6 t|Xv) = E
[
1 {Z6t}|Xv

]
, for t = (t1, . . . , tk) ∈ Rk.

Notice that {Z 6 t} means that {Z1 6 t1, . . . , Zk 6 tk}. Obviously, E [F v(t)] = F (t). Now, we define
Y (t) = 1 {Z6t} and take p = 2. Since for any fixed t ∈ Rk, Y (t) is a real-valued random variable, we
apply the framework presented in Section 2. More precisely, for any v ∈ Ip let ∼ v be Ip \ {v} and we
first perform the Hoeffding decomposition of Y (t):

Y (t) = 1 {Z6t} = E[Y (t)] + (E[Y (t)|Xv]− E[Y (t)]) + (E[Y (t)|X∼v]− E[Y (t)]) +R(t, v) (4)

where
R(t, v) = Y (t)− E[Y (t)]− (E[Y (t)|Xv]− E[Y (t)])− (E[Y (t)|X∼v]− E[Y (t)]) .

As done usually, we compute the variance of both sides of (4) that leads to

Var(Y (t)) = F (t)(1− F (t))

= Var (E[Y (t)|Xv]− E[Y (t)]) + Var (E[Y (t)|X∼v]− E[Y (t)]) + Var(R(t, v))

= Var (F v(t)) + Var (F∼v(t)) + Var(R(t, v))

= E
[
(F v(t)− F (t))

2
]

+ E
[
(F∼v(t)− F (t))

2
]

+ Var(R(t, v)) (5)

by the decorrelation of the different terms involved in the Hoeffding decomposition.

Remark 3.1. A straightforward application of the results of Section 2 provides for any fixed t ∈ Rk a
consistent and asymptotically normal procedure for the estimation of

E
[
(F v(t)− F (t))

2
]

= Var (F v(t)) and E
[
(F∼v(t)− F (t))

2
]

= Var (F∼v(t)) .

Now we integrate the terms in (5) in t ∈ Rk with respect to the distribution of Z:∫
Rk

F (t)(1− F (t))dF (t)

=

∫
Rk

E
[
(F v(t)− F (t))

2
]
dF (t) +

∫
Rk

E
[
(F∼v(t)− F (t))

2
]
dF (t) +

∫
Rk

Var(R(t, v))dF (t) (6)

This integration has to be understood in the Riemmann-Stieltjes sense (see, e.g., [28]). Notice that the
first term in the right hand side of (6) represents a Cramér Von Mises type distance of order 2 between
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the distribution L (Z) of Z and the distribution L (Z|Xv) of Z given Xv.

Following the classical way of defining Sobol indices, we normalize the previous equation by∫
Rk

F (t)(1− F (t))dF (t)

leading to

1 =

∫
Rk E

[
(F v(t)− F (t))

2
]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
+

∫
Rk E

[
(F∼v(t)− F (t))

2
]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
+

∫
Rk Var(R(t, v))dF (t)∫

Rk F (t)(1− F (t))dF (t)
(7)

Then we define the Cramér Von Mises indices with respect to v and ∼ v by

Sv2,CVM :=

∫
Rk E

[
(F (t)− F v(t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
and S∼v2,CVM :=

∫
Rk E

[
(F (t)− F∼v(t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
.

Properties 3.2. These new indices are naturally adapted to multivariate outputs and they share the
same properties as the classical Sobol index. Namely,

1. as seen in (7), the different contributions sum to 1.

2. they are invariant by translation, by any isometry and by any non degenerated scaling of the com-
ponents of Y .

Remark 3.3. 1. We could have defined the following indices instead

∫
Rk

E
[
(F (t)− F v(t))2

]
F (t)(1− F (t))

dF (t) and
∫
Rk

E
[
(F (t)− F∼v(t))2

]
F (t)(1− F (t))

dF (t).

normalizing by F (t)(1−F (t)) (like in the Anderson-Darling statistic) before the integration phase.
Nevertheless, the previous integrals might be not defined. Moreover, even if the integrals are well
defined, one may encounter numerical explosion during the estimation procedure that might be
produced for small and large values of t since the normalizing factor then cancels.

2. In this paper, we only consider first-order sensitivity indices as well for the classical Sobol indices
and for the Cramér von Mises indices. Anyway, as well as for the Sobol indices, one may define
higher-order and total Cramér von Mises indices. The construction of the former is straightforward
taking v no longer a singleton. For example, if one is interested in the second-order Cramer von
Mises index with respect to the first and second inputs, it suffices to take v = {1, 2}. Concerning
the latter, the total Cramér von Mises index STot,v2,CVM with repect to v is defined by

STot,v2,CVM := 1− S∼v2,CVM = 1−

∫
Rk E

[
(F (t)− F∼v(t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
.

3. To use the Hoeffding decomposition, the inputs are required to be independent. Anyway, one can
compute the Cramér von Mises index when the inputs are dependent. Nevertheless, there are then
difficult to interpret.

3.1 General comments on the Cramér von Mises indices

Cramér von Mises indices versus Sobol indices
Cramér von Mises and Sobol indices are both based on the Hoeffding decomposition and sum to 1. Nev-
ertheless, the former are based on the whole distribution of the output, in contrast with the latter that
are only based on the order-two moments. Notice that two variables that have a different influence on
the output may have the same Sobol indices (just as two random variables with different distribution can
have the same variance). This point represents one limitation of Sobol indices and does not occur with
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the Cramér von Mises indices as one can see in Section 4.1.

In addition, remark that a null value for a Sobol index does not imply that the input is unimportant
whereas a null value for a Cramér von Mises index means that the input is unimportant. Moreover,
by definition, a large Cramér von Mises index means that the input variable under concern has a great
influence on the output in regions where the output has a large distribution mass. That is why we advice
the practitioner to use them in a general context. Nevertheless, when one is interested in the mean output
behavior, the Sobol indices are more adapted. Indeed, as noted in [16], the Sobol indices minimize the
contrast associated to the mean. In the same spirit, if one is interested in specific feature of the output
(for example an α-quantile), one should use the index based on the associated contrast. See [16] for more
details on the notion of contrast and the results therein.

In contrast, the indices based on the whole distribution partially get rid of such limitations and patho-
logical patterns. However, one can build an example based, e.g., on two input variables that leads to the
same indices S1

2,CVM and S2
2,CVM once the integration with respect to t has been done.

Cramér von Mises indices versus moment independent indices
There already exists several moment-independent indices: some of them have been introduced by Bor-
gonovo et al. (density-based indices [5], cumulative distribution function based indices [9]). See also [4]
for other indices and references therein. More recently, Da Veiga [11] shows that those indices are special
cases of a class of sensitivity indices based on the Csizár f -divergence. A lot of classical “distances” be-
tween probability measures as, e.g., the Kullback-Leibler divergence, the Hellinger distance and the total
variation distance belong to this family of divergences. Other dissimilarity measures exist to compare
probability distributions: in particular, integral probability metrics [20].

In comparison with the indices defined in Equation (17) in [8], we can notice that the integration is done
with respect to the distribution of the output in the former indices while the integration is done with
respect to the Lebesgue measure in the latter indices. Our method represents at least two advantages:
(i) the index always exist whatever the output distribution (ii) such an integration weights the support
of the output distribution.

Since the space of the probability measures on Rk is of infinite dimension, the different distances on this
space are not equivalent; hence they are very difficult to compare. Each index is constructed on a specific
distance and has its own interest. Despite the fact that the Cramér von Mises indices have no clear
dual formulation, they present the following remarkable advantages. As we will see in the next sections,
one can easily estimate them with a low simulation cost that does not depend on the dimension of the
output. The sample required for their estimation also provide Sobol indicies estimation. In addition,
these estimators are asymptotically normal and converge at the rate

√
N which allows the practitioner

to build confidence intervals.

The rest of the section is dedicated to the estimation of Sv2,CVM (and S∼v2,CVM ). One has to estimate both
the numerator and the denominator of the indices. Nevertheless, when the output Z has independent
coordinates that are absolutely continuous with respect to the Lebesgue measure, we have

∫
Rk

F (t)(1− F (t))dF (t) = E[F (Z)(1− F (Z)] =
1

2k
− 1

3k
.

Thus the normalizing factor reduces to 1
2k
− 1

3k
. As a consequence, we propose two versions of Central

Limit Theorems: the first one deals with the numerator’s estimator and can be applied when the output
Z has independent coordinates that are absolutely continuous with respect to the Lebesgue measure
whereas the second one concerns the general estimator and may apply in any other cases.
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3.2 Numerator estimation and its asymptotic properties
We denote the numerator of Sv2,CVM by Nv

2,CVM . Notice that it can be rewritten as

Nv
2,CVM = EZ̃

[
EXv

[(
F (Z̃)− F v(Z̃)

)2]]
where Z̃ is an independent copy of Z.
Then we proceed to a double Monte-Carlo scheme for the estimation of Nv

2,CVM and consider the following
design of experiment consisting in:

1. The classical Pick and Freeze sample, that is two N -samples of Z: (Zv,1j , Zv,2j ), 1 6 j 6 N ;

2. A third N -sample of Z independent of (Zv,1j , Zv,2j )16j6N : Wk, 1 6 k 6 N .

The empirical estimator of Nv
2,CVM is then given by

N̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)2
 . (8)

Now we established the consistency of N̂v
2,CVM that follows directly from an auxiliary lemma (see Section

6).

Corollary 3.4. N̂v
2,CVM is strongly consistent as N goes to infinity.

Now we turn to the asymptotic normality of N̂v
2,CVM . We follow van der Vaart [29] to establish the

following proposition (more precisely Theorems 20.8 and 20.9, Lemma 20.10 and Example 20.11).

Theorem 3.5. The sequence of estimators N̂v
2,CVM is asymptotically Gaussian in estimating Nv

2,CVM .

That is,
√
N
(
N̂v

2,CVM −Nv
2,CVM

)
converges in distribution towards the centered Gaussian law with a

limiting variance ξ2 whose explicit expression can be found in the proof.

Remark 3.6. Thanks to Theorem 3.5, we are now able to provide asymptotic confidence intervals for
the estimation of Nv

2,CVM . They are of the form (N̂v
2,CVM ± zαξ/

√
N), where zα is the 1− α/2 quantile

of a standard normal distribution. Unfortunately, the variance ξ2 is unknown but thanks to its explicit
form it is easy to replace it by a consistent estimator ξ̂ and use Slutsky’s Lemma to have an asymptotic
confidence interval.

3.3 Estimation of the general index and its asymptotic properties
In order to estimate the general index Sv2,CVM , we first estimate its numerator as in Subsection 3.2 and
then its denominator that we denote Dv

2,CVM . Notice that it can be rewritten as

Dv
2,CVM = E [F (Z)(1− F (Z))]

and estimated using the design of experiment already introduced for the estimation of the numerator by

D̂v
2,CVM =

1

N

N∑
k=1

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)
−

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)2
 .

(9)

Proceeding as in Subsection 3.2, we have

Corollary 3.7. Ŝv2,CVM is strongly consistent as N goes to infinity.

The following Central Limit Theorem comes from the functional Delta method.

Theorem 3.8. The sequence of estimators Ŝv2,CVM is asymptotically Gaussian in estimating Sv2,CVM .

That is,
√
N
(
Ŝv2,CVM − Sv2,CVM

)
converges in distribution towards the centered Gaussian law with a

limiting variance that can be computed.

7



3.4 Practical advices

In a general setting, for all the nice properties of the Cramér von Mises indices and their efficient estimation
easy to implement, we recommend to use the Cramér von Mises indices. As a consequence, considering
a sample with the appropriate size, one can estimate once at a time the Cramér von Mises indices and
the Sobol indices. More precisely, if one wants to estimate p Sobol indices a sample size of (p + 1)N
is required. With only N more output evaluations, we get both the p Sobol indices and the Cramér
von Mises ones. Furthermore, the theoretical theorems provides confidence intervals that controlled the
accuracy of the estimations. Anyway, when the practitioner is interested in a specific feature (e.g., mean
behavior or quantile) of the output, he should use more suited indices (e.g., the classical Sobol indices
for the mean or the indices introduced in [16] for the quantile).

4 Numerical applications

4.1 A flavor of the method applied on a toy model
Let us consider the quite simple linear model

Y = αX1 +X2, α > 0,

where X1 has a Bernoulli distribution with success probability 0 < p < 1 and X1, X2 are independent.
Assume further that X2 has a continuous distribution F2 on R such that E[X2] = αp and with finite
variance Var(X2) = α2p(1 − p). With these choices, the random variables αX1 and X2 share the same
expectation and the same variance. Thus X1 and X2 have the same first order Sobol indices all equal to
1/2.
We present a general closed formula to compute our new indices and show that in some particular cases
an exact formula is available. Then we perform a simulation study in order to illustrate the Central Limit
Theorem and analyse the practical behaviour of our estimators.

4.1.1 General closed formula

On one hand, the distribution of Y given X1 = 0 and the distribution of Y given X1 = 1 are given by{
L(Y |X1 = 0) = L(X2)

L(Y |X1 = 1) = L(X2 + α).

On the other hand, the conditional distribution of Y given X2 is

P (Y = α+X2 | X2) = 1− P (Y = X2|X2) = p.

Hence, the distribution function of Y is the mixture pF2(·−α) + (1−p)F2(·). Tedious computations lead
to

S1
2,CVM = 6p(1− p)

∫
R

(F2(t)− F2(t− α))2 [(1− p)dF2(t) + pdF2(t− α)]

and

S2
2,CVM = 1− 6p(1− p)

[
1

2
−
∫
R
F2(t− α)dF2(t)

]
(the normalizing factor being 1/6 as explained before).
As p goes to 0 (and α goes to infinity), (S1

2,CVM , S
2
2,CVM ) goes to (0, 1) while the two classical Sobol

indices remain equal to 1/2. Our new indices shed lights on the fact that, for small p, X2 has much more
influence on Y than X1 which follows the intuition. This fact is not detected by the classical Sobol indices.

Similarly we can compute the indices of order q (q > 2):

Hq
1 = αq [p(1− p)q + (−p)q(1− p)] and Hq

2 = E[(X2 − µ)q].
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Particular cases (i) if X2 is a centered Gaussian random variable with variance Var(X2) = α2p(1− p),
one can easily derive an explicit formula for Hq

2 :

Hq
2 = E[(X2 −m)q] =

q!

2q/2 · (q/2)!
1q∈2N∗ .

(ii) if X2 is uniformly distributed on [0, b] with b = 2α
√

3p(1− p), one can easily derive an explicit
formula for the indices introduced before:

S1
2,CVM = 6p(1− p)×

((α
b

)2(
1− 2

3

α

b

)
1α6b +

1

3
1α>b

)
S2
2,CVM = 1− 3p(1− p)

(
1−

(
b− α
b

)2

1α6b

)
.

Moreover, Hq
2 = E[(X2 − µ)q] = (b/2)q/(q + 1)1q∈2N∗ .

(iii) if X2 is exponentially distributed with mean 1/λ = α
√
p(1− p), one can easily derive an explicit

formula for the indices introduced before:

S1
2,CVM = 2p(1− p)(1− e−λα)2 and S2

2,CVM = 1− 3p(1− p)(1− e−λα).

Moreover, Hq
2 = E[(X2 − µ)q] = q!λ−q/2.

4.1.2 Simulation study

A numerical illustration with sample sizes N=100 and 500 is presented in Figures 1 and 2 (remind that in
order to estimate both indices we compute 4N values of the output function). We consider the case where
the random variable X2 is uniformly distributed (for the other cases the simulations provide the same
kind of results). We estimate the Cramér von Mises indices thanks to Equation (8) and renormalize it
by the factor 1/6 since the output has a continuous distribution. Then we estimate the limiting variance
in (12) in order to provide asymptotic confidence intervals. In Figures 1 and 2, the blue line represents
the true value of index D1

2,CVM (first row) or D2
2,CVM (second row). The red dashed line (resp. the red

dashed line with +) represents the index estimation based on (8) (resp. the confidence interval). In the
left column, α is fixed to 1/2 and p varies while in the right one, p is fixed to 1/4 and α varies.

4.2 A non linear model

Now, let us consider the following non linear model

Y = exp{X1 + 2X2}, (10)

where X1 and X2 are independent standard Gaussian random variables. The distribution of Y is log-
normal and we can derive both its density and its distribution functions:

fY (y) =
1√

10πy
e−(ln y)

2/101 R+(y) and FY (y) = Φ

(
ln y√

5

)
where Φ stands for the distribution function of the standard Gaussian random variable. Its density
function will be denoted by f in the sequel. Then tedious computations lead to the Cramér von Mises
indices S1

2,CVM and S2
2,CVM .

Proposition 4.1. Assume that Y is defined by Equation (10) then

S1
2,CVM =

6

π
arctan 2− 2 ≈ 0.1145

and

S2
2,CVM =

6

π
arctan

√
19− 2 ≈ 0.5693.
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Figure 1: Example 1 - X2 uniformly distributed and N=100.
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Remark 4.2. In this simple example, one can compute the indices of order q (q > 2):

Hq
1 = E

[
(eX1+2 − e5/2)q

]
and Hq

2 = E
[
(e2X1+1/2 − e5/2)q

]
.

The Sobol indices and their estimation based on the Pick-Freeze scheme with a sample of size N are
computed using equation (6) in [19]. We also compute the Cramér von Mises indices and their estimation
based on (8). Moreover, we estimate the limiting variances in both cases (see equation (12) for the Cramér
von Mises indices and equation (12) in [19] for the Sobol indices) in order to provide confidence intervals.
The results are presented in Table 1.

Cramér von Mises Sobol indices
D1

2,CVM D2
2,CVM S1 S2

True values 0.1145 0.5693 0.0118 0.3738
N = 102 Est. values 0.1287 0.6097 0.0425 0.1954

CI 5% [-0.0601,0.3175] [0.4692,0.7503] [0.0265,0.0585] [0.0430,0.3477]
N = 103 Est. values 0.1358 0.6007 0.1198 0.2345

CI 5% [0.07861,0.19297] [0.54897,0.65242] [-0.5633,0.8030] [0.1343,0.3347]
N = 104 Est. values 0.1166 0.5585 0.01685 0.26252

CI 5% [0.09930,0.13382] [0.54150,0.57540] [0.0010,0.0327] [-1.2744, 1.7994]

Table 1: Model (10). The Cramér von Mises and Sobol indices, their estimations based on (8) and (6)
in [19] and the associated 5%-confidence intervals.

As a conclusion, with only N = 103, the statistical method provides a precise estimation of the different
indices. Moreover, in this example, the Sobol and Cramér von Mises indices give the same influence
ranking of the two random inputs. Nevertheless, the estimation of the Cramér von Mises indices seems
to be more efficient to give the true ranking.

4.3 Application: The Giant Cell Arthritis Problem
Context and goal
In this subsection, we consider the realistic problem of management of suspected giant cell arthritis
posed by Bunchbinder and Detsky in [10]. More recently, this problem was also studied by Felli and
Hazen [15] and Borgonovo et al. [7]. As explained in [10], “giant cell arthritis (GCA) is a vasculitis of
unknown etiology that affects large and medium sized vessels and occurs almost exclusively in patients
50 years or older”. This disease may lead to severe side effects (loss of visual accuity, fever, headache,...)
whereas the risks of not treating it include the threat of blindness and major vessels occlusion. A patient
with suspected GCA can receive a therapy based on Prednisone. Unfortunately, a treatment with high
Prednisone doses may cause severe complications. Thus when confronted to a patient with suspected
GCA, the clinician must adopt a strategy. There is a considerable literature on sensitivity analysis for
these sorts of models, based on the utility of learning a model input before choosing a treatment strategy
(see, e.g., [14] and [22]). In [10], the authors considered four different strategies:

A : Treat none of the patients;

B : Proceed to the biopsy and treat all the positive patients;

C : Proceed to the biopsy and treat all the patients whatever their result;

D : Treat all the patients.

The clinician wants to adopt the strategy optimizing the patient outcomes measured in terms of utility.
The reader is referred to [21] for more details on the concept of utility. The basic idea is that a patient
with perfect health is assigned a utility of 1 and the expected utility of the other patients (not perfectly
healthy) is calculated subtracting some “disutilities” from this perfect score of 1. These strategies are
represented in Figures 3 to 6 with the different inputs involved in the computation of the utilities.
For example in strategy A (see Figure 3), the utility of a patient having GCA and developing severe GCA
complications is given by 1− ds − dugc − dudx. His entire sub-path is then

g × gc× (1− ds − dugc − dudx).
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Figure 3: The decision tree for the treat none alternative

Figure 4: The decision tree for the biopsy and the treat positive alternative

The input parameters and the modelisation of the random ones
As seen in Figures 3 to 6, the different strategies involve input parameters like, e.g., the proportion g of
patients having GCA or the probability gc for a patient to develop severe GCA complications (fixed at
0.8 as done in [10]) or even the disutility associated to having GCA symptoms. Table 2 summarizes the
input parameters involved.
The values P[·] and D(·) refer respectively to the probability of an event and to the disutility associated
with an event. The minimum and maximum values m and M depict each parameter’s range for the
sensitivity analysis. The base values are provided by a clinician expertise. The utilities of the different
strategies when all the input parameters are set to their base value are summarized in Table 3.
The base value of some input parameters are reliable while the others are really uncertain that leads us to
consider them as random. As a consequence, if YA, YB , YC and YD represent the outcomes corresponding
to the four different strategies A to D, the clinician aims to determine

max{E[YA],E[YB ],E[YC ],E[YD]} (11)

with the uncertain model input presented in Table 2. A sensitivity analysis is then performed to deter-
mine the most influential input variables on the outcome.

As done in [15, 7], all the random inputs will be independently based on Beta distributions. The Beta
density parameters corresponding to each random input are determined by fitting the base value as their
mean and capturing 95% of the probability mass in the range defined by the minimum and maximum.
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Figure 5: The decision tree for the biopsy and the treat all alternative

Figure 6: The decision tree for the treat all alternative

The remaining 5% will be equally distributed to either side of this range if possible. Concretely, each
random input will be distributed as

Z1m6Z<M + U1m>Z + V 1 Z>M

where Z, U and V are independent random variables. Z is Beta distributed with parameters (α, β). U
and V are uniform random variables on [0,m] and [M, 1] respectively.
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Fixed parameters Symbols Fixed value
P[having GCA] g 0.8 – – – –
D(having symptoms of GCA) dus 0.12 – – – –
D(having a temporal artery biopsy) dub 0.005 – – – –
D(not knowing the true diagnosis) dudx 0.025 – – – –

Beta(α,β)
Uncertain parameters Symbols Base Min. m Max. M α β
P[developing severe complications of GCA] gc 0.3 0.05 0.5 4.179 11.011
P[developing severe iatrogenic side effects] pc 0.2 0.05 0.5 2.647 10.589
Efficacy of high dose Prednisone e 0.9 0.8 1 27.787 3.087
Sensitivity of temporal artery biopsy sens 0.83 0.6 1 7.554 1.547
D(major complication from GCA) dugc 0.8 0.3 0.9 27.454 6.864
D(Prednisone therapy) dup 0.08 0.03 0.2 4.555 52.380
D(major iatrogenic side effect) dupc 0.3 0.2 0.9 15.291 35.680

Table 2: The data used by Buchbinder and Detsky [10] in their analysis

Treatment alternative Utilility Expectation
A Treat none 0.6870 0.6991
B Biopsy and treat positive 0.7575 0.7570
C Biopsy and treat all 0.7398 0.7371
D Treat all 0.7198 0.7171

Table 3: The utilities of the different strategies when all the input parameters are set to their base value
(second column) and their expectation when they are random (third column).

Sensitivity analysis
As already mentioned, the clinician wants to determine the highest utility. In [4], the authors then con-
sider the highest utility as output and lead a sensitivity analysis to determine the input having the largest
influence on this output. Since we are able to treat multivariate outputs, we consider a more general
framework in this paper: the output is the four-dimensional random variable Y = (YA, YB , YC , YD) where
YS represents the outcome corresponding to strategy S.

We compare three different methodologies and indices. First, we consider the Sobol indices introduced in
[17] (Multivariate). Second, we consider the indices constructed in this paper, based on the Cramér von
Mises distance and estimated by the ratios of the numerator estimator (8) and the denominator estimator
(9). Third, we consider the index presented in [4] and named β defined by

βi = E[sup
y∈Y
{|FY (y)− FY |Xi

(y)|}].

Then we use the estimator given in [7, Table 1] adapted to the multivariate case that is based on the
tedious and costly estimation of conditional expectations.

Results
Table 4 summarizes the sensitivity measures of the seven random inputs on the multivariate output with
the three different methodologies while Table 5 presents the associated ranks. It is worth mentioning
that the same total sample size has been used to compare properly the three methodologies.
As a conclusion, in this example, unlike the indices defined by Borgonovo et al., the multivariate sensitivity
indices and the Cramér von Mises indices provide the same ranking. The main advantage of the Cramér
von Mises sensitivity methodology with respect to the one of Borgonovo et al. is that one can use the
Pick and Freeze estimation scheme which provides an accurate estimation (see (8)) simple to implement.
Notice that in [7], the authors study a slightly different model that explains the numerical differences
between their results and the ones of the present paper. Furthermore, they perform a sensitivity analysis
on the best alternative with the greater mean instead of considering the multivariate output.
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Sensitivity meas. 1 2 3 4 5 6 7 Cputime
Multivariate 0.3690 0.0193 0.0105 -0.0821 -0.0617 0.1150 -0.0751 0.0624

N = 102 Borgonovo et al. 0.1195 0.1047 0.1064 0.1022 0.1046 0.1063 0.1027 1.5132
Cramér von Mises 0.3496 0.0745 0.0206 -0.0010 0.0084 0.1042 0.0105 0.9048

Multivariate 0.4024 0.1201 0.0516 -0.0190 -0.0043 0.2403 0.0093 0.0156
N = 103 Borgonovo et al. 0.1788 0.1192 0.1009 0.1007 0.1044 0.1195 0.1028 57.8452

Cramér von Mises 0.3494 0.0750 0.0209 -0.0008 0.0086 0.1045 0.0109 10.1089
Multivariate 0.3828 0.1333 0.0618 -0.0016 0.0100 0.3182 0.0217 0.0312

N = 104 Borgonovo et al. 0.3842 0.1572 0.1033 0.0930 0.0986 0.1775 0.1061 5.1988 103

Cramér von Mises 0.3494 0.0775 0.0232 0.0011 0.0108 0.1056 0.0124 436.8028

Table 4: Sensitivity measures. The estimation of the Cramér von Mises indices is the ratio of (8) and
(9).

Sensitivity meas. Ranking
Multivariate 1 6 2 3 5 7 4

N = 102 Borgonovo et al. 1 3 6 2 5 7 4
Cramér von Mises 1 6 2 3 7 5 4

Multivariate 1 6 2 3 7 5 4
N = 103 Borgonovo et al. 1 6 2 5 7 3 4

Cramér von Mises 1 6 2 3 7 5 4
Multivariate 1 6 2 3 7 5 4

N = 104 Borgonovo et al. 1 6 2 7 3 5 4
Cramér von Mises 1 6 2 3 7 5 4

Table 5: Ranks. The estimation of the Cramér von Mises indices is the ratio of (8) and (9).

5 Conclusion

In this paper, we first study the asymptotic properties of the multiple Pick and Freeze scheme proposed
by Owen et al. for the estimation of higher order Sobol indices. This index has several drawbacks
that lead us to propose a new natural index based on the Cramér von Mises distance between the
distribution of the output Y and the conditional law when an input is fixed. This new index contains
all the distributional information, is naturally defined for multivariate outputs and provides a rigorous
sharper way for a fast screening of complex computer codes. Furthermore, our approach is generic and
may be extended and implemented for general outputs (vectorial, valued on a manifold, functional, ...).
Concerning its estimation, we show that surprisingly a Pick and Freeze scheme is also available for the
estimation procedure and prove that it is efficient in a theoretical point of view as well as in a practical
one. More precisely, we establish a Central Limit Theorem that confirms the good statistical properties
of our estimator and allows us to build confidence intervals. Furthermore, the estimation is well working
with moderate sample sizes as shown in toy examples. Finally, the performance of the method is proven
on a real data example.
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6 Proofs

6.1 Proof of Theorem 2.1
Proof of Theorem 2.1. The consistency follows from a straightforward application of the strong law of
large numbers. The asymptotic normality is derived by two successive applications of the delta method
[29] .

(1) Let W 1
j := (Y v,1j , . . . , Y v,pj )T (j = 1, . . . , N) and g1 be the mapping from Rp to Rp whose l-th

coordinate is given by

g1l (x1, . . . , xp) =

(
p

l

)−1 ∑
k1 < . . . < kl

ki ∈ Ip, i = 1, . . . , l

(
l∏
i=1

xki

)
.

Then (W 1
j )j=1,...,N is an i.i.d. sample distributed as W 1 := (Y v,1, . . . , Y v,p)T .

Let Σ1 be the covariance matrix of W 1
j . Clearly, one has Σ1

ii = Var(Y ) for i ∈ Ip while for i 6= j,

Σ1
ij = Cov(Y v,i, Y v,j) = Cov(Y, Y v,2). The multidimensional Central Limit Theorem gives that

√
N

 1

N

N∑
j=1

W 1
j −m

 L→
N→∞

Np
(
0,Σ1

)
,

where m := (E[Y ], . . . ,E[Y ])T . We then apply the so-called delta method to W 1 and g1 so that
√
N
(
g1
(
W

1

N

)
− g1

(
E
[
W 1
])) L→

N→∞
N
(

0, Jg1
(
E
[
W 1
])

Σ1Jg1
(
E
[
W 1
])T)

where Jg1
(
E
[
W 1
])

is the Jacobian of g1 at point E
[
W 1
]
. Notice that for i ∈ Ip and k ∈ Ip,

∂g1l
∂xk

(
E
[
W 1
])

=

(
p−1
l−1
)(

p
l

) ml−1 =
l

p
E[Y ]l−1 =: al.

Thus Σ2 := Jg1
(
E
[
W 1
])

Σ1Jg1
(
E
[
W 1
])T is given by

Σ2
ij = paiaj

(
Σ1

11 + (p− 1)Σ1
12

)
.

(2) Now consider W 2
j := (P v,1j , . . . P v,pj )T (j = 1, . . . , N) and g2 the mapping from Rp to R defined by

g2(y1, . . . , yp) =

p∑
l=0

(
p

l

)
(−1)p−lyp−l1 yl.

Then (W 2
j )j=1,...,N is an i.i.d. sample distributed as W 2 := (P v,1, . . . P v,p)T .

We apply once again the delta method to W 2 so that
√
N
(
g2
(
W

2

N

)
− g2

(
E
[
W 2
])) L→

N→∞
N
(

0, Jg2
(
E
[
W 2
])

Σ2Jg2
(
E
[
W 2
])T)

where Jg2
(
E
[
W 2
])

is the Jacobian of g2 at point E
[
W 2
]
. Notice that for k ∈ Ip,

∂g2

∂y1

(
E
[
W 2
])

= (−1)p−1p(p− 1)E[Y ]p−1

+

p−1∑
l=2

(
p

l

)
(−1)p−l(p− l)E[Y ]p−l−1E

[
l∏
i=1

Y v,i

]
and

∂g2

∂yl

(
E
[
W 2
])

=

(
p

l

)
(−1)p−lE[Y ]p−l.
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Thus the limiting variance is

σ2 := Jg2
(
E
[
W 2
])

Σ2Jg2
(
E
[
W 2
])T

= p
(
Σ1

11 + (p− 1)Σ1
12

)( p∑
i=1

aibi

)2

,

where bi is the i-th coordinate of ∇g2
(
E
[
W 2
])
.

6.2 An auxiliary result and the proofs of the results of Section 3

Lemma 6.1. Let G and H be two measurable functions. Let (Uj)j∈IN and (Vk)k∈IN be two independent
samples of i.i.d. random variables. Assume that G(U1, V1) and H(U1, U2, V1) are both integrable and
centered. We define SN and TN by

SN =
1

N2

N∑
j,k=1

G(Uj , Vk) and TN =
1

N3

N∑
i,j,k=1

H(Ui, Uj , Vk).

Then SN and TN converge a.s. to 0 as N goes to infinity.

Proof of Lemma 6.1. Notice that if E[S4
N ] = O

(
1
N2

)
then by Borel-Cantelli lemma, SN converges a.s. to

0. Now,

E[S4
N ] =

1

N8

∑
E[G(Ui1 , Vj1)G(Ui2 , Vj2)G(Ui3 , Vj3)G(Ui4 , Vj4)]

where the sum is taken over all the indices i1, i2, i3, i4, j1, j2, j3, j4 from 1 to N . The only cases leading
to terms in O

(
1
N

)
or even in O (1) appear when we sum over indices that are all different except two i’s

or two j’s or over indices that are all different. Nevertheless, in those cases, at least one term of the form
E[G(Ui, Vj)] appears. Since the function G is centered, those cases are then discarded.

The proof of the result concerning TN follows the same tracks.

Proof of Corollary 3.4. The proof is based on Lemma 6.1. First, we define Zj =
(
Zv,1j , Zv,2j

)
,

G(Zj ,Wk) = 1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk},

F (Zj ,Wk) =
1

2

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)
,

H(Zi, Zj ,Wk) = F (Zi,Wk)F (Zj ,Wk).
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Second, we proceed to the following decomposition

N̂v
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −

 1

2N

N∑
j=1

(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk

}
)2


=

1

N2

N∑
j,k=1

1 {Zv,1
j 6Wk}1 {Zv,2

j 6Wk} −
1

4N3

N∑
i,j,k=1

(
1 {Zv,1

i 6Wk} + 1 {Zv,2
i 6Wk}

)(
1 {Zv,1

j 6Wk} + 1 {Zv,2
j 6Wk}

)

=
1

N2

N∑
j,k=1

G(Zj ,Wk)− 1

N3

N∑
i,j,k=1

H(Zi, Zj ,Wk)

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+
1

N2

N∑
j,k=1

E[G(Zj ,Wk)]− 1

N3

N∑
i,j,k=1

E[H(Zi, Zj ,Wk)]

=
1

N2

N∑
j,k=1

{G(Zj ,Wk)− E[G(Zj ,Wk)]} − 1

N3

N∑
i,j,k=1

{H(Zi, Zj ,Wk)− E[H(Zi, Zj ,Wk)]}

+ E[G(Z1,W1)]−
(

1− 1

N

)
E[H(Z1, Z2,W1)]− 1

N
E[H(Z1, Z1,W1)].

The two first sums converge almost surely to 0 by Lemma 6.1. The remaining term goes to E[G(Z1,W1)]−
E[H(Z1, Z2,W1)] as N goes to infinity.

It remains to show that Nv
2,CVM = E[G(Z1,W1)]− E[H(Z1, Z2,W1)]. On the one hand,

Nv
2,CVM =

∫
R
E[(F (t)− F v(t))2]dF (t) = E[H2

v (W1)]

= E[Cov(1 {Zv,1
1 6W1}, 1 {Zv,2

1 6W1})]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2].

On the other hand,

E[G(Z1,W1)]− E[H(Z1, Z2,W1)]

= E[1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]−
1

4
E[(1 {Zv,1

1 6W1} + 1 {Zv,2
1 6W1})(1 {Zv,1

2 6W1} + 1 {Zv,2
2 6W1})]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[E[1 {Zv,1
1 6W1}|W1]]E[E[1 {Zv,2

2 6W1}|W1]]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]E[1 {Zv,2

2 6W1}]

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]]− E[1 {Zv,1
1 6W1}]

2

= EW [EZ [1 {Zv,1
1 6W1}1 {Zv,2

1 6W1}]− EZ [1 {Zv,1
1 6W1}]

2]

that completes the proof.
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Proof of Theorem 3.5. We define for t ∈ R,

G1,2
N (t, t) =

1

N

N∑
j=1

1 {Zv,1
j 6t}1 {Zv,2

j 6t},

GiN (t) =
1

N

N∑
j=1

1 {Zv,i
j 6t}, i = 1, 2,

FN (t) =
1

N

N∑
k=1

1 {Wk6t}

and we rewrite N̂v
2,CVM as a regular function depending on the four empirical processes defined above:

N̂v
2,CVM =

∫ [
G1,2
N −

(
G1
N + G2

N

2

)2
]
dFN .

By Donsker’s theorem,

√
N
(
G1,2
N − G̃,G

1
N − F,G2

N − F,FN − F
)

L→
N→∞

G = (G1,G2,G3,G4)

where G(t, s) = P
(
Zv,1 6 t, Zv,2 6 s

)
, G̃(t) = G(t, t) and G is a centered Gaussian process of dimension

4 with covariance function defined by

Π(t, s) = E
(
AtA

T
s

)
− E (At)E (As)

T
, for (t, s) ∈ R2

and At :=
(
1 {Zv,16t}1 {Zv,26t}, 1 {Zv,16t}, 1 {Zv,26t}, 1 {W6t}

)T .
Since these processes are càd-làg functions of bounded variation, we introduce the maps ψ1, ψ2 :
BV1[−∞,+∞]2 7→ R and Ψ : BV1[−∞,+∞]4 7→ R defined by

ψi(F1, F2) =

∫
(F1)idF2, i = 1, 2 and Ψ(F1, F2, F3, F4) = ψ1(F1, F4)− ψ2

(
F2 + F3

2
, F4

)
,

where BVM [a, b] is the set of càd-làg functions of variation bounded by M . Hence,

N̂v
2,CVM = Ψ

(
G1,2
N ,G1

N ,G2
N ,FN

)
,

Now using the chain rule 20.9 and Lemma 20.10 in [29], the map Ψ is Hadamard-differentiable from the
domain BV1[−∞,+∞]4 into R whose derivative is given by

(h1, h2, h3, h4) 7→ Dψ1(F1, F4)(h1, h4)−Dψ2

(
F2 + F3

2
, F4

)(
h2 + h3

2
, h4

)
where the derivative of ψi are given by Lemma 20.10:

(h1, h2) 7→ h2ϕi ◦ F1|+∞−∞ −
∫
h2−dϕi ◦ F1 +

∫
ϕ′i(F1)h1dF2

with ϕi(x) = xi and h− is the left-continuous version of a càd-làg function h.

Applying the functional delta method 20.8 in [29] we get the weak convergence of
√
N
(
N̂v

2,CVM −Nv
2,CVM

)
to the following limit distribution∫

G4−d(F 2 − G̃) +

∫
G1dF −

∫
F (G2 + G3)dF.
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Since the map Ψ is continuous on the whole space BV1[−∞,+∞]4, the delta method in its stronger form
20.8 in [29] implies that the limit variable is the limit in distribution of the sequence

DΨ(G̃, F, F, F )
(√

N
(
G1,2
N − G̃,G

1
N − F,G2

N − F,FN − F
))

=
√
N

[∫
(FN − F )− d

(
F 2 − G̃)

)
+

∫ (
G1,2
N − G̃− F

(
G1
N + G2

N − 2F
))
dF

]
.

We define

U :=

∫
1 {W<t}d(F 2(t)− G̃(t) = G̃(W )− F (W )2,

V :=

∫ [
1 {Zv,16t}1 {Zv,26t} −

(
1 {Zv,16t} + 1 {Zv,26t}

)
F (t)

]
dF (t)

=
1

2

(
F (Zv,1)2 + F (Zv,2)2

)
− F (Zv,1 ∨ Zv,2).

By independence, the limiting variance ξ2 is

ξ2 = VarU + VarV. (12)

6.3 Proof of Proposition 4.1

Proof of Proposition 4.1. First of all, the distribution function of Y conditioned on X1 is given by

F (1)(t) = P(Y 6 t|X1) = Φ

(
ln t−X1

2

)
.

Then

N1
2,CVM =

∫
R
E
[
(F (1)(t)− FY (t))2

]
fY (t)dt

=

∫
R+

E

[(
Φ

(
ln t−X1

2

)
− Φ

(
ln y√

5

))2
]

1√
10πt

e−(ln t)
2/10dt

=

∫
R
E

(Φ

(√
5z −X1

2

)
− Φ (z)

)2
 e−z2/10 dz√

2π

= E

(Φ(X2)− Φ

(√
5X2 −X1

2

))2


where X1 and X2 are independent standard Gaussian random variables. In the same way,

N2
2,CVM = E

[
(Φ(X2)− Φ

(√
5X2 − 2X1

)
)2
]
.

Thus we are lead to compute the bivariate function:

ϕ(α, β) := E
[
(Φ(X2)− Φ (αX2 − βX1))2

]
for (α, β) = (

√
5/2, 1/2) and (α, β) = (

√
5, 2). The term E

[
Φ(X2)2

]
is

E
[
Φ(X2)2

]
=

∫
Φ(z)2f(z)dz =

[
1

3
Φ(z)3

]+∞
−∞

=
1

3
.
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We introduce three independent random variables U , U ′ and V distributed as standard Gaussian random
variables. Then the term E

[
Φ (αX2 − βX1)

2
]
can be rewritten as

E
[
Φ (αX2 − βX1)

2
]

= E
[
Φ
(√

α2 + β2V
)2]

= E
[
E
[
1
U6
√
α2+β2V

|V
]2]

= E
[
E
[
1
U6
√
α2+β2V

|V
]
E
[
1
U ′6
√
α2+β2V

|V
]]

= E
[
E
[
1
U6
√
α2+β2V

1
U ′6
√
α2+β2V

|V
]]

= E
[
1
U6
√
α2+β2V

1
U ′6
√
α2+β2V

]
= P

(
U 6

√
α2 + β2V, U ′ 6

√
α2 + β2V

)
=: G(

√
α2 + β2).

Integrating by parts, we have

G′(a) = 2

∫
R
zΦ(az)e−(a

2+1)z2/2 dz

2π

= − 1

π(a2 + 1)

([
Φ(az)e−(a

2+1)z2/2
]+∞
−∞
− a

∫
R
f(az)e−(a

2+1)z2/2dz

)
=

a

π(a2 + 1)

1√
2a2 + 1

.

Since G(1) = 1/3, we get

G(a) =
1

3
+

∫ a

1

x

π(x2 + 1)

1√
2x2 + 1

dx =
1

3
+

1

π
(arctan

√
1 + 2a2 − arctan

√
3) =

1

π
arctan

√
1 + 2a2

and

E
[
Φ (αX2 − βX1)

2
]

=
1

3
+

1

π
(arctan

√
1 + 2(α2 + β2)− arctan

√
3) =

1

π
arctan

√
1 + 2(α2 + β2).

In the same way, the last term E [Φ(X2)Φ (αX2 − βX1)] is given by

E [Φ(X2)Φ (αX2 − βX1)] = P

(
U 6 V,

√
1 + β2

α2
U ′ 6 V

)

where U , U ′ and V are independent standard Gaussian random variables. Remind that we only need to

consider (α, β) = (
√

5/2, 1/2) and (α, β) = (
√

5, 2) in which cases
√

1+β2

α2 = 1. Thus the last term equals
1/3 in both cases. It remains to divide by the normalizing factor 1/6 to get the result.

Remark 6.2. In the previous proof, we establish that

G(a) = P (U 6 aV, U ′ 6 aV )

is equal to 1
π arctan

√
1 + 2a2 where U , U ′ and V are independent standard Gaussian random variables.

Actually, this result is also a straightforward consequence of Lemma 4.3 in [2] with X = (aV −U)/
√
a2 + 1

and Y = (aV −U ′)/
√
a2 + 1. Nevertheless, since our proof is different and elegant, we decide not to skip

it.
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