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PATH-SPACE INFORMATION BOUNDS FOR UNCERTAINTY QUANTIFICATION
AND SENSITIVITY ANALYSIS OF STOCHASTIC DYNAMICS ∗

PAUL DUPUIS† , MARKOS A. KATSOULAKIS‡ , YANNIS PANTAZIS§ , AND PETR PLECHÁČ¶

Abstract. Uncertainty quantification is a primary challenge for reliable modeling and simulation of complex stochastic
dynamics. Such problems are typically plagued with incomplete information that may enter as uncertainty in the model
parameters, or even in the model itself. Furthermore, due to their dynamic nature, we need to assess the impact of these
uncertainties on the transient and long-time behavior of the stochastic models and derive corresponding uncertainty bounds for
observables of interest. A special class of such challenges is parametric uncertainties in the model and in particular sensitivity
analysis along with the corresponding sensitivity bounds for stochastic dynamics. Moreover, sensitivity analysis can be further
complicated in models with a high number of parameters that render straightforward approaches, such as gradient methods,
impractical. In this paper, we derive uncertainty and sensitivity bounds for path-space observables of stochastic dynamics in
terms of new goal-oriented divergences; the latter incorporate both observables and information theory objects such as the
relative entropy rate. These bounds are tight, depend on the variance of the particular observable and are computable through
Monte Carlo simulation. In the case of sensitivity analysis, the derived sensitivity bounds rely on the path Fisher Information
Matrix, hence they depend only on local dynamics and are gradient-free. These features allow for computationally efficient
implementation in systems with a high number of parameters, e.g., complex reaction networks and molecular simulations.
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1. Introduction. In this paper, we derive uncertainty and sensitivity bounds for path-space observables
of stochastic dynamics in terms of suitable information theoretic divergences such as relative entropy rate
(RER) and path-space Fisher Information Matrix (pFIM). Reliable modeling and simulation of complex
systems often suffers from incomplete information that may enter as uncertainty in the model parameters,
or even in the model itself. Here we develop an approach that provides uncertainty bounds for observables
of interest in the transient and long-time behavior of the stochastic models. The bounds are expressed in
terms of a new goal-oriented divergence that incorporates observables, as well as path-space information
theory objects such as the relative entropy rate. The presented method also yields bounds on parametric
sensitivity for stochastic dynamics, e.g., for solutions to stochastic differential equations. It is particularly
useful in realistic stochastic models, for example, biochemical reaction networks, which are characterized by
a high number of parameters that render classic sensitivity analysis approaches, such as gradient methods,
impractical. We present sensitivity bounds that are computable and sufficiently sharp.

Estimating sensitivity indices appears as a common task in many applications ranging from engineer-
ing and financial mathematics to biochemistry. Methods that apply Monte Carlo simulations to estimate
the gradients directly include finite-difference approximations combined with coupling methods [34, 1, 2],
likelihood ratio and Girsanov methods [11, 32], polynomial chaos expansions [16], path-wise methods [36],
linear response [12], etc. In another direction, information-based sensitivity analysis approaches have been
proposed as means to quantify the overall behavior of the system and not just the response of a specific
observable function, [26, 19, 30]. These sensitivity analysis methods employ information theory metrics such
as the relative entropy (also known as the Kullback-Leibler divergence) as well as the Fisher Information
Matrix (FIM). Moreover, taking into account that the stationary distribution is rarely known in complex
stochastic dynamics, these information-based methods resort either to linearized Gaussian approximations of
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2the underlying process [19], or they rely on path-space objects such as the relative entropy rate and the path
Fisher Information Matrix, [30, 31]. The latter approach is exact since no approximation is necessary. It is
also gradient-free in the sense that simulation for a single model (parameter) yields bounds for all parameter
perturbations.

Overall, gradient-free sensitivity analysis methods such as the ones based on pFIM, [26, 19, 30, 31] are
highly appropriate for systems with a high-dimensional parameter space since they allow for an efficient
exploration of the parameter space without the calculation of a very high number of directional derivatives.
In the stochastic dynamics setting, the bounds we present avoid expensive Monte Carlo simulations of
sensitivity indices by providing error bounds for them. The derived bounds are based on the path-space FIM
and are obtained from different inequalities and representations of relative entropy. It is also desirable to
provide bounds based on Fisher information because the (static) FIM is a tool extensively utilized in optimal
experimental design, as well as in statistics, for estimation, identifiability, etc. Moreover, in order to obtain
the tightest possible bounds, it is crucial to find the optimal constant that multiplies the Fisher information
in these inequalities.

The presented results rely in part on an upper bound derived recently in [7] and a companion lower bound
in [21], for functionals of probability measures P ∈ P(Ω) and Q ∈ P(Ω), where Q is viewed as the “true”
probabilistic model, and P is a computationally tractable “nominal” or “reference” model, e.g., a surrogate
model. In this paper we start our analysis by showing that these inequalities, for bounded observables f of
random variables with probabilities P and Q, can be rewritten in the form

Ξ−(Q,P ; f) ≤ EQ[f ]− EP [f ] ≤ Ξ+(Q,P ; f) , (1.1)

where Ξ+(Q,P ; f) ≥ 0 (Ξ−(Q,P ; f) ≤ 0), and Ξ±(Q,P ; f) = 0 if and only if P = Q or f is deterministic
a.s. with respect to P . Due to these properties, Ξ+(Q,P ; f) ≥ 0 (and −Ξ−(Q,P ; f)) is a goal-oriented
divergence, incorporating in the definition the observable f . Furthermore, Ξ±(Q,P ; f) depend on the relative
entropy of Q with respect to P and it admits an explicit representation (see Theorem 2.8). We view these
weak error bounds (i.e., errors in averages or expected values for various classes of functions) as Uncertainty
Quantification (UQ) bounds for the observables of interest f . Furthermore, the UQ bounds (1.1) characterize
the errors incurred if one uses the more computationally tractable EP [f ] instead of EQ[f ]. As it is discussed
in Section 2, UQ bounds of the type (1.1) can be derived from different divergences used to discriminate
between two probability measures P and Q. For example, a common choice is based on the Csiszár-Kullback-
Pinsker (CKP) inequality, which bounds the total variation norm by the relative entropy. Another approach
uses χ2-divergence (or Pearson divergence) and derives a bound by a direct application of Cauchy-Schwarz
inequality. The bounds (1.1) presented in this paper are based on the variational characterization of relative
entropy used in [7]. The variational approach guarantees optimal constants in the estimates and thus tighter
bounds.

In the context of parametrized models the general UQ bounds (1.1) give a tool for estimating sensitivity of
observables to perturbations in model parameters. More precisely, given a parametric family of probability
measures P θ(dω), θ ∈ R

k, on the common measurable space (Ω,B), we study bounds on perturbations
of EP θ [f ] under changes of θ. The bounds on sensitivity indices for parametric model families P θ then
follow by asymptotic expansions of Q ≡ P θ+ǫv in ǫ, which is a straightforward procedure under smoothness
assumptions when the parameter is finite dimensional, i.e., θ, v ∈ R

k and |v| = 1. The derived sensitivity
bounds can be viewed as sharp and computable bounds for the weak error of bounded and continuous
functions in cases when the measure P θ is approximated by P θ+ǫv, under assumptions of smoothness on
the mapping θ 7→ P θ. The mapping defines a finite dimensional submanifold parametrized by θ ∈ R

k

of the manifold of probability measures P(Ω) on Ω. For the sensitivity indices defined by Sf,v(P
θ) =

limǫ→∞
1
ǫ
(EP θ+ǫv [f ]− EP θ [f ]) , we establish estimates of the type

|Sf,v(P
θ)| ≤

√

VarP θ (f)
√

vTI(P θ)v , (1.2)

where I(P θ) is the FIM of P θ. It is worth noting the decomposition of the right hand side of the above
sensitivity bound into the product of two terms, with each term capturing different aspects of the sensitivities.

A primary novelty of the presented results is their application to cases where the model is represented
by a path measure for a Markov process. Thus the proposed UQ and sensitivity bounds are also applicable



3for the weak error of path-dependent quantities. With stochastic dynamics in mind, we consider a stochastic
process {Xt}t≥0 with the stationary measure µ(dx), and a process {Yt}t≥0 with the initial measure ν(dx),
and we denote by P = P[0,T ], Q = Q[0,T ] the respective measures on the path space. As previously, Q[0,T ]

is viewed as the “true” measure while P[0,T ] as the “nominal” model. We consider as an observable a
measurable functional F({Xt}0≤t≤T ) of the process. The derived UQ bounds are now set on path space and
characterize the errors incurred when approximating EQ[0,T ]

[F ] by EP[0,T ]
[F ]

Ξ−(Q[0,T ], P[0,T ];F) ≤ EQ[0,T ]
[F ]− EP[0,T ]

[F ] ≤ Ξ+(Q[0,T ], P[0,T ];F) . (1.3)

Even though the path UQ bound in (1.3) is a direct consequence of (1.1) it can be further elaborated using
properties and asymptotics of the relative entropy between path distributions, such as the relative entropy
rate (RER), denoted by H(Q ||P ), which measures the information loss per unit time (for a definition of
RER see (3.1)). The RER for large classes of stochastic dynamics is a computable quantity, [30], implying in
turn that the bounds in (1.3) are computable using Monte Carlo simulation. Furthermore, in a calculation
reminiscent of the Gärtner-Ellis Theorem, we show that the bounds (1.3) in the T → ∞ limit take the form

Ξ±(Q ||P ;F) = G±
P,F

(

H(Q ||P )
)

, (1.4)

where G±
P,F(0) = 0 and the function G±

P,F is calculated in terms of the cumulant generating function of the
observable F under the model P . Finally, (1.4) demonstrates the key role played by the relative entropy
rate H(Q ||P ) for uncertainty quantification of stochastic processes and in general for models with correlated
data. These bounds further justify the sensitivity analysis based on relative entropy rate and coarse-graining
methods developed in [30] and [14], respectively.

An implication of the path UQ bounds (1.3) is that sensitivity analysis bounds which are general and valid
in both transient and long-time regimes are possible. In particular, when assuming a parametric family of
path distributions parametrized by θ ∈ R

k and for time-averaged observables of the form F({Xt}0≤t≤T ) =
1
T

∫ T

0
f(Xs) ds, we obtain sensitivity bounds such as (1.2) for both transient and long-time regimes. For

example, for the stationary distribution µθ (unknown for most stochastic dynamics models) we have the
bound

|Sf,v(µ
θ)| ≤

√

τ(f)
√

vTIH(P θ)v , (1.5)

where τ(f) is the integrated autocorrelation time (IAT). In Monte Carlo simulation, the calculation of IAT
is a necessary step since it provides the variance of the estimated observable, F , [24]. Furthermore, IH(P θ)
is the path FIM which corresponds to the Hessian of the RER. The path FIM is also computable for large
classes of stochastic dynamics; for example, for chemical reaction networks the path FIM is a sparse, block-
diagonal matrix, hence all related computations scale linearly with the dimension of the parameter vector
θ, [31]. Therefore, the path FIM is computationally feasible, even for systems with a very high-dimensional
parameter space. For completeness in the presentation, we refer to Appendix A for the RER and the path
FIM formulas for various classes of Markov processes.

We present several examples of the derived sensitivity bounds and their tightness is demonstrated. In
particular, for the exponential family of distributions, the sensitivity bound becomes an equality, showing
the sharpness of the bounds. Additionally, we compare the “static” and the path-space sensitivity bounds for
simple Markov processes where the stationary distribution is explicitly known. We note though that for non-
equilibrium steady state systems the stationary distribution is generally not known, therefore, comparisons
are not feasible and only the path-space sensitivity bound (1.5) can be computed.

2. Uncertainty quantification information inequalities and sensitivity bounds.

2.1. Distances and divergences of probability measures. Bounds of the type (1.1) are based on
characterizing a distance or divergence between the measures, Q, P , under which the averages are evaluated.
While our primary goal is to characterize the bounds based on relative entropy, other divergences can be



4also used to derive similar bounds with different levels of sharpness.
Definition 2.1. The total variation norm between two probability measures Q and P on (Ω,B) is

defined by

‖Q− P‖TV = sup
A∈B

|Q(A)− P (A)| . (2.1)

We also consider two pseudo-distances, or divergences in the statistics terminology.
Definition 2.2. For two probability measures Q, P on (Ω,B) the relative entropy (information diver-

gence, Kullback-Leibler divergence) of Q with respect to P is defined by

R (Q ||P ) =
{

∫

log dQ
dP

(ω)Q(dω) =
∫

dQ
dP

(ω) log dQ
dP

(ω)P (dω) , if Q≪ P and dQ
dP

log dQ
dP

is P -integrable,

+∞ otherwise.

(2.2)
The Kullback-Leibler divergence is a particular case of a family of Csiszár φ-divergences which are functionals
of the form

Rφ (Q ||P ) =
{

∫

φ
(

dQ
dP

(ω)
)

P (dω) , if Q≪ P and φ
(

dQ
dP

)

is P -integrable,

+∞ otherwise,
(2.3)

for a convex function φ : R+ → R with φ(1) = 0. In the case of the relative entropy we have φ(x) = x log x.
Another choice of the convex function, φ(x) = (x − 1)2, gives a member of the φ-divergence family known
as χ2-divergence.

Definition 2.3. The χ2-divergence of two probability measures Q, P on (Ω,B) is defined by

χ2 (Q ||P ) =







∫

(

dQ
dP

(ω)− 1
)2

P (dω) , if Q≪ P ,

+∞ otherwise.
(2.4)

2.2. Information inequalities and goal-oriented divergence. We turn to a variational formulation
that provides sharp weak error estimates in terms of relative entropy. Let M(Ω) denote the measurable
functions from Ω into R and letMb(Ω) be the subset of functions that are uniformly bounded. For f ∈ Mb(Ω)
and c ∈ R we introduce the cumulant generating function (logarithmic moment generating function)

ΛP,f(c) = logEP

[

ecf
]

≡ log

∫

ecf dP . (2.5)

We restrict our analysis to the functions f for which ΛP,f (c) is finite at least in a neighborhood of the origin.
More specifically, we have the following definition of the set E .

Definition 2.4. A function f ∈ Mb(Ω) belongs to the set E if and only if there exists c0 > 0 such that
ΛP,f(±c0) <∞.

The properties of ΛP,f then guarantee that ΛP,f (c) is finite for all c ∈ [−c0, c0]. We note that EP [|f |] is
finite for all f ∈ E . It will be more convenient to work with the cumulant generating function of the centered
observable f̃ ≡ f − EP [f ]:

Λ̃P,f (c) = logEP

[

ec(f−EP [f ])
]

≡ log

∫

ec(f−
∫
f dP ) dP . (2.6)

Recalling the basic properties of the cumulant generating function for f ∈ E that is not essentially
constant, we have that Λ̃P,f (·) is a strictly convex function which is C∞ in a neighborhood of the origin, with

the derivatives Λ̃
(k)
P,f(0) defining the cumulants of f − EP [f ] under P . In particular, Λ̃P,f(0) = Λ̃′

P,f(0) = 0

and Λ̃′′
P,f (0) = VarP (f). The following characterization of exponential integrals is well-known in statistics

and large deviation theory (see e.g., [9]). For the sake of completeness we present it here together with a
proof.



5Lemma 2.5. Let f ∈ Mb(Ω) and P be a probability measure on (Ω,B). Then

logEP

[

ef
]

= sup
Q≪P

{EQ[f ]−R (Q ||P )} . (2.7)

Proof. It suffices to consider only Q such that R (Q ||P ) < ∞ in (2.7). Let the probability measure R
be defined by dR/dP = ef/EP [e

f ]. If R (Q ||P ) <∞, then Q≪ P implies Q≪ R. Thus

−R (Q ||P ) + EQ[f ] = −EQ

[

log

(

dQ

dP

)]

+ EQ[f ]

= −EQ

[

log

(

dQ

dR

)]

− EQ

[

log

(

dR

dP

)]

+ EQ[f ]

= −R (Q ||R) + logEP [e
f ].

Now use that R (Q ||R) ≥ 0 and R (Q ||R) = 0 if and only if Q = R [9, Lemma 1.4.1]. This establishes (2.7)
and also shows that R is the supremizing measure.

By changing f to c(f − EP [f ]), we obtain a variational formula for the cumulant generating function

Λ̃P,f (c) = sup
Q≪P

{c(EQ[f ]− EP [f ])−R (Q ||P )} . (2.8)

The variational characterization gives us the following upper and lower bounds for f ∈ Mb(Ω) and c > 0:

EQ[f ]− EP [f ] ≤
1

c
logEP [e

c(f−EP [f ])] +
1

c
R (Q ||P ) , (2.9)

EQ[f ]− EP [f ] ≥ −1

c
logEP [e

−c(f−EP [f ])]− 1

c
R (Q ||P ) . (2.10)

These inequalities can be extended to any f ∈ E , and we give the argument for the case of the upper bound
(2.9). Recall that f ∈ E implies EP [|f |] < ∞. If EP [e

c(f−EP [f ])] = ∞, then (2.9) holds automatically. If
EP [e

c(f−EP [f ])] < ∞, let fa,b = [f ∨ (−a)] ∧ b for a, b ∈ R, and apply (2.9) with f − EP [f ] replaced by
fa,b − EP [f ]. First let a→ ∞ and use the Monotone Convergence Theorem, and then send b→ ∞ and use
the dominating function ec(f−EP [f ]) to obtain (2.9) as written.

Using these inequalities, tight estimates as in Chowdhary and Dupuis, [7], and Li and Xie, [21] can be
obtained by optimizing over c > 0

sup
c>0

{

−1

c
Λ̃P,f (−c)−

1

c
R (Q ||P )

}

≤ EQ[f ]− EP [f ] ≤ inf
c>0

{

1

c
Λ̃P,f(c) +

1

c
R (Q ||P )

}

. (2.11)

We refer to upper and lower bounds of this form as Uncertainty Quantification Information Inequalities
(UQII). The corresponding bounds define a new type of divergence between probability measures P and Q
as well as the observable f , hence we refer to it as a Goal-oriented Divergence. More precisely, based on
(2.11) we give the following definitions.

Definition 2.6. For any two probability measures P and Q with R (Q ||P ) < ∞ and any observable
f ∈ E, we define

Ξ+(Q ||P ; f) = inf
c>0

{

1

c
Λ̃P,f (c) +

1

c
R (Q ||P )

}

, (2.12)

and similarly

Ξ−(Q ||P ; f) = sup
c>0

{

−1

c
Λ̃P,f(−c)−

1

c
R (Q ||P )

}

. (2.13)

Then the UQIIs (2.11) are rewritten as

Ξ−(Q ||P ; f) ≤ EQ[f ]− EP [f ] ≤ Ξ+(Q ||P ; f) . (2.14)



6We next show that Ξ+(Q ||P ; f) and −Ξ−(Q ||P ; f) have the properties of a divergence similar to the relative
entropy and the χ2-divergence. However, the new goal-oriented divergence additionally captures the role
of fluctuations of the observable f , as is further quantified in Theorem 2.7 and Theorem 2.11 below. More
specifically we have:

Theorem 2.7 (Goal-oriented Divergence). Assume that f ∈ E and R (Q ||P ) <∞. Then
(i) Ξ+(Q ||P ; f) ≥ 0 and Ξ−(Q ||P ; f) ≤ 0,
(ii) Ξ±(Q ||P ; f) = 0 if and only if Q = P or f is constant P -a.s.

Proof. The proofs for Ξ+ and Ξ− are similar and therefore we prove only the former case.
(i) The proof uses the fact that both terms in the variational definition of Ξ+,

Ξ+(Q ||P ; f) = inf
c>0

{

1

c
Λ̃P,f (c) +

1

c
R (Q ||P )

}

,

are non-negative. The relative entropy R (Q ||P ) is a divergence hence always non-negative, and thus
1
c
R (Q ||P ) ≥ 0 for all c > 0. Furthermore, by Jensen’s inequality,

1

c
Λ̃P,f(c) ≡

1

c
logEP

[

ec(f−EP [f ])
]

≥ 1

c
log eEP [c(f−EP [f ])] = EP [f − EP [f ]] = 0 .

(ii) If f = EP [f ] then Λ̃P,f(c) ≡ 0. Since R (Q ||P ) ∈ [0,∞),

Ξ+(Q ||P ; f) = inf
c>0

{

1

c
R (Q ||P )

}

= 0 .

If Q = P then R (Q ||P ) = 0 and

0 ≤ Ξ+(Q ||P ; f) = inf
c>0

{

1

c
Λ̃P,f(c)

}

≤ lim
c→0

1

c
Λ̃P,f(c) = Λ̃′

P,f(0) = 0 .

For the reverse direction we can assume R (Q ||P ) > 0, since if R (Q ||P ) = 0 the conclusion is automatic.
In this case the infimum must be obtained in the limit c → ∞, so that limc→∞ Λ̃P,f(c)/c = 0. We claim

that Λ̃P,f(c) = 0 for all c ∈ [0,∞). Since Λ̃P,f (0) = 0, if Λ̃P,f(ĉ) > 0 for some ĉ ∈ (0,∞) then Λ̃′
P,f(c̄) > 0

for some c̄ ∈ (0, ĉ]. Convexity then implies lim infc→∞ Λ̃P,f (c)/c ≥ Λ̃′
P,f (c̄) > 0, and this contradiction

establishes Λ̃P,f (c) = 0 for all c ∈ [0,∞). Since f ∈ E implies Λ̃P,f (c) is twice continuously differentiable at

c = 0, EP [(f − EP [f ])]
2
= Λ̃′′

P,f(0) = 0, and therefore f = EP [f ] P -a.s.
Furthermore, we derive an analytic formula for the divergences Ξ±(Q ||P ; f):
Theorem 2.8 (Representation). If f ∈ E with f 6= EP [f ] P -a.s. and R (Q ||P ) <∞ then we have

Ξ+(Q ||P ; f) = Λ̃′
P,f

(

Φ−1(R (Q ||P ))
)

and Ξ−(Q ||P ; f) = Λ̃′
P,f

(

− Φ−1(R (Q ||P ))
)

, (2.15)

where

Φ(c) := −Λ̃P,f(c) + cΛ̃′
P,f (c)

is a strictly increasing function on (0, c̄), and where c̄ = sup{c : Λ̃P,f (c) <∞}.
Proof. Let Θ+(c; ρ) ≡ 1

c
Λ̃P,f(c) +

1
c
ρ2, where ρ2 = R (Q ||P ). Then

Ξ+(Q ||P ; f) = inf
c>0

Θ+(c; ρ) . (2.16)

We use that Λ̃P,f (0) = Λ̃′
P,f(0) = 0, and that f 6= EP [f ] P -a.s. implies Λ̃P,f is strictly convex. If ρ 6= 0

then Θ+(c; ρ) tends to ∞ as c ↓ 0 and as c ↑ ∞. Hence the infimum is achieved. Suppose an infimum of
A > 0 is achieved at two points 0 < c1 < c2 < ∞, so that Λ̃P,f (ci) + ρ2 = ciA, i = 1, 2. If c̄ = (c1 + c2)/2,

then the strict convexity of Λ̃P,f implies Λ̃P,f(c̄) + ρ2 < c̄A. This contradicts the minimality of ci, and

thus shows the minimizer is unique. Since Λ̃P,f(0) = Λ̃′
P,f (0) = 0 we can continuously extend the function

Θ+(c, 0) to c = 0 by Θ+(0, 0) = 0. Then by direct calculation and lower semicontinuity the optimization



7problem in (2.15) extended to c ≥ 0 has the unique minimizer c∗(0) = 0 with the minimum value equal to 0.
Then infc≥0Θ+(c; ρ) is well defined and achieves the infimum for all ρ ∈ R. Since Λ̃P,f (·) is a proper convex
function and C∞ in its domain of finiteness we have, for all ρ ∈ R, the optimality condition

− 1

c2
Λ̃P,f(c) +

1

c
Λ̃′
P,f(c)−

1

c2
ρ2 = 0 . (2.17)

Multiplying (2.17) by c2, we obtain that the minimizer c∗ = c∗(ρ) satisfies

− Λ̃P,f (c) + cΛ̃′
P,f(c) = ρ2 . (2.18)

We will use that Λ̃P,f(c) is a log moment generating function with Λ̃P,f(c) <∞ for c in an open neighborhood

of zero and Λ̃′
P,f (0) = 0. These imply that if Λ̃∗(t) is the Legendre-Fenchel transform of Λ̃P,f , i.e., Λ̃

∗(t) =

supc>0{ct− Λ̃P,f (c)}, then Λ̃∗(t) has its unique minimum at t = 0, and Λ̃∗(t) → ∞ as t → ∞. If t(c) is the

unique solution of Λ̃∗(t) = c, then it follows from convex duality that

Φ(c) = −Λ̃P,f(c) + cΛ̃′
P,f(c) = Λ̃∗(t(c))

is strictly increasing and maps (0, c̄) onto (0,∞). Therefore, from (2.18) we have

c∗ = c∗(ρ) = Φ−1(ρ2) . (2.19)

Substituting in (2.16) and using (2.18), we have that

Ξ+(Q ||P ; f) = Θ+(c
∗(ρ); ρ) = Λ̃′

P,f (c
∗(ρ)) = Λ̃′

P,f

(

Φ−1(ρ2)
)

. (2.20)

The representation of the lower bound Ξ−(Q ||P ; f) = Λ̃′
P,f

(

− Φ−1(ρ2)
)

is computed in a similar way.
From the proof above we deduce that the dependence on the cumulant generating function of f can be

removed if a bound is available. Note that if Ψ : R → R is convex with a minimum of zero at the origin,
then in the definition of Ψ∗(t), its Legendre-Fenchel transform, the supremum can be restricted to (0,∞).

Corollary 2.9. Let Ψ : R → R be a convex and continuously differentiable function such that Ψ(0) =
Ψ′(0) = 0 and

Λ̃P,f(c) ≡ logEP [e
c(f−EP [f ])] ≤ Ψ(c) ,

and define Ψ♯
+(t) = (Ψ∗

+)
−1(t) as the (generalized) inverse of the Legendre-Fenchel transform Ψ∗(t) =

supc>0{ct−Ψ(c)} of the function Ψ. Then

EQ[f ]− EP [f ] ≤ Ψ♯
+(R (Q ||P )) . (2.21)

We end this section by relating the derived bounds to existing information-theoretic inequalities. The
Csiszár-Kullback-Pinsker inequality states that (for proofs see, e.g., [38])

‖Q− P‖TV ≤
√

2R (Q ||P ) . (2.22)

Using ‖Q−P‖TV = sup‖f‖∞≤1{EQ[f ]−EP [f ]} and the Csiszár-Kullback-Pinsker inequality (2.22) we obtain

|EQ[f ]− EP [f ]| ≤ ‖f‖∞
√

2R (Q ||P ) . (2.23)

The constant in front of the pseudo-distance can be improved by using the χ2-divergence instead of the

relative entropy. Observing that |EP [f ]− EQ[f ]| =
∣

∣

∣

∫

f
(

1− dQ
dP

)

dP
∣

∣

∣
and applying the Cauchy-Schwarz

inequality to the right-hand side we have, for P , Q two probability measures on (Ω,B) with Q ≪ P and
f ∈ Mb(Ω),

|EP [f ]− EQ[f ]| ≤
√

VarP (f)
√

χ2 (Q ||P ) . (2.24)

However, this bound is weaker than the new derived bound derived, (2.14), since in general R (Q ||P ) ≤
χ2 (Q ||P ).



8 2.3. Linearization of the UQ bounds. The UQ bounds (2.14) and the representations (2.15) can
be made more explicit in terms of the asymptotic expansion at R (Q ||P ) = 0, i.e., when Q is a perturbation
P . We first prove an asymptotic expansion for the solution of the optimization problems in (2.11).

Lemma 2.10. For two probability measures P , Q on (Ω,B) set ρ2 = R (Q ||P ). Assume ρ2 < ∞ and
that f ∈ E with f 6= EP [f ] P -a.s. Then there exists a function c∗(ρ) which is the unique solution of

(P+) inf
c>0

{

1

c
Λ̃P,f(c) +

1

c
R (Q ||P )

}

as well as

(P−) sup
c>0

{

−1

c
Λ̃P,f (−c)−

1

c
R (Q ||P )

}

.

Furthermore, there is ρ0 > 0 such that the optimal solution c∗(ρ) is C∞ in (0, ρ0) and admits the expansion

c∗(ρ) = c∗1ρ+O(ρ2) , (2.25)

where

c∗1 =

√

2

VarP (f)
. (2.26)

Proof. We first solve (P+). Let Θ+(c; ρ) = 1
c
Λ̃P,f (c) +

1
c
ρ2. Following Theorem 2.8 we obtain the

optimality condition (2.17). Multiplying (2.17) by c, we define

G(c, ρ) := −1

c
Λ̃P,f(c) + Λ̃′

P,f (c)−
1

c
ρ2 . (2.27)

Next, we apply the Implicit Function Theorem at c = 0, ρ = 0 as follows; first we have that

∂

∂c
G(c, 0) =

1

2
Λ̃′′
P,f(0) +O(c) ,

and thus obtain

lim
c→0

∂

∂c
G(c, 0) =

1

2
Λ̃′′
P,f (0) = VarP (f) .

Since VarP (f) > 0, by the Implicit Function Theorem there exists a unique solution c∗(ρ) > 0, c∗(0) = 0
of G(c, ρ) = 0 (and thus of (2.17)) and c∗(ρ) ∈ C∞ for ρ in a neighborhood of the origin. Differentiating
G(c∗(ρ), ρ) = 0 and setting ρ = 0 yields terms in the Taylor expansion of c∗(ρ). In particular, using the
notation ċ∗ = dc∗/dρ, we have c∗(ρ)Λ̃′′

P,f (c
∗(ρ))ċ∗(ρ) = 2ρ, and thus by setting ċ∗(0) = limρ→0+ ċ

∗(ρ) we

have (ċ∗(0))2 = 2/Λ̃′′
P,f(0), which concludes the proof by observing again that VarP (f) = Λ̃′′

P,f (0).
To prove that c∗(ρ) is also the solution of (P−) we observe that

sup
c>0

{

−1

c
Λ̃P,f(−c)−

1

c
R (Q ||P )

}

= − inf
c>0

{

1

c
Λ̃P,f(−c) +

1

c
R (Q ||P )

}

,

and using the same arguments as for (P+) we conclude that the unique solution is obtained as the solution
of the optimality condition

− 1

c2
Λ̃P,f(−c)−

1

c
Λ̃′
P,f (−c)−

1

c2
ρ2 = 0 , c > 0 ,

which is, under the change of the variable c→ −c, the same as (2.17) and thus analogous calculations yield
the result.

Next, substituting the expansion in ρ for the optimal value (2.26) we obtain asymptotics in ρ2 =
R (Q ||P ) of the upper and lower bounds for the UQ error (2.14).

Theorem 2.11 (Linearization). Under the assumption that f ∈ E with f 6= EP [f ] P -a.s., we have



9(i) the asymptotic expansion Ξ±(Q ||P ; f) = ±
√

VarP (f)
√

2R (Q ||P ) +O(R (Q ||P )), and,
(ii) an estimate of the weak error

|EQ[f ]− EP [f ]| ≤
√

VarP (f)
√

2R (Q ||P ) +O(R (Q ||P )). (2.28)

If needed, the term O(R (Q ||P )) can be further resolved using the asymptotic expansions of c∗(ρ) and
Θ±(c; ρ) defined in Lemma 2.10, in terms of ρ2 = R (Q ||P ).

Proof. The proof follows from the Taylor expansion of (2.15) in ρ, where ρ2 = R (Q ||P ), around ρ = 0.
First, we note that Λ̃P,f(0) = Λ̃′

P,f (0) = 0 and Λ̃′′
P,f (0) = VarP (f). Therefore Φ−1(0) = 0, and the upper

bound becomes

Ξ+(Q ||P ; f) = Λ̃′
P,f

(

Φ−1(ρ2)
)

= Λ̃′
P,f (0) + Λ̃′′

P,f (0)Φ
−1(ρ2) +O(|Φ−1(ρ2)|2) .

We conclude using (2.19) and the expansion (2.25).

2.4. Sensitivity bounds and perturbation analysis. In this section we consider a smooth para-
metric family of probability measures P θ, θ ∈ R

k, and assume that the following (mild) condition.
Condition 2.1. There is a fixed reference probability measure R ∈ P(Ω) such that P θ ≪ R for all

θ ∈ R
k. Let pθ(ω) = dP θ

dR
(ω). Then there is a measurable set N ⊂ Ω such that R(N) = 0, and such that for

all ω /∈ N the mapping θ → pθ(ω) from R
k to (0,∞) is C3. Where needed, we also assume the existence of

suitable dominating functions for various functions of pθ.
Under Condition 2.1 the relative entropy can be expressed as

R
(

P θ+v ||P θ
)

=

∫

pθ+v(ω) log
pθ+v(ω)

pθ(ω)
R(dω).

Using the Taylor expansion and the fact
∫

[∂θi log p
θ(ω)] pθ(ω)R(dω) = 0, we have the perturbative expansion

R
(

P θ+v ||P θ
)

=
1

2

∑

ij

vivj

∫

1

pθ(ω)
[∂θip

θ(ω)][∂θjp
θ(ω)]R(dω) +O(|v|3) . (2.29)

The leading term in this expansion is a quadratic form defined by the FIM

I(P θ)ij ≡
∫

1

pθ(ω)
[∂θip

θ(ω)][∂θjp
θ(ω)]R(dω) = −

∫

[∂2θiθj log p
θ(ω)] pθ(ω)R(dω) . (2.30)

We apply the derived bounds of Theorem 2.11 for the weak error in order to obtain bounds on the sensitivity
indices (when the derivatives exist):

Sf,v(P
θ) = lim

ǫ→0

1
ǫ
(EP θ+ǫv [f ]− EP θ [f ]) . (2.31)

Lemma 2.12. Assume Condition 2.1 and let v ∈ R
k.

(i) Then

R
(

P θ+v ||P θ
)

=
1

2

∑

ij

I(P θ)ijvivj +O(|v|3) . (2.32)

(ii) Assume also that f ∈ E and thus the cumulant generating function Λ̃P θ,f (c) ≡ logEP θ [ec(f−EPf)] exists
in a neighborhood of the origin, and that f 6= EP θ [f ] P θ-a.s. Then for v ∈ R

k and ǫ in a neighborhood of
the origin there exists a function c∗(ǫ) which is the unique solution of

(P+) inf
c>0

{

1

c
Λ̃P θ,f (c) +

1

c
R
(

P θ+ǫv ||P θ
)

}

,

as well as

(P−) sup
c>0

{

−1

c
Λ̃P θ,f(−c)−

1

c
R
(

P θ+ǫv ||P θ
)

}

.



10Furthermore the function c∗(ǫ) admits the perturbation expansion

c∗(ǫ) = c∗1ǫ+O(ǫ2) , (2.33)

where

c∗1 =

√

∑

ij I(P θ)ijvivj

VarP θ (f)
. (2.34)

Proof. The claim in (i) follows from (2.29) and (2.30). The claim in (ii) follows directly from Lemma 2.10
after expanding the relative entropy in ǫ, i.e., writing ρ2(ǫ) = ǫ2 1

2

∑

ij I(P θ)ijvivj +O(ǫ3). Substituting in
(2.25) and (2.26) we obtain (2.33) and (2.34).

As a direct consequence of Theorem 2.11 we obtain a bound on the sensitivity indices by substituting
c∗(ǫ) from (2.33) into Θ±(c, ρ) (see the proof of Lemma 2.10).

Theorem 2.13. Under the assumptions of Lemma 2.12, it holds that for v ∈ R
k and ǫ 6= 0

1

|ǫ| |EP θ+ǫv [f ]− EP θ [f ]| ≤
√

VarP θ (f)

√

∑

ij

I(P θ)ijvivj +O(ǫ) , (2.35)

and

|Sf,v(P
θ)| ≤

√

VarP θ (f)

√

∑

ij

I(P θ)ijvivj . (2.36)

We refer to the inequality (2.36) as a sensitivity bound of the sensitivity index Sf,v(P
θ).

Remark 2.1. The bound (2.35) on the senitivity index is a direct consequence of more general non-
infinitesimal bounds such as Theorem 2.11. We note that in the special case of sensitivity analysis, where
we consider small perturbations in the parameter space, we can obtain sensitivity bounds of the same form
as (2.36) directly from the Cauchy-Schwarz inequality:

|Sf,v(P
θ)| =

∣

∣

∣

∣

d

dǫ
E
θ+ǫv
P [f ]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(f(ω)− EP θ [f ])

(

d

dǫ
log pθ+ǫv(ω)

)

P θ(dω)

∣

∣

∣

∣

≤
√

∫

(f(ω)− EP θ [f ])2P θ(dω)

√

∫
(

d

dǫ
log pθ+ǫv(ω)

)2

P θ(dω)

=
√

VarP θ (f)

√

∑

ij

I(P θ)ijvivj .

(2.37)

Finally, we can also use (2.24) applied to P θ and P θ+ǫv and obtain the same bound as in (2.36).

3. Path-space UQ information inequalities and sensitivity bounds. In this section we develop
new uncertainty quantification information inequalities and related sensitivity bounds for stochastic processes
and their path-dependent observables. The approach developed in the previous section is applicable to
obtaining similar bounds for functionals of Markov processes, when combined with path-space Information
Theory tools such as the RER and the associated path FIM. These concepts which are discussed next were
introduced as UQ and sensitivity analysis tools for stochastic processes in [30, 31, 14].

3.1. Information theory metrics in path space. We consider stochastic processes which are Markov
and take values in Polish space X , although a much more general set up is also possible, see for instance
[22]. For simplicity in the presentation, we further restrict our discussion to discrete-time Markov processes
{Xt}t∈N0 where N0 = N ∪ {0} with the transition kernel p(x, dy) and with the initial measure µ(dx), and
the Markov process {Yt}t∈N0 with the transition kernel q(x, dy) and with the stationary measure ν(dx). For
the time interval 0, 1, ..., T , we denote by P[0,T ], Q[0,T ] the respective probability measures on path space.
Similar notation and constructions for all concepts introduced here will also be used when t ∈ [0,∞), we
refer to the Appendix A, as well as to [22, 30].



11We will assume conditions under which the path-space relative entropy

R
(

Q[0,T ] ||P[0,T ]

)

is finite for all T <∞. For stationary Markov processes, the relative entropy scales linearly in T as T → ∞,
[22]. Thus it is natural to define the concept of the rate of the relative entropy between path distributions.

Definition 3.1. Let P[0,T ] and Q[0,T ] be path-measures corresponding to Markov processes {Xt}t∈N0 ,
{Yt}t∈N0 . We define the relative entropy rate by

H(Q ||P ) = lim
T→∞

1

T
R
(

Q[0,T ] ||P[0,T ]

)

, (3.1)

when the limit exists.
Although RER is a quantity between path distributions, we drop the dependence of time interval in the

notation of the RER because RER is a time-independent quantity. Moreover, the relative entropy rate can
often be expressed explicitly, which we demonstrate via examples in Appendix A. For instance, in the case
of discrete-time Markov Chains we have

H(Q ||P ) =
∫

X
ν(dx)

∫

X
q(x, dy) log

dq(x, ·)
dp(x, ·) (y) =

∫

X
R (q(x, ·) || p(x, ·)) ν(dx) . (3.2)

The significance of the definition of RER is elucidated by the following property of the relative entropy
of two path-measures for stationary processes. We state it for simplicity in the case of discrete-time Markov
Chains, in which case it follows from the chain rule for relative entropy. For the proof we refer to Appendix
A. The proof was first given by Shannon in [35] and since then has been extended in various directions for
Markov and semi-Markov processes, [22].

Lemma 3.2. Let {Xt}t∈N0 , {Yt}t∈N0 be two stationary Markov chains with the path-measures P[0,T ] and
Q[0,T ]. Suppose that ν is a stationary distribution for {Yt} and that the initial distribution µ of {Xt} is
arbitrary. Then for any T ∈ N0

R
(

Q[0,T ] ||P[0,T ]

)

= TH(Q ||P ) +R (ν ||µ) , (3.3)

and the relative entropy rate H(Q ||P ) is independent of T and given by (3.2).
As in Section 2.4, we will consider the sensitivity analysis problem, but this time in the context of both

transient and stationary dynamics. This amounts to an asymptotic expansion of the relative entropy, and
eventually the RER, in terms of a parameter perturbation. First we consider the path-space probability
measure P θ

[0,T ] where θ ∈ R
k is a vector of the model parameters. We consider a perturbation v ∈ R

k

in the parameter vector θ and the resulting path-space probability measure P θ+v
[0,T ]. We start out with two

regularity conditions on the dependence of probability measures on the parameter θ; these conditions are
not the weakest possible, but they are fairly simple to state.

Condition 3.1. There is a fixed reference probability measure R ∈ P(X ) such that Pθ(x, dy) ≪ R(dy)

for all x ∈ X and θ ∈ R
k. Let pθ(x, y) = dP θ(x,·)

dR(·) (y). Then we assume (x, y, θ) → pθ(x, y) is continuous

and for each fixed x, y that θ → pθ(x, y) is C3. Where needed, we also assume the existence of suitable
dominating functions for various functions of pθ.

Note that under this assumption, any stationary distribution µθ will be absolutely continuous with
respect to R. It also holds that P θ

[0,T ] is absolutely continuous with respect to the product measure on

X T with marginals R, with a smooth (C3) Radon-Nikodym derivative. Condition 3.1 is necessary for the
sensitivity results in finite and long times and it is directly verifiable, since it depends only on the local
dynamics pθ(x, y). However, for some of the results presented here for infinite times, we additionally need
Condition 3.2 below, which is a regularity condition for the stationary measure µθ of the process P θ

[0,T ].
Whenever this measure is analytically available, e.g., as a Gibbs measure, this condition is checkable directly.
However, typically the stationary measure is not known and in this case this condition is not always easy to
verify. Finally, conditions that ensure the regularity of the stationary measure µθ and which rely primarily
on the existence of a spectral gap were given in [12].

Condition 3.2. There is a fixed reference probability measure R ∈ P(Ω) and for each θ a unique

stationary probability measure µθ such that µθ ≪ R and θ → dµθ

dR
(x) is C3 for each fixed x. Where needed,

we also assume the existence of suitable dominating functions for various functions of µθ.



12 Following [30], we define the path FIM for stationary Markov processes as the Hessian of the RER, at
least when it exists:

IH(P θ) := ∇2
v

∣

∣

∣

v=0
H(P θ ||P θ+v) = ∇2

v

∣

∣

∣

v=0
H(P θ+v ||P θ) . (3.4)

In the case of a discrete-time Markov Chain, under Condition 3.1 the path FIM reads (for a derivation see
Appendix A)

IH(P θ) =

∫

µθ(dx)

∫

pθ(x, y)[∇θ log p
θ(x, y)][∇θ log p

θ(x, y)]TR(dy) . (3.5)

Notice that path FIM, just like RER, e.g., (3.2), can be computed from the transition probabilities under
mild ergodic average assumptions, [30]. Further examples of continuous-time Markov processes are discussed
in Appendix A. Finally, using (3.3), (3.4) and Conditions 3.1 and 3.2, we have the expansion

1

T
R
(

P θ
[0,T ] ||P θ+v

[0,T ]

)

= H(P θ ||P θ+v) +
1

T
R
(

µθ ||µθ+v
)

=
1

2
vT
(

IH(P θ) + 1
T
I(µθ)

)

v +O(|v|3) , (3.6)

where IH(P θ) is the path-space Fisher information (3.5) while I(µθ) is the Fisher information for the
stationary measure µθ, (2.30).

In the non-stationary regime we can use the expansion (2.29) and Condition 3.1 to obtain for any initial
measure ρ of the stochastic process P θ

[0,T ] that is independent of θ

1

T
R
(

P θ
[0,T ] ||P θ+v

[0,T ]

)

=
1

2
vT I(P θ

[0,T ])v +O(|v|3) . (3.7)

Furthermore, assuming ergodicity of the process and similarly to (3.1), we can obtain the path FIM as the
asymptotic limit, [5],

IH(P θ) = lim
T→∞

1

T
I(P θ

[0,T ]) . (3.8)

3.2. UQ Information inequalities for path-dependent observables. We consider as an observ-
able a measurable functional F = F(X) of the process {Xt}0≤t≤T . For any T > 0 we define the centered
observable

F̃(X) = F(X)− EP[0,T ]
[F ] ,

and using the variational representation (2.7) of the cumulant-generating function, we obtain for any c > 0

Λ̃P[0,T ],TF(c) ≡ logEP[0,T ]
ecT F̃ = sup

Q[0,T ]≪P[0,T ]

{

−R
(

Q[0,T ] ||P[0,T ]

)

+ cT (EQ[0,T ]
[F ]− EP[0,T ]

[F ])
}

. (3.9)

Concentrating on the stationary regime, the path-space relative entropy scales linearly with time as shown in
Lemma 3.2. Moreover, if we consider observables for which EP[0,T ]

[F ] and EQ[0,T ]
[F ], are uniformly bounded

for all T , then the second term in the supremum in (3.9) scales also linearly with time, therefore, the right
hand side of the equation scales at most linearly as T → ∞ and its correct re-scaling for large times is given
by

1

T
Λ̃P[0,T ],TF(c) = sup

Q[0,T ]≪P[0,T ]

{

− 1

T
R
(

Q[0,T ] ||P[0,T ]

)

+ c(EQ[0,T ]
[F ]− EP[0,T ]

[F ])

}

. (3.10)

One class of such observables which have a finite expectation as T → ∞ is the case where F is bounded by
a constant. Another class of observables of this category which is of great interest in stochastic computing
is that of ergodic averages:

F(X) =
1

T

∫ T

0

f(Xs) ds , (3.11)



13for a bounded observable function f . Under suitable ergodic assumptions we have

lim
T→∞

F(X) = Eµ[f ] =

∫

fdµ . (3.12)

Next, we provide a result on path space which is similar to (2.11), first obtained in [7, 21] for measures
P and Q. We use the notation and the goal-oriented divergence formulation in Theorem 2.7. We show that
for (suitable) path-space observables, the analogue of relative entropy in (2.11) is now the concept of RER
(3.1).

Theorem 3.3. (a) (Finite-time regime) Assume that the time-averaged cumulant generating function
(3.10)exists in a neighborhood of the origin. Define

Ξ+(Q[0,T ] ||P[0,T ];F):= inf
c>0

{

1

cT
Λ̃P[0,T ],TF (c) +

1

cT
R
(

Q[0,T ] ||P[0,T ]

)

}

, (3.13)

Ξ−(Q[0,T ] ||P[0,T ];F):= sup
c>0

{

− 1

cT
Λ̃P[0,T ],TF (−c)−

1

cT
R
(

Q[0,T ] ||P[0,T ]

)

}

. (3.14)

Then we have the bounds

Ξ−(Q[0,T ] ||P[0,T ];F) ≤ EQ[0,T ]
[F ]− EP[0,T ]

[F ] ≤ Ξ+(Q[0,T ] ||P[0,T ];F) . (3.15)

In addition, based on Theorem 2.7 and Theorem 2.8 we have

Ξ±(Q[0,T ] ||P[0,T ];F) = Λ̃′
P[0,T ],TF

(

± Φ−1
( 1

T
R
(

Q[0,T ] ||P[0,T ]

) )

)

, (3.16)

where

Φ(c) := −Λ̃P[0,T ],TF(c) + cΛ̃′
P[0,T ],TF(c)

is a strictly increasing function on (0, c̄), where c̄ = sup{c : Λ̃P[0,T ],TF(c) <∞}.
(b) (Stationary regime) Consider the case of stationary processes and assume the conditions of Lemma 3.2.
Then in all formulas of part (a) we can substitute

1

T
R
(

Q[0,T ] ||P[0,T ]

)

= H(Q ||P ) + 1

T
R (ν ||µ) . (3.17)

Proof. The proof follows immediately from Theorem 2.7 and Theorem 2.8, as well as the bounds (2.11)
and the relative entropy rate representation of the relative entropy in Lemma 3.2, e.g., (3.3).

3.3. Infinite time UQ bounds. Here we discuss the extension of the previous UQ bounds to the
stationary asymptotic regime T → ∞. In the process, we demonstrate the key role in controlling the bounds
played by the RER as well as connections with the theory of Large Deviations, [8, 9]. First we state our
primary assumptions.

Condition 3.3. For the centered cumulant-generating function (3.9), we assume the

lim
T→∞

1

T
Λ̃P[0,T ],TF (c) = Λ̃P,F(c)

exists and is finite in a neighborhood of the origin c = 0.
It turns out that this is also the main condition for the Gärtner-Ellis Theorem in Large Deviations, [8].

In this context, the limiting cumulant generating function Λ̃P,F(c) can be calculated explicitly for various
examples and through the Legendre transform it is associated with the large deviations rate functional, [8,
Chapter 2.3]. For example, in the case of a discrete-time, finite state space Markov chain given by the

stochastic matrix P =
(

p(x, y)
)

and the time-averaged observable F = 1
T

∑T
i=1 f(Xi) we have, (see [8,

Chapter 3.1]),

Λ̃P,F(c) = logλ
(

Πf (c)
)

. (3.18)



14Where λ(B) denotes the Perron-Frobenius eigenvalue of the matrix B, and Πf (c) =
(

πf (x, y; c)
)

the non-
negative matrix with elements πf (x, y; c) = p(x, y) exp (cf(y)). Due to the finiteness of the state space it is

easy to show in this case that Λ̃P,F(c) is analytic and strictly convex in c, [8].
Next we apply Condition 3.3 and the asymptotics (3.1) to the transient regime bounds (3.15) in Theo-

rem 3.3 to obtain the following theorem for the T → ∞ limit. The second statement follows along the lines
of (3.16).

Theorem 3.4. Assume Condition 3.3 and define

Ξ+(Q ||P ;F):= inf
c>0

{

1

c
Λ̃P,F(c) +

1

c
H(Q ||P )

}

, (3.19)

Ξ−(Q ||P ;F):= sup
c>0

{

−1

c
Λ̃P,F(−c)−

1

c
H(Q ||P )

}

. (3.20)

Then, we have the bounds

Ξ−(Q ||P ;F) ≤ lim sup
T→∞

(

EQ[0,T ]
[F ]− EP[0,T ]

[F ]
)

≤ Ξ+(Q ||P ;F) . (3.21)

In addition, similarly to Theorem 2.8 we have

Ξ±(Q ||P ;F) = Λ̃′
P,F

(

± Φ−1
(

H(Q ||P )
)

)

(3.22)

where

Φ(c) := −Λ̃P,F(c) + cΛ̃′
P,F(c)

is a strictly increasing function on (0, c̄), where c̄ = sup{c : Λ̃P,F(c) <∞}.
3.4. Linearization of the UQ bounds. The bounds in Theorems 3.3 and 3.4 can become (asymp-

totically) more explicit in the case where the relative entropy or the RER H(Q ||P ) is small, that is by
expanding Ξ±(Q[0,T ] ||P[0,T ];F) in (3.15). Furthermore, the RER can be explicitly calculated in several ex-
amples discussed earlier in Section 3 and in Appendix A. More specifically we have the following asymptotics.

Lemma 3.5. Assume that the cumulant generating function Λ̃P[0,T ],TF (c) exists in a neighborhood of the
origin. Assume also that

1

T
R
(

Q[0,T ] ||P[0,T ]

)

= ρ2

for two path probability measures P[0,T ], Q[0,T ]. Note that by (3.3), in the stationary case this is essentially
an assumption on the relative entropy rate H(Q ||P ). Then, there exists a function c∗T (ρ) which is the unique
minimizer (resp. maximizer) of (3.13) (resp. (3.14)). Furthermore, there is ρ0 > 0 such that c∗T (ρ) is C∞

in (0, ρ0) and admits the perturbation expansion

c∗T (ρ) = c∗T,1ρ+O(ρ2) , where c∗T,1 =

√

2
1
T
VarP[0,T ]

(TF)
. (3.23)

Proof. The proof follows the same steps as the proof of Lemma 2.10.
Substituting the expansion in ρ for the optimal value (3.23) into the expansion of Ξ±(Q[0,T ] ||P[0,T ];F)

we obtain asymptotics of the upper and lower bounds for the weak error in ρ2 = 1
T
R
(

Q[0,T ] ||P[0,T ]

)

.
Theorem 3.6 (Linearization). Under the assumptions of Lemma 3.5 we have:

(a) (Finite-time regime)

|EQ[0,T ]
[F ]− EP[0,T ]

[F ]| ≤
√

1

T
VarP[0,T ]

(TF)

√

2

T
R
(

Q[0,T ] ||P[0,T ]

)

+O
( 1

T
R
(

Q[0,T ] ||P[0,T ]

)

)

, (3.24)



15(b) (Stationary regime) In this case (3.3) implies

|EQ[0,T ]
[F ]− EP[0,T ]

[F ]| ≤
√

1

T
VarP[0,T ]

(TF)

√

2

(

H(Q ||P ) + 1

T
R (ν ||µ)

)

+O
( 1

T
R
(

Q[0,T ] ||P[0,T ]

)

)

.

(3.25)

As in the static case, the term O
(

1
T
R
(

Q[0,T ] ||P[0,T ]

)

)

can be further quantified using the asymptotic

expansions of c∗(ρ) and (3.16) in ρ.

Remark 3.1. For observables which are time averages, e.g., F(X) = 1
T

∑T−1
k=0 f(Xk), and for a station-

ary Markov process P[0,T ] the variance terms in Theorem 3.6 take the form of an autocorrelation function
and can be uniformly bounded in T . Specifically,

1

T
VarP[0,T ]

(TF) = Varµ(f) + 2
T
∑

k=1

(

1− |k|
T

)

Af (k) := τT (f) , (3.26)

where Af (t) := EP[0,T ]
[(f(X0)−Eµ[f(X0)])(f(Xt)−Eµ[f(X0)])] is the stationary covariance function. Recall

that when τ(f) := limT→∞ τT (f) < ∞ then τ(f) is known as the the integrated autocorrelation function,
[24]. The proof of (3.26) is carried out in Lemma 3.8 below, see (3.34).

3.5. Sensitivity bounds in path space. As in Section 2.4, we will consider the sensitivity analysis
problem, but this time in both the context of transient and stationary dynamics. First we consider the
path-space probability measure P θ

[0,T ] where θ ∈ R
k is a vector of the model parameters. We consider a

perturbation v ∈ R
k in the parameter vector θ and the resulting path-space probability measure P θ+v

[0,T ], and

focus first on the discrete time model. The continuous time calculations are carried out in a similar manner,
and we refer to Appendix A for the related formulas.

The next theorem readily follows from (3.24) and (3.25) and the asymptotics in ǫ in (3.6) and (3.7).
Theorem 3.7. Assume the conditions of Lemma 3.5.

(a) (Stationary regime) Furthermore, assume the conditions of Lemma 3.2 and Conditions 3.1 and 3.2. For
any v ∈ R

k and ǫ 6= 0, we have

1

|ǫ| |EP θ+ǫv

[0,T ]
[F ]− EP θ

[0,T ]
[F ]| ≤

√

1

T
VarP θ

[0,T ]
(TF)

√

vT
(

IH(P θ) +
1

T
I(µθ)

)

v +O(ǫ) , (3.27)

and

|SF ,v(P
θ
[0,T ])| ≤

√

1

T
VarP θ

[0,T ]
(TF)

√

vT
(

IH(P θ) +
1

T
I(µθ)

)

v , (3.28)

where the sensitivity index SF ,v(P
θ
[0,T ]) is defined in (2.31).

(b) (Finite-time regime) If the process P θ
[0,T ] is not stationary then we only need to assume Condition 3.1.

Then we have the same bounds as in (a), however the term
√

vT
(

IH(P θ) + 1
T
I(µθ)

)

v is replaced by the term
√

vT I(P θ
[0,T ])v/T ; we also note the uniform bound in the time horizon T of the latter term due to (3.8).

We remark that in the stationary regime and for time-averaged observables such as (3.11), it holds that

SF ,v(P
θ
[0,T ]) = Sf,v(µ

θ) (3.29)

where µθ is the stationary distribution, due to the regularity assumed in Condition 3.2.
Remark 3.2. Bounds such as (3.28) relate any stochastic gradient-type sensitivity analysis methods

such as likelihood ratio [11], Girsanov [32] and path-wise methods [36] that develop efficient estimators for the
sensitivity indices (2.31), with information theory based methods, showing that the latter provide a sensitivity
bound on (2.31). Similarly the bound (3.27) relates sensitivity methods relying on finite-differencing [34, 1, 3]



16with information-theory sensitivity analysis methods, [30]. We refer to the inequalities (3.27) and (3.28) as
sensitivity bounds. These bounds can be computed efficiently and can provide fast screening of insensitive
observables, as well as parameters or directions in the parameter space. We refer to [4] for more details,
implementations and examples.

Next we focus on the infinite-time asymptotic regime and the related sensitivity bounds. Taking the
limit T → ∞ we obtain bounds for time-averaged observables. First, we recall a result on the asymptotics
of such observables, [37], and provide a proof for completeness in our presentation.

Lemma 3.8. Under the assumptions of Theorem 3.7 and for observables of the form

FT (X) =
1

T

T−1
∑

i=0

f(Xi) , (3.30)

the following conclusions hold. If the process P θ
[0,T ] is stationary and the series

∑∞
k=1 Af (k) defined below

converges absolutely, then the limit

lim
T→∞

1

T
VarP θ

[0,T ]

(

TFT (X)
)

= τ(f) (3.31)

exists, where τ(f) is the integrated autocorrelation function (IAT), [37, 24], defined as

τ(f) := lim
T→∞

τT (f) = Varθµ(f) + 2

∞
∑

k=1

Af (k) , (3.32)

and

Af (k) := EP θ
[0,T ]

[(f(X0)− Eµθ [f(X0)])(f(Xk)− Eµθ [f(X0)])]

is the stationary covariance function of the process X.
Proof. A direct computation of the time-averaged variance gives

1

T
VarP θ

[0,T ]

(

TFT (X)
)

=
1

T
EP θ

[0,T ]





(

T−1
∑

i=0

f(Xi)− EP θ
[0,T ]

[

T−1
∑

i=0

f(Xi)

])2




=
1

T

T−1
∑

i=0

T−1
∑

j=0

EP θ
[0,T ]

[

(f(Xi)− EP θ
[0,T ]

[f(Xi)])(f(Xj)− EP θ
[0,T ]

[f(Xj)])
]

=
1

T

T−1
∑

i=0

T−1
∑

j=0

Covf (i, j)

(3.33)

where Covf (i, j) is the covariance between f(Xi) and f(Xj). Due to the stationarity, we have that under
P θ
[0,T ] each Xi is distributed according to µθ, hence Covf (i, j) = EP θ

[0,T ]
[(f(Xi) − Eµθ [f(X0)])(f(Xj) −

Eµθ [f(X0)])] = Covf (i− j, 0) ≡ Af (i − j). Therefore,

1

T
VarP θ

[0,T ]

(

TFT (X)
)

=
1

T

T−1
∑

k=−T+1

(T − |k|)Covf (k, 0) =
T
∑

k=−T

(

1− |k|
T

)

Af (k) (3.34)

Sending T → ∞, we obtain from dominated convergence that

lim
T→∞

1

T
VarP θ

[0,T ]

(

TFT (X)
)

=

∞
∑

k=−∞
Af (k) = τ(f) . (3.35)



17For stationary processes in continuous time, the formula for the IAT is given by

τ(f) =

∫ ∞

−∞
Af (t)dt (3.36)

where, as in the discrete time case, Af (t) = EP θ
[0,T ]

[(f(Xt)−Eµθ [f(x)])(f(X0)−Eµθ [f(x)])] is the stationary

covariance between f(Xt) and f(X0).
Now the following theorem readily follows from (3.28).
Theorem 3.9 (Infinite-time). Under Conditions 3.1 and 3.2, and the assumptions of the previous

lemma, the following hold. For any v ∈ R
k

|Sf,v(µ
θ)| ≤

√

τ(f)
√

vTIH(P θ)v , (3.37)

where we used the fact that EP θ
[0,T ]

[F ] = Eµθ [f ] for any stationary process and therefore SF ,v(P
θ
[0,T ]) =

Sf,v(µ
θ) for the sensitivity indices defined by (2.31).

3.6. Some practical implications for sensitivity bounds. Given the results in Section 3.5, as
well as the computational feasibility of RER and path FIM demonstrated in [30, 14], we briefly investigate
sensitivity bounds for more general functionals than the time averages (3.11) and less stringent conditions
than those in Theorem 3.9. First, based on Theorem 3.7(b) it follows that we can consider any path-space
observables F such that

1

T
VarP θ

[0,T ]

(

TF
)

= TVarP θ
[0,T ]

(

F
)

≤ C2 <∞ uniformly in T , (3.38)

for some constant C. Next, using (3.8) we obtain from Theorem 3.7(b) and (3.38) the limiting sensitivity
bound

lim sup
T→∞

|SF ,v(P
θ
[0,T ])| ≤ C

√

vT IH(P θ)v . (3.39)

Note that in contrast to Theorem 3.9, here we only need to assume the easily verifiable Condition 3.1,
which depends solely on the regularity in θ of the local dynamics. Although the existence of the sensitivity
index at T = ∞ is not guaranteed due to the absence of (the hard to verify) Condition 3.2, or related
conditions in [12], the sensitivity indices SF ,v(P

θ
[0,T ]) remain controlled uniformly in time due to (3.39). The

boundedness of the variance associated with the observable F in (3.38) can be monitored in the course of
an actual simulation, while the path FIM in (3.39) is an easy to sample observable, as demonstrated in [30].
Furthermore, the path FIM can for certain classes of stochastic dynamics scale linearly with the number
of model parameters, making it computationally tractable even for systems with a very large number of
parameters. For instance, see [31] for the case of complex biochemical reaction networks where the graph
structure and the type of reaction rates induce a block diagonal structure on the path FIM; we also refer to
Figure 1 in [31] for a demonstration.

In a second direction geared also towards practical implementation, we compare (3.37) and (3.39) to the
earlier static bound (2.36). Indeed, even though the form of the sensitivity bounds (3.37) and (3.39) are
similar to (2.36), there are some substantial differences and advantages in considering the path-space bounds
of this section. More specifically, when we want to study the sensitivity of ergodic averages such as (3.30),
we can either use the path space estimate in (3.37) or alternatively the equilibrium bound (2.36), i.e.,

|Sf,v(µ
θ)| ≤

√

Varµθ (f)
√

vTI(µθ)v . (3.40)

On one hand, (3.40) involves the FIM of the equilibrium measures µθ, which we do not typically have
available in most non-equilibrium systems such as biochemical networks, reaction-diffusion mechanisms or
driven systems. However, the path-wise estimate (3.37) can in principle always be computed since it involves
only the local dynamics pθ in the path FIM (3.5), see for instance [30] and [31].



18 3.7. Cramer-Rao inequalities for time-series. The sensitivity bounds (3.28) and (3.37) can be
considered as extension of the Cramer-Rao inequality for the time-series of Markov processes. Indeed, we
recall that for a parametric family of probability measures P θ, where for simplicity in the presentation we
assume that θ is scalar, the Cramer-Rao inequality provides a lower bound for the variance of any unbounded
statistical estimator. Specifically, assume a biased estimator θ̂ = f(X) of the parameter θ with bias function
ψ(θ), i.e., EP θ [f ] = ψ(θ). Then the Cramer-Rao bound for a scalar parameter θ states that, [15],

VarP θ (θ̂) ≥ [ψ′(θ)]2

I(P θ)
. (3.41)

Upon rearranging, this bound is precisely the sensitivity bound (2.36), where the expected value of the
observable f is the biased estimator of an unknown deterministic parameter in a family of probability
measures. Furthermore, it is also known, [15, 6], that such bounds are sharp in the sense that for specific
estimators (observables) such as the Maximum Likelihood Estimator, the bound (3.41), (2.36) becomes an
equality.

In the same sense, we can obtain a new Cramer-Rao type inequality for time series stationary statistics
based on our UQ information bounds in path-space. Indeed, path-space observables such as FT (X) =
1
T

∑

i f(Xi) play the role of the statistical estimator for θ, (i.e., θ̂ = FT (X)) and the sensitivity bound (3.37)
constitutes a Cramer-Rao lower bound for the IAT (3.32),

τP θ (f) ≥ [ψ′(θ)]2

IH(P θ)
, (3.42)

where ψ(θ) = EP θ
[0,T ]

[FT ] is the bias of the estimator. Therefore, for dependent samples created for instance

by Monte Carlo Markov Chain methods [24], the lower bound (3.42) can be utilized. Finally, we remark
that estimators with dependent samples have generally larger variance than estimators using independent
samples, however, for the same amount of computational time, larger number of dependent samples than
independent samples are drawn. Hence it is not clear which estimator has better performance in terms of
reduced variance for a given computational cost. In this direction, the Cramer-Rao bound (3.42) may be
very useful.

4. Demonstration Examples. This section demonstrates the application of the derived bounds for
several stochastic models. The sensitivity bound derived in Section 2.4 is utilized in the first two examples
where the sharpness of the bound is discussed. In the third and fourth examples, both stationary and path
space sensitivity bounds are computed and compared for various observable functions. In these examples,
the stationary bounds can be slightly sharper than the bounds that utilize the path FIM, however, stationary
bounds are rarely explicitly available. Indeed, the birth/death process presented in Section 4.3 is a special
case of a single-species biochemical reaction network with an explicit stationary distribution, however, for
reaction networks with more species the stationary distribution is generally unavailable. Similarly, the
stationary distribution in Section 4.4 where a stochastic differential equation (SDE) example is considered,
is not generally known; for instance, in SDE with additive noise where the drift term is not of conservative
type, i.e., the gradient of an appropriate function. For such stochastic models, the only available option for
a tractable sensitivity bound is the path-space sensitivity bound (3.37).

4.1. Exponential family of distributions. A probability density function belongs to the exponential
family if it admits the following canonical decomposition [28]

P θ(x) = exp
{

t(x)T θ − F (θ) + k(x)
}

where t(x) = [t1(x), ..., tK(x)]T is the sufficient statistics vector, θ ∈ R
K is the parameter vector, F (·) is

the log-normalizer (free energy in statistical physics) and k(x) is the carrier function (associated with the
prior probability measure in statistical physics). The statistics t(x) are called “sufficient” because it contains
all the information needed for the estimation of the parameters. Considering the sufficient statistics as
observables, the corresponding sensitivity indices can be analytically calculated as

Stk,θl(P
θ) =

∂

∂θl
EP θ [tk(x)] =

∂2

∂θk∂θl
F (θ) , k, l = 1, ...,K.



19The covariance matrix of the sufficient statistics vector equals the Hessian of the log-normalizer, F , (i.e.,
CovP θ

(

t(x)
)

= ∇2F (θ)), while the relative entropy of P θ w.r.t. P θ+ǫ can be written as the Bregman
divergence of the log-normalizer on swapped natural parameters [28] given by

R
(

P θ ||P θ+ǫ
)

= F (θ + ǫ)− F (θ) − ǫT∇F (θ) .

A straightforward Taylor series expansion of F in ǫ implies that the Fisher information matrix, I(P θ), defined
in (2.30) equals the Hessian of the log-normalizer, too. Therefore, for sufficient statistics of the exponential
family distribution, Theorem 2.13 states that

∣

∣

∣
Stk,θl(P

θ)
∣

∣

∣
=
∣

∣

∣

∂2

∂θk∂θl
F (θ)

∣

∣

∣
≤
√

VarP θ (tk)I(P θ)l,l =

√

∂2

∂θ2k
F (θ)

∂2

∂θ2l
F (θ) . (4.1)

Notice that the inequality becomes an equality when k = l. From a parameter estimation perspective, the
equality of the bound of the k-th sufficient statistic with respect to the k-th parameter is equivalent to the
fact that tk(x) is an efficient estimator of θk, k = 1, ...,K. In other words, the Cramer-Rao bound (3.41) is
attained, [20, Thm 5.12]. Finally, another bound for the sensitivity indices can be obtained directly from the
properties of the Hessian of F : the log-normalizer, F , is a strictly convex function [28], hence, its Hessian is

positive semi-definite which results in the bound,
∣

∣Stk,θl(P
θ)
∣

∣ ≤ 1
2

(

∂2

∂θ2
k

F (θ)+ ∂2

∂θ2
l

F (θ)
)

. However, this latter

bound is less tight than the information-based bound (4.1) since the geometric mean is always less or equal
to the arithmetic mean.

4.2. Stochastic differential equation example. We consider the differential equation

u̇ = −Xu , u(0) = u0

where X is a Gaussian random variable with mean µ and variance σ2. This stochastic model has been
previously utilized for the assessment of uncertainty quantification bounds in [21]. The stochastic solution
of the equation is

u(t) = u0e
−Xt

whose distribution law is log-normal with parameters log(u0)−µt and (σt)2. The probability density function
is given at time instant t by

P θ(u) =
1

uσt
√
2π

exp

{

− (log(u)− log(u0) + µt)2

2(σt)2

}

where θ = [µ, σ]T , and with the dependence of the density on time t as well as on the initial data u0 is hidden
for the sake of notational simplicity. The goal is to compute the observable that quantifies the probability
of u(t) being larger that a determined value, ū, at time instant t. This is a failure probability and can be
written as an ensemble average,

Pf = EP θ [χ{u>ū}] , (4.2)

where the observable function is the characteristic function (i.e., f(u) = χ{u>ū}(u)). Notice that even
though log-normal distribution belongs to the exponential family, here we are not interested in the natural
parameters or the sufficient statistics, but we rather focus on the observable (4.2). Therefore, the general
setting of the previous subsection does not apply. Nevertheless, calculations are still straightforward, and
the sensitivity index for µ is given by

Sχ{u>ū},µ(P
θ) = −EP θ

[

χ{u>ū}(u)
log(u)− log(u0) + µt

σ2t

]

,

while the sensitivity index for the standard deviation σ is

Sχ{u>ū},σ(P
θ) = EP θ

[

χ{u>ū}(u)
(log(u)− log(u0) + µt)2 − σ2t2

σ3t2

]

.



20The variance of the observable is

VarP θ (χ{u>ū}) = EP θ [χ2
{u>ū}]− (EP θ [χ{u>ū}])

2 =
1

4
− 1

4
erf2

(

log(ū)− log(u0) + µt√
2σt

)

where erf is the error function while the diagonal elements of the FIM for the log-normal distribution, P θ,
are given by

I(P θ)1,1 = EP θ

[ (log(u)− log(u0) + µt)2

(σ2t)2

]

,

and

I(P θ)2,2 = EP θ

[

(

(log(u)− log(u0) + µt)2 − σ2t2
)2

(σ3t2)2

]

.

Figures 4.1 and 4.2 show the absolute value of the sensitivity indices and the corresponding sensitivity
bounds as a function of time for σ = 1 and σ = 2, respectively. The remaining parameters were set to
u0 = 1, ū = 10 and µ = 1 while the computations of the expectations were performed numerically, whenever
necessary. In Figure 4.1, the sensitivity bound of Theorem 2.13 follows closely the sensitivity index in the
course of time. The sensitivity bound in Figure 4.2 performs accurately for the sensitivity index of the mean
(upper panel), however, it is less sharp around time t = 5 for the standard deviation (lower panel) due to
the existence of a zero transition of the sensitivity index at that particular instant. Interestingly, the lower
panel of Figure 4.2 reveals that both upper and lower bounds for small time and larger times, respectively,
provide information about the corresponding sensitivity index. Taking into account the complexity of the
chosen observable which can be a risk-sensitive (i.e., rare event) observable when t is large, we would like to
emphasize that even in this difficult case there exists always a guaranteed bound for the sensitivity indices
and in that sense one cannot but benefit from its use.
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Fig. 4.1. Upper panel: Sensitivity index for the mean value (red) and the sensitivity bound from Theorem 2.13 (blue).
Lower panel: Sensitivity index for the standard deviation (red) and the respective sensitivity bound (blue). In both panels σ = 1.

4.3. Birth/death process. We consider a well-mixed reaction network which consists of one species
and two reactions given by

∅
k1

⇄
k2

X .
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Fig. 4.2. Upper panel: Sensitivity index for the mean value (red) and the sensitivity bound from Theorem 2.13 (blue).
Lower panel: Sensitivity index for the standard deviation (red) and the respective sensitivity bound (blue). In both panels σ = 2.

The corresponding propensity functions for the current state x = x are

a1(x) = k1 and a2(x) = k2x .

Mathematically, this stochastic system is modeled as a continuous-time Markov chain (CTMC) and due to
its simplicity there exist analytic representations of the steady state (equilibrium) distribution, moments
and autocorrelation function, [10, Sec. 7.1]. The steady state distribution, µθ, of the reaction network is
Poisson with parameter k1

k2
. Hence, the steady state moments as well as the FIM for the parameter vector

θ = [k1, k2]
T are known. The elements of the stationary FIM (eq. (2.30)) are shown in Table 4.1. In

the same Table, the elements of the path FIM are shown [31, pp. 10]. Notice that the stationary FIM is
singular while the path FIM is full rank implying that when the complete time-series is provided then both
parameters can be inferred. If samples were i.i.d. drawn from the steady state distribution, then only the
parameter ratio is inferable. Next, we consider two observables, the mean, f1(x) = x, and, the variance,

Table 4.1
Stationary and path-wise FIM’s elements.

Matrix element Stationary FIM, I(µθ) Path FIM, IH(P θ)

(1, 1) 1
k1k2

1
k1

(1, 2) − 1
k2
2

0

(2, 2) k1

k3
2

k1

k2
2

f2(x) = (x− k1

k2
)2. Since Eµθ [f1] = Eµθ [f2] =

k1

k2
, the sensitivity indices are Sf1,k1(µ

θ) = Sf2,k1(µ
θ) = 1

k2
and

Sf1,k2(µ
θ) = Sf2,k2(µ

θ) = − k1

k2
2
. Moreover, in order to compute the IAT for f1 and f2, the computation of

the autocorrelation and the autocorrelation of the variance are necessary. Due to the linear nature of this
example, [10], explicit formulae exist and they are reported in Table 4.2 The corresponding IATs are also
shown in Table 4.2 for both observable functions. In Table 4.3, both stationary and path-wise sensitivity
bounds are compared to the actual sensitivity indices. The Poisson distribution belongs to the exponential
family, hence we have a sharp bound for the mean value and the stationary case while the bound for the
path-wise case is worse by a

√
2 factor. When the variance is considered as observable, the stationary bound

is also slightly tighter than the path-wise bound. In the later case, the path-wise bound becomes equivalent
to the stationary bound when k2 ≪ k1, while both bounds become sharper when k1 ≪ k2. Finally, note that



22 Table 4.2
Variance, autocorrelation function and IAT for the observables f1(x) and f2(x) of the birth/death process.

Observable Variance ACF IAT

f1(x) = x k1

k2

k1

k2
e−k2|t| 2 k1

k2
2

f2(x) = (x− k1

k2
)2 k1

k2
+ 2

k2
1

k2
2

k1

k2
e−k2|t| + 2

k2
1

k2
2
e−2k2|t| 2( k1

k2
2
+

k2
1

k3
2
)

even though we have comparable performance for the stationary and path-wise bounds, there is a crucial
advantage of the path-wise analysis which is its computational tractability. Indeed, in complex reaction
networks, the steady state distribution is rarely known, hence, the stationary FIM cannot be derived. On
the other hand, explicit formulas for the path-wise FIM exists [31] and the corresponding sensitivity bound
is computable through Monte Carlo sampling.

Table 4.3
Sensitivity indices and the corresponding sensitivity bounds for the mean value and the variance of the birth/death process.

SI Value SB (Thm 2.13) SB (Thm 3.9)

Sx,k1(µ
θ) 1

k2

1
k2

√
2 1
k2

Sx,k2(µ
θ) − k1

k2
2

k1

k2
2

√
2k1

k2
2

S
(x− k1

k2
)2,k1

(µθ) 1
k2

1
k2

√

1 + 2k1

k2

√
2 1
k2

√

1 + k1

k2

S
(x− k1

k2
)2,k2

(µθ) − k1

k2
2

k1

k2
2

√

1 + 2k1

k2

√
2 k1

k2
2

√

1 + k1

k2

4.4. Ornstein-Uhlenbeck process. Consider a one-dimensional Ornstein-Uhlenbeck (OU) process
defined by the stochastic differential equation

dXt = −α(Xt − β)dt+ γdBt

where θ = [α, β, γ]T are the system’s parameters while Bt is a one-dimensional Brownian motion. The

stationary distribution of the OU process, µθ, is Gaussian with mean β and variance γ2

2α . The diagonal
elements of the stationary FIM are presented in Table 4.5 (2nd column). Taking f(x) = x as an observable,
Table 4.4 reports the variance with respect to the stationary measure, the autocorrelation function as well
as the IAT for the continuous-time process.

There are two approaches for the computation of the path-wise FIM. The first is to compute RER directly
from the Girsanov formula and then the FIM is obtained from a linearization procedure. The formula for
RER is given in (A.9), thus, it is straightforward to calculate the path-wise FIM whose diagonal elements
are shown in Table 4.5. Notice that if the diffusion parameter, γ, is perturbed by a small amount then
the RER is infinite. Indeed, by Girsanov’s Theorem the path-space measures of two SDE processes are not
absolutely continuous with each other when the diffusion terms are different, [13, 29]. Therefore, the path-
wise sensitivity bound in continuous-time is applicable only for the parameters of the drift. Clearly, in the
OU case a simple rescaling can remove the parameter from the noise term and bypass altogether this issue.
The second approach is to discretize the stochastic process, defining a new discrete-time Markov chain and
then compute the path-wise FIM from the FIM of the DTMC renormalized with the time-step, [30]. Even
though the second approach is an approximation, it is more flexible since it provides a sensitivity bound even
when the diffusion parameters are considered. Overall, the time-discretization results in a regularization of
the new path-space measures, hence, a finite RER is obtained even if the parameters of the diffusion part
are perturbed. Following the second approach, we consider the Euler scheme for the OU process which is a
first-order weak error integrator [18] given at the n-th step by

Xn+1 = Xn + α(Xn − β)∆t+ γ
√
∆t∆Wn,

where ∆t is the discretization step while ∆Wn are i.i.d. zero-mean Gaussians with unit variance. Hence,
the transition probability, pθ(x, y), is Gaussian with mean x + α(x − β)∆t and variance γ2∆t. The last



23Table 4.4
Variance, autocorrelation function and IAT for the mean value as an observable of the OU process. Both continuous-time

and discrete-time (Euler distretization) are considered.

Observable Variance ACF (cont. time) IAT (cont. time) ACF (Euler) IAT (Euler)

f(x) = x γ2

2α
γ2

2αe
−α|t| γ2

α2
γ2

2α

(

1− α∆t
)n γ2

α2

two columns of Table 4.4 show the autocorrelation function as well as the IAT for the discrete-time process
obtained after discretization using the Euler scheme while the last column of Table 4.5 shows the diagonal
elements of the path-wise FIM again for the same discrete-time process. In order to compute these quan-
tities, averaging with respect to the (unknown) stationary distribution of the Euler scheme, µ̄θ, which is
an approximation of the stationary distribution of the continuous-time process, µθ, is required. However,
we averaged with respect to µθ instead of µ̄θ exploiting the fact that the produced weak error is of order
O(∆t), [27]. Another remark on the path-wise FIM is that when the limit ∆t→ 0 is taken and the diffusion
parameter, γ, is perturbed then the corresponding FIM value is infinite which is in accordance with the
Girsanov Theorem restrictions mentioned earlier .

Table 4.5
Diagonal elements of the stationary and path-wise FIMs for the Ornstein-Uhlenbeck process. Path-wise FIM for both

continuous-time and discrete-time approximation (Euler scheme) are considered.

Matrix element Stationary FIM Path FIM (cont. time) Path FIM (Euler)

(1, 1) 1
2α2

1
2α

1
2α

(2, 2) 2α
γ2

α2

γ2
α2

γ2

(3, 3) 2
γ2 ∞ 2

γ2∆t

Table 4.6 presents the sensitivity indices and the various sensitivity bounds for the mean value as an
observable. The stationary bound for β is sharp as expected due to the fact that Gaussian belongs to
the exponential family and the mean value is a sufficient statistic. The continuous-time path-wise bound
as well as the discrete-time path-wise bound (up to order O(∆t)) for β are sharp. For α, the stationary

bound is smaller by a factor of
√
2 while for γ the factor

√
2√
∆t

of the discrete-time path-wise bound make

the stationary bound better. Finally, notice that as in the birth/death process the stationary bounds are
slightly tighter. However, for general SDEs where the drift term is not necessarily of conservative type,
the stationary distribution is rarely known hence the computation of stationary FIM and consequently the
stationary bounds are intractable. For instance, a large class of stochastic processes where the stationary
distribution is not known consists of the non-equilibrium systems where the drift is a non-conservative force
while the noise is additive, [33], [25]. Therefore, the respective stationary sensitivity bound is intractable for
this important category of stochastic processes, while the path-wise bound (3.37) is computable.

Table 4.6
Sensitivity indices and the corresponding sensitivity bounds for the mean value of the OU process.

SI Value SB (Thm 2.13) SB (Thm 3.9, cont. time) SB (Thm 3.9, Euler)

Sx,α(µ
θ) 0 γ

2α
√
α

√
2 γ

2α
√
α

√
2 γ

2α
√
α

Sx,β(µ
θ) 1 1 1 1

Sx,γ(µ
θ) 0 1√

α
∞

√
2

α
√
∆t

5. Conclusions. In this paper, we derived information inequalities that bound weak error estimates
and sensitivity indices. We further extend the variational UQ bounds which were previously derived in
[7, 21] in several directions. First, we observe and prove that the UQ bound defines a novel goal-oriented
divergence which couples observables of interest (hence the term “goal-oriented”) with the relative entropy
of the “true” probabilistic model with respect to a computationally tractable “nominal” model. Second, an



24explicit representation for the goal-oriented divergence was derived which after linearization resulted in a
sensitivity bound which decouples the role of the observable function from the distance of the probability
measures as quantified by the FIM. Exploiting the properties of the relative entropy in path-space, we further
extend the UQ and sensitivity bounds to the case of stochastic dynamics for both transient and long-time
regimes. The relative entropy rate which is the relative entropy per unit time and the corresponding path
FIM are the quantities that control the weak error and the sensitivity indices, respectively, at infinite times.
An advantage of the path-space sensitivity bounds is that they depend only on the local dynamics of the
process thus they are computable from a direct Monte Carlo simulation. This feature is very attractive in
out-of-equilibrium or non-equilibrium systems, where the stationary distribution is not relevant or known.
Finally, this paper is primarily a theoretical work and extensive numerical examples, algorithms, synergies
with other methods and applications to high-dimensional realistic systems will follow.

Appendix A. Relative entropy rate and path Fisher information matrix: Examples. The
relative entropy rate (RER) and the path Fisher Information Matrix (pFIM) can often be expressed explicitly
in terms of the local dynamics, which we demonstrate in a few examples for Markov processes, including
discrete and continuous time Markov chains and stochastic differential equations.

A.1. Discrete-time Markov chains. RER always has an explicit expression for discrete time pro-
cesses with values in the Polish space X . We first state a version of the chain rule. For a proof see [9,
Theorem C.3.1].

Lemma A.1. Let α and β be probability measures on X × Y, where X and Y are Polish spaces. Let α1

and β1 denote their first marginals, and denote by α(dy|x) and β(dy|x) the conditional distribution on the
second variable given the first. Then the mapping x→ R (α(·|x) ||β(·|x)) is measurable, and

R (α ||β) = R (α1 ||β1) +
∫

X
R (α(·|x) ||β(·|x))α1(dx).

Lemma A.2. Let {Xt}t∈N0 , {Yt}t∈N0 be Markov processes on the state space X with transition kernels
q(x, dx′) and p(x, dx′), and initial measures ν(dx) and µ(dx), respectively. Assume that ν is stationary for
q(x, dx′). Then the relative entropy rate H(Q ||P ) defined in (3.1) is given by

H(Q ||P ) =
∫

ν(dx)

∫

q(x, dy) log
dq(x, ·)
dp(x, ·) (y) . (A.1)

Furthermore, the relative entropy rate is expressed as the relative entropy

H(Q ||P ) = R (ν ⊗ q ||µ⊗ p) , (A.2)

where ν ⊗ q is the probability measure on X 2 given by [ν ⊗ q](A×B) =
∫

A
q(x,B)ν(dx).

Proof. Both statements follow directly from the chain rule, Lemma A.1. Since ν is stationary for
q(x, dx′), we can apply the chain rule from time t = T − 1 back to t = 0, and by using Markov property
obtain (3.3), with H(Q ||P ) equal to

∫

X
R (q(x, ·) || (p(x, ·)) ν(dx).

However this is precisely (A.1), and thus the first claim follows. (A.2) also follows directly from the chain
rule and the fact that R (ν || ν) = 0. Finally, notice that even though a quantity between path distributions,
we drop the dependence of time interval in the notation of the relative entropy rate because relative entropy
rate is a time-independent quantity.

Lemma A.3. Assume Condition 3.1. Then, the path FIM defined in (3.4) is given by

IH(P θ) = Eµθ

[
∫

E

pθ(x, y)∇θ log p
θ(x, y)∇θ log p

θ(x, y)T R(dy)

]

(A.3)



25Proof. Define the function G(θ) = G(θ;x, y) = log pθ(x, y) for all x, y ∈ X . Then, from Condition 3.1,
G(θ) as a function of θ is C3 and for an arbitrary ǫ ∈ R

k

G(θ + ǫ) = G(θ) + ǫT∇θG(θ) +
1

2
ǫT∇θG(θ)ǫ +R2(θ)

= G(θ) + ǫT
∇θp

θ

pθ
+

1

2
ǫT
(∇2

θp
θ

pθ
−
(∇θp

θ

pθ

)2)

ǫ+R2(θ) ,

where ∇ and ∇2 denotes the gradient and the Hessian of a function while R2(θ) is the remainder term as
given by Taylor’s Theorem. Then, the relative entropy rate of the path distribution P θ

[0,T ] with respect to

the perturbed path distribution P θ+ǫ
[0,T ] becomes

H(P θ ||P θ+ǫ) =

∫

µθ(dx)

∫

pθ(x, y) log
pθ(x, y)

pθ+ǫ(x, y)
R(dy)

= −
∫

µθ(dx)

∫

pθ(x, y)(G(θ + ǫ;x, y)−G(θ;x, y))R(dy)

= −
∫

µθ(dx)

∫

pθ(x, y)

(

ǫT
∇θp

θ(x, y)

pθ(x, y)
+

1

2
ǫT
(∇2

θp
θ(x, y)

pθ(x, y)
−
(∇θp

θ(x, y)

pθ(x, y)

)2)

ǫ+R2(θ;x, y)

)

R(dy)

=
1

2
ǫT
∫

µθ(dx)

∫

pθ(x, y)
(∇θp

θ(x, y)

pθ(x, y)

)2

R(dy)ǫ+

∫

µθ(dx)

∫

pθ(x, y)R2(θ;x, y)R(dy)

since for any i = 1, 2, ... it holds that

∫

pθ(x, y)
∇i

θp
θ(x, y)

pθ(x, y)
R(dy) =

∫

∇i
θp

θ(x, y)R(dy) = ∇i
θ

∫

pθ(x, y)R(dy) = ∇i
θ1 = 0

where ∇i
θ denotes the i-th derivative operator. Thus, the path FIM is given by

IH(P θ) = Eµθ

[
∫

pθ(x, y)∇θ log p
θ(x, y)∇θ log p

θ(x, y)T R(dy)

]

Remark A.1. Performing similar Taylor series expansion, it can be obtained that the relative entropy
rate of P θ+ǫ w.r.t. P θ admits the same Hessian. Indeed, it is expanded as

H(P θ+ǫ ||P θ) =
1

2
ǫTIH(P θ)ǫ+O(|ǫ|3) .

Notice also that this result is valid not only for discrete-time Markov chains but it is quite general.

A.2. Continuous-time Markov chains. Next, we compute the relative entropy rate for continuous-
time Markov chains. We consider such chains on a countable state space X and let quantities such as P[0,T ]

denote the measure on D([0, T ] : X ) induced by the process, where D([0, T ] : X ) consists of allX : [0, T ] → X
that are continuous from the right and with limits from the left, with the usual Skorohod topology.

Lemma A.4. Let {Xt}t≥0 and {Yt}t≥0 be stationary continuous time Markov chains with the countable

state space X and jump rates λ̃(x) and λ(x) and transition probabilities p̃(x, x′) and p(x, x′). Assume that
λ̃ and λ are positive and uniformly bounded above. Assume also that p̃(x, x) = p(x, x) = 0 for all x ∈ X ,
and for x′ 6= x that p̃(x, x′) > 0 if any only if p(x, x′) > 0. Let µ̃ be a stationary probability distribution for
{Xt}t≥0, and let µ be any initial distribution for {Yt}t≥0. Let Q[0,T ] and P[0,T ] be the measures induced by
{Xt}t≥0 and {Yt}t≥0. Then the relative entropy rate H(Q‖P ) associated with R(Q[0,T ] ‖P[0,T ]) is given by

H(Q‖P ) =
∑

x∈X

∑

x′∈X
µ̃(x)λ̃(x)p̃(x, x′) log

λ̃(x)p̃(x, x′)

λ(x)p(x, x′)
−
∑

x∈X
µ̃(x)(λ̃(x)− λ(x)) . (A.4)



26 Proof. According to [17, Prop. 2.6, App. 1] and [23, Sec. 19] the Radon-Nikodym derivative of the path
measure Q[0,T ] with respect to the path measure P[0,T ] is given by

dQ[0,T ]

dP[0,T ]
(X) =

µ̃(X0)

µ(X0)
exp

{

∫ T

0

log
λ̃(Xt)p̃(Xt− , Xt)

λ(Xt)p(Xt− , Xt)
dNt(X)−

∫ T

0

(λ̃(Xt)− λ(Xt)) dt

}

,

where Ns(X) is the number of jumps on the path X up to time s. The relative entropy up to time T is
defined by

R
(

Q[0,T ] ||P[0,T ]

)

≡ EQ[0,T ]

[

log
dQ[0,T ]

dP[0,T ]

]

.

Since λ̃ is bounded MT ≡ NT −
∫ T

0
λ̃(Xt) dt is a mean zero martingale, then for any (non-negative and

measurable) function f on X

EQ[0,T ]

[

∫ T

0

f(Xt) dNt

]

= EQ[0,T ]

[

∫ T

0

f(Xt)λ̃(Xt) dt

]

.

Furthermore, from stationarity we have EQ[0,T ]
[
∫ T

0
f(Xt)λ̃(Xt) dt] = T

∑

x∈X µ̃(x)f(x)λ̃(x). Substituting for
f the expression for the logarithm of the Radon-Nikodym derivative we obtain

R
(

Q[0,T ] ||P[0,T ]

)

= T

(

∑

x∈X

∑

x′∈X
µ̃(x)λ̃(x)p̃(x, x′) log

λ̃(x)p̃(x, x′)

λ(x)p(x, x′)
−
∑

x∈X
µ̃(x)(λ̃(x) − λ(x))

)

+R (µ̃ ||µ) .

Remark A.2. We can rearrange the expression for the RER to obtain

H(Q‖P ) =
∑

x∈X

∑

x′∈X
µ̃(x)λ(x)p(x, x′)ℓ

(

λ̃(x)p̃(x, x′)

λ(x)p(x, x′)

)

,

where ℓ (z) = z log z − z + 1 for z ≥ 0. This exhibits the RER as a form of relative entropy. The function
ℓ (z), which appears in rate functions for the large deviation theory of jump Markov processes [9], is non-
negative and vanishes only at z = 1. Thus the RER is non-negative, and equals zero if and only if the two
chains are the same.

Lemma A.5. Let the transition rate defined for all x, x′ ∈ X by cθ(x, x′) ≡ λθ(x)pθ(x, x′) be parametrized
by θ ∈ R and ssume that the mapping θ → cθ(·, ·) is C3. Let P θ

[0,T ] (resp. µ
θ) be the path (resp. stationary)

measure of the associated process. Then, the path FIM is

IH(P θ) = Eµθ

[

∑

x′∈X
cθ(x, x′)∇θ log c

θ(x, x′)∇θ log c
θ(x, x′)T

]

(A.5)

Proof. The proof is similar to the DTMC case using now two auxiliary functions defined by G1(θ) =
G1(θ;x, x

′) = log cθ(x, x′) and G2(θ) = G2(θ;x, x
′) = cθ(x, x′) for all x, x′ ∈ X . For completeness, we present

the basic steps of the relative entropy expansion. The relative entropy rate of the path measure P θ
[0,T ] with



27respect to the perturbed path measure P θ+ǫ
[0,T ] can be written as

H(P θ ||P θ+ǫ) =
∑

x,x′∈X
µθ(x)cθ(x, x′) log

cθ(x, x′)

cθ+ǫ(x, x′)
−

∑

x,x′∈X
µθ(x)(cθ(x, x′)− cθ+ǫ(x, x′))

= −
∑

x,x′∈X
µθ(x)cθ(x, x′)(G1(θ + ǫ)−G1(θ)) +

∑

x,x′∈X
µθ(x)(G2(θ + ǫ)−G2(θ))

= −
∑

x,x′∈X
µθ(x)cθ(x, x′)

(

ǫT
∇θc

θ(x, x′)

cθ(x, x′)
+

1

2
ǫT
(∇2

θc
θ(x, x′)

cθ(x, x′)
−
(∇θc

θ(x, x′)

cθ(x, x′)

)2)

ǫ+R2(θ;x, x
′)
)

+
∑

x,x′∈X
µθ(x)

(

ǫT∇θc
θ(x, x′) +

1

2
ǫT∇2

θc
θ(x, x′)ǫ+ R̃2(θ;x, x

′)
)

=
1

2
ǫT

∑

x,x′∈X
µθ(x)cθ(x, x′)

(∇θc
θ(x, x′)

cθ(x, x′)

)2

ǫ−
∑

x,x′∈X
µθ(x)

(

cθ(x, x′)R2(θ;x, x
′)− R̃2(θ;x, x

′)
)

where R2(θ) and R̃2(θ) are the remainder terms of G1 and G2, respectively.

A.3. Stochastic differential equations. We also compute the relative entropy rate for Ito diffusion
processes. To avoid technical difficulties we impose following assumptions: we assume that the vector fields
a(x), b(x) ∈ R

d, x ∈ R
d and the non-singular σ(x) ∈ R

d×d are such that the Ito’s stochastic differential
equations

dXt = a(Xt)dt+ σ(Xt)dWt , (A.6)

dYt = b(Yt)dt+ σ(Yt)dWt , (A.7)

have a unique weak solution for initial conditions X0 ∼ ν0(dx) and Y0 ∼ µ0(dx). Furthermore, we assume
that the function

u(x) = σ−1(x)(b(x) − a(x))

is such that Novikov’s condition E

[

e
1
2

∫
T

0
|u(Xt)|2 dt

]

<∞ is satisfied [29]. Under these assumptions we obtain

explicit formula for the relative entropy rate of the stationary process {Xt}t≥0 that is the solution of (A.6)
with the initial condition X0 ∼ ν(dx), where ν(dx) is the invariant distribution.

Lemma A.6. Let {Xt}t≥0 and {Yt}t≥0 be the unique solutions of (A.6)-(A.7) with the initial conditions
X0 ∼ ν0(dx) and Y0 ∼ µ0(dx), where ν0(dx) = ν(dx) is the invariant distribution for the process {Xt}t≥0.
We define u(x) = σ−1(x)(a(x)−b(x)). Denoting Q[0,T ] and P[0,T ] the corresponding path probability measures,
the relative entropy is

R
(

Q[0,T ] ||P[0,T ]

)

= EQ[0,T ]

[

1

2

∫ T

0

|u(Xt)|2 dt
]

+R (ν0 ||µ0) , (A.8)

and the relative entropy rate H(Q ||P ) ≡ limT→∞
1
T
R
(

Q[0,T ] ||P[0,T ]

)

is

H(Q ||P ) = Eν

[

1

2
‖a− b‖2Σ−1

]

, (A.9)

where ‖b‖Σ−1 ≡∑d
i,j=1 Σ

−1
ij (x)bi(x)bj(x) is the norm on R

d defined by the diffusion matrix Σ = σ(x)σT (x).
Proof. Under the assumptions on the stochastic differential equations it follows from Girsanov’s Theorem,

[29], that Q[0,T ] ≪ P[0,T ]

dQ[0,T ]

dP[0,T ]
(Xt) =

dν0
dµ0

(X0) e
−

∫
t

0
u(Xs) dWs− 1

2

∫
t

0
|u(Xs)|2 ds .



28Furthermore, Bt =
∫ t

0
u(Xs) ds+Wt is Brownian motion under Q[0,T ]. Thus we have

R
(

Q[0,T ] ||P[0,T ]

)

= EQ[0,T ]

[

log
dQ[0,T ]

dP[0,T ]

]

= R (ν0 ||µ0) + EQ[0,T ]

[

−
∫ T

0

u(Xs) dWs −
1

2

∫ T

0

|u(Xs)|2 ds
]

= R (ν0 ||µ0) + EQ[0,T ]

[

−
∫ T

0

u(Xs) (dBs − u(Xs) ds)−
1

2

∫ T

0

|u(Xs)|2 ds
]

= R (ν0 ||µ0) + EQ[0,T ]

[

1

2

∫ T

0

|u(Xs)|2 ds
]

,

where in the last identity we use EQ[0,T ]

[

−
∫ T

0 u(Xs) dBs

]

= 0 as Bt is Brownian motion under Q[0,T ]. If

X0 ∼ ν and thus the process {Xt}t≥0 is stationary we have

EQ[0,T ]

[

1

2

∫ T

0

|u(Xs)|2 ds
]

= TEν

[

1

2
|u(x)|2

]

,

from which (A.9) follows.
Lemma A.7. Let the drift term aθ(x) be parametrized by θ ∈ R and assume that the mapping θ → aθ(·)

is C2. Let P θ
[0,T ] (resp. µ

θ) be the path (resp. stationary) measure of the associated process. Then, the path
FIM is

IH(P θ) = Eµθ

[

∇θa
θ(x)T (σσT )−1(x)∇θa

θ(x)
]

. (A.10)

Proof. Taylor’s theorem for the drift term aθ(·) around θ reads

aθ+ǫ(x) = aθ(x) +∇θa
θ(x)ǫ +R1(θ) ,

where ∇θa
θ(·) is a d× k matrix containing all the first-order partial derivatives of the drift vector (i.e., the

Jacobian matrix) while the vector R1(θ) is the remainder term of the Taylor’s theorem. Then, the relative
entropy rate of the path probability measure P θ

[0,T ] with respect to the perturbed path probability measure

P θ+ǫ
[0,T ] can be written as

H
(

P θ ||P θ+ǫ
)

=
1

2
Eµθ

[

∣

∣σ−1(x)
(

aθ+ǫ(x)− aθ(x)
)
∣

∣

2
]

=
1

2
Eµθ

[

(

∇θa
θ(x)ǫ +R1(θ;x)

)T
(σσT )−1(x)

(

∇θa
θ(x)ǫ +R1(θ;x)

)

]

=
1

2
ǫTEµθ

[

∇θa
θ(x)T (σσT )−1(x)∇θa

θ(x)
]

ǫ

+ ǫTEµθ

[

∇θa
θ(x)T (σσT )−1(x)R1(θ;x)

]

+
1

2
Eµθ

[

|σ−1(x)R1(θ;x)|2
]

from which (A.10) follows.
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