
ar
X

iv
:1

50
7.

06
16

1v
1

 [
m

at
h.

O
C

]
 2

2
Ju

l 2
01

5

IMPROVED AUTOMATIC COMPUTATION

OF HESSIAN MATRIX SPECTRAL BOUNDS

MORITZ SCHULZE DARUP AND MARTIN MÖNNIGMANN

Abstract. This paper presents a fast and powerful method for the computation of eigenvalue
bounds for Hessian matrices ∇2ϕ(x) of nonlinear functions ϕ : U ⊆ Rn → R on hyperrectangles
B ⊂ U . The method is based on a recently proposed procedure [9] for an efficient computation
of spectral bounds using extended codelists. Both the approach from [9] and the one presented
here substantially differ from established methods in that they do deliberately not use any interval
matrices and thus result in a favorable numerical complexity of order O(n)N(ϕ), where N(ϕ) denotes
the number of operations needed to evaluate ϕ at a point in its domain.

We improve the method presented in [9] by exploiting sparsity, which naturally arises in the
underlying codelists. The new method provides bounds that are as good as, or better than those
from the most accurate existing method in about 82% of the test cases.

1. Introduction. We present important improvements for a recently proposed
method (see [9]) for the efficient calculation of spectral bounds for Hessian matrices
on hyperrectangles. The improvements build on a systematic treatment of sparsity of
the involved matrices, which will be shown to result in significantly tighter eigenvalue
bounds. The problem can concisely be summarized as follows. Let ϕ : U ⊆ Rn → R
be a twice continuously differentiable function on an open set U ⊆ Rn and let B =
[x1, x1] × · · · × [xn, xn] be a closed hyperrectangle in U . We seek bounds λ, λ ∈ R
such that the relations λ ≤ λ ≤ λ hold for all eigenvalues λ of all matrices H ∈
{∇2ϕ(x) |x ∈ B}. More precisely, we solve the following problem:

Find λ, λ ∈ R such that λ ≤ min
x∈B

λmin(∇
2ϕ(x)) and max

x∈B
λmax(∇

2ϕ(x)) ≤ λ, (1.1)

where λmin(H) and λmax(H) denote the smallest and largest eigenvalue, respectively,
of the symmetric matrix H ∈ Rn×n. A bound λ (resp. λ) is called tight if there exists
at least one x ∈ B such that λ = λmin(∇

2ϕ(x)) (resp. λ = λmax(∇
2ϕ(x))). Note that

the problem statement (1.1) does not necessarily imply that λ and λ are tight.
Eigenvalue bounds λ, λ are used, for example, in numerical optimization methods

to detect convexity, or to construct convex underestimators of nonconvex functions [1,
2, 3]. If (1.1) yields λ ≥ 0 then ϕ is convex on the interior of the hyperrectangle B.
While no conclusion on the convexity can be drawn if (1.1) results in λ < 0, the bound
λ can still be used to construct a convex underestimator for ϕ on B. Specifically,

ϕ̆(x) = ϕ(x)−
1

2
λ
∑n

i=1
(xi − xi) (xi − xi) (1.2)

is convex, coincides with ϕ at the vertices of B, and bounds ϕ from below everywhere
else in B. Since a large fraction of the total computation time is spent on the calcu-
lation of convex underestimators in global optimization methods [1], fast methods for
solving (1.1) are of interest. We briefly note that (1.1) must also be solved in certain
problems in automatic control and systems theory. An illustrative example is given
in [8].

Existing approaches to solving (1.1) proceed in two steps: First, a symmetric
interval matrix (also called interval Hessian) that contains all Hessians ∇2ϕ(x) on B
is calculated:

Find H = HT , H = H
T
∈ Rn×n such that Hij ≤

(

∇2ϕ(x)
)

ij
≤ Hij

for every i, j ∈ {1, . . . , n} and every x ∈ B.
(1.3)

1

http://arxiv.org/abs/1507.06161v1

This task can efficiently be carried out by combining interval arithmetics (IA, see
[10], for example) and automatic differentiation (AD, see [4, 11], for example). In the
second step, spectral bounds can be found by solving the following problem, which is
similar to, but different from (1.1):

Find λ, λ ∈ R such that λ ≤ min
H∈H

λmin(H) and max
H∈H

λmax(H) ≤ λ, (1.4)

where H = {H ∈ Rn×n |Hij ∈ [Hij , Hij], H = HT } is the set of all symmetric

matrices that respect the bounds H and H . Various approaches exist to solving (1.4)
(see, e.g., [2, 5, 6, 12]). However, since {∇2ϕ(x) |x ∈ B} ⊆ H, problem (1.4) is
conservative compared to the original problem (1.1). In fact it is the very point of the
method introduced in [9] and refined in the present paper to avoid computing interval
matrices of the form (1.3) when solving (1.1) in order to avoid this conservatism.

We briefly summarize the computational complexity of the existing methods. The
computation of the matrices H and H in (1.3) requires O(n2)N(ϕ) (resp. O(n)N(ϕ))
operations if the forward (resp. backward) mode of AD is used, where N(ϕ) denotes
the number of operations needed to evaluate ϕ at a point in its domain [4]. After the
interval Hessian has been calculated, solving (1.4) requires between O(n2) operations
for the interval variant of Gershgorin’s circle criterion [2, 5] and O(2n n3) operations
for Hertz and Rohn’s method [6, 12]. The latter method is an important benchmark
in that it yields tight spectral bounds for the matrix set H. Albeit the conservatism
in (1.3), Hertz and Rohn’s method therefore provides the best possible option to
solve (1.1) via (1.3) and (1.4).

The total numerical effort of any approach that uses (1.3) and (1.4) corresponds to
the sum of the efforts for calculatingH,H and solving (1.4). Thus, the numerical effort
for the established methods varies between O(n)N(ϕ) +O(n2) (backward mode AD
combined with Gershgorin’s circle criterion) and O(n2)N(ϕ) + O(2n n3) operations
(forward mode AD combined with Hertz and Rohn’s method). The major advantage
of the direct method presented in [9] is its low computational complexity, which was
shown to be of order O(n)N(ϕ).

It is the purpose of this paper to improve the method introduced in [9] such that
sparsity can exploited to find tighter eigenvalue bounds. The improvements do not
increase the numerical effort compared to the original method in [9]. In fact, sparsity
needs to be investigated once during the automatic generation of the extended codelist.
The computations required to evaluate the codelist to obtain eigenvalue bounds on
a specific hyperrectangle B are no more expensive than those for the non-sparse case
treated in [9]. While the computational effort remains the same, the improved method
results in significantly tighter eigenvalue bounds than the original procedure from [9].
To show this, we investigate 1522 examples (taken from the COCONUT collection [14],
see [13] for details) and compare the eigenvalue bounds resulting from the improved
procedure to those obtained with the original one [9] and to bounds obtained with the
interval Hessian (1.3) and Gershgorin’s circle criterion and Hertz and Rohn’s method.

We summarize the major aspects of the direct method for the computation of
eigenvalue bounds from [9] in Sect. 3. Our main result, the exploitation of sparsity
for the improvement of the eigenvalue bounds from [9], is stated in Sect. 4. We analyze
1522 numerical examples from [14, 13] in Sect. 51. Conclusions are given in Sect. 6.

1Results were obtained with Jcodegen, a code generator available from the authors on request, or
to be used online on www.rus.rub.de/software/jcodegen. Jcodegen generates ANSI-C code for the al-
gorithm described in Prop. 4.17 for a given function ϕ. In particular sparsity is treated automatically.
The specific hyperrectangle B is passed to the resulting code as a runtime parameter.

2

2. Notation and Preliminaries. We frequently use index sets J ⊆ N , where
N := N1,n and where Nm,n := {i ∈ N |m ≤ i ≤ n}. The complement of an index set
J is defined as J c := N \ J . The cardinality of an index set J is denoted by |J |.

It is convenient to state eigenvalue bounds as intervals (e.g. λ ∈ [λ, λ]). Intervals
[a, a] ⊂ R with a ≤ a are further abbreviated by [a] := [a, a] whenever appropriate.
Interval equality [a, a] = [b, b], is understood to mean a = b and a = b. We frequently
carry out calculations on intervals with standard interval arithmetics (IA) rules. The
required rules are summarized in Lem. 2.1 and Tab. 2.1.

Lemma 2.1 (basic interval operations [10]). Let [a] = [a, a] and [b] = [b, b] be
intervals in R. Let a ∈ [a, a], b ∈ [b, b], and c ∈ R be arbitrary real numbers. Then,
the relations in the second column of Tab. 2.1 hold under the additional restrictions
stated in the last column.

Table 2.1
Basic interval arithmetic.

no. operation / bounds definition restriction

1 a+ b ∈ [a] + [b] := [a+ b, a+ b]

2 a b ∈ [a] [b] := [min{a b, a b, a b, a b},max{a b, a b, a b, a b}]
3 1/a ∈ 1/[a] := [1/a, 1/a] 0 /∈ [a]
4 am ∈ [a]m := [am, am] if a > 0 or m odd

:= [am, am] if a < 0 and m even
:= [0,max{am, am}] otherwise

5
√
a ∈

√

[a] := [
√
a,
√
a] a ≥ 0

6 exp a ∈ exp([a]) := [exp(a), exp(a)]
7 ln(a) ∈ ln([a]) := [ln(a), ln(a)] a > 0
8 a+ c ∈ [a] + c := [a+ c, a+ c]
9 c a ∈ c [a] := [c a, c a] if c ≥ 0

:= [c a, c a] otherwise

A lower case letter surrounded by brackets may refer to a real interval [x] =
[x, x] ⊂ R (as introduced above) or a hyperrectangle [x] = [x1, x1] × · · · × [xn, xn] ⊂
Rn (with n ≥ 2). In the latter case, the interval operations listed in Tab. 2.1 are
understood to apply to every component. For a hyperrectangle [x] ⊂ Rn and a
nonempty index set J ⊆ N with the m elements j1 < · · · < jm, the term [xJ] refers
to the hyperrectangle [xJ] = [xj1]× · · · × [xjm].

It is furthermore convenient to use null matrices in Rm×r, which we denote by
0m,r, when dealing with sparsity. For the special cases m = 0 or r = 0 we obtain an
empty matrix. Formally, the empty square matrix 00,0 has no eigenvalues. It proves
useful to assign the eigenvalue bounds [λ] = [0, 0] to it. Finally, the Cartesian unit
vector along the k-th direction is denoted by ek ∈ Rn.

3. Direct computation of eigenvalue bounds for Hessian matrices on

hyperrectangles. We summarize the method introduced in [9] for the direct solution
of (1.1) as needed in the present paper. We assume the function ϕ can be evaluated

3

at an arbitrary point x ∈ U by carrying out a finite sequence of operations of the form

y1 = x1

...
yn = xn

yn+1 = Φn+1(y1, . . . , yn)
yn+2 = Φn+2(y1, . . . , yn, yn+1)

...
yn+t = Φn+t(y1, . . . , yn, yn+1, . . . , yn+t−1)

ϕ = yn+t

(3.1)

where each Φn+k, k = 1, . . . , t, represents one of the elementary operations listed
in the first column of Tab. 3.1. We treat the same operations as in [9] for ease of
comparison. Note that additional unary operations can be added according to the
rules given in [9]. We refer to (3.1) as the codelist of the function ϕ.

The codelist (3.1) can be used to evaluate the function value ϕ(x) at a specific
point x in its domain. Using automatic differentiation (AD) [11] the codelist (3.1)
can be extended in such a way that the gradient ∇ϕ(x) or the Hessian ∇2ϕ(x) at the
point x are calculated. Moreover, using AD and interval arithmetic (IA), (3.1) can
be modified such that interval extensions, interval gradients or interval Hessians of ϕ
on hyperrectangles B ⊂ U are computed. In fact, extended codelists are commonly
used to solve problem (1.3) as part of the established procedures for the computation
of eigenvalue bounds (see, e.g., [2]). In contrast, the method introduced in [9] only
requires the interval gradient, but not the interval Hessian. Essentially, the codelist
is extended by arithmetic operations that compute the eigenvalue bounds for the
Hessian of the intermediate function in every codelist line. Formally, this leads to the
extended codelist which we introduce in the following theorem.

Theorem 3.1 (algorithm for direct eigenvalue bound computation [9, Prop.
4.2]). Assume ϕ is twice continuously differentiable on U and can be written as a
codelist (3.1). Let B = [x1] × · · · × [xn] ⊂ U be arbitrary. Then, for all x ∈ B, we
have ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ], and [λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆ [λϕ], where [ϕ],
[∇ϕ], and [λϕ] are calculated by the following algorithm.

1. For k = 1, . . . , n, set [yk] = [xk, xk], [∇yk] = [ek, ek], and [λk] = [0, 0].
2. For k = n+1, . . . , n+ t, calculate [yk], [∇yk] and [λk] according to the third,

fourth, and fifth column of Tab. 3.1.
3. Set [ϕ] = [yn+t], [∇ϕ] = [∇yn+t], and [λϕ] = [λn+t].
In Tab. 3.1, we use the interval operators [Λs([a])] and [Λt([a], [b])], which are

defined according to

[Λs([a])] =

{

[a]2 if m = 1,
[0,
∑m

i=1 max{a2i , a
2
i }] otherwise,

(3.2)

and [Λt([a], [b])] =

{

2 [a] [b] if m = 1,

[−β, β] +
∑m

i=1[ai, ai] [bi, bi] otherwise
(3.3)

for hyperrectangles [a], [b] ⊂ Rm, where β =

√

(
∑m

i=1 max{a2i , a
2
i })(

∑m
i=1 max{b2i , b

2

i }).

We refer to [9, Lems. 2.2 and 2.3] for details on [Λs([a])] and [Λt([a], [b])].

4. Improved computation of eigenvalue bounds using sparsity. If spar-
sity is exploited, tighter eigenvalue bounds can be obtained than those that result from

4

Table 3.1
Rules for the calculation of yk, [yk], [∇yk] and [λk] in the k-th line of the codelist (3.1). [∇yk]

refers to the interval gradient of line k with respect to x. The interval operators [Λs([a])] and
[Λt([a], [b])] are defined in (3.2) and (3.3).

op Φk yk [yk] [∇yk] [λk]

var xk [xk] [ek, ek] [0, 0]

add yi + yj [yi] + [yj] [∇yi] + [∇yj] [λi] + [λj]
mul yi yj [yi] [yj] [yj][∇yi]+[yi][∇yj] [yj][λi] + [yi][λj] + [Λt([∇yi], [∇yj])]

powNat ym
i [yi]

m m [yi]
m−1 [∇yi] m[yi]

m−2((m−1)[Λs([∇yi])]+[yi][λi])
oneOver 1/yi 1/[yi] −[yk]

2 [∇yi] [yk]
2 (2 [yk] [Λs([∇yi])]− [λi])

sqrt
√
yi [

√

[yi]] 1/(2 [yk]) [∇yi] 1/(2 [yk])([λi]+1/(−2 [yi])[Λs([∇yi])])
exp exp(yi) [exp([yi])] [yk] [∇yi] [yk] ([Λs([∇yi])] + [λi])
ln ln(yi) [ln([yi])] 1/[yi] [∇yi] 1/[yi] ([λi]− 1/[yi] [Λs([∇yi])])
addC yi + c [yi]+[c, c] [∇yi] [λi]
mulByC c yi c [yi] c [∇yi] c [λi]

the method summarized in Section 3. This is evident from the following motivating
example.

Example 1 (method from [9] applied to ϕ(x) = x2
1 + x2

2). Consider the function
ϕ : R2 → R with ϕ(x) = x2

1 + x2
2. Theorem 3.1 results in the following extended

codelist. Note that the expressions for yk listed in (4.1) do not result from Thm. 3.1,
but are only given for illustration of the codelist (3.1) of ϕ.

k yk [yk] [∇yk] [λk]

1 x1 [x1] [e1, e1] [0, 0]
2 x2 [x2] [e2, e2] [0, 0]
3 y2

1 [y1]
2 2 [y1] [∇y1] 2([Λs([∇y1])] + [y1] [λ1])

4 y2
2 [y2]

2 2 [y2] [∇y2] 2([Λs([∇y2])] + [y2] [λ2])
5 y3 + y4 [y3] + [y4] [∇y3] + [∇y4] [λ3] + [λ4]

ϕ = y5 [ϕ] = [y5] [∇ϕ] = [∇y5] [λϕ] = [λ5]

(4.1)

Evaluating the extended codelist (4.1) for the hyperrectangle B = [0, 1] × [0, 1] by
computing [yk], [∇yk], and [λk] and storing the results line by line yields

[y1] = [0, 1], [∇y1] = ([1, 1], [0, 0])T , [λ1] = [0, 0],
[y2] = [0, 1], [∇y2] = ([0, 0], [1, 1])T , [λ2] = [0, 0],
[y3] = [0, 1], [∇y3] = ([0, 2], [0, 0])T , [λ3] = [0, 2],
[y4] = [0, 1], [∇y4] = ([0, 0], [0, 2])T , [λ4] = [0, 2],

[y5] = [0, 2], [∇y5] = ([0, 2], [0, 2])T , [λ5] = [0, 4],

(4.2)

where [Λs([∇y1])] = [0, 1] and [Λs([∇y2])] = [0, 1] according to Eq. (3.3). Thus, we
obtain the eigenvalue bounds [λϕ] = [λ5] = [0, 4] for ∇2(ϕ(x)) on B. Now, consider
the functions g, h : R2 → R with g(x) = x2

1 and h(x) = x2
2. From

∇2g(x) =

(

2 0
0 0

)

and ∇2h(x) =

(

0 0
0 2

)

,

we infer that both ∇2g(x) and ∇2h(x) have the eigenvalues 0 and 2 for every x ∈ B.
Hence, the eigenvalue bounds [λg] = [λ3] = [0, 2] and [λh] = [λ4] = [0, 2] that result
in line 3 and 4 of extended codelist (4.1) are tight. The eigenvalue bounds [λ5] =
[λ3]+[λ4] = [0, 4] that result in the subsequent line are conservative, however. In fact,

5

the Hessian of ϕ reads

∇2ϕ(x) = ∇2g(x) +∇2h(x) =

(

2 0
0 2

)

for all x ∈ B and the tight eigenvalue bounds obviously read [λ∗
ϕ] = [2, 2].

The Hessian matrices ∇2g(x) and ∇2h(x) in Exmp. 1 have zero eigenvalues which
disappear when adding the two functions to f(x) = g(x) + h(x). The situation
illustrated in Example 1 arises naturally in the codelists introduced in Section 3,
because codelists build up functions of many variables from functions of very few of
these variables. In order to mitigate eigenvalue bound overestimation in these cases,
we need to consider functions like g(x) and h(x) in Exmp. 1 as functions of only
those variables that they actually depend on nonlinearly. To this end, some simple
terminology and intermediate results are introduced in Sect. 4.1. Subsequently, sparse
sums, products, and compositions are treated in Sects. 4.2, 4.3, and 4.4, respectively.
Section 4.5 summarizes how to compute the improved eigenvalue bounds based on
the rules introduced in Sects. 4.2–4.4.

4.1. Sparsity handling using reduced Hessians and reduced gradients.

As pointed out in Exmp. 1, sparsity occurs if functions depend at most linearly on
some variables xi, where at most linear dependence is defined as follows.

Definition 4.1 (at most linear dependence). Let f : U → R be a continuously
differentiable function on an open set U ⊆ Rn. Let i ∈ N . The function f is said to
depend at most linearly on xi if there exists a c ∈ R such that

∂f

∂xi

(x) = c for all x ∈ U . (4.3)

The function f obviously is independent of xi if (4.3) holds with c = 0.
Assume a function f is known to depend at most linearly on xj for all j ∈ Lf ,

where Lf ⊆ N is a given index set. Then, only the eigenvalues of the reduced Hessian
(see Def. 4.2) associated with the index set J = Lc

f are nontrivial, i.e., not necessarily
equal to zero.

Definition 4.2 (reduced Hessian ∇2
J f(x)). Let f : U → R be a twice con-

tinuously differentiable function on an open set U ⊆ Rn. Let J ⊆ N be an index
set and let m = |J |. If m = 0 set ∇2

J f(x) = 00,0, otherwise denote the m ele-
ments of J by j1 < · · · < jn−m in ascending order and define the reduced Hessian
∇2

J f(x) ∈ R(n−m)×(n−m) by its elements

(

∇2
J f(x)

)

ik
=

∂2f(x)

∂xji∂xjk

,

where i, k ∈ N1,m.
We also need to consider reduced gradient vectors.
Definition 4.3 (reduced gradient ∇J f(x)). Let f : U → R be a continuously

differentiable function on an open set U ⊆ Rn. Let J ⊆ N be a nonempty index set
and let m = |J |. Denote the m elements of J by j1 < · · · < jn−m in ascending order
and define the reduced gradient ∇J f(x) ∈ Rn−m by its elements

(∇J f(x))i =
∂f(x)

∂xji

,

where i ∈ N1,m.

6

Note that J may be empty in Def. 4.2, while there must exist at least one element
in J in Def. 4.3. This difference arises since codelist lines may depend at most linearly
on all variables xi but they are never independent of all xi.

We can easily evaluate eigenvalue bounds for the Hessian of a function from
eigenvalue bounds for its reduced Hessian. This is stated precisely in Lem. 4.4.

Lemma 4.4 (spectral bounds for Hessian from reduced Hessian). Let f denote a
twice continuously differentiable function f : U → R on an open set U . Let the index
set Lf ⊆ N be such that f depends at most linearly on xi for all i ∈ Lf . Let B ⊂ U

and let the interval [λ†
f] ⊂ R be such that

λ†
f ≤ min

x∈B
λmin(∇

2
Lc

f
f(x)) and max

x∈B
λmax(∇

2
Lc

f
f(x)) ≤ λ

†
f . (4.4)

Then, the eigenvalues of the Hessian ∇2f(x) on B lie in the interval

[λf] =

[λ†
f] if Lf = ∅,

[0, 0] if Lf = N ,

[min{λ†
f , 0},max{λ

†
f , 0}] otherwise.

(4.5)

Proof. We consider the cases in (4.5) separately. Lf = ∅ implies Lc
f = N and

consequently ∇2f(x) = ∇2
Lc

f
f(x), which proves the first case. In the second case, i.e.,

Lf = N , we have ∇2f(x) = ∇2
Lf

f(x). Since f depends at most linearly on xi for

all i ∈ Lf , we find ∇2
Lf

f(x) = 0n,n. Thus, the eigenvalue bounds [λf] = [0, 0] hold.

Regarding the third case, we note that ∅ ⊂ Lf ⊂ N implies ∅ ⊂ Lc
f ⊂ N . Thus,

m = |Lf | satisfies 0 < m < n. Without loss of generality we assume Lc
f = N1,m.

Then

∇2f(x) =

(

∇2
Lc

f
f(x) 0m,n−m

0n−m,m ∇2
Lf

f(x)

)

=

(

∇2
Lc

f
f(x) 0m,n−m

0n−m,m 0n−m,n−m

)

.

Now consider an arbitrary but fixed x ∈ B. We obtain

λmin(∇
2f(x)) = min{λmin(∇

2
Lc

f
f(x)), 0} and (4.6)

λmax(∇
2f(x)) = max{λmax(∇

2
Lc

f
f(x)), 0} (4.7)

based on the block-diagonal structure of ∇2
Lc

f
f(x). Bounding (4.6) below and bound-

ing (4.7) above for all x ∈ B yields

[min
x∈B

λmin(∇
2f(x)),max

x∈B
λmax(∇

2f(x))] ⊆ [min{λ†
f , 0},max{λ

†
f , 0}]

according to Eqs. (4.6) and (4.7) and condition (4.4).

4.2. Improved eigenvalue bounds for the sum of two functions. We col-
lect some recurring conditions first.

Conditions 4.5. Let g and h denote twice continuously differentiable functions
g : U → R and h : U → R on an open set U ⊂ Rn. Let the index sets Lg ⊆ N and
Lh ⊆ N be such that g (resp. h) depends at most linearly on xi for all i ∈ Lg (resp. all
i ∈ Lh). Moreover, let the index sets Ig ⊆ Lg and Ih ⊆ Lh with Ig ⊂ N and Ih ⊂ N

7

be such that g (resp. h) is independent of xi for all i ∈ Ig (resp. all i ∈ Ih). Let

B ⊂ U and assume there exist intervals [λ†
g] ⊂ R and [λ†

h] ⊂ R such that

λ†
g ≤ min

x∈B
λmin(∇

2
Lc

g
g(x)) and max

x∈B
λmax(∇

2
Lc

g
g(x)) ≤ λ

†
g, (4.8)

λ†
h ≤ min

x∈B
λmin(∇

2
Lc

h
h(x)) and max

x∈B
λmax(∇

2
Lc

h
h(x)) ≤ λ

†
h. (4.9)

Now assume Conds. 4.5 hold and we intend to calculate eigenvalue bounds for
∇2f(x) on a hyperrectangle B for f(x) = g(x)+h(x). We could determine eigenvalue
bounds for the full Hessians ∇2g(x) and ∇2h(x) with Lem. 4.4 and apply the rule for
the eigenvalue bounds of the sum of full Hessians (line add in Tab. 3.1 reproduced
from [9]). However, we show in Lem. 4.8 below that it is advantageous to, roughly
speaking, carry out calculations with the sparse Hessians as long as possible and to
apply Lem. 4.4 as late as possible. We first state the rules for determining Lf , If and
the eigenvalues of the reduced Hessian of f in Lems. 4.6 and 4.7, respectively. The
trivial proof of Lemma 4.6 is omitted for brevity.

Lemma 4.6 (index sets for sums). Assume Conds. 4.5 hold and consider the
function f : U → R with f(x) = g(x) + h(x). Let Lf = Lg ∩ Lh and If = Ig ∩ Ih.
Then, f depends at most linearly on xi for all i ∈ Lf and f is independent of xi for
all i ∈ If .

Lemma 4.7 (spectral bounds for reduced Hessian of sums). Assume Conds. 4.5
hold and consider the function f : U → R, f(x) = g(x) + h(x). Let Lf = Lg ∩ Lh.
Then,

λ†
f ≤ min

x∈B
λmin(∇

2
Lc

f
f(x)) and max

x∈B
λmax(∇

2
Lc

f
f(x)) ≤ λ

†
f , (4.10)

where [λ†
f] is computed according to the rules listed in Tab. 4.1.

Table 4.1
Rules for the computation of eigenvalue bounds [λ†

f
] for the reduced Hessian ∇2

Lc
f
f(x) of a sum

f(x) = g(x) + h(x). Let L∪ be short for L∪ := Lg ∪ Lh. See the end of Sect. 4.2 for a discussion
of the eight cases.

case [λ†
f] condition

1 [0, 0] Lg = N ∧ Lh = N
2 [λ†

g] Lg ⊂ N ∧ Lh = N
3 [λ†

h] Lg = N ∧ Lh ⊂ N
4 [min{λ†

g, λ
†
h},max{λ†

g , λ
†
h}] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N

5 [λ†
g] + [λ†

h] L∪ ⊂ N ∧ Lg = Lh

6 [λ†
g] + [min{λ†

h, 0},max{λ†
h, 0}] L∪ ⊂ N ∧ Lg ⊂ Lh

7 [min{λ†
g, 0},max{λ†

g, 0}] + [λ†
h] L∪ ⊂ N ∧ Lh ⊂ Lg

8 [min{λ†
g, 0},max{λ†

g, 0}] + [min{λ†
h, 0},max{λ†

h, 0}] L∪ ⊂ N ∧ Lg * Lh ∧ Lh * Lg

Proof. We prove the fourth case in Tab. 4.1 since it will be instrumental for
Exmp. 2. All other cases in Tab. 4.1 can be proven analogously. The reduced Hessian
of f reads ∇2

Lc
f
f(x) = ∇2

Lc
f
g(x) + ∇2

Lc
f
h(x). From Lg ⊂ N , Lh ⊂ N , and L∪ =

Lg ∪ Lh = N , we infer ∅ ⊂ Lg ⊂ N and ∅ ⊂ Lh ⊂ N and consequently ∅ ⊂ Lc
g ⊂ N

and ∅ ⊂ Lc
h ⊂ N . Thus, the cardinalities r = |Lc

g| and s = |Lc
h| satisfy 0 < r < n

and 0 < s < n. Moreover, Lg ∪ Lh = N implies Lc
g ∩ Lc

h = ∅. Hence, there does not

8

exist any index i ∈ N such that both i ∈ Lc
g and i ∈ Lc

h. We assume Lc
g = N1,r and

Lc
h = Nr+1,r+s without loss of generality. Note that Lc

f = Lc
g∪L

c
h implies Lc

f = N1,r+s

and m = |Lc
f | = r + s under this assumption. Thus, ∇2

Lc
f
f(x) equals

(

∇2
Lc

g
g(x) 0r,s

0s,r 0s,s

)

+

(

0r,r 0r,s
0s,r ∇2

Lc
h
h(x)

)

=

(

∇2
Lc

g
g(x) 0r,s

0s,r ∇2
Lc

h
h(x)

)

. (4.11)

The block-diagonal structure implies

λmin(∇
2
Lc

f
f(x)) = min{λmin(∇

2
Lc

g
g(x)), λmin(∇

2
Lc

h
h(x))} and (4.12)

λmax(∇
2
Lc

f
f(x)) = max{λmax(∇

2
Lc

g
g(x)), λmax(∇

2
Lc

h
h(x))} (4.13)

for an arbitrary but fixed x ∈ B. Bounding (4.12) below and bounding (4.13) above
for all x ∈ B yields

[min
x∈B

λmin(∇
2f(x)),max

x∈B
λmax(∇

2f(x))] ⊆ [min{λ†
g, λ

†
h},max{λ

†
g, λ

†
h}]

where we used Eqs. (4.12) and (4.13) and Conds. 4.5. Thus, the eigenvalues of

∇2
Lc

f
f(x) on B lie in the interval [λ†

f] = [min{λ†
g, λ

†
h},max{λ

†
g, λ

†
h}] as claimed in

Tab. 4.1.
We anticipated the bounds from Lem. 4.7 can be shown to be as tight as or

tighter than those from the original method proposed in [9] that does not account for
sparsity. This can now be shown in Lemma 4.8 below. Recall the bounds in [9] result
in [λf] = [λg] + [λh] for f(x) = g(x) + h(x) according to [9, Prop 3.2.(iii)].

Lemma 4.8 (improved bounds for sums). Assume Conds. 4.5 hold and let f ,

[λ†
f], and Lf be as in Lem. 4.7. Let [λf], [λg], and [λh] be the eigenvalue bounds for

the Hessians ∇2f(x), ∇2g(x), and ∇2h(x) on B, calculated according to Eq. (4.5).
Then,

[λf] ⊆ [λg] + [λh]. (4.14)

Proof. We prove the relation for the fourth case in Tab. 4.1. The remaining
cases can be proven analogously. As pointed out in the proof of Lem. 4.7, we have
∅ ⊂ Lg ⊂ N and ∅ ⊂ Lh ⊂ N . Thus, the r.h.s. in (4.14) yields

[λg] + [λh] = [min{λ†
g, 0},max{λ

†
g, 0}] + [min{λ†

h, 0},max{λ
†
h, 0}]

= [min{λ†
g, 0}+min{λ†

h, 0},max{λ
†
g, 0}+max{λ

†
h, 0}],

= [min{λ†
g + λ†

h, λ
†
g, λ

†
h, 0},max{λ

†
g + λ

†
h, λ

†
g, λ

†
h, 0}], (4.15)

where the equations hold according to the third case in (4.5), by definition of the sum
of two intervals (see Tab. 2.1), and by definition of min{·} and max{·}, respectively.
To evaluate the l.h.s. in (4.14), we have to analyze the index set Lf . We obviously
have Lf = Lg ∩Lh ⊂ N . Thus, the second case in Eq. (4.5) does not apply. However,
from the conditions characterizing the fourth case in Tab. 4.1, it is not clear whether
Lf = ∅ or Lf ⊃ ∅. Thus, according to (4.5), the l.h.s. in (4.14) results in

[λf] =

{

[λ†
f] if Lf = ∅,

[min{λ†
f , 0},max{λ

†

f , 0}] if ∅ ⊂ Lf ⊂ N .

9

However, since [a] ⊆ [min{a, 0},max{a, 0}], the relation [λf] ⊆ [min{λ†
f , 0},max{λ

†

f , 0}]

holds in both cases. Since [λ†
f] = [min{λ†

g, λ
†
h},max{λ

†
g, λ

†
h}] according to Lem. 4.7

(resp. Tab. 4.1), we obtain

[λf] ⊆ [min{min{λ†
g, λ

†
h}, 0},max{max{λ

†
g, λ

†
h}, 0}],

= [min{λ†
g, λ

†
h, 0},max{λ

†
g, λ

†
h, 0}]. (4.16)

Comparing Eqs. (4.15) and (4.16) yields

[min{λ†
g, λ

†
h, 0},max{λ

†
g, λ

†
h, 0}] ⊆ [min{λ†

g + λ†
h, λ

†
g, λ

†
h, 0},max{λ

†
g + λ

†
h, λ

†
g, λ

†
h, 0}],

which proves (4.14).

Table 4.2
Fundamental cases underlying Tab. 4.1.

case reduced Hessian ∇2

Lc
f
f(x) contribution condition

(i) 00,0 none Lc
g = ∅ ∧ Lc

h = ∅
(ii) ∇2

Lc
f
g(x) first Hessian Lc

g ⊃ ∅ ∧ Lc
h = ∅

(iii) ∇2

Lc
f
h(x) second Hessian Lc

g = ∅ ∧ Lc
h ⊃ ∅

(iv) ∇2

Lc
f
g(x) +∇2

Lc
f
h(x) both Hessians Lc

g ⊃ ∅ ∧ Lc
h ⊃ ∅

Lemmas 4.7 and 4.8 are based on the eight cases listed in Tab. 4.1. Since they
are not obvious at first sight, it is instructive to see how these eight cases arise from
the four simpler ones listed in Tab. 4.2. The first case in Tab. 4.2 applies if both
∇2

Lc
f
g(x) and ∇2

Lc
f
h(x) vanish because of Lc

g = Lc
h = ∅. Since these two conditions,

i.e. Lc
g = ∅ ∧ Lc

h = ∅, are equivalent to Lg = N ∧ Lh = N , case (i) in Tab. 4.2 is
equivalent to case 1 in Tab. 4.1. Analogously, cases (ii) and (iii) in Tab. 4.2, where
either ∇2

Lc
f
g(x) or ∇2

Lc
f
h(x) contribute to ∇2

Lc
f
f(x), are equivalent to cases 2 and 3 in

Tab. 4.1, respectively. It remains to relate case (iv) in Tab. 4.2 to cases 4–8 in Tab. 4.1.
In fact, the conditions of the cases 4–8 in Tab. 4.1 all imply Lc

g ⊃ ∅ and Lc
h ⊃ ∅, which

are the defining conditions for case (iv) in Tab. 4.2. Figure 4.1 illustrates that every
instance of case (iv) from Tab. 4.2 actually uniquely belongs to one of the cases 4–8
from Tab. 4.1.PSfrag replacements

case 4 case 5 case 6 case 7 case 8

Fig. 4.1. Illustration of the sparsity patterns of the reduced Hessians ∇2

Lc
f
g(x) and ∇2

Lc
f
h(x)

for the cases 4–8 in Tab. 4.1 and Lem. 4.7. White areas correspond to zero blocks in the Hessians,
black areas to non-trivial blocks. The black areas in case 4 correspond to the non-trivial submatrices
∇2

Lc
g
g(x) and ∇2

Lc
h
h(x) on the l.h.s. of Eq. (4.11).

4.3. Improved eigenvalue bounds for the composition of two functions.

We collect some recurring conditions again first.
Conditions 4.9. Assume Conds. 4.5 hold. Let r : V → R be a twice differentiable

function on an open set V ⊂ R and assume g(x) ∈ V for every x ∈ U . Moreover,

10

assume there exist intervals [r′] ⊂ R and [r′′] ⊂ R and a hyperrectangle [∇g] ⊂ Rn

such that

r′ ≤ r′(g(x)) ≤ r′, r′′ ≤ r′′(g(x)) ≤ r′′, and ∇g
i
≤ (∇g(x))i ≤ ∇gi (4.17)

for every x ∈ B and every i ∈ N , where r′(z) and r′′(z) refer to the first and the
second derivative of r(z), respectively.

The following lemma, which we state without proof, provides rules for the iden-
tification of at most linear dependencies and independencies of compositions.

Lemma 4.10 (index sets for compositions). Assume Conds. 4.9 hold and con-
sider the function f : U → R, f(x) = r(g(x)). Let

If = Ig and Lf =

{

Lg if r is an affine function,
Ig otherwise.

(4.18)

Then, f depends at most linearly on xi for all i ∈ Lf and f is independent of xi for
all i ∈ If .

Bounds for compositions can now be calculated as follows.
Lemma 4.11 (spectral bounds for reduced Hessian of compositions). Assume

Conds. 4.9 hold and consider the function f : U → R, f(x) = r(g(x)). Let Lf be

defined as in Lem. 4.10. Then the bounds (4.10) hold for [λ†
f] computed according to

the rules listed in Tab. 4.3.

Table 4.3
Rules for the computation of eigenvalue bounds [λ†

f
] for the reduced Hessian ∇2

Lc
f
f(x) of com-

positions f(x) = r(g(x)).

case [λ†
f] condition

1 [r′′] [Λs([∇Lc
f
g])] Lg = N

2 [r′′] [Λs([∇Lc
f
g])] + [r′] [λ†

g] Lg ⊂ N ∧ Lf = Lg

3 [r′′] [Λs([∇Lc
f
g])] + [r′] [min{λ†

g, 0},max{λ†
g , 0}] Lg ⊂ N ∧ Lf ⊂ Lg

Proof. We prove the last case in Tab. 4.3. The remaining cases can be proven
analogously. The reduced Hessian of f reads ∇2

Lc
f
f(x) = r′′(g(x))∇Lc

f
g(x)∇T

Lc
f
g(x)+

r′(g(x))∇2
Lc

f
g(x). Combining the two conditions of case 3 in Tab. 4.3 yields Lf ⊂ Lg ⊂

N , which implies Lc
f ⊃ Lc

g ⊃ ∅. Thus, m = |Lc
f | and r = |Lc

g| satisfy m > r > 0. We
assume Lc

f = N1,m and Lc
g = N1,r without loss of generality. Under these assumptions,

we obtain

∇2
Lc

f
f(x) = r′′(g(x))∇Lc

f
g(x)∇T

Lc
f
g(x) + r′(g(x))

(

∇2
Lc

g
g(x) 0r,s

0s,r 0s,s

)

, (4.19)

where s = m− r > 0. Since ∇g(x) ∈ [∇g] for every x ∈ B, we find

Λs([∇Lc
f
g]) ≤ λmin(∇Lc

f
g(x)∇T

Lc
f
g(x)) and λmax(∇Lc

f
g(x)∇T

Lc
f
g(x)) ≤ Λs([∇Lc

f
g]),

for every x ∈ B according to [9, Lem. 2.2]. Combining this intermediate result with
the bounds on r′(g(x)) and r′′(g(x)) from Conds. 4.9 yields the eigenvalue bounds

[λ†
f] = [r′′] [Λs([∇Lc

f
g])] + [r′] [min{λ†

g, 0},max{λ
†

g, 0}]

11

on B.
Lemma 4.12 below shows that the bounds from Lem. 4.11 are as tight as or tighter

than those from the original method proposed in [9]. Recall the bounds in [9] result
in [λf] = [r′′] [Λs([∇g])] + [r′] [λg] for f(x) = r(g(x)) according to [9, Prop 3.4].

Lemma 4.12 (improved bounds for compositions). Assume Conds. 4.9 hold and

let f , [λ†
f], and Lf be as in Lem. 4.11. Let [λf] and [λg] be the eigenvalue bounds for

the Hessians ∇2f(x) and ∇2g(x) on B, calculated according to Eq. (4.5). Then,

[λf] ⊆ [r′′] [Λs([∇g])] + [r′] [λg].

Since the proof is very similar to the proof of Lem. 4.8, we omit it.

4.4. Improved eigenvalue bounds for the product of two functions. We
begin by collecting recurring conditions again.

Conditions 4.13. Assume Conds. 4.5 hold and assume there exist intervals
[g] ⊂ R and [h] ⊂ R and hyperrectangles [∇g] ⊂ Rn and [∇h] ⊂ Rn such that

g ≤ g(x) ≤ g, h ≤ h(x) ≤ h, ∇g
i
≤ (∇g(x))i ≤ ∇gi, and ∇hi ≤ (∇h(x))i ≤ ∇hi

for every x ∈ B and every i ∈ N .
The following lemma provides rules for the identification of at most linear depen-

dencies and independences of products.
Lemma 4.14 (index sets for products). Assume Conds. 4.13 hold and consider

the function f : U → R, f(x) = g(x)h(x). Let If = Ig ∩Ih and Lf = Ig ∩ Ih. Then,
f depends at most linearly on xi for all i ∈ Lf and f is independent of xi for all
i ∈ If .

Based on Conds. 4.13 and Lem. 4.14, we are able to compute bounds on the
spectrum of ∇2

Lc
f
f(x) according to the rules summarized in Lem. 4.15 and Tab. 4.4.

As a preparation, we introduce the interval operators

[Λr([a], [b])] := [min{a, b},max{a, b}] and (4.20)

[Λ⋆([a], [b], [c])] :=
1

2

[

a+ b−
√

(a− b)2 + d, a+ b+

√

(a− b)2 + d

]

(4.21)

for real intervals [a], [b], [c] ⊂ R, where d = 4 max{c2, c2}. Definition (4.20) is only
introduced for the sake of a compact notation. Whenever it is more instructive, we
use the notation on the r.h.s. of (4.20).

Lemma 4.15 (spectral bounds for reduced Hessian of products). Assume Conds. 4.13
hold and consider the function f : U → R with f(x) = g(x)h(x). Let Lf be defined as

in Lem. 4.14. Then the bounds (4.10) hold for [λ†
f] computed according to the rules

listed in Tab. 4.4.
Proof. We prove case 10 from Tab. 4.4. Cases 4 and 7 can be shown analogously.

The remaining cases can be proven in the same fashion as those treated in the proofs
of Lems. 4.7 and 4.11. The reduced Hessian of f , which reads

∇2
Lc

f
f(x) = ∇Lc

f
g(x)∇T

Lc
f
h(x) +∇Lc

f
h(x)∇T

Lc
f
g(x) + h(x)∇2

Lc
f
g(x) (4.22)

in all cases, is a two-by-two matrix with a particularly simple block structure in
case 10. To see this, first note that g and h are independent of all but one variable
each (the conditions |Ig| = n − 1 and |Ih| = n − 1 imply |Ic

g | = 1 and |Ic
h| = 1).

12

Table 4.4
Rules for the computation of eigenvalue bounds [λ†

f
] for the reduced Hessian ∇2

Lc
f
f(x) of a

product f(x) = g(x)h(x). The expressions [λt], [λg,0], [λh,0], L∪, and L∩ are short for [λt] =

[Λt([∇Lc
f
g], [∇Lc

f
h])], [λg,0] = [min{λ†

g, 0},max{λ
†
g , 0}], [λh,0] = [min{λ†

h
, 0},max{λ

†
h, 0}], L∪ =

Lg ∪ Lh and L∩ = Lg ∩ Lh. Condition C⋆ reads (Ig ∪ Ih = N) ∧ (|Ig| = n− 1) ∧ (|Ih| = n− 1).

case [λ†
f] condition

1 [λt] Lg = N ∧ Lh = N
2 [λt] + [h] [λ†

g] Lg ⊂ N ∧ Lh = N ∧ Lf = Lg

3 [λt] + [h] [λg,0] Lg ⊂ N ∧ Lh = N ∧ Lf ⊂ Lg ∧ ¬C⋆

4 [Λ⋆([h] [λ
†
g], [0, 0], [∇Ic

g
g][∇Ic

h
h])] Lg ⊂ N ∧ Lh = N ∧ C⋆

5 [λt] + [g] [λ†
h] Lg = N ∧ Lh ⊂ N ∧ Lf = Lh

6 [λt] + [g] [λh,0] Lg = N ∧ Lh ⊂ N ∧ Lf ⊂ Lh ∧ ¬C⋆

7 [Λ⋆([0, 0], [g] [λ
†
h], [∇Ic

g
g][∇Ic

h
h])] Lg = N ∧ Lh ⊂ N ∧ C⋆

8 [λt] + [Λr([Λr([h] [λ
†
g], [g] [λ

†
h])], [0, 0])] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N ∧ Lf ⊂ L∩

9 [λt] + [Λr([h] [λ
†
g], [g] [λ

†
h])] Lg ⊂ N ∧ Lh ⊂ N ∧ L∪ = N ∧ Lf = L∩ ∧ ¬C⋆

10 [Λ⋆([h] [λ
†
g], [g] [λ

†
h], [∇Ic

g
g][∇Ic

h
h])] Lg ⊂ N ∧ Lh ⊂ N ∧ C⋆

11 [λt] + [h] [λ†
g] + [g] [λ†

h] L∪ ⊂ N ∧ Lf = Lg = Lh

12 [λt] + [h] [λ†
g] + [g] [λh,0] L∪ ⊂ N ∧ Lf = Lg ⊂ Lh

13 [λt] + [h] [λg,0] + [g] [λ†
h] L∪ ⊂ N ∧ Lf = Lh ⊂ Lg

14 [λt] + [Λr([h] [λ
†
g] + [g] [λ†

h], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lg = Lh

15 [λt] + [Λr([h] [λ
†
g] + [g] [λh,0], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lg ⊂ Lh

16 [λt] + [Λr([h] [λg,0] + [g] [λ†
h], [0, 0])] L∪ ⊂ N ∧ Lf ⊂ Lh ⊂ Lg

17 [λt] + [h] [λg,0] + [g] [λh,0] L∪ ⊂ N ∧ Lg * Lh ∧ Lh * Lg

Moreover, Ig ∪ Ih = N implies Ic
g ∩ Ic

h = ∅, which implies g and h depend on two
different variables. Without loss of generality we assume g depends on x1, and h
depends on x2, i.e., Ic

g = {1} and Ic
h = {2}. As a further preparation note that

Lf = Ig ∩ Ih, which holds according to Lem. 4.14, implies Lc
f = Ic

g ∪ Ic
h, which

evaluates to Lc
f = {1, 2}. Since Lc

f = {1, 2} and g only depends on x1 (resp. h only
depends on x2), we have

∇Lc
f
g(x) =

(∂
∂x1

g(x)
∂

∂x2
g(x)

)

=

(

∂
∂x1

g(x)

0

)

, ∇2
Lc

f
g(x) =

(

∂2

∂x2

1

g(x) 0

0 0

)

(4.23)

respectively

∇Lc
f
h(x) =

(∂
∂x1

h(x)
∂

∂x2

h(x)

)

=

(

0
∂

∂x2

h(x)

)

, ∇2
Lc

f
h(x) =

(

0 0

0 ∂2

∂x2

2

h(x)

)

. (4.24)

Substituting (4.23) and (4.24) into (4.22) yields

∇2
Lc

f
f(x) =

(

h(x) ∂2

∂x2

1

g(x) ∂
∂x1

g(x) ∂
∂x2

h(x)
∂

∂x1

g(x) ∂
∂x2

h(x) g(x) ∂2

∂x2

2

h(x)

)

,

where all entries are scalars. Now, consider the matrix set

H = {H ∈ R2×2 |H11 ∈ [h] [λ†
g], H22 ∈ [g] [λ†

h], H12 ∈ [∇Ic
g
g][∇Ic

h
h], H = HT }

and observe {∇2
Lc

f
f(x) ∈ R2×2 |x ∈ B} ⊆ H. To see this, note that {∇2

Lc
g
g(x) ∈

R |x ∈ B} ⊆ [λ†
g] and {∇2

Lc
h
h(x) ∈ R |x ∈ B} ⊆ [λ†

h], since the eigenvalue of a

13

matrix M ∈ R1×1 is λ = M1,1. According to Lem. A.1 stated in the appendix,
eigenvalue bounds for the matrix set H and consequently for ∇2

Lc
f
f(x) on B read

[Λ⋆([h] [λ
†
g], [g] [λ

†
h], [∇Ic

g
g][∇Ic

h
h])] as claimed in Tab. 4.4.

Lemma 4.16 shows that the bounds from Lem. 4.15 are as tight as or tighter than
those from the original method proposed in [9]. Recall the bounds in [9] result in
[λf] = [Λt([∇g], [∇h])] + [h] [λg] + [g] [λh] for f(x) = g(x)h(x) according to [9, Prop
3.2.(iv)]. We omit the proof of Lem. 4.16, since it is similar to its counterparts in
Sect. 4.2.

Lemma 4.16 (improved bounds for products). Assume Conds. 4.9 hold and let

f , [λ†
f], and Lf be as in Lem. 4.11. Let [λf], [λg], and [λh] be the eigenvalue bounds

for the Hessians ∇2f(x), ∇2g(x), and ∇2h(x) on B, calculated according to Eq. (4.5).
Then,

[λf] ⊆ [Λt([∇g], [∇h])] + [h] [λg] + [g] [λh].

4.5. Numerical computation of improved eigenvalue bounds. In this sec-
tion, we combine the results from Sects. 4.1 through 4.4 in order to compute improved
eigenvalue bounds using a codelist. Formally, this leads to the extended codelist in
Prop. 4.17.

Proposition 4.17 (algorithm for the computation of eigenvalue bounds using
sparsity). Assume ϕ is twice continuously differentiable on U and can be written as
a codelist (3.1) with t ∈ N operations. Let B = [x1]×· · ·×[xn] ⊂ U be arbitrary. Then,
for all x ∈ B, we have ϕ(x) ∈ [ϕ], ∇ϕ(x) ∈ [∇ϕ], and [λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆
[λϕ], where [ϕ], [∇ϕ], and [λϕ] are calculated by the following algorithm.

1. For k = 1, . . . , n, set Ik = N \ {k}, Lk = N , [yk] = [xk, xk], [∇yk] = [ek, ek],

and [λ†
k] = [0, 0].

2. For k = n+1, . . . , n+ t, evaluate Ik and Lk according to the third and fourth
column of Tab. 4.5, respectively. Calculate [yk] and [∇yk] according to the

third and fourth column of Tab. 3.1, respectively. Compute [λ†
k] depending on

Li, Lj, and Lk according to the second column of Tab. A.1 in the appendix.

3. Compute [λn+t] from [λ†
n+t] and Ln+t according to Eq. (4.5) and set [ϕ] =

[yn+t], [∇ϕ] = [∇yn+t], and [λϕ] = [λn+t].

Table 4.5
Rules for the computation of the sets Ik and Lk in the k-th line of the codelist (3.1) for variables

and binary operations (left) and compositions (right). Rules for yk are repeated here for convenience.

op Φk yk Ik Lk

var xk N \ {k} N
add yi + yj Ii ∩ Ij Li ∩ Lj

mul yi yj Ii ∩ Ij Ii ∩ Ij

a

a

a

a

op Φk yk Ik Lk

powNat ym
i Ii Ii

oneOver 1/yi Ii Ii

sqrt
√
yi Ii Ii

exp exp(yi) Ii Ii

ln ln(yi) Ii Ii

addC yi + c Ii Li

mulByC c yi Ii Li

Proof. The claims ϕ(x) ∈ [ϕ] and ∇ϕ(x) ∈ [∇ϕ] for all x ∈ B are covered
by Thm. 3.1. It remains to prove that [λmin(∇2ϕ(x)), λmax(∇2ϕ(x))] ⊆ [λϕ] for
all x ∈ B. Since yk(x) = xk for k = 1, . . . , n, the functions yk(x), k ∈ N , are

14

independent of xj for every j ∈ Ik = N \ {k} and at most linearly dependent on xj

for every j ∈ Lk = N . Thus, the reduced Hessian reads ∇2
Lc

k
yk(x) = ∇2

∅yk(x) = 00,0

and [λ†
k] = [0, 0] for every k ∈ N . Now assume eigenvalue bounds [λ†

1], . . . , [λ
†
l] for

the reduced Hessians ∇2
Lc

1

y1(x), . . . ,∇2
Lc

l
yl(x) and index sets I1, . . . , Il and L1, . . . ,Ll

have been calculated for some l ∈ Nn,n+t−1, and let k = l+1. Since Φk(y1, . . . , yk−1)
is one of the unary or binary functions listed in Tab. 3.1 (and therefore Tabs. 4.5 and
A.1), it depends on either one (say yi) or two (say yi and yj) of the intermediate
variables y1, . . . , yk−1. The remainder of the proof must be carried out for each type
of operation Φk separately. We state the proof for one of the mul cases and claim
the remaining cases can be shown accordingly. Let g(x) = yi(x), h(x) = yj(x), and
f(x) = yk(x), which implies f(x) = g(x)h(x), since the operation in the k-th line

is of type mul. In order to compute eigenvalue bounds [λ†
f] for the reduced Hessian

∇2
Lc

f
f(x), we first evaluate the index sets If and Lf . According to Lem. 4.14, we

obtain

If = Ig ∩ Ih = Ii ∩ Ij and Lf = Ig ∩ Ih = Ii ∩ Ij ,

where we used Ig = Ii and Ih = Ij , which hold by construction. Assuming we have
Lg ∪Lh ⊂ N and Lf = Lg ⊂ Lh, applying Lem. 4.15 (specifically, rule 12 in Tab. 4.4)
results in

[λ†
f] = [Λt([∇Lc

f
g], [∇Lc

f
h])] + [h] [λ†

g] + [g] [min{λ†
h, 0},max{λ†

h, 0}],

= [Λt([∇Lc
k
yi], [∇Lc

k
yj])] + [yj] [λ

†
i] + [yi] [min{λ†

j , 0},max{λ†
j , 0}],

(4.25)

where the second equation results from substituting the codelist notation [g] = [yi],

[h] = [yj], [∇g] = [∇yi], [∇h] = [∇yj], [λ
†
g] = [λ†

i], and [λ†
h] = [λ†

j]. Finally, since

Lk = Lf and consequently ∇2
Lc

k
yk(x) = ∇2

Lc
f
f(x), the eigenvalues of ∇2

Lc
k
yk(x) are

confined to [λ†
k] = [λ†

f] for all x ∈ B. Since the second equation in (4.25) is equal to
the rule in Tab. A.1 for the case mul and Li ∪Lj ⊂ N and Lk = Li ⊂ Lj , this proves
the claim for the selected case.

Proposition 4.17 is illustrated with two examples. First, we revisit the motivating
Exmp. 1. Recall that we evaluated the conservative eigenvalue bounds [λϕ] = [0, 4]
using the original method from [9].

Example 2 (improved method applied to ϕ(x) = x2
1 + x2

2 from Exmp. 1). Con-
sider the function ϕ from Exmp. 1 again. Proposition 4.17 results in the following
extended codelist. Note that we do not list the expressions for [yk] and [∇yk] in (4.26)
since they are identical to the corresponding expressions in (4.1). Further note that
Ik and Lk are independent of B.

k Ik Lk [λ†
k]

1 N \ {1} = {2} N = {1, 2} [0, 0]
2 N \ {2} = {1} N = {1, 2} [0, 0]

3 I1 = {2} I1 = {2} 2 [Λs([∇Lc
3
y1])] = 2 [Λs([∇{1}y1])]

4 I2 = {1} I2 = {1} 2 [Λs([∇Lc
4
y2])] = 2 [Λs([∇{2}y2])]

5 I3 ∩ I4 = ∅ L3 ∩ L4 = ∅ [min{λ†
3
, λ†

4
},max{λ†

3, λ
†
4}]

[λϕ] = [λ†
5
]

(4.26)

The expressions for [λ†
k] in lines 3 and 4 of the extended codelist in (4.26) refer to

the first rule associated with the powNat-operation in Tab. A.1 since L1 = N and

15

L2 = N , respectively. Since L3 = {2} ⊂ N , L4 = {1} ⊂ N , and L3 ∪ L4 = N ,

we obtain the bounds [λ†
5] = [min{λ†

3, λ
†
4},max{λ

†

3, λ
†

4}] according to the last rule for

the add-operation in Tab. A.1. Finally, since L5 = ∅, we have [λϕ] = [λ5] = [λ†
5]

according to Eq. (4.5).
Evaluating the extended codelist (4.26) for the hyperrectangle B = [0, 1] × [0, 1]

(as in Exmp. 1) by computing [yk] and [∇yk] according to (4.1) and [λk] according

to (4.26) yields [λ†
1] = [λ†

2] = [0, 0] and [λ†
3] = [λ†

4] = [λ†
5] = [2, 2], where we used

[Λs([∇{1}y1])] = [Λs([1, 1])] = [1, 1] and [Λs([∇{2}y2])] = [Λs([1, 1])] = [1, 1] (see
Eq. (4.2) for numerical results on [yk] and [∇yk]). Thus, using the improved method,

we obtain the tight eigenvalue bounds [λϕ] = [λ†
5] = [λ∗

ϕ] = [2, 2].
We analyze another example to demonstrate that the new method results in

considerable improvements for all functions that involve multiplications. In fact, we
know from [9, Rem. 4.3] that 0 ∈ [λϕ] for the original method if the mul-operation is
required in the codelist of any ϕ with n ≥ 2. This is a severe drawback of the original
method, since it implies that any convex (resp. concave) function ϕ : Rn → R
involving mul-operations will never be identified to be convex (resp. concave) using
the method from [9]. The following example shows that this restriction does not apply
for the improved method.

Example 3 (comparison of [9] and improved method for ϕ(x) = x2
1+x2 exp(x2)).

Consider the function ϕ : R2 → R with ϕ(x) = x2
1 + x2 exp(x2) on a B ⊂ R2.

Theorem 3.1 (i.e., the original method from [9]) results in the following extended
codelist, where the expressions for yk are only listed for illustration of the codelist (3.1)
of ϕ. We skip the first three lines, since they are identical to those in (4.1).

k yk [yk] [∇yk] [λk]

4 exp(y2) [exp([y2])] [y4] [∇y2] [y4] ([Λs([∇y2])] + [λ2])
5 y2 y4 [y2] [y4] [y4][∇y2]+[y2][∇y4] [y4][λ2]+[y2][λ4]+[Λt([∇y2], [∇y4])]
6 y3 + y5 [y3] + [y5] [∇y3] + [∇y5] [λ3] + [λ5]

ϕ = y6 [ϕ] = [y6] [∇ϕ] = [∇y6] [λϕ] = [λ6]

(4.27)

Evaluating this codelist for B = [0, 1]× [0, 1] yields

[λϕ] = [λ6] = [− exp(1) + 1, 3 exp(1) + 2] ≈ [−1.7183, 10.1548].

Proposition 4.17 (i.e., the improved method) results in the following extended
codelist. The first three lines are identical to those in (4.26) in this case. Further
note that the expressions for [yk] and [∇yk] can be found in Eq. (4.1) (lines 1-3) and
Eq. (4.27) (lines 4-6).

k Ik Lk [λ†
k]

4 I2 = {1} I2 = {1} [y4] [Λs([∇Lc
4
y2])] = [y4] [Λs([∇{2}y2])]

5 I2 ∩ I4 = {1} I2 ∩ I4 = {1} [Λt([∇Lc
5
y2], [∇Lc

5
y4])]+[y4] [λ

†
2
]+[y2] [λ

†
4
]

= [Λt([∇{2}y2], [∇{2}y4])]+[y4] [λ
†
2
]+[y2] [λ

†
4
]

6 I3 ∩ I5 = ∅ L3 ∩ L5 = ∅ [min{λ†
3
, λ†

5
},max{λ†

3, λ
†
5}]

[λϕ] = [λ†
6
]

(4.28)

Evaluating (4.28) for B = [0, 1]× [0, 1] yields

[λϕ] = [λ†
6] = [2, 3 exp(1)] ≈ [2, 8.1548],

Just as in Exmp. 3, the improved method results in tight spectral bounds while the
original method from [9] provides loose outer approximations. In particular, 0 ∈

16

[−1.7183, 10.1548] for the original method as predicted by [9, Rem. 4.3] but 0 /∈
[2, 8.1548] for the improved method presented here. Convexity of ϕ on B can therefore
be established with the improved but not with the original method.

More generally, the improved method results in eigenvalue bounds that are always
as tight as, or tighter than, the original method from [9], as stated in the following
proposition.

Proposition 4.18 (accuracy of the improved method). Assume ϕ is twice
continuously differentiable on U and can be written as a codelist (3.1). Let B =
[x1]× · · · × [xn] ⊂ U be arbitrary and denote the eigenvalue bounds for ∇2ϕ(x) on B

computed according to Thm. 4.17 and Prop. 4.17 by [λ
(Thm. 3.1)
ϕ] and [λ

(Prop. 4.17)
ϕ],

respectively. Then,

[λ(Prop. 4.17)
ϕ] ⊆ [λ(Thm. 3.1)

ϕ].

Proof. The proof immediately follows from Lems. 4.8, 4.11, and 4.15.
In [9, Prop. 4.4] it was shown that the numerical complexity for evaluating

the extended codelist resulting from Thm. 3.1, is of order O(n)N(ϕ), where N(ϕ)
denotes the number of operations needed to evaluate ϕ at a point in its domain. It is
remarkable that this order of complexity can be maintained for the improved method.
This is summarized in the following proposition.

Proposition 4.19 (numerical complexity of the improved method). Assume ϕ
is twice continuously differentiable on U and can be written as a codelist (3.1) with
t = N(ϕ) operations. Let N([ϕ], [∇ϕ], [λϕ]) denote the number of operations that are
necessary to calculate the bounds [ϕ] ⊂ R, [∇ϕ] ⊂ Rn, and [λϕ] ⊂ R for a given
hyperrectangle B ⊂ U using the extended codelist from Prop. 4.17. Then,

N([ϕ], [∇ϕ], [λϕ]) = O(n)N(ϕ).

Since the proof of Prop. 4.19 is very similar to that of [9, Prop. 4.4], we only sketch
it. The extended codelist that results from Prop. 4.17 involves the index sets Ik and
Lk, which were not required in the original method. These index sets do not depend
on the particular hyperrectangle B as pointed out in Exmp. 2, but they are uniquely
determined by the function ϕ itself. Consequently, all index sets need to be determined
only once. This step can be carried out at the time of construction of the extended
codelist. In particular, it need not be repeated at the time of evaluating the codelist
for a particular B. Once Ik and Lk have been determined, each line of the extended
codelist is specified by the rules in Tab. A.1 (and Tab. 3.1). It is easy to show that the
evaluation of every expression in the second column of Tab. A.1 requires at most O(n)
basic operations (like additions, multiplications, or comparisons of two real numbers;
see [9, Sect. 4.1] for further details). Thus, under the assumption that [ϕ] and [∇ϕ]
are known, we need O(n)N(ϕ) basic operations for the computation of [λϕ]. Since
the calculation of [ϕ] and [∇ϕ] require O(1) and O(n) basic operations according
to standard results in AD and IA (see, e.g., [4, 7]), we obtain N([ϕ], [∇ϕ], [λϕ]) =
O(1)N(ϕ) +O(n)N(ϕ) +O(n)N(ϕ) = O(n)N(ϕ).

5. Numerical experiments for a large number of examples. In this sec-
tion, we analyze 1522 numerical examples taken from the COCONUT collection of
optimization problems [14]. We consider all COCONUT problems with 1 < n ≤ 10
variables and extract those cost and constraint functions that can be decomposed into

17

the operations listed in Tabs. 3.1 and A.1. For each function ϕ : Rn → R, we consider
100 (randomly generated) hyperrectangles B ⊂ D in the domain D of ϕ specified in
the respective COCONUT problem. For ease of comparison, the set of examples as
well as the associated hyperrectangles are identical to the examples considered in [13].

For each of the resulting 1522 · 100 sample problems, we solve problem (1.1)
using the improved algorithm (A† for short) in Prop. 4.17. We compare the resulting
eigenvalue bounds with those obtained from two established methods using interval
Hessians (see problem (1.3)) and either Gershgorin’s circle criterion (G for short)
or Hertz and Rohn’s method (H for short) for the computation of spectral bounds of
interval matrices (see problem (1.4)). We choose G and H as reference procedures due
to the favorable computational complexity of G and since H provides tight eigenvalue
bounds for problem (1.4) (cf. Sect. 1). We refer to the original papers [2, 5, 6, 12] or
the summaries in [9, 13] for a detailed description of methods G and H.

Table 5.1
Classes used to aggregate results in Tab. 5.2. Symbols [λ

A†
] = [λ

A†
, λ

A†
], [λG] = [λ

G
, λG], and

[λH] = [λ
H
, λH] denote eigenvalue bounds calculated by the improved algorithm A† (see Prop. 4.17),

Gershgorin’s circle criterion and Hertz and Rohn’s method, respectively.

class verbal definition formal definition

lower bound λ upper bound λ

1 A† worse than G (and H) λ
A† < λ

G
≤ λ

H
λH ≤ λG < λA†

2 A† equal to G but worse than H λ
G
≈ λ

A† < λ
H

λH < λA† ≈ λG

3 A† better than G but worse than H λ
G
< λ

A† < λ
H

λH < λA† < λG

4 A† equal to H (and equal to or better than G) λ
G
≤ λ

H
≈ λ

A† λA† ≈ λH ≤ λG

5 A† better than H (and G) λ
G
≤ λ

H
< λ

A† λA† < λH ≤ λG

For each sample problem, we analyze whether A† performs better than, equally
good as, or worse than G and H. We independently compare the lower and upper
eigenvalue bounds of the particular methods and categorize the results according to
the five classes in Tab. 5.1. Note that G never performs better than H (since H
provides tight bounds for (1.4)). Consequently, the relations λG ≤ λH and λH ≤ λG

always hold. Hence, the list of classes in Tab. 5.1 is complete in the sense that every
example can be uniquely classified into one of the five classes. It remains to comment
on the precise meaning of a > b and a ≈ b as used for the classification in Tab. 5.1.
To this end, we introduce the function

dev(a, b) =
a− b

1 + 0.5 |a+ b|

which evaluates a weighted difference of a, b ∈ R. Based on dev(a, b), we define

a > b ⇐⇒ dev(a, b) > ǫ and a ≈ b ⇐⇒ |dev(a, b)| ≤ ǫ, (5.1)

where ǫ ∈ R+ represents an error bound. Note that |dev(a, b)| is approximately equal
to the relative error for two large but almost equal numbers a, b ∈ R and almost equal
to the absolute error for two small but almost equal numbers a, b ∈ R. This behavior
is useful since the absolute values of the computed eigenvalue bounds range across
multiple magnitudes.

We summarize numerical results for the analyzed examples in Tab. 5.2 (with
ǫ = 10−6). We list the percentage of samples that fall into the classes 1 to 5 from
Tab. 5.1 separated by dimension n of the underlying example. In order to compare

18

Table 5.2
Numerical results for 1522 ·100 sample problems. The classification of the results is carried out

according to Tab. 5.1 and Eq. (5.1) with ǫ = 10−6. For each class, the left respectively right column
refers to eigenvalue bounds obtained by the original algorithm A from [9] and the improved variant
A† taking sparsity into account.

examples 1 2 3 4 5
n # A A† A A† A A† A A† A A†

2 62 56.37 29.06 1.07 1.08 12.24 16.06 18.89 41.27 11.43 12.54
3 1078 2.98 0.95 77.53 0.31 0.85 1.01 17.70 96.72 0.95 1.01
4 67 60.75 35.28 4.84 4.63 8.45 16.76 15.04 32.14 10.92 11.19
5 88 56.80 35.34 3.32 0.21 10.16 14.90 14.91 34.47 14.81 15.09
6 95 35.05 25.65 5.31 4.13 31.91 34.25 13.87 21.38 13.86 14.58
7 27 65.80 27.07 11.93 8.50 0.02 19.44 22.26 44.98 0.00 0.00
8 15 94.23 63.83 3.20 4.23 1.27 29.80 1.30 1.53 0.00 0.60
9 24 57.27 25.02 8.29 0.02 18.71 34.94 4.25 22.58 11.48 17.44

10 66 51.17 12.24 1.00 0.22 22.12 34.11 15.86 41.54 9.86 11.89
all 1522 17.77 9.09 56.11 0.94 5.32 7.78 16.86 77.90 3.95 4.30

the improved algorithm in Prop. 4.17 to the original method from [9] (see Thm. 3.1),
we also list the classification results using the original algorithm (A for short). The
numerical results confirm that the consideration of sparsity significantly improves the
tightness of the computed eigenvalue bounds. To see this, note that for each dimension
n, the percentages in class 1 (where the established approaches outperform the direct
computation of eigenvalue bounds) decrease while the percentages in classes 4 and
5 (where the direct computation of eigenvalue bounds performs as good as or better
than Hertz and Rohn’s method) increases using the improved algorithm A† instead of
the original A. In particular, it is remarkable that the improved algorithm A† results
in worse eigenvalue bounds than G in only 9.09% of all cases in contrast to 17.77%
for the original method A. Moreover, A† provides equally good or better eigenvalue
bounds than H in 82.20% = 77.90% + 4.30% of all cases while the corresponding
percentage only reads 20.83% = 16.86%+ 3.95% for A.

Another observation is that the ratios in the particular classes seem to be indepen-
dent of the dimension n (i.e., there is no trend). This is important since the numerical
complexities of the established approaches G and H vary between O(n)N(ϕ)+O(n2)
and O(n2)N(ϕ)+O(2n n3) operations (see Sect. 1 and the benchmark in [13]), while
the direct eigenvalue bound computation requires O(n)N(ϕ). Thus, methods A and
A† become numerically very attractive for high dimensions n.

Table 5.3
The last line of Tab. 5.2 for different choices of the error bound ǫ in (5.1).

1 2 3 4 5
ǫ A A† A A† A A† A A† A A†

10−5 17.16 8.78 54.11 0.91 4.29 6.57 20.78 79.74 3.66 4.01
10−6 17.77 9.09 56.11 0.94 5.32 7.78 16.86 77.90 3.95 4.30
10−7 18.04 9.28 57.62 0.66 5.61 8.24 14.67 77.41 4.06 4.41

According to (5.1), the classification in Tab. 5.2 depends on the choice of the
error bound ǫ. We repeated all calculations for various choices of ǫ and present the
results reported in the last line of Tab. 5.2 for ǫ = 10−5 and ǫ = 10−7 in Tab. 5.3.

19

As expected, the ratios in classes 1 and 5 increase for decreasing ǫ, since we detect
λA† < λG (as well as λG < λA† , λH < λA† , and λA† < λH) for a larger number of
examples (cf. (5.1)). However, beside this observation, the results are robust w.r.t.
the value of ǫ.

6. Conclusion. We significantly improved a method recently introduced in [9]
for the efficient computation of spectral bounds for Hessian matrices of twice contin-
uously differentiable functions on hyperrectangles. The improvements build on the
identification and utilization of sparsity that naturally arises in the first lines of every
codelist for a function ϕ : Rn → R.

The improved method was applied to a set of 1522 examples previously analyzed
in [13]. The numerical results show that the consideration of sparsity results in signifi-
cantly tighter eigenvalue bounds. In fact, the improved method provided equally good
or better eigenvalue bounds than Hertz and Rohn’s method in 82.20% of the examples
while the corresponding percentage only reads 20.83% for the original procedure.

In addition to illustrating the practical usefulness of the proposed improvements,
we provided an important theoretic result. In fact, it is well-known that the original
method from [9] results in spectral bounds with 0 ∈ [λϕ] for any function that involves
the multiplications of two or more variables (see [9, Rem. 4.3]). Consequently, convex
functions that involve such a multiplication cannot be detected to be convex with the
original method. We showed that this restrictions does not apply for the improved
method.

Acknowledgements. Funding by Deutsche Forschungsgemeinschaft grant MO-
1086/9 is gratefully acknowledged.

REFERENCES

[1] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method, αBB,
for general twice-differentiabe constrained NLPs – II. Implementation and computational
results. Computers and Chemical Engineering, 22(9):1159–1179, 1998.

[2] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method,
αBB, for general twice-differentiable constrained NLPs – I. Theoretical advances. Com-
puters and Chemical Engineering, 22(9):1137–1158, 1998.

[3] I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method for
general constrained nonconvex problems. Journal of Global Optimization, 7(4):337–363,
1995.

[4] H. Fischer. Automatisches Differenzieren. In J. Herzberger, editor, Wissenschaftliches Rechnen:
Eine Einführung in das Scientific Computing, pages 53–103. Akademie Verlag Berlin, 1995.

[5] S. Gerschgorin. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR,
Ser. fizmat., 6:749–754, 1931.

[6] D. Hertz. The extreme eigenvalues and stability of real symmetric interval matrices. IEEE
Transactions on Automatic Control, 37(4):532–535, 1992.

[7] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers,
1996.

[8] M. Mönnigmann. Positive invariance tests with efficient Hessian matrix eigenvalue bounds. In
Proceedings of the 17th IFAC World Congress, 2008.

[9] M. Mönnigmann. Fast calculation of spectral bounds for Hessian matrices on hyperrectangles.
SIAM Journal on Scientific Computing, 2011.

[10] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1st edition, 2008.

[11] L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, 1981.

[12] J. Rohn. Positive definiteness and stability of interval matrices. SIAM Journal on Matrix
Analysis and Applications, 15(1):175–184, 1994.

[13] M. Schulze Darup, M. Kastsian, S. Mross, and M. Mönnigmann. Efficient computation of

20

spectral bounds for Hessian matrices on hyperrectangles for global optimization. Journal
of Global Optimization, 58:631–652, 2014.

[14] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V. Nguyen. Benchmark-
ing global optimization and constraint satisfaction codes. In C. Bliek, C. Jermann, and
A. Neumaier, editors, Global Optimization and Constraint Satisfaction, pages 211–222.
Springer Verlag, 2003.

Appendix A. Supplementary results.

Lemma A.1. Let [a], [b], [c] ⊂ R be real intervals, let [Λ⋆([a], [b], [c])] be defined
as in (4.21), and consider the matrix set

H = {H ∈ R2×2 |H11 ∈ [a], H22 ∈ [b], H12 ∈ [c], H = HT }.

Then,

Λ⋆([a], [b], [c]) = min
H∈H

λmin(H) and max
H∈H

λmax(H) = Λ⋆([a], [b], [c]). (A.1)

Proof. The eigenvalue bounds of a symmetric matrix H = (a c
c b) ∈ H read

λmin(H) =
1

2

(

a+ b−
√

(a− b)2 + 4 c2
)

, λmax(H) =
1

2

(

a+ b+
√

(a− b)2 + 4 c2
)

.

We therefore have to show that

a+ b−
√

(a− b)2 + d = min
a∈[a],b∈[b],c∈[c]

a+ b −
√

(a− b)2 + 4 c2 and (A.2)

a+ b+

√

(a− b)2 + d = max
a∈[a],b∈[b],c∈[c]

a+ b +
√

(a− b)2 + 4 c2, (A.3)

where the l.h.s. results from (4.21) and where d = 4 max{c2, c2}. We show that (A.2)
holds and claim (A.3) can be proven analogously. First note that the r.h.s. in (A.2)
can be simplified to

min
a∈[a],b∈[b],c∈[c]

a+ b−
√

(a− b)2 + 4 c2 = min
a∈[a],b∈[b]

a+ b−
√

(a− b)2 + d (A.4)

since c only occurs in the radicand. Consider the function f : R2 → R, f(a, b) = a+
b−
√

(a− b)2 + d, which occurs on the r.h.s. of (A.4) and note that f(a, b) is concave

(since g(a, b) =
√

(a− b)2 + d is convex). Since the hyperrectangle B = [a] × [b] is
convex, the minimum on the r.h.s. of (A.4) is attained at one of the vertices of B.
Among the candidate tuples (a, b), (a, b), (a, b), and (a, b), it is easy to show that
(a, b) results in the smallest function value, i.e., f(a, b) ≤ min{f(a, b), f(a, b), f(a, b)}.
Thus, (A.2) holds.

21

Table A.1
Rules for the calculation of the eigenvalue bounds [λ†

k
] in the k-th line of the codelist (3.1)

according to Prop. 4.17. The intervals [λt], [λi,0] and [λj,0] are shorthand notations for [λt] =

[Λt([∇Lc
k
yi], [∇Lc

k
yj])], [λi,0] = [min{λ†

i , 0},max{λ
†
i , 0}], and [λj,0] = [min{λ†

j , 0},max{λ
†
j , 0}]. The

index sets L∪ and L∩ are shorthand notations for L∪ = Li ∪ Lj and L∩ = Li ∩ Lj. Condition C⋆

reads (Ii ∪ Ij = N) ∧ (|Ii| = n− 1) ∧ (|Ij | = n− 1).

op Φk [λ†
k] condition

add [0, 0] Li = N ∧ Lj = N
[λ†

i] Li ⊂ N ∧ Lj = N
[λ†

j] Li = N ∧ Lj ⊂ N
[Λr([λ

†
i], [λ

†
j])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N

[λ†
i] + [λ†

j] L∪ ⊂ N ∧ Li = Lj

[λ†
i] + [λj,0] L∪ ⊂ N ∧ Li ⊂ Lj

[λi,0] + [λ†
j] L∪ ⊂ N ∧ Lj ⊂ Li

[λi,0] + [λj,0] L∪ ⊂ N ∧ Li * Lj ∧ Lj * Li

mul [λt] Li = N ∧ Lj = N
[λt] + [yj] [λ

†
i] Li ⊂ N ∧ Lj = N ∧ Lk = Li

[λt] + [yj] [λi,0] Li ⊂ N ∧ Lj = N ∧ Lk ⊂ Li ∧ ¬C⋆

[Λ⋆([yj] [λ
†
i], [0, 0], [∇Ic

i
yi][∇Ic

j
yj])] Li ⊂ N ∧ Lj = N ∧ C⋆

[λt] + [yi] [λ
†
j] Li = N ∧ Lj ⊂ N ∧ Lk = Lj

[λt] + [yi] [λj,0] Li = N ∧ Lj ⊂ N ∧ Lk ⊂ Lj ∧ ¬C⋆

[Λ⋆([0, 0], [yi] [λ
†
j], [∇Ic

i
yi][∇Ic

j
yj])] Li = N ∧ Lj ⊂ N ∧ C⋆

[λt] + [Λr([Λr([yj] [λ
†
i], [yi] [λ

†
j])], [0, 0])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N ∧ Lk ⊂ L∩

[λt] + [Λr([yj] [λ
†
i], [yi] [λ

†
j])] Li ⊂ N ∧ Lj ⊂ N ∧ L∪ = N ∧ Lk = L∩ ∧ ¬C⋆

[Λ⋆([yj] [λ
†
i], [yi] [λ

†
j], [∇Ic

i
yi][∇Ic

j
yj])] Li ⊂ N ∧ Lj ⊂ N ∧ C⋆

[λt] + [yj] [λ
†
i] + [yi] [λ

†
j] L∪ ⊂ N ∧ Lk = Li = Lj

[λt] + [yj] [λ
†
i] + [yi] [λj,0] L∪ ⊂ N ∧ Lk = Li ⊂ Lj

[λt] + [yj] [λi,0] + [yi] [λ
†
j] L∪ ⊂ N ∧ Lk = Lj ⊂ Li

[λt] + [Λr([yj] [λ
†
i] + [yi] [λ

†
j], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Li = Lj

[λt] + [Λr([yj] [λ
†
i] + [yi] [λj,0], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Li ⊂ Lj

[λt] + [Λr([yj] [λi,0] + [yi] [λ
†
j], [0, 0])] L∪ ⊂ N ∧ Lk ⊂ Lj ⊂ Li

[λt] + [yj] [λi,0] + [yi] [λj,0] L∪ ⊂ N ∧ Li * Lj ∧ Lj * Li

powNat m (m−1) [yi]
m−2 [Λs([∇Lc

k
yi])] Li = N

m [yi]
m−2((m−1)[Λs([∇Lc

k
yi])]+[yi] [λ

†
i]) Li ⊂ N ∧ Lk = Li

m [yi]
m−2((m−1)[Λs([∇Lc

k
yi])]+[yi] [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

oneOver 2 [yk]
3 [Λs([∇Lc

k
yi])] Li = N

[yk]
2 (2 [yk] [Λs([∇Lc

k
yi])]− [λ†

i]) Li ⊂ N ∧ Lk = Li

[yk]
2 (2 [yk] [Λs([∇Lc

k
yi])]− [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

sqrt 1/(−4 [yk]
3) [Λs([∇Lc

k
yi])] Li = N

1/(2 [yk])(1/(−2 [yi])[Λs([∇Lc
k
yi])]+[λ†

i]) Li ⊂ N ∧ Lk = Li

1/(2 [yk])(1/(−2 [yi])[Λs([∇Lc
k
yi])]+[λi,0]) Li ⊂ N ∧ Lk ⊂ Li

exp [yk] [Λs([∇Lc
k
yi])] Li = N

[yk] ([Λs([∇Lc
k
yi])] + [λ†

i]) Li ⊂ N ∧ Lk = Li

[yk] ([Λs([∇Lc
k
yi])] + [λi,0]) Li ⊂ N ∧ Lk ⊂ Li

ln −1/[yi]
2 [Λs([∇Lc

k
yi])] Li = N

1/[yi] ([λ
†
i]− 1/[yi] [Λs([∇Lc

k
yi])]) Li ⊂ N ∧ Lk = Li

1/[yi] ([λi,0]− 1/[yi] [Λs([∇Lc
k
yi])]) Li ⊂ N ∧ Lk ⊂ Li

addC [0, 0] Li = N
[λ†

i] Li ⊂ N
mulByC [0, 0] Li = N

c [λ†
i] Li ⊂ N

22

