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Kazunori Ando∗, Hyeonbae Kang∗ Hongyu Liu†

July 21, 2021

Abstract

We study resonance for the Helmholz equation with a finite frequency in a plasmonic

material of negative dielectric constant in two and three dimensions. We show that the quasi-

static approximation is valid for diametrically small inclusions. In fact, we quantitatively prove

that if the diameter of a inclusion is small compared to the loss parameter, then resonance

occurs exactly at eigenvalues of the Neumann-Poincaré operator associated with the inclusion.
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1 Introduction

Resonance phenomena is often observed in nanoscale particles whose material has a negative di-
electric permittivity with a large wavelength in comparison with particle dimensions both experi-
mentally and numerically [18]. It is known that such a resonance only occurs at certain frequencies.
Noble metals such as gold and silver show a negative permittivity [19], and are called plasmonic
materials. Recently, there has been considerable interest in the plasmon resonance and its vari-
ous applications including invisibility cloaking, biomedical imaging and medical therapy; see, e.g.,
[1, 2, 3, 7, 8, 9, 12, 14, 15, 16, 18] and references therein.

It is known (see, e.g., [7, 8]) that in the quasi-static limit the plasmon resonance occurs at the
eigenvalues of the Neumann-Poincaré operator associated with the inclusion. To be more precise,
let D be a bounded simply connected domain in Rd (d = 2, 3) whose boundary ∂D is C1,α for some
0 < α < 1. Suppose that D is occupied with a plasmonic material which has a dielectric constant
ǫc + iδ, where ǫc < 0 and δ > 0 is the dissipation, and that the matrix R \ Ω has a dielectric
constant ǫm > 0. Hence, the distribution of the dielectric constant is given by

ǫD =

{

ǫc + iδ, in D,

ǫm, in R \D.
(1.1)

The dielectric equation in the quasi-static limit is given by

∇ · ǫD∇uδ = f. (1.2)

It is proved (e.g., [7]) that when the source f is given by the polarizable dipole a·∇δz, the resonance
occurs exactly when λ(ǫc/ǫm) is an eigenvalue of the the Neumann-Poincaré (NP) operator asso-
ciated with D (see the next section for the definition and spectral properties of the NP operator),
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in other words, ‖∇uδ‖L2(D) → ∞ as δ → ∞. Here,

λ(t) :=
t+ 1

2(t− 1)
. (1.3)

When λ(ǫc/ǫm) is an eigenvalue of the the NP operator, ǫc/ǫm is called the plasmon eigenvalue [8].
In this paper, we consider plasmon resonance for the Helmholtz operator ∇ · ǫD∇+ ω2

0 , when
D is a diametrically small inclusion such as a nano-scale particle. Here ω0 represents the non-
zero (but fixed) frequency, and the parameters ǫc and δ are determined by ω0. We show that if
the diameter s of D is much smaller than the dissipation parameter δ, then the resonance occurs
exactly when λ(ǫc/ǫm) is an eigenvalue of the NP operator on D, like the quasi-static limit case.
So the result of this paper can be regarded as a validation of the quasi-static approximation for
small inclusions. It is worth mentioning that a different validation of quasi-static approximation
is proved in [3] by showing that the small volume asymptotic expansion of the far field for the
Maxwell system holds away from the eigenvalues of the NP operator.

To describe results of this paper in a quantitative manner, let D = sΩ, and let after scaling

ǫΩ =

{

ǫc + iδ, in Ω,

ǫm, in R \ Ω.
(1.4)

We then consider
∇ · ǫΩ∇uδ + s2ω2

0uδ = a · ∇δz in Rd (1.5)

satisfying the Sommerfeld radiation condition

∣

∣

∣

∣

∂uδ
∂r

− iωε−1/2
m uδ

∣

∣

∣

∣

≤ Cr−(d+1)/2 as r = |x| → ∞, (1.6)

where a ∈ Rd is a constant vector and δz is the Dirac mass at z ∈ Rd \ Ω. We characterize the
resonance by the blow-up of ‖∇uδ‖L2(Ω):

‖∇uδ‖L2(Ω) → ∞ as δ → +0. (1.7)

where uδ is the solution to (1.5).
We show that if s is much smaller than δ, more precisely, if sδ−1 ≪ 1 in three dimensions, and

s2| ln s|δ−1 ≪ 1 in two dimensions, then (1.7) takes place if and only if λ(ǫc/ǫm) is an eigenvalue of
the NP operator on Ω. Moreover, if λ(ǫc/ǫm) is an eigenvalue, we obtain a quantitative estimate

‖∇uδ‖L2(Ω) ≈ δ−1 as δ → +0 (1.8)

for most z (the location of the dipole source). See Theorem 4.3 and Theorem 4.5 for precise
statements. It is worth mentioning that the spectrums of the NP operators on D and on Ω are the
same.

The rest of this paper is organized as follows. In section 2 we review spectral properties of the
NP operator. Section 3 is to derive necessary asymptotic formula for the Helmholtz operator at
low frequencies and estimates for the H1-norm of the solution. The main results in three and two
dimensions are presented and proved in subsection 4.1 and subsection 4.2, respectively.

While writing this paper (after completing major work) we received the paper [6] from Habib
Ammari. There an asymptotic formula for the solution similar to (4.11) is derived in three dimen-
sions when there are multiple small inclusions, using the same method as in this paper (the spectral
properties of the NP operator). Then the formula is used to study enhancement of scattering and
absorption, and super-resonance by plasmonic particles. Here in this paper we use the asymptotic
formula to show resonance quantified by (1.8).
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2 Preliminaries

Let Ω be a bounded domain with the Lipschitz boundary in Rd, d = 2, 3. Throughout this paper
Hs(∂Ω) denotes the L2-Sobolev space on ∂Ω whose norm is expressed as ‖·‖s. We denote by 〈·, ·〉

the duality pairing of H−1/2(∂Ω) and H1/2(∂Ω). Let H
−1/2
0 (∂Ω) be the space of ψ ∈ H−1/2(∂Ω)

satisfying 〈ψ, 1〉 = 0.
Let Γ(x) be the fundamental solution to the Laplacian on Rd, d = 2, 3:

Γ(x) =











1

2π
ln |x|, d = 2,

−
1

4π
|x|−1 , d = 3.

The single layer potential of ϕ ∈ H−1/2(∂Ω) for the Laplacian is defined by

S[ϕ](x) =

∫

∂Ω

Γ(x − y)ϕ(y)dσ(y), x ∈ Rd.

It is well known (see e.g. [4]) that the following jump formula holds:

∂νS[ϕ]
∣

∣

±
(x) = (±1/2I +K∗) [ϕ](x), x ∈ ∂Ω, (2.1)

where K∗ is the Neumann-Poincaré (NP) operator defined by

K∗[ϕ](x) = p.v.

∫

∂Ω

∂νxΓ(x− y)ϕ(y)dσ(y), x ∈ ∂Ω. (2.2)

Here ∂ν denotes the outward normal derivative, the subscripts ± the limit (to ∂Ω) from outside
and inside of Ω, respectively, and p.v. the Cauchy principal value.

It is proved in [13] (see also [10]) that the NP operator K∗ can be symmetrized using Plemelj’s
symmetrization principle:

SK∗ = KS. (2.3)

In fact, if we define a new inner product on H
−1/2
0 (∂Ω) by

〈ϕ, ψ〉H∗ := −〈ϕ,S[ψ]〉 , (2.4)

where the right hand side of (2.4) is well-defined since S maps H−1/2(∂Ω) into H1/2(∂Ω), then K∗

is self-adjoint with respect to this inner product. Let H∗
0 be the space H

−1/2
0 (∂Ω) equipped with

the inner product 〈·, ·〉H∗ and ‖ · ‖H∗ be the induced norm. It is known (see [11]) that ‖ · ‖H∗ is
equivalent to the norm ‖·‖−1/2:

‖ϕ‖H∗ ≈ ‖ϕ‖−1/2 (2.5)

for ϕ ∈ H
−1/2
0 (∂Ω). Here and throughout this paper A . B means A ≤ CB for some constant C

independent of parameters involved; A ≈ B means that A . B and A & B.
There is a nontrivial ϕ0 ∈ H−1/2(∂Ω) such that

K∗[ϕ0] =
1

2
ϕ0, (2.6)

We note that S[ϕ0] is constant, say c0, in Ω. In three dimensions, c0 6= 0, and hence S :
H−1/2(∂Ω) → H1/2(∂Ω) is invertible. However, there are domains Ω in two dimensions such
that c0 = 0 (see [20]), which means S is not invertible in general. We introduce a variance of the
single layer potential, denoted by S̃, by S̃ = S if c0 6= 0 , and if c0 = 0, then

S̃[ϕ] =

{

S[ϕ], if 〈ϕ, 1〉 = 0,

1, if ϕ = ϕ0.

3



Then S̃ is a bijection from H−1/2(∂Ω) to H1/2(∂Ω). Moreover, we have an extension of (2.3):

S̃K∗ = KS̃ (2.7)

which enables us to extend the inner product (2.4) to H−1/2(∂Ω):

〈ϕ, ψ〉H∗ := −〈ϕ, S̃∂Ω[ψ]〉. (2.8)

We denote by H∗ the space H−1/2(∂Ω) equipped with the inner product (2.8). Then the sym-
metrization principle (2.7) makes K∗ self-adjoint on H∗. We emphasize that the norm equivalence
(2.5) is valid for ϕ ∈ H−1/2(∂Ω).

The spectrum σ(K∗) of the NP operator lies in (−1/2, 1/2]. Moreover, K∗
∂Ω is a compact

operator on H∗, when ∂Ω is C1,α for some α > 0. Therefore, we have the spectral decomposition
of K∗ on H∗:

K∗ =
1

2
ϕ0 ⊗ ϕ0 +

∞
∑

n=1

λnϕn ⊗ ϕn =

∞
∑

n=0

λnϕn ⊗ ϕn, (2.9)

where ϕn ∈ H∗ is an eigenvector of K∗ corresponding to the eigenvalue λn ∈ R (counting multi-
plicities), with 1/2 = λ0 > |λ1| ≥ |λ2| · · · ≥ |λn| ≥ · · · → 0 as n → ∞. We note that {ϕn}

∞
n=0 is

chosen to be an orthonormal basis on H∗ (ϕ0 is normalized so that ‖ϕ0‖H∗ = 1).
Define an inner product

〈f, g〉H := −〈f, S̃−1[g]〉 (2.10)

on H1/2(∂Ω), and denote by H the space H1/2(∂Ω) equipped with the inner product 〈·, ·〉H. Then
S̃ is a unitary operator from H∗ to H, and hence {S̃[ϕn], n = 0, 1, . . .} is an orthonormal basis of
H. Let H0 be the subspace of H spanned by {S̃[ϕn], n = 1, . . .}. Then S : H∗

0 → H0 is a bijection.
We emphasize that the norm ‖·‖H is equivalent to ‖·‖1/2.

For ϕ ∈ H∗, we write
ϕ̂(n) := 〈ϕ, ϕn〉H∗ , n = 0, 1, 2, . . . , (2.11)

so that

ϕ =

∞
∑

n=0

ϕ̂(n)ϕn(= ϕ̂(0)ϕ0 + ϕ′), ‖ϕ‖2H∗ = |ϕ̂(0)|2 + ‖ϕ′‖2H∗ . (2.12)

For f ∈ H, we define
f̌(n) := 〈f, S̃[ϕn]〉H, n = 0, 1, 2, . . . , (2.13)

so that

f =
∞
∑

n=0

f̌(n)S̃[ϕn](= f̌(0)S̃[ϕ0] + f ′), ‖f‖2H = |f̌(0)|2 + ‖f ′‖2H. (2.14)

We refer to [7] and references therein for more details on the preliminaries presented in this section.
Finally, we denote by L(X,Y ) the space of bounded linear operators from a Banach space X

to a Banach space Y ; in particular, L(X) is the space of bounded linear operators on a Banach
space X .

3 Asymptotic expansion at low frequencies

Let ω = sω0 from now on to make notation short. A fundamental solution Γω(x) to the Helmholtz
operator ∆ + ω2 in Rd is a solution of

(∆ + ω2)Γω = δ0, (3.1)

where δ0 is the Dirac function at 0. Among solutions to (3.1), we seek a solution satisfying the
Sommerfeld radiation condition

∣

∣

∣

∣

∂Γω

∂r
− iωΓω

∣

∣

∣

∣

≤ Cr−(d+1)/2 as r = |x| → ∞. (3.2)
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Then, it is given by

Γω(x) =















−
i

4
H1

0 (ω |x|) if d = 2,

−
1

4π

eiω|x|

|x|
if d = 3,

(3.3)

where H1
0 (z) is the Hankel function of the first kind of order 0.

For the subsequent use, we consider the asymptotic expansion of the fundamental solution
Γω(x) as ω → +0. When d = 2, we recall the behavior of the Hankel function H1

0 (z) near z = 0
(see, e.g., [17]):

−
i

4
H1

0 (ω |x|) =
1

2π
ln |x|+ τ +

∞
∑

n=1

(bn ln (ω |x|) + cn) (ω |x|)2n , (3.4)

where

bn =
(−1)

n

2π

1

22n (n!)
2 , cn = −bn



γ − ln 2−
πi

2
−

n
∑

j=1

1

j





and

τ =
1

2π
(lnω + γ − ln 2)−

i

4
(3.5)

(γ is the Euler constant). So we have

Γω(x) = Γ(x) + τ + ω2 lnωKω
2 (x) (3.6)

as ω → +0 (see also [5]). The definition of Kω
2 (x) is obvious. When d = 3, one can easily see that

−
1

4π

eiω|x|

|x|
= −

1

4π

1

|x|
−
iω

4π

∞
∑

n=1

(iω |x|)n−1

n!
, (3.7)

which implies that
Γω(x) = Γ(x) + ωKω

3 (x). (3.8)

Let us observe a regularity property of the function Kω
d (x) (d = 2, 3) for later purpose. Let ω1

be a small positive number. Then there is a constant C independent of ω ≤ ω1 such that

∫

Ω

∫

∂Ω

|∂αxK
ω
d (x− y)|2dσ(y) dx ≤ C (3.9)

for all α = (α1, . . . , αd) such that |α| ≤ 2. Here ∂αx is the partial derivative with respect to x.
Moreover, ∇Kω

3 (x) gains ω and it holds that

1

ω

∫

Ω

∫

∂Ω

|∂αx∇xK
ω
3 (x− y)|2dσ(y) dx ≤ C (3.10)

for all |α| ≤ 1.
The single layer potential of ϕ ∈ H−1/2(∂Ω) for the Helmholz operator ∆ + ω2 is defined by

Sω [ϕ](x) =

∫

∂Ω

Γω(x − y)ϕ(y)dσ(y), x ∈ Rd. (3.11)

We note that Sω [ϕ](x) satisfies the Sommerfeld radiation condition (3.2) (see [5]). LetRω
d (d = 2, 3)

be the integral operator defined by Kω
d , namely,

Rω
d [ϕ](x) =

∫

∂Ω

Kω
d (x− y)ϕ(y)dσ(y), x ∈ Rd. (3.12)

5



Then, we obtain from (3.6) and (3.8) that

Sω =

{

S + τ 〈·, 1〉+ ω2 lnωRω
2 if d = 2,

S + ωRω
3 if d = 3.

(3.13)

Analogously to (2.1), the following jump formula holds:

∂νS
ω [ϕ]

∣

∣

±
(x) =

(

±1/2I + (Kω)
∗)

[ϕ](x), x ∈ ∂Ω, (3.14)

where (Kω)∗ is defined by

(Kω)∗ [ϕ](x) =

∫

∂Ω

∂νxΓ
ω(x− y)ϕ(y)dσ(y), x ∈ ∂Ω.

For d = 2, 3, let

Qω
d [ϕ](x) :=

{

∂νR
ω
2 [ϕ](x), d = 2,

1
ω∂νR

ω
3 [ϕ](x), d = 3,

x ∈ ∂Ω. (3.15)

Then, we have

(Kω)∗ =

{

K∗ + ω2 lnωQω
2 if d = 2,

K∗ + ω2Qω
3 if d = 3.

(3.16)

We now investigate the mapping property of Rω
d and Qω

d . By Cauchy-Schwartz inequality we
see from (3.9) that

‖Rω
d [ϕ]‖W 2,2(Ω) ≤ C‖ϕ‖L2(∂Ω).

We also see from (3.10) that

1

ω
‖∇Rω

3 [ϕ]‖W 1,2(Ω) ≤ C‖ϕ‖L2(∂Ω).

By trace theorem, Rω
d maps L2(∂Ω) into H3/2(∂Ω), and Qω

d maps L2(∂Ω) into H1/2(∂Ω). By
duality, Rω

d maps H−3/2(∂Ω) into L2(∂Ω), and H−1/2(∂Ω) into H1(∂Ω) by interpolation. Likewise
we see that Qω

d maps H−1/2(∂Ω) into L2(∂Ω). We summarize these properties in the following
lemma.

Lemma 3.1. For a given small positive number ω1, there exists a constant C independent of
ω ≤ ω1 such that

‖Rω
d [ϕ]‖1 ≤ C‖ϕ‖−1/2 (3.17)

and
‖Qω

d [ϕ]‖0 ≤ C‖ϕ‖−1/2 (3.18)

for all ϕ ∈ H−1/2(∂Ω).

Proposition 3.2. Let ϕ ∈ H∗ and ϕ = ϕ′+ϕ̂(0)ϕ0 be its orthogonal decomposition where ϕ′ ∈ H∗
0.

The following estimates hold:

(i) If d = 2, then

‖ϕ′‖2H∗ − |ω lnω|2|ϕ̂(0)|2 . ‖∇Sω
∂Ω[ϕ]‖

2
L2(Ω) . ‖ϕ′‖2H∗ + |ω lnω|2|ϕ̂(0)|2. (3.19)

(ii) If d = 3, then

‖ϕ′‖2H∗ − |ω||ϕ̂(0)|2 . ‖∇Sω
∂Ω[ϕ]‖

2
L2(Ω) . ‖ϕ′‖2H∗ + |ω||ϕ̂(0)|2. (3.20)

6



Proof. We only prove (3.19) since three dimensional case can be proved in a similar way.
We have from Gauss’s divergence theorem

∫

Ω

|∇Sω [ϕ]|
2
dx+

∫

Ω

Sω [ϕ] ∆Sω [ϕ]dx =

∫

∂Ω

Sω[ϕ] ∂νSω [ϕ]|− dσ. (3.21)

Since ∆Sω[ϕ] = −ω2Sω[ϕ], we have

∫

Ω

|∇Sω[ϕ]|2 dx = ω2

∫

Ω

|Sω[ϕ]|2 dx+

∫

∂Ω

Sω [ϕ] ∂νSω[ϕ]|− dσ. (3.22)

One can see from (3.13) and Lemma 3.1 that

∫

Ω

|Sω[ϕ]|
2
dx . | lnω| ‖ϕ‖−1/2 . | lnω| ‖ϕ‖H∗, (3.23)

since |τ | . | lnω|. The last inequality holds because of (2.5).
Using the jump formula (3.14) we have

∫

∂Ω

Sω [ϕ] ∂νSω [ϕ]|− dσ =

∫

∂Ω

Sω [ϕ]
(

−1/2I + (Kω)
∗)

[ϕ] dσ.

One then see from (3.13) and (3.16) that

∫

∂Ω

Sω [ϕ] ∂νSω [ϕ]|− dσ

=

∫

∂Ω

S[ϕ] (−1/2I +K∗) [ϕ] dσ + τ〈ϕ, 1〉

∫

∂Ω

(−1/2I +K∗) [ϕ] dσ + ω2 lnωE (3.24)

where

E =

∫

∂Ω

Rω
2 [ϕ]

(

−1/2I + (Kω)
∗)

[ϕ] dσ +

∫

∂Ω

Sω[ϕ]Qω
2 [ϕ] dσ + τ〈ϕ, 1〉

∫

∂Ω

Qω
2 [ϕ] dσ.

Using (3.13) and Lemma 3.1 one can show that

|E| ≤ C| lnω|‖ϕ‖2H∗ (3.25)

for some constant C independent of ω ≤ ω1. In fact, we have from (3.5)

|E| ≤ ‖Rω
2 [ϕ]‖1/2‖(−1/2I + (Kω)∗)[ϕ]‖−1/2 + ‖Sω[ϕ]‖1/2‖Q

ω
2 [ϕ]‖−1/2 + τ‖ϕ‖−1/2‖Q

ω
2 [ϕ]‖0

≤ C| lnω|‖ϕ‖2−1/2.

Since K[1] = 1/2, we have

∫

∂Ω

(−1/2I +K∗) [ϕ] dσ =

∫

∂Ω

(−1/2I +K) [1]ϕdσ = 0. (3.26)

On the other hand, since K∗[ϕ0] = 1/2ϕ0, we have

∫

∂Ω

S[ϕ] (−1/2I +K∗) [ϕ] dσ =

∫

∂Ω

S[ϕ′] (−1/2I +K∗) [ϕ′] dσ.

Using ϕ′ =
∑∞

n=1 ϕ̂(n)ϕn, we have

∫

∂Ω

S[ϕ] (−1/2I +K∗) [ϕ] dσ =

∞
∑

n,m=1

(−1/2 + λl) ϕ̂(n)ϕ̂(m)

∫

∂Ω

S[ϕj ]ϕl dσ.

7



Since
∫

∂Ω S[ϕn]ϕm dσ = −〈ϕn, ϕm〉H∗ = −δnm (the Kronecker’s delta), we have

∫

∂Ω

S[ϕ] (−1/2I +K∗) [ϕ] dσ =
∞
∑

n=1

(λn − 1/2) |ϕ̂(n)|2 .

So we have
∣

∣

∣

∣

∫

∂Ω

S[ϕ] (−1/2I + K∗) [ϕ] dσ

∣

∣

∣

∣

≈ ‖ϕ′‖2H∗ . (3.27)

Combining (3.24)-(3.27) we obtain

‖ϕ′‖2H∗ − |ω lnω|2‖ϕ‖2H∗ .

∣

∣

∣

∣

∫

∂Ω

Sω [ϕ] ∂νSω [ϕ]|− dσ

∣

∣

∣

∣

. ‖ϕ′‖2H∗ + |ω lnω|2‖ϕ‖2H∗ ,

which together with (3.21) and (3.23) yields (3.19).

4 Analysis of resonance

From now on, we assume that ǫm = 1 without loss of generality.
Set km = ω(= sω0) and

k2c =
ω2

ǫc + iδ
, ℜkc > 0, ℑkc < 0.

Since

kc = ω (ǫc + iδ)−1/2 ≃ −i
ω

√

|ǫc|

(

1− i
δ

2ǫc

)

,

we assume for simplicity

kc = −i
ω

√

|ǫc|

(

1− i
δ

2ǫc

)

. (4.1)

Then the problem (1.5) can be written as



















∆uδ + k2cuδ = 0 in Ω,

∆uδ + ω2uδ = a · ∇δz in Rd \ Ω,

uδ|− − uδ|+ = 0 on ∂Ω,

(ǫc + iδ) ∂νuδ|− − ∂νuδ|+ = 0 on ∂Ω,

(4.2)

under the Sommerfeld radiation condition (1.6).
Let

Fz(x) := −a · ∇xΓ
ω(x − z). (4.3)

Then, the solution uδ can be represented as

uδ(x) =

{

Skc [ϕδ](x), x ∈ Ω,

Fz(x) + Sω [ψδ](x), x ∈ Rd \ Ω
(4.4)

for some ϕδ, ψδ ∈ H∗. In view of transmission conditions on ∂Ω (the third and fourth conditions
in (4.2)), (ϕδ, ψδ) should solve the following system of integral equations:

{

Skc [ϕδ]− Sω[ψδ] = Fz ,

(ǫc + iδ)∂νS
kc [ϕδ]|− − ∂νS

ω[ψδ]|+ = ∂νFz ,
on ∂Ω. (4.5)

Let X := H∗ ×H∗ and Y := H×H∗, and define an operator As
δ : X → Y by

As
δ =

[

Skc −Sω

(ǫc + iδ)∂νS
kc |− −∂νS

ω|+

]

. (4.6)
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Then we can rewrite (4.5) as

As
δ

[

ϕδ

ψδ

]

=

[

Fz

∂νFz

]

. (4.7)

The solvability of (4.5) is equivalent to the invertibility of As
δ. We will investigate the behavior of

the norm (As
δ)

−1
as δ → +0.

4.1 Three dimensions

We deal with the three dimensional case first since it is easier.
We split As

δ into two parts: As
δ = Aδ + T s

δ , where

Aδ =

[

S −S
(ǫc + iδ)(−1/2I +K∗) −(1/2I +K∗)

]

. (4.8)

Then we can infer from (3.13), (3.16) and Lemma 3.1 that

‖T s
δ ‖L(X,Y ) . ω. (4.9)

Lemma 4.1. For f ∈ H and g ∈ H∗, the solution to

Aδ

[

ϕ
ψ

]

=

[

f
g

]

(4.10)

is given by

ϕ =

∞
∑

n=0

ĝ(n)− (1/2 + λn)f̌(n)

(ǫc − 1)(λn − λ(ǫc)) + iδ(λn − 1
2 )
ϕn (4.11)

and
ψ = ϕ− S−1[f ]. (4.12)

Proof. The equation (4.10) can be written as

{

S[ϕ]− S[ψ] = f,

(ǫc + iδ)(−1/2I +K∗)[ϕ] − (1/2I +K∗)[ψ] = g,
on ∂Ω.

Since S : H∗ → H is invertible in three dimensions, we have

ψ = ϕ− S−1[f ]. (4.13)

Substituting this into the second equation, we obtain

(

− 1/2(ǫc + iδ + 1)I + (ǫc + iδ − 1)K∗
)

[ϕ] = g − (1/2I +K∗)S−1[f ].

We then use the spectral decomposition (2.12) to obtain

ϕ =

∞
∑

n=0

an
−1/2(ǫc + iδ + 1) + (ǫc + iδ − 1)λn

ϕn

where
an = ĝ(n)− 〈(1/2I +K∗)S−1[f ], ϕn〉H∗ .

Since f =
∑∞

j=0 f̌(j)S[ϕj ], we have

〈(1/2I +K∗)S−1[f ], ϕn〉H∗ =

∞
∑

j=0

f̌(j)〈(1/2I +K∗)[ϕj ], ϕn〉H∗ = (1/2 + λn)f̌(n).

This completes the proof.
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As a consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Suppose that ǫc 6= −1, and let (ϕ, ψ) be the solution of (4.10). Then the following
hold for sufficiently small δ:

(i) ‖(A0
δ)

−1‖L(Y,X) . δ−1.

(ii) If λ(ǫc) 6= λn for any n, then ‖(A0
δ)

−1‖L(Y,X) ≤ C for some C depending on ǫc.

(iii) If λ(ǫc) = λn for some n 6= 0, then ‖ϕ′‖H∗ & |an|δ
−1, where an = ĝ(n)− (1/2 + λn)f̌(n).

Proof. Since
1

|(ǫc − 1)(λn − λ(ǫc)) + iδ(λn − 1
2 )|

. δ−1,

we have from (4.11) that

‖ϕ‖2H∗ . δ−2
∞
∑

n=0

|ĝ(n)− (1/2 + λn)f̌(n)|
2 . δ−2(‖f‖2H + ‖g‖2H∗).

We have from (4.12) that
‖ψ‖2H∗ . δ−2(‖f‖2H + ‖g‖2H∗).

This proves (i).
Since ǫc 6= −1, λ(ǫc) 6= 0. If λ(ǫc) 6= λn for any n, then |λn − λ(ǫc)| ≥ C for some C > 0. So

we have
1

|(ǫc − 1)(λn − λ(ǫc)) + iδ(λn − 1
2 )|

. 1,

and hence

‖ϕ‖2H∗ .

∞
∑

n=0

|ĝ(n)− (1/2 + λn)f̌(n)|
2 . ‖f‖2H + ‖g‖2H∗

and
‖ψ‖2H∗ . ‖f‖2H + ‖g‖2H∗.

This proves (ii).
If λ(ǫc) = λn for some n 6= 0, then we have

1

|(ǫc − 1)(λn − λ(ǫc)) + iδ(λn − 1
2 )|

& δ−1

Therefore we have
‖ϕ′‖H∗ ≥ |ϕ̂(n)| & δ−1|an|.

This completes the proof.

The following is the main theorem of this paper in three dimensions.

Theorem 4.3. Suppose d = 3 and assume

sδ−1 ≤ c (4.14)

for sufficiently small c. Let uδ be the solution to (1.5).

(i) If λ(ǫc/ǫm) 6= λn for any n, then there is C independent of δ (may depend on ǫc/ǫm) such
that

‖∇uδ‖L2(Ω) ≤ C. (4.15)

(iii) If λ(ǫc/ǫm) = λn for some n 6= 0, let z be such that a · ∇S[ϕn](z) 6= 0. Then

‖∇uδ‖L2(Ω) ≈ δ−1 (4.16)

as δ → +0.
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Proof. We still assume ǫm = 1. Since As
δ = Aδ +T

s
δ = Aδ(I+(Aδ)

−1T s
δ ), it follows from (4.7) that

Φδ = (I + (Aδ)
−1T s

δ )
−1(Aδ)

−1[F],

where

Φδ =

[

ϕδ

ψδ

]

and F =

[

Fz

∂νFz

]

.

We see from (4.9) and Corollary 4.2 (i) that

‖(Aδ)
−1T s

δ ‖L(X) . δ−1s.

So, if sδ−1 is sufficiently small, then we have

‖Φδ − (Aδ)
−1[F]‖X . δ−1s‖(Aδ)

−1[F]‖X . (4.17)

If λ(ǫc) 6= λn for any n, then we infer from Corollary 4.2 (ii) that

‖Φδ‖X ≤ C‖F‖Y .

So, we have from (4.4) and (3.20)

‖∇uδ‖L2(Ω) = ‖∇Skc [ϕδ]‖L2(Ω) . ‖ϕδ‖H∗ ≤ C

regardless of δ.
Suppose that λ(ǫc) = λn for some n 6= 0. Let (Aδ)

−1[F] = (ϕ1, ψ1)
T . Then Corollary 4.2 (iii)

shows that
‖ϕ′

1‖H∗ & |an|δ
−1,

where
an = (∂̂νFz)(n)− (1/2 + λn)F̌z(n). (4.18)

It then follows from (4.17) that

‖ϕ′
δ‖H∗ & ‖ϕ′

1‖H∗ − δ−1s‖(Aδ)
−1[F]‖X & |an|δ

−1

if an 6= 0 for sufficiently small δ. Thus we obtain from (3.20) that

‖∇uδ‖L2(Ω) = ‖∇Skc [ϕδ]‖L2(Ω) & |an|δ
−1 − s|ϕ̂δ(0)|. (4.19)

We now show that |ϕ̂δ(0)| is bounded, and an 6= 0 for generic z’s. For that purpose we write
Aω

δ as Aω
δ = (I + T s

δ (A
0
δ)

−1)A0
δ so that (4.7) takes the form

A0
δ [Φδ] = (I + T s

δ (A
0
δ)

−1)−1[F] (4.20)

Let (I + T s
δ (A

0
δ)

−1)−1[F] = (f, g)T . Then since ‖T s
δ (A

0
δ)

−1‖L(Y ) . δ−1s, we have ‖f‖H + ‖g‖H∗ is
bounded. Since λ0 = 1/2, we have according to (4.11)

|ϕ̂δ(0)| =

∣

∣

∣

∣

ĝ(0)− f̌(0)

(ǫc − 1)(12 − λ(ǫc))

∣

∣

∣

∣

≤ C.

Recall that Fz(x) := −a · ∇xΓ
ω(x− z). According to (4.18) we have

an = 〈∂νFz , ϕn〉H∗ − (1/2 + λn)〈Fz ,S[ϕn]〉H

= −〈∂νFz,S[ϕn]〉+ (1/2 + λn)〈Fz , ϕn〉

= ω2

∫

Ω

Fz S[ϕn] dx− 〈Fz , ∂νS[ϕn]
∣

∣

−
〉+ (1/2 + λn)〈Fz , ϕn〉

= ω2

∫

Ω

Fz S[ϕn] dx+ 〈Fz , ϕn〉.

11



Since Fz(x) = a · ∇zΓ
ω(x− z), we have

〈Fz , ϕn〉 = a · ∇Sω [ϕn](z).

By (3.6) we have
∇Sω[ϕn](z) = ∇S[ϕn](z) +O(ω2),

and hence
an = a · ∇S[ϕn](z) +O(ω2)

Note that a ·∇S[ϕn](z) is a harmonic function in z ∈ R3 \Ω. So it cannot be zero for z in an open
set. We choose z so that a · ∇S[ϕn](z) 6= 0, and then an 6= 0 if ω is sufficiently small. Thus we
have

‖∇uδ‖L2(Ω) & δ−1. (4.21)

This completes the proof.

4.2 Two dimensions

In two dimensions we decompose As
δ in (4.6) into three parts: As

δ = Aδ + Bs + T s
δ where Aδ is

defined by (4.8) and

Bs =

[

τkc 〈·, 1〉 −τ 〈·, 1〉
0 0

]

. (4.22)

Here, τkc is defined by
τkc = (1/2π) (ln kc + γ − ln 2)− i/4, (4.23)

and τ is defined by (3.5). We emphasize that

|τkc | ∼ − lnω, |τ | ∼ − lnω. (4.24)

We have from (3.13), (3.16) and Lemma 3.1

‖T s
δ ‖L(X,Y ) . |s2 ln s|. (4.25)

Unlike the three dimensional case, Aδ : X → Y may not be invertible since S : H∗ → H is not
invertible in general. Instead we prove that Aδ +Bs : X → Y is invertible. In fact, we obtain the
following lemma.

Lemma 4.4. The operator Aδ + Bs : X → Y is invertible. For (f, g)T ∈ Y , the solution (ϕ, ψ)T

to the equation

(Aδ +Bs)

[

ϕ
ψ

]

=

[

f
g

]

is given by

ϕ = ϕ′ + ϕ̂(0)ϕ0 = ϕ′ +
f̌(0)S̃[ϕ0]− ĝ(0) (S[ϕ0] + τ〈ϕ0, 1〉)

S[ϕ0] + τkc〈ϕ0, 1〉
ϕ0 (4.26)

and
ψ = ϕ′ − S−1[f ′]− ĝ(0)ϕ0, (4.27)

where

ϕ′ =
∞
∑

n=1

ĝ(n)− (12 + λn)f̌(n)

(ǫc − 1)(λn − λ(ǫc)) + iδ(λn − 1
2 )
ϕn. (4.28)

Before proving Theorem 4.4, we emphasize that S[ϕ0] is constant (= c0). If c0 6= 0, then
S̃[ϕ0] = S[ϕ0] = c0, and

〈ϕ0, 1〉 = c−1
0 〈ϕ0,S[ϕ0]〉 = c−1

0 .

So we have

ϕ̂(0) =
c0f̌(0)− (c0 + c−1

0 τ)ĝ(0)

c0 + c−1
0 τkc

.
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If c0 = 0, then S̃[ϕ0] = 1, and 〈ϕ0, 1〉 = 1. So we have

ϕ̂(0) =
f̌(0)− τ ĝ(0)

τkc

.

Proof of Lemma 4.4. Let
f = f ′ + f̌(0)S̃[ϕ0] g = g′ + ĝ(0)ϕ0

be orthogonal decompositions in H and H∗, so that f ′ ∈ H0 and g′ ∈ H∗
0.

Since S : H∗
0 → H0 is invertible, one can see as in Lemma 4.1 that the solution to

Aδ

[

ϕ′

ψ′

]

=

[

f ′

g′

]

is given by (4.28) and
ψ′ = ϕ′ − S−1[f ′].

Since (−1/2I +K∗)[ϕ0] = 0 and ϕ′, ψ′ ∈ H∗
0, we can see that

(Aδ +Bs)

[

ϕ′ + cϕ0

ϕ′ − S−1[f ′] + dϕ0

]

=

[

f ′

g′

]

+ (Aδ +Bs)

[

cϕ0

dϕ0

]

=

[

f ′

g′

]

+

[

c
(

S[ϕ0] + τkc 〈ϕ0, 1〉
)

− d (S[ϕ0] + τ〈ϕ0, 1〉)
−dϕ0

]

.

So we solve

c
(

S[ϕ0] + τkc 〈ϕ0, 1〉
)

− d (S[ϕ0] + τ〈ϕ0, 1〉) = f̌(0)S̃[ϕ0], −d = ĝ(0)

for c, d to have (4.26) and (4.27). This completes the proof.
We can obtain from Lemma 4.4 results similar to those in Corollary 4.2 for two dimensions.

We then obtain the following theorem for two dimensions.

Theorem 4.5. Suppose d = 2 and assume

s2| ln s|δ−1 ≤ c (4.29)

for sufficiently small c. Let uδ be the solution to (1.5).

(i) If λ(ǫc/ǫm) 6= λn for any n, then there is C independent of δ (may depend on ǫc/ǫm) such
that

‖∇uδ‖L2(Ω) ≤ C. (4.30)

(iii) If λ(ǫc/ǫm) = λn for some n 6= 0, let z be such that a · ∇S[ϕn](z) 6= 0. Then

‖∇uδ‖L2(Ω) ≈ δ−1 as δ → +0. (4.31)

Proof. We write
As

δ = Aδ +Bs + T s
δ = (Aδ +Bs)

(

I + (Aδ +Bs)−1T s
δ

)

, (4.32)

and follow the same lines of the proof for Theorem 4.3. One thing we need to check is that |ϕ̂δ(0)|
is bounded. To do that it suffices to show that |ϕ̂(0)| is bounded where ϕ is the solution expressed
in (4.26). Note that

|ϕ̂(0)| =

∣

∣

∣

∣

∣

f̌(0)S̃[ϕ0]− ĝ(0) (S[ϕ0] + τ〈ϕ0, 1〉)

S[ϕ0] + τkc 〈ϕ0, 1〉

∣

∣

∣

∣

∣

.
|τkc |

|τ |
. 1.

This completes the proof.
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