
“EFFICIENT” SUBGRADIENT METHODS

FOR GENERAL CONVEX OPTIMIZATION

JAMES RENEGAR

Abstract. A subgradient method is presented for solving general convex op-

timization problems, the main requirement being that a strictly-feasible point

is known. A feasible sequence of iterates is generated, which converges to
within user-specified error of optimality. Feasibility is maintained with a line-

search at each iteration, avoiding the need for orthogonal projections onto the

feasible region (the operation that limits practicality of traditional subgradient
methods). Lipschitz continuity is not required, yet the algorithm is shown to

possess a convergence rate analogous to rates for traditional methods, albeit

with error measured relatively, whereas traditionally error has been absolute.
The algorithm is derived using an elementary framework that can be utilized

to design other such algorithms.

1. Introduction

Given a convex optimization problem possessing little more structure than having
a known strictly-feasible point, we provide a simple transformation to an equivalent
convex optimization problem which has only linear equations as constraints, and
has Lipschitz-continuous objective function defined on the whole space. Virtually
any subgradient method can be applied to solve the equivalent problem. Relying
only on a line-search during an iteration, the resulting iterate is made to be a
feasible point for the original problem. Moreover, this sequence of feasible points
converges to within user-specified error of optimality.

The algorithm can be implemented directly in terms of the original problem,
leaving the equivalent problem hidden from view. In this introductory section
we present two examples of algorithms and complexity bounds that ensue when
standard subgradient methods are applied to the equivalent problem. Not until
subsequent sections is the equivalent problem revealed.

Let E denote a finite-dimensional real vector space with inner product 〈 , 〉 and
associated norm ‖ ‖.

Consider an optimization problem

min f(x)
s.t. x ∈ Feas .

(1.1)

Assume f : E → (−∞,∞] is an extended-valued, lower-semicontinous convex func-
tion. Equivalently, assume f : E → R has closed and convex epigraph, epi(f) :=
{(x, t) | x ∈ dom(f), t ≥ f(x)}, (where dom(f) is the (effective) domain of f (i.e.,
the set on which f is finite)).

Let

Feas = {x ∈ S | Ax = b} ,
where S is a closed, convex set with nonempty interior.

Assume ē is a known feasible point contained in int(S ∩ dom(f)).
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2 J. RENEGAR

Let D̄ denote the diameter of the sublevel set {x ∈ Feas : f(x) ≤ f(ē)} (i.e.,
the supremum of distances between pairs of points in the set). We assume D̄ is
finite, which together with previous assumptions implies the optimal value of (1.1)
is attained at some feasible point. Let f∗ denote the optimal value.

Let f̂ be a user-chosen constant satisfying f̂ > f(ē) (thus, (ē, f̂) ∈ int(epi(f))).
Define

r̂ := sup{r | ‖x− ē‖ ≤ r and Ax = b ⇒ x ∈ S and f(x) ≤ f̂} .

Note r̂ > 0, because ē ∈ int
(
S ∩ dom(f)

)
.

The scalars D̄ and r̂ appear in the complexity bounds for the representative
algorithms presented below, but their values are not assumed to be known. We
now introduce notation to be used in specifying the algorithms.

For fixed x ∈ E and t ∈ R, and for scalars α, let

x(α) := ē+ α · (x− ē) and t(α) := f̂ + α · (t− f̂) .

Define

α1(x) := sup{α | x(α) ∈ S} ,
and

α2(x, t) := sup{α | f(x(α)) ≤ t(α)} .

Note that α1(x), α2(x, t) > 0, due to our requirements for ē and f̂ .

We are concerned only with pairs (x, t) for which Ax = b and t < f̂ . (Observe

then, Ax(α) = b and t(α) < f̂ for all α ≥ 0.) We claim in this setting, at least one
of the values α1(x), α2(x, t) is finite. To establish the claim, assume α2(x, t) = ∞
– we show it easily follows that α1(x) is finite.

Since α2(x, t) =∞, the convex univariate function

φ(α) := f(x(α))− t(α) (1.2)

has negative value for all α ≥ 0. Hence, since t < f̂ (by assumption) – and thus
t(α) → −∞ as α → ∞ – the function α 7→ f(x(α)) is unbounded below on the
interval [0,∞). In particular, f(x(α)) < f∗ for some α > 0, implying for this value
of α, x(α) /∈ Feas, that is, α1(x) < α, establishing the claim.

Let

α(x, t) := min{α1(x), α2(x, t)} ,

a value we now know to be positive and finite (assuming Ax = b and t < f̂).
For given pairs (x, t), the algorithms require that the scalar α(x, t) be computed.
(This is the line search referred to above.) In general, of course, α(x, t) cannot
be computed exactly. However, there is hope for quickly gaining a “good enough”
approximation to α(x, t).

To understand, first observe for many optimization problems, for each x the
value α1(x) can readily be accurately approximated, or determined to be ∞. All
that is required here is finding whether a given half-line, with endpoint in int(S),
intersects the boundary of S, and if so, accurately approximating where the inter-
section occurs. For most feasible regions, this is far more easily accomplished than
one of the main operations underlying traditional subgradient methods, where an
(arbitrary) point outside Feas must be orthogonally projected onto Feas.
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Assume for the moment that α1(x) has been accurately approximated or deter-
mined to equal ∞. For definiteness, assume α1(x) = ∞, in which case we know
α2(x, t) is finite. Approximating α2(x, t) is the same as approximating the solution
to φ(α) = 0, where φ is the function (1.2). As φ is a convex function satisfying
φ(0) < 0, approximating the root can be accomplished by first finding a value α
sufficiently large so as to satisfy φ(α) > 0, and then proceeding to isolate the root
using bisection.

On the other hand, if α1(x) is finite, then to determine whether α2(x, t) even
needs to be computed, check whether φ(α1(x)) ≤ 0. If so, there is no need to com-
pute α2(x, t), because α(x, t) = α1(x). If instead, φ(α1(x)) > 0, then to compute
α2(x, t) proceed by bisection, with initial interval [0, α1(x)].

That bisection can be applied gives reason to hope a good approximation to
α(x, t) can be quickly computed. Nonetheless, questions abound regarding what
constitutes a “good enough” approximation. In what follows, we duck the issue,
simply assuming α(x, t) can be computed exactly.

For x, t satisfying Ax = b and t < f̂ , let

π′(x, t) := (ē, f̂) + α(x, t) · ((x, t)− (ē, f̂)) . (1.3)

Thus, in traveling from (ē, f̂) in the direction (x, t) − (ē, f̂), π′(x, t) is the first
point (x′, t′) encountered for which either x′ ∈ bdy(S) (boundary) or (x′, t′) ∈
bdy(epi(f)). Note in particular that if (x′, t′) = π′(x, t), then x′ is both feasible
and lies in the domain of f .

For x′ ∈ bdy(S), let

G1(x′) :=

{
−1

〈v, ē− x′〉
v | ~0 6= v ∈ NS(x′)

}
,

where NS(x′) is the normal cone to S at x′ ({v | ∀x ∈ S, 〈v, x − x′〉 ≤ 0}). The
denominator is negative, because ē ∈ int(S).

For (x′, t′) ∈ bdy(epi(f)), let

G2(x′, t′) :=

{
−1

〈v, ē− x′〉+ (f̂ − t′)δ
v | (~0, 0) 6= (v, δ) ∈ Nepi(f)(x

′, t′)

}
,

where here, normality is with respect to the inner product that assigns pairs (x1, t1),
(x2, t2) the value 〈x1, x2〉+ t1t2.

If (x′, t′) ∈ bdy(dom(f)) and x′ ∈ int(dom(f)) – hence t′ = f(x′) – a more
concrete description applies:

x′ ∈ int(dom(f))

⇒ G2(x′, f(x′)) =

{
1

f̂ − (f(x′) + 〈v, ē− x′〉)
v | v ∈ ∂f(x′)

}
,

where ∂f(x′) is the subdifferential of f at x′ (set of subgradients). We rely only on
sets G2(x′, t′) for which x′ ∈ Feas – thus, if Feas∩dom(f) ⊆ int(dom(f)), the more
concrete description applies. (In the traditional literature on subgradient methods,
the stronger condition Feas ⊂ int(dom(f)) is generally assumed, and hence the
more concrete description certainly applies.)
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Finally, letting bdy1 := {(x′, t′) | x′ ∈ bdy(S)} and bdy2 := bdy(epi(f)), define
for (x′, t′) ∈ bdy1 ∪ bdy2 ,

G(x′, t′) :=


G1(x′) if (x′, t′) ∈ bdy1 \ bdy2 ,

G2(x′, t′) if (x′, t′) ∈ bdy2 \ bdy1 ,

hull(G1(x′) ∪ G2(x′, t′)) if (x′, t′) ∈ bdy1 ∩ bdy2 ,

where “hull” denotes the convex hull.

Let P denote orthogonal projection onto the kernel of A.

Following is a representative algorithm that arises from the framework developed
in subsequent sections.

Algorithm A

(0) Input: 0 < ε < 1 ,
ē ∈ int(S ∩ dom(f)) satisfying Aē = b, and

f̂ , a scalar satisfying f̂ > f(ē).
Initialize: (x0, t0) := (ē, f(ē)) and (x′0, t

′
0) := (ē, f(ē)).

(1) Iterate: Compute x̃k+1 := xk − ε
2‖P (g′)‖2P (g′), where g′ ∈ G(x′k, t

′
k).

Let αk+1 := α(x̃k+1, tk) and (x′k+1, t
′
k+1) := π′(x̃k+1, tk).

If αk+1 ≥ 4/3, then let (xk+1, tk+1) := (x′k+1, t
′
k+1),

else let (xk+1, tk+1) := (x̃k+1, tk).

Critical to understanding the algorithm is the identity (x′k, t
′
k) = π′(xk, tk). It-

erates in the sequence {xk} need not be feasible nor in the domain of f , whereas
x′k is feasible and in the domain.

Unlike traditional subgradient methods, no orthogonal projections onto Feas are
required. The only projections are onto the kernel of A, projections which are
computed efficiently if the range space is low dimensional, and if as a preprocessing
step the linear operator (AA∗)−1 is computed and stored in memory (where A∗ is
the adjoint of A, and where we are assuming, of course, that A is surjective, for the
inverse to exist).

Theorem 1.1. For the feasible sequence {x′k} generated by Algorithm A,

` ≥ 8

(
D̄

r̂

)2 (
1

ε2
+

1

ε
log4/3

(
1 +

D̄

r̂

))
(1.4)

⇒ min
k≤`

f(x′k)− f∗

f̂ − f∗
≤ ε . (1.5)

This result differs markedly from the traditional literature, in that there appears
no Lipschitz constant for f . The theorem applies even when for no neighborhood
of an optimal solution does a (local) Lipschitz constant exist, such as occurs, for
example, when Feas = R2 and

f(x1, x2) =


0 if x = ~0,

x2
1 + x2

2/x1 if x1 > 0,

∞ otherwise.
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(For every r > 0, the function fails to be Lipschitz continuous on the relatively-open
set {x ∈ dom(f) | ‖x‖ < r}.)

The equivalent problem is hidden from view, the problem to which a standard
subgradient method is applied and then translated as Algorithm A. The objective
function for the equivalent problem has Lipschitz constant bounded above by 1/r̂.
Thus, a Lipschitz constant does in fact appear in (1.4), even though f need not be
Lipschitz continuous.

A tradeoff to gaining independence from Lipschitz continuity is that the error
(1.5) is measured relatively rather than absolutely. Dependence on 1/ε2 occurs
both in (1.4) and in the traditional literature.

The criterion “αk+1 ≥ 4/3” is satisfied at most log4/3(1 + D̄/r̂) times, leading

to the logarithmic term in (1.4). The primary importance of using the criterion to
create two cases is due to the accuracy needed in solving the equivalent problem
being dependent not only on ε, but also on f∗. Use of the criterion provides a
means to compensate for not knowing f∗.

When f∗ is known, a streamlined algorithm can be devised. This algorithm does
not require ε as input.

Algorithm B

(0) Input: f∗, the optimal value,
ē ∈ int(S ∩ dom(f)) satisfying Aē = b, and

f̂ , a scalar satisfying f̂ > f(ē).
Initialize: x0 := ē, (x′0, t

′
0) := (ē, f(ē)) and α0 = α(x0, f

∗)
(1) Iterate: Compute xk+1 := xk + αk−1

αk‖P (g′)‖2P (g′), where g′ ∈ G(x′k, t
′
k).

Let (x′k+1, t
′
k+1) := π′(xk+1, f

∗) and αk+1 := α(xk+1, f
∗).

Theorem 1.2. For the feasible sequence {x′k} generated by Algorithm B, and for
0 < ε < 1,

` ≥ 4

(
D̄

r̂

)2

·

(
4

3

(
1− ε
ε

)2

+ 4

(
1− ε
ε

)
+ log2

(
1− ε
ε

)
+ log2

(
D̄

r̂

)
+ 1

)
⇒ min

k≤`

f(x′k)− f∗

f̂ − f∗
≤ ε , (1.6)

When S is polyhedral and f is piecewise linear, then in addition to the implica-
tion (1.6), for some constants C1 and C2 there holds

` ≥ C1 log(1/ε) + C2 ⇒ min
k≤`

f(x′k)− f∗

f̂ − f∗
≤ ε , (1.7)

i.e., linear convergence. The constants, however, are highly dependent on Feas and
f , making the linear convergence mostly a curiosity.

In the following four sections, focus is exclusively on convex conic linear opti-
mization problems. In the first of these sections (§2), the equivalent problem is
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explained and the key theory is developed. Perhaps most surprising is that the
transformation to an equivalent problem is simple and the theory is elementary.

Representative algorithms for the conic setting are developed and analyzed in
Sections 4 and 5, first in the ideal case where the optimal value is known, and then
generally. (Groundwork for the development and analysis is laid in §3)

In Section 6, the general convex optimization problem (1.1) is recast into conic
form, to which algorithms and analyses from earlier sections can be applied. The
consequent complexity results are stated directly in terms of the original optimiza-
tion problem (1.1), but the algorithms remain partially abstract in that some key
computations are not expressed directly in terms of the original problem.

Finally, in Section 7, the remaining ties to the original optimization problem are
established, allowing the algorithms applied to the conic recasting to instead be
entirely expressed in terms of the original problem, resulting in Algorithms A and
B above. The paper closes with the proofs of Theorems 1.1 and 1.2, and the proof
of the claim regarding linear convergence (i.e., (1.7)).

We do not discuss how to compute appropriate input ē when such a point exists
but is unknown, because at present we do not see with high generality how to cleanly
apply the framework to accomplish this, let alone see how to apply the framework
to compute a “good” choice for ē from among the points in int(S ∩dom(f)). (Still,
compared to the traditional literature where it is assumed Feas ⊂ int(dom(f)) and
(arbitrary) points can readily be orthogonally projected onto Feas, assuming ē is
known and line-searches can be done seems to us considerably less restrictive.)

The core of this paper, §§2–6, is virtually identical with our arXiv posting [5],
a paper focused on convex conic linear optimization problems rather than general
convex optimization problems, and having only at the end a brief discussion of the
relevance to general convex optimization. (Motivated by reviewers’ comments, we
decided in revising the work for publication to give primary focus to general convex
optimization, while still utilizing the conic setting as the natural venue for develop-
ing the equivalent problem to which traditional subgradient methods are applied.)
Closely related to [5] is recent work of Freund and Lu [1], who develop first-order
methods for convex optimization problems in which the objective function has a
known lower bound and is assumed to satisfy a Lipschitz condition. Their perspec-
tive provides an interesting juxtaposition to the conic-oriented presentation in [5].
Also related is [4], in which accelerated methods for hyperbolic programming are
presented.

We close the introduction by emphasizing the intent is to develop a framework,
not to prescribe specific algorithms. Different subgradient methods applied in the
framework yield different algorithms. Changing how a general optimization problem
is recast into conic form also results in a different algorithm.

2. Key Theory

The key theory is elementary and yet has been overlooked in the literature, a
blind spot.

Continue to let E denote a finite-dimensional Euclidean space.

Let K ⊂ E be a proper, closed, convex cone with nonempty interior.
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Fix a vector e ∈ int(K). We refer to e as the “distinguished direction.” For each
x ∈ E , let

λmin(x) := inf{λ | x− λ e /∈ K} ,
that is, the scalar λ for which x − λe lies in the boundary of K. (Existence and
uniqueness of λmin(x) follows from e ∈ int(K) 6= E and the assumption that K is a
closed, convex cone.)

If, for example, E = Sn (n × n symmetric matrices), K = Sn+ (cone of positive
semidefinite matrices), and e = I (the identity), then λmin(X) is the minimum
eigenvalue of X.

On the other hand, if K = Rn+ (non-negative orthant) and e is a vector with all
positive coordinates, then λmin(x) = minj xj/ej for x ∈ Rn. Clearly, the value of
λmin(x) depends on the distinguished direction e (a fact the reader should keep in
mind since the notation does not reflect the dependence).

Obviously, K = {x | λmin(x) ≥ 0} and int(K) = {x | λmin(x) > 0}. Also,

λmin(sx+ te) = s λmin(x) + t for all x ∈ E and scalars s ≥ 0, t . (2.1)

Let

B̄ := {v ∈ E | e+ v ∈ K and e− v ∈ K} ,
a closed, centrally-symmetric, convex set with nonempty interior. Define the gauge
([6, §15]) on E by

‖u‖∞ := inf{t ≥ 0 | u = tv for some v ∈ B̄} ,

which is easily shown to be a norm if and only if K is a pointed cone. Let B̄∞(x, r)
denote the closed “ball” centered at x and of radius r. Clearly, B̄∞(0, 1) = B̄, and
B̄∞(e, 1) is the largest subset of K that has symmetry point e, i.e., for each v, either
both points e+ v and e− v are in the set, or neither point is in the set.

Proposition 2.1. The function x 7→ λmin(x) is concave and Lipschitz continuous:

|λmin(x)− λmin(y)| ≤ ‖x− y‖∞ for all x, y ∈ E .

Proof: Concavity follows easily from the convexity of K, so we focus on establishing
Lipschitz continuity.

Let x, y ∈ E . According to (2.1), the difference λmin(x + te) − λmin(y + te)
is independent of t, and of course so is the quantity ‖(x + te) − (y + te)‖∞ .
Consequently, in proving the Lipschitz continuity, we may assume x lies in the
boundary of K, that is, we may assume λmin(x) = 0. The goal, then, is to prove

|λmin(x+ v)| ≤ ‖v‖∞ for all v ∈ E . (2.2)

We consider two cases. First assume x + v does not lie in the interior of K,
that is, assume λmin(x + v) ≤ 0. Then, to establish (2.2), it suffices to show
λmin(x+ v) ≥ −‖v‖∞ , that is, to show

x+ v + ‖v‖∞ e ∈ K . (2.3)

However,

v + ‖v‖∞ e ∈ B̄∞(‖v‖∞ e, ‖v‖∞) ⊆ K , (2.4)

the set containment due to K being a cone and, by construction, B̄∞(e, 1) ⊆ K.
Since x ∈ K (indeed, x is in the boundary of K), (2.3) follows.
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Now consider the case x + v ∈ K, i.e., λmin(x + v) ≥ 0. To establish (2.2), it
suffices to show λmin(x+ v) ≤ ‖v‖∞ , that is, to show

x+ v − ‖v‖∞ e /∈ int(K) .

Assume otherwise, that is, assume

x = w + ‖v‖∞ e− v for some w ∈ int(K) .

Since ‖v‖∞ e− v ∈ K (by the set containment on the right of (2.4)), it then follows
that x ∈ int(K), a contradiction to x lying in the boundary of K. �

In this section, the inner product is used primarily for expressing a conic op-
timization problem. To allow a distinction between inner products, we denote
evaluation for the “modeling inner product” on a pair u, v ∈ E by u · v, whereas in
later sections we denote – as was done implicitly in the introduction – evaluation
for the “computational inner product” by 〈u, v〉.

Let Affine ⊆ E be an affine space, i.e., the translate of a subspace. For fixed
c ∈ E , consider the conic program

inf c · x
s.t. x ∈ Affine

x ∈ K .

CP

Assume Affine ∩ int(K) – the set of strictly feasible points – is nonempty. Let z∗

denote the optimal value.

Assume c is not orthogonal to the subspace of which Affine is a translate, since
otherwise all feasible points are optimal. This assumption implies that all optimal
solutions for CP lie in the boundary of K.

Fix a strictly feasible point, e. The point e serves as the distinguished direction.

For scalars z ∈ R, let

Affinez := {x ∈ Affine | c · x = z}, and

let L denote the subspace of which these affine spaces are translates.

Presently we show that for any choice of z satisfying z < c · e , CP can be easily
transformed into an equivalent optimization problem in which the only constraint
is x ∈ Affinez . We make a simple observation.

Lemma 2.2. Assume CP has bounded optimal value.
If x ∈ Affine satisfies c · x < c · e, then λmin(x) < 1 .

Proof: It follows from (2.1) that if λmin(x) ≥ 1, then e+ t(x− e) is feasible for all
t ≥ 0. As the function t 7→ c·

(
e+t(x−e)

)
is strictly decreasing (because c·x < c·e),

this implies CP has unbounded optimal value, contrary to assumption. �

For x ∈ E satisfying λmin(x) < 1, let π(x) denote the point where the half-line
beginning at e in direction x− e intersects the boundary of K:

π(x) := e+ 1
1−λmin(x) (x− e) (2.5)

(to verify correctness of the expression, observe (2.1) implies λmin(π(x)) = 0). We
refer to π(x) as the “radial projection” of x.
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The proof of the following result is straightforward, but because it is central to
our development, we label the result as a theorem.

Theorem 2.3. Let z be any value satisfying z < c · e . If x∗ solves

sup λmin(x)
s.t. x ∈ Affinez ,

(2.6)

then π(x∗) is optimal for CP. Conversely, if π∗ is optimal for CP, then x∗ :=
e+ c·e−z

c·e−z∗ (π∗ − e) is optimal for (2.6), and π∗ = π(x∗).

Proof: Fix a value z satisfying z < c · e. It is easily proven from the convexity of
K that x 7→ π(x) gives a one-to-one map from Affinez onto

{π ∈ Affine ∩ bdy(K) | c · π < c · e} , (2.7)

where bdy(K) denotes the boundary of K.

For x ∈ Affinez , the CP objective value of π(x) is

c · π(x) = c ·
(
e+ 1

1−λmin(x) (x− e)
)

= c · e+ 1
1−λmin(x) (z − c · e) , (2.8)

a strictly-decreasing function of λmin(x). Since the map x 7→ π(x) is a bijection
between Affinez and the set (2.7), the theorem readily follows. �

CP has been transformed into an equivalent linearly-constrained maximization
problem with concave, Lipschitz-continuous objective function. Virtually any sub-
gradient method – rather, supgradient method – can be applied to this problem,
the main cost per iteration being in computing a supgradient and projecting it onto
the subspace L.

For illustration, we digress to interpret the implications of the development thus
far for the linear program

minx∈Rn cTx
s.t. Ax = b

x ≥ 0 ,

 LP

assuming e = 1 (the vector of all ones), in which case λmin(x) = minj xj , and ‖ ‖∞
is the `∞ norm, i.e., ‖v‖∞ = maxj |vj |. Let the number of rows of A be m ≥ 1,
assume the rows are linearly independent, and assume c is not a linear combination
of the rows (otherwise all feasible points are optimal).

For any scalar z < cT1, Theorem 2.3 asserts that LP is equivalent to

maxx minj xj
s.t. Ax = b

cTx = z ,
(2.9)

in that when x is feasible for (2.9), x is optimal if and only if the projection
π(x) = 1 + 1

1−minj xj
(x− 1) is optimal for LP. The setup is shown schematically in

the following figure:
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Proposition 2.1 asserts that, as is obviously true, x 7→ minj xj is `∞-Lipschitz
continuous with constant 1. Consequently, the function also is `2-Lipschitz contin-
uous with constant 1, as is relevant if supgradient methods rely on the standard
inner product in computing supgradients.

With respect to the standard inner product, the supgradients of x 7→ minj xj at
x are the convex combinations of the standard basis vectors e(k) for which xk =
minj xj . Consequently, the projected supgradients at x are the convex combinations
of the vectors P̄k for which xk = minj xj , where P̄k is the kth column of the matrix

projecting Rn onto the nullspace of Ā =
[
A
cT

]
, that is

P̄ := I − ĀT (Ā ĀT )−1Ā .

If m � n, then P̄ is not computed in its entirety, but instead the matrix
M̄ = (ĀĀT )−1 is formed as a preprocessing step, at cost O(m2n) (the inverse
exists because the set consisting of c and the rows of A has been assumed linearly
independent). Then, for any iterate x and an index k satisfying xk = minj xj , the
projected supgradient P̄k is computed according to

u = M̄ Āk → v = ĀTu → P̄k = e(k)− v ,
for a cost of O(m2 + #non zero entries in A) per iteration.

Before returning to the general theory, we note that if the choices are E = Sn,
K = Sn+ and e = I (and thus λmin(X) is the minimum eigenvalue of X), then with
respect to the trace inner product, the supgradients at X for the function X 7→
λmin(X) are the convex combinations of the matrices vvT , where Xv = λmin(X)v
and ‖v‖2 = 1.

Assume, henceforth, that CP has at least one optimal solution, and that z is a
fixed scalar satisfying z < c · e. Then the equivalent problem (2.6) has at least
one optimal solution. Let x∗z denote any of the optimal solutions for the equivalent
problem, and recall z∗ denotes the optimal value of CP. A useful characterization
of the optimal value for the equivalent problem is easily provided.

Lemma 2.4.

λmin(x∗z) =
z − z∗

c · e− z∗

Proof: By Theorem 2.3, π(x∗z) is optimal for CP – in particular, c · π(x∗z) = z∗.
Thus, according to (2.8),

z∗ = c · e+ 1
1−λmin(x∗z) (z − c · e) .

Rearrangement completes the proof. �
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We focus on the goal of computing a point π which is feasible for CP and has
better objective value than e in that

c · π − z∗

c · e− z∗
≤ ε , (2.10)

where 0 < ε < 1. Thus, for the problem of primary interest, CP, the focus is on
relative improvement in the objective value.

The following proposition provides a useful characterization of the accuracy
needed in approximately solving the CP-equivalent problem (2.6) so as to ensure
that for the computed point x, the projection π = π(x) satisfies (2.10).

Proposition 2.5. If x ∈ Affinez and 0 < ε < 1, then

c · π(x)− z∗

c · e− z∗
≤ ε

if and only if

λmin(x∗z)− λmin(x) ≤ ε

1− ε
c · e− z
c · e− z∗

.

Proof: Assume x ∈ Affinez. For y = x and y = x∗z , we have the equality (2.8),
that is,

c · π(y) = c · e+ 1
1−λmin(y) (z − c · e) .

Thus,

c · π(x)− z∗

c · e− z∗
=
c · π(x)− c · π(x∗z)

c · e− c · π(x∗z)

=

1
1−λmin(x) −

1
1−λmin(x∗z)

− 1
1−λmin(x∗z)

=
λmin(x∗z)− λmin(x)

1− λmin(x)
.

Hence,

c · π(x)− z∗

c · e− z∗
≤ ε

⇔
λmin(x∗z)− λmin(x) ≤ ε (1− λmin(x))

⇔
(1− ε)(λmin(x∗z)− λmin(x)) ≤ ε(1− λmin(x∗z))

⇔
λmin(x∗z)− λmin(x) ≤ ε

1−ε (1− λmin(x∗z)) .

Using Lemma 2.4 to substitute for the rightmost occurrence of λmin(x∗z) completes
the proof. �

3. Groundwork for Algorithm Design and Analysis

In Sections 4 and 5, we show how the key theory leads to algorithms and com-
plexity results regarding the solution of the conic program CP. In this section,
groundwork is laid for the development in those and subsequent sections.
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Continue to assume CP has an optimal solution, denote the optimal value by
z∗, and let e be a strictly feasible point, the distinguished direction. Given ε > 0
and a value z satisfying z < c · e, the approach is to apply supgradient methods to
approximately solve

max λmin(x)
s.t. x ∈ Affinez ,

(3.1)

where by “approximately solve” we mean that x ∈ Affinez is computed for which

λmin(x∗z)− λmin(x) ≤ ε

1− ε
c · e− z
c · e− z∗

.

Indeed, according to Proposition 2.5, the projection π = π(x) will then satisfy

c · π − z∗

c · e− z∗
≤ ε .

Not until results regarding CP are applied to general convex optimization –
Sections 6 and 7 – do we require a characterization of supgradients of the function
x 7→ λmin(x), but as the characterization is interesting in itself, we present it as the
first piece of groundwork laid in this section.

Let PL denote orthogonal projection onto L with respect to 〈 , 〉 (the com-

putational inner product), and let ∂̂λmin(x) denote the supdifferential at x. The
following proposition relates supdifferentials to normal cones (normal with respect
to 〈 , 〉).

Proposition 3.1. For all x ∈ E,

∂̂λmin(x) = {v | −v ∈ NK(x− λmin(x)e) and 〈e, v〉 = 1} .

Proof: We know

λmin(y + re) = λmin(y) + t for all y ∈ E , t ∈ R , (3.2)

from which follows for every x and t,

∂̂λmin(x+ te) = ∂̂λmin(x) (3.3)

and

v ∈ ∂̂λmin(x) ⇒ 〈e, v〉 = 1 . (3.4)

Due to (3.3), in proving the lemma we may assume λmin(x) = 0, i.e., x ∈ bdy(K).

Since λmin(x) = 0, and the value of λmin is non-negative on K,

g ∈ ∂̂λmin(x) ⇒ ∀y ∈ K, 〈g, y − x〉 ≥ 0 .

Thus, with (3.4), we have

∂̂λmin(x) ⊆ {v | 〈e, v〉 = 1 and − v ∈ NK(x)} . (3.5)

On the other hand, if −v ∈ NK(x), then

y ∈ bdy(K) ⇒ 0 = λmin(y) ≤ λmin(x) + 〈v, y − x〉
(using λmin(x) = 0). Thus, if in addition, 〈e, v〉 = 1,

t ∈ R and y ∈ bdy(K) ⇒ λmin(y + te) ≤ λmin(x) + 〈v, (y + te)− x〉
(using 3.2). Since E = {y + te | y ∈ bdy(K) and t ∈ R}, the reverse inclusion to
(3.5) thus holds, establishing the proposition. �
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Let ‖ ‖ be the norm associated with 〈 , 〉, and for z ∈ R, let

Mz := sup
{
|λmin(x)−λmin(y)|

‖x−y‖ | x, y ∈ Affinez and x 6= y
}
,

the Lipschitz constant for the map x 7→ λmin(x) restricted to Affinez. Proposi-
tion 2.1 implies Mz is well-defined (finite), although unlike the Lipschitz constant
for the norm appearing there (i.e., ‖ ‖∞), Mz might exceed 1, depending on ‖ ‖.
The next piece of groundwork to be laid is a geometric characterization of an upper
bound on Mz.

We claim the values Mz are identical for all z. To see why, consider that for
z1, z2 < c · e , a bijection from Affinez1 onto Affinez2 is provided by the map

x 7→ y(x) := z2−z1
c·e−z1 e+ c·e−z2

c·e−z1x .

Observe, using (2.1),

λmin(y(x)) = c·e−z2
c·e−z1λmin(x) + z2−z1

c·e−z1 ,

and thus

λmin(y(x))− λmin(y(x̄)) = c·e−z2
c·e−z1 (λmin(x)− λmin(x̄)) for x, x̄ ∈ Affinez1 .

Since, additionally, ‖y(x)− y(x̄)‖ = c·e−z2
c·e−z1 ‖x− x̄‖, it is immediate that the values

Mz are identical for all z < c · e. A simple continuity argument then implies this
value is equal to Mc·e. Analogous reasoning shows Mz = Mc·e for all z > c · e. In
all, Mz is independent of z, as claimed.

Let M denote the common value, i.e., M = Mz for all z.

The following proposition can be useful in modeling and in choosing the compu-
tational inner product. This result plays a central role in our complexity bounds
for general convex optimization.

Let B̄(e, r) := {x | ‖x− e‖ ≤ r}.

Proposition 3.2. M ≤ 1/re , where re := max{r | B̄(e, r) ∩Affinec·e ⊆ K}

Proof: According to Proposition 2.1,

|λmin(x)− λmin(y)| ≤ ‖x− y‖∞ for all x, y .

Consequently, it suffices to show ‖x− y‖ ≥ re‖x− y‖∞ for all x, y ∈ Affinec·e , i.e.,
it suffices to show for all v ∈ L that ‖v‖ ≥ re‖v‖∞.

However, according to the discussion just prior to Proposition 2.1, B̄∞(e, 1)
is the largest set which both is contained in K and has symmetry point e, from
which follows that B̄∞(e, 1)∩Affinec·e is the largest set which is both contained in
K ∩Affinec·e and has symmetry point e. Hence

B̄(e, re) ∩Affinec·e ⊆ B̄∞(e, 1) ∩Affinec·e ,

implying ‖v‖ ≥ re‖v‖∞ for all v ∈ L. �

Towards considering specific supgradient methods, we recall the following stan-
dard and elementary result, rephrased for our setting:

Lemma 3.3. Assume z ∈ R, x, y ∈ Affinez and g ∈ ∂̂λmin(x).
For all scalars α,

‖(x+ αPL(g))− y‖2 ≤ ‖x− y‖2 − 2α (λmin(y)− λmin(x)) + α2‖PL(g)‖2 .
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Proof: Letting g̃ := PL(g), simply observe

‖(x+ αg̃)− y‖2 = ‖x− y‖2 + 2α〈g̃, x− y〉+ α2‖g̃‖2

= ‖x− y‖2 − 2α〈g, y − x〉+ α2‖g̃‖2 (by x− y ∈ L)

≤ ‖x− y‖2 − 2α (λmin(y)− λmin(x)) + α2‖g̃‖2 ,

the inequality due to concavity of the map x 7→ λmin(x) . �

4. Algorithm 1: When the Optimal Value is Known

Knowing z∗ is not an entirely implausible situation. For example, if strict feasi-
bility holds for a primal conic program and for its dual

min c̄Tx
s.t. Āx = b̄

x ∈ K̄

max b̄T y
s.t. ĀT y + s = c̄

s ∈ K̄∗ ,

then the combined primal-dual conic program is known to have optimal value equal
to zero:

min c̄Tx− b̄T y
s.t. Āx = b̄

ĀT y + s = c̄
(x, s) ∈ K̄ × K̄∗ .

Algorithm 1

(0) Input: z∗, the optimal value of CP,
e, a strictly feasible point for CP, and
x̄ ∈ Affine satisfying c · x̄ < c · e .

Initialize: Let x0 = e+ c·e−z∗
c·e−c·x̄ (x̄− e) (thus, c · x0 = z∗),

and let π0 = π(x0) (= π(x̄)).

(1) Iterate: Compute xk+1 = xk − λmin(xk)
‖PL(gk)‖2PL(gk), where gk ∈ ∂̂λmin(xk).

Let πk+1 = π(xk+1).

All of the iterates xk lie in Affinez∗ , and hence, λmin(xk) ≤ 0, with equality if
and only if xk is feasible (and optimal) for CP.

For all scalars z < c · e and for x ∈ Affinez , define

distz(x) := min{‖x− x∗z‖ | x∗z is optimal for (3.1)} .

Proposition 4.1. The iterates for Algorithm 1 satisfy

max{λmin(xk) | k = `, . . . , `+m} ≥ −M distz∗(x`)/
√
m+ 1 .

Proof: Letting g̃k := PL(gk), Lemma 3.3 implies

distz∗(xk+1)2

≤ distz∗(xk)2 − 2(−λmin(xk)/‖g̃k‖2) (0− λmin(xk)) + (λmin(xk)/‖g̃k‖)2

= distz∗(xk)2 − (λmin(xk)/‖g̃k‖)2 ,
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and thus by induction (and using ‖g̃k‖ ≤M),

distz∗(x`+m+1)2 ≤ distz∗(x`)
2 −

`+m∑
k=`

(λmin(xk)/M)2

≤ distz∗(x`)
2 − m+1

M2 min{λmin(xk)2 | k = `, . . . , `+m} ,

implying the proposition (keeping in mind λmin(xk) ≤ 0). �

We briefly digress to consider the case of K being polyhedral, where already
an interesting result is easily proven. The following corollary is offered only as
a curiosity, as the constants typically are so large as to render the bound on `
meaningless except for minuscule ε.

Corollary 4.2. Assume K is polyhedral. There exist constants C1 and C2 (depen-
dent on CP, e, x̄ and the computational inner product), such that for all 0 < ε < 1,

` ≥ C1 + C2 log(1/ε) ⇒ min
k≤`

c · πk − z∗

c · e− z∗
≤ ε .

For first-order methods, such a logarithmic bound in ε was initially established
by Gilpin, Peña and Sandholm [2]. They did not assume an initial feasible point
e was known, but neither did they require the computed approximate solution to
be feasible (instead, constraint residuals were required to be small). They relied on
an accelerated gradient method, along with the smoothing technique of Nesterov
[3]. As is the case for the above result, they assumed the optimal value of CP to
be known apriori, and they restricted K to be polyhedral.

The proof of the corollary depends on the following simple lemma.

Lemma 4.3. For Algorithm 1, the iterates satisfy

c · πk − z∗

c · e− z∗
=
−λmin(xk)

1− λmin(xk)
.

Proof: Immediate from πk = e+ 1
1−λmin(xk) (xk − e) and c · xk = z∗. �

Proof of Corollary 4.2: With K being polyhedral, the concave function x 7→
λmin(x) is piecewise linear, and thus there exists a positive constant C such that

distz∗(x) ≤ −C λmin(x) for all x ∈ Affinez∗ .

Then Proposition 4.1 gives

max{λmin(xk) | k = `, . . . , `+m} ≥ CM λmin(x`)/
√
m+ 1 ,

from which follows

max{λmin(xk) | k = `, . . . , `+ d(2CM)2e} ≥ 1
2λmin(x`) ,

i.e., λmin(x`) is “halved” within d(2CM)2e iterations. The proof is easily completed
using Lemma 4.3. �

We now return to considering general convex cones K.

The iteration bound provided by Proposition 4.1 bears little obvious connection
to the geometry of the conic program CP, except in that the constant M is related
to the geometry by Proposition 3.2. The other constant – distz∗(xk) – does not
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at present have such a clear geometrical connection to CP. We next observe a
meaningful connection.

The level sets for CP are the sets

Levelz = Affinez ∩ K ,
that is, the largest feasible sets for CP on which the objective function is constant1.
If z < z∗, then Levelz = ∅ .

If some level set is unbounded, then either CP has unbounded optimal value or
can be made to have unbounded value with an arbitrarily small perturbation of c.
Thus, in developing numerical optimization methods, it is natural to focus on the
case that level sets for CP are bounded.

For scalars z, define the diameter of Levelz by

diamz := sup{‖x− y‖ | x, y ∈ Levelz} ,
the diameter of Levelz. If Levelz = ∅, let diamz := −∞.

Lemma 4.4. Assume x ∈ Affinez∗ , and let π = π(x). Then

distz∗(x) = (1− λmin(x)) distc·π(π) =
distc·π(π)

1− c·π−z∗
c·e−z∗

≤ diamc·π

1− c·π−z∗
c·e−z∗

.

Proof: Since

π = e+ 1
1−λmin(x) (x− e) , (4.1)

Theorem 2.3 implies that the maximizers of the map y 7→ λmin(y) over Affinec·π
are precisely the points of the form

x∗c·π = e+ 1
1−λmin(x) (x∗z∗ − e) ,

where x∗z∗ is a maximizer of the map when restricted to Affinez∗ (i.e., is an optimal
solution of CP). Observing

π − x∗c·π = 1
1−λmin(x) (x− x∗z∗) ,

it follows that

distc·π(π) = 1
1−λmin(x) distz∗(x) ,

establishing the first equality in the statement of the lemma. The second equality
then follows easily from (4.1) and c · x = z∗. The inequality is due simply to
π, x∗c·π ∈ Levelc·π, for all optimal solutions x∗c·π of the CP-equivalent problem (3.1)
(with z = c · π). �

For scalars z, define

Diamz := max{diamz′ | z′ ≤ z} ,
the “horizontal diameter” of the sublevel set consisting of points x that are feasible
for CP and satisfy c ·x ≤ z. For z∗ < z < c ·e, the value Diamz can be thought of as
a kind of condition number for CP, because Diamz being large is an indication that

1There is possibility of confusion here, as in the optimization literature, the terminology “level

set” is often used for the portion of the feasible region on which the (convex) objective function

does not exceed a specified value rather than – as for us – exactly equals the value. Our terminology
is consistent with the general mathematical literature, where the region on which a function does

not exceed a specified value is referred to as a sublevel set, not a level set.
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the optimal value for CP is relatively sensitive to perturbations in the objective
vector c.

For z∗ ≤ z < c · e, define

Distz := sup{distz′(x) | z′ ≤ z and x ∈ Levelz′} .

Clearly, there holds the relation

Distz ≤ Diamz ,

and hence if the “condition number” Diamz is only of modest size, so is the value
Distz.

Following is our main result for Algorithm 1. By substituting Diamc·π0
for

Distc·π0
, and 1/re for M (where re is as in Proposition 3.2), the statement of the

theorem becomes phrased in terms clearly reflecting the geometry of CP.

Theorem 4.5. Assume 0 < ε < c·π0−z∗
c·e−z∗ , where π0 = π(x0) is the initial CP-feasible

point for Algorithm 1 (i.e., assume π0 does not itself satisfy the desired accuracy).
Then

` ≥ (2M Distc·π0
)2

(
4

3

(
1− ε
ε

)2

+ 4

(
1− ε
ε

)

+ log2

(
c·π0−z∗
c·e−z∗

ε

)
+ log2

(
1− ε

1− c·π0−z∗
c·e−z∗

)
+ 1

)

⇒ min
k≤`

c · πk − z∗

c · e− z∗
≤ ε .

Proof: To ease notation, let λk := λmin(xk) .

Let k0 = 0 and recursively define ki+1 to be the first index for which λki+1
≥

λki/2 (keeping in mind λk ≤ 0 for all k). Proposition 4.1 implies

ki+1 − ki + 1 ≤
(

2M distz∗(xki)

λki

)2

=

(
2M distc·πki

(πki)
1− λki
λki

)2

(by Lemma 4.4)

≤
(

2M Distc·π0

1− λki
λki

)2

, (4.2)

where the final inequality is due to c ·πki (i = 0, 1, . . .) being a decreasing sequence
(using Lemma 4.3).

Let i′ be the first sub-index for which λki′ ≥ −ε/(1− ε). Lemma 4.3 implies

c · πki′ − z
∗

c · e− z∗
≤ ε .

Thus, to prove the theorem, it suffices to show ` = ki′ satisfies the inequality in the
statement of the theorem.
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Note i′ > 0 (because, by assumption, ε < c·π0−z∗
c·e−z∗ ). Observe, then,

i′ < 1 + log2

(
λ0

−ε/(1− ε)

)
= 1 + log2

(
c·π0−z∗
c·e−z∗

ε

)
+ log2

(
1− ε

1− c·π0−z∗
c·e−z∗

)
(4.3)

(again using Lemma 4.3).

Additionally,

ki′ =

i′−1∑
i=0

ki+1 − ki

≤ (2M Distc·π0)2
i′−1∑
i=0

(
1− λki
λki

)2

(by (4.2))

≤ (2M Distc·π0)2
i′−1∑
i=0

(
1− 2iλki′−1

2iλki′−1

)2

≤ (2M Distc·π0
)2

i′−1∑
i=0

(
1 + 2iε/(1− ε)

2iε/(1− ε)

)2

= (2M Distc·π0)2
i′−1∑
i=0

(
1 +

1

2i
1− ε
ε

)2

≤ (2M Distc·π0
)2

(
i′ + 4

1− ε
ε

+
4

3

(
1− ε
ε

)2
)
.

Using (4.3) to substitute for i′ completes the proof. �

5. Algorithm 2: When The Optimal Value Is Unknown

For the second algorithm, we discard the requirement of knowing z∗. Now ε (the
desired relative-accuracy) is required as input.

Algorithm 2

(0) Input: 0 < ε < 1 ,
e, a strictly feasible point for CP, and
x̄ ∈ Affine satisfying c · x̄ < c · e.

Initialize: x0 = π0 = π(x̄)

(1) Iterate: Compute x̃k+1 := xk + ε
2‖PLgk‖2PLgk, where gk ∈ ∂̂λmin(xk).

Let πk+1 := π(x̃k+1) .
If c · (e− πk+1) ≥ 4

3 c · (e− x̃k+1), let xk+1 = πk+1;
else, let xk+1 = x̃k+1 .

Unsurprisingly, the iteration bound we obtain for Algorithm 2 is worse than
the result for Algorithm 1, but perhaps surprisingly, the bound is not excessively
worse, in that the factor for 1/ε2 is essentially unchanged (it’s the factor for 1/ε
that increases, although typically not by a large amount).
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Theorem 5.1. Assume 0 < ε < c·π0−z∗
c·e−z∗ . For the iterates of Algorithm 2,

` ≥ 8 (M Distc·π0
)2

(
1

ε2
+

1

ε
log4/3

(
1

1− c·π0−z∗
c·e−z∗

))

⇒ min
k≤`

c · πk − z∗

c · e− z∗
≤ ε .

Proof: In order to distinguish the iterates obtained by projecting to the boundary,
we record a notationally-embellished rendition of the algorithm which introduces a
distinction between “inner iterations” and “outer iterations”:

Algorithm 2 (notationally-embellished version):

(0) Input: 0 < ε < 1 , e and x̄.
Initialize: y1,0 = π(x̄) ,

i = 1 (outer iteration counter),
j = 0 (inner iteration counter).

(1) Compute yi,j+1 = yi,j + ε
2‖g̃i,j‖2 g̃i,j ,

where g̃i,j = PLgi,j and gi,j ∈ ∂̂λmin(yi,j).
(2) If c · (e− π(yi,j+1)) ≥ 4

3 c · (e− yi,j+1) ,
then let yi+1,0 = π(yi,j+1), i← i+ 1 and j ← 0 ;

else, let j ← j + 1 .
(3) Go to step 1.

For each outer iteration i, all of the iterates yi,j have the same objective value.
Denote the value by zi. Obviously, z1 is equal to the value c · π0 appearing in the
statement of the theorem. Let

Dist := Distc·π0 = Distz1 .

Step 2 ensures
c · e− zi+1 ≥ 4

3 (c · e− zi) . (5.1)

Thus, z1, z2, . . . is a strictly decreasing sequence. Consequently, as yi,0 ∈ Levelzi ,
we have distzi(yi,0) ≤ Dist for all i.

From (5.1) we find for scalars δ > 0 that

c · e− zi+1

c · e− z∗
< δ ⇒ i < log4/3

(
δ

c·e−z1
c·e−z∗

)
= log4/3

(
δ

1− z1−z∗
c·e−z∗

)
,

and thus, for ε < 1,

zi − z∗

c · e− z∗
> ε ⇒ i < 1 + log4/3

(
1− ε

1− z1−z∗
c·e−z∗

)
. (5.2)

Hence, if an outer iteration i fails to satisfy the inequality on the right, the initial
inner iterate yi,0 fulfills the goal of finding a CP-feasible point π satisfying c·π−z∗

c·e−z∗ ≤ ε
(i.e., the algorithm has been successful no later than the start of outer iteration
i). Also observe that (5.2) provides (letting ε ↓ 0) an upper bound on I, the total
number of outer iterations:

I ≤ 1 + log4/3

(
1

1− z1−z∗
c·e−z∗

)
. (5.3)
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For i = 1, . . . , I, let Ji denote the number of inner iterates computed during
outer iteration i, that is, Ji is the largest value j for which yi,j is computed. Clearly,
JI =∞, whereas J1, . . . , JI−1 are finite.

To ease notation, let λi,j := λmin(yi,j), and let λ∗i := λmin(x∗zi), the optimal
value of

max λmin(x)
s.t. x ∈ Affinezi .

According to Lemma 2.4,

λ∗i =
zi − z∗

c · e− z∗
. (5.4)

It is thus valid, for example, to substitue λ∗i for zi−z∗
c·e−z∗ in (5.2). Additionally, (5.4)

implies (5.1) to be equivalent to

1− λ∗i+1 ≥ 4
3 (1− λ∗i ) . (5.5)

For any point y, we have π(y) = e+ 1
1−λmin(y) (y − e), and thus,

c · e− c · π(y)

c · e− c · y
=

1

1− λmin(y)
.

Hence,
c · e− c · π(y)

c · e− c · y
≥ 4

3
⇔ λmin(y) ≥ 1/4 .

Consequently,
λi,j < 1/4 for j < Ji . (5.6)

We use the following relation implied by Lemma 3.3:

distzi(yi,j+1)2 ≤ distzi(yi,j)
2 − ε

‖g̃i,j‖2 (λ∗i − λi,j) + ( ε
2‖g̃i,j‖ )

2 . (5.7)

We begin bounding the number of inner iterations by showing

λ∗i ≥ max{ 1
2 , ε} ⇒ Ji ≤

8(M Dist)2

ε
. (5.8)

Indeed, for j < Ji ,

− ε (λ∗i − λi,j) + 1
4 ε

2

< −ε (max{ 1
2 , ε} −

1
4 ) + 1

4ε
2 (using (5.6))

= min
{

1
4 (ε2 − ε), 1

4ε−
3
4ε

2
}

≤ 3
4

1
4 (ε2 − ε) + 1

4 ( 1
4ε−

3
4ε

2)

= − 1
8ε .

Thus, according to (5.7), for j < Ji,

distzi(yi,j+1)2 ≤ distzi(yi,j)
2 − ε

8M2
,

inductively giving

distzi(yi,j+1)2 ≤ distzi(yi,0)2 − (j + 1) ε

8M2

≤ Dist2 − (j + 1) ε

8M2
.

The implication (5.8) immediately follows.
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The theorem is now readily established in the case ε ≥ 1/2. Indeed, because of
the identity (5.4), the quantity on the right of (5.2) provides an upper bound on the
number of outer iterations i for which λ∗i > ε, whereas the quantity on the right of
(5.8) gives, assuming ε ≥ 1/2, an upper bound on the number of inner iterations for
each of these outer iterations. However, for the first outer iteration satisfying λ∗i ≤ ε,
the initial iterate yi,0 (= π(yi,0)) itself achieves the desired accuracy c·π−z∗

c·e−z∗ ≤ ε.
Thus, the total number of inner iterations made before the algorithm is successful is
at most the product of the two quantities which is seen not to exceed the iteration
bound in the statement of the theorem (using log4/3(1− ε) ≤ log4/3(1/2) < −1).

Before considering the remaining case, ε < 1/2, we establish a relation applying
for all ε. For any outer iteration i for which λ∗i < 3/4, and for any 0 < ε < 1, let

Ĵi :=

⌈
1

3
4 − λ

∗
i

(
M Dist

ε

)2

− 1

⌉
.

We claim that either

Ji ≤ Ĵi or min

{
c · π(yi,j)− z∗

c · e− z∗
| j = 0, . . . , Ĵi

}
≤ ε . (5.9)

Consequently, if Ji > Ĵi, the algorithm will achieve the goal of computing a point

y satisfying c·π(y)−z∗
c·e−z∗ ≤ ε within Ĵi inner iterations during outer iteration i.

To establish (5.9), assume Ĵi < Ji and yet the inequality on the right of (5.9)

does not hold. (We obtain a contradiction.) For every j ≤ Ĵi, Proposition 2.5 then
implies

λ∗i − λi,j > ε
c · e− zi
c · e− z∗

= (1− λ∗i ) ε (by (5.4)) ,

and hence, using (5.7),

distzi(yi,j+1)2 < distzi(yi,j)
2 − ( 3

4 − λ
∗
i ) (ε/M)

2
,

from which inductively follows

distzi(yi,Ĵi+1)2 < distzi(yi,0)2 − (Ĵi + 1) ( 3
4 − λ

∗
i ) (ε/M)2

≤ Dist2 − (Ĵi + 1) ( 3
4 − λ

∗
i ) (ε/M)2

≤ 0 ,

a contradiction. The claim is established.

Assume ε < 1/2, the case remaining to be considered.

As each outer iteration i satisfying λ∗i ≥ 1/2 has only finitely many inner itera-
tions, there must be at least one outer iteration i satisfying λ∗i < 1/2. Let i be the
first outer iteration for which λ∗i < 1/2. From (5.3) and (5.8), the total number of
inner iterations made before reaching outer iteration i is at most

8(M Dist)2

ε
log4/3

(
1

1− z1−z∗
c·e−z∗

)
. (5.10)

According to (5.9), during outer iteration i, the algorithm either achieves its goal

within Ĵi inner iterations, or the algorithm makes no more than Ĵi inner iterations
before starting a new outer iteration. Assume the latter case. Then, for outer
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iteration i + 1, the algorithm either achieves its goal within Ĵi+1 inner iterations,

or the algorithm makes no more than Ĵi+1 inner iterations before starting a new
outer iteration. Assume the latter case. In iteration i+ 2, the algorithm definitely

achieves its goal within Ĵi+2 inner iterations, because there cannot be a subsequent
outer iteration due, by (5.5), to

4
3 (1− λ∗i+2) ≥

(
4
3

)3
(1− λ∗i ) >

(
4
3

)3 1
2 > 1 .

The total number of inner iterations made before the algorithm achieves its goal
is thus bounded by the sum of the quantity (5.10) and

Ĵi + Ĵi+1 + Ĵi+2

<

(
1

(1− 1
2 )− 1

4

+
1

4
3 (1− 1

2 )− 1
4

+
1

4
3

4
3 (1− 1

2 )− 1
4

) (
M Dist

ε

)2

(using 3
4 − λ

∗
j = (1− λ∗j )− 1

4 )

< 8

(
M Dist

ε

)2

,

completing the proof of the theorem. �

6. Application to General Convex Optimization

We now return to the setting of Section 1, considering optimization problems of
the form

min f(x)
s.t. x ∈ Feas ,

(6.1)

where f : E → (−∞,∞] is an extended-valued and lower-semicontinuous convex
function, where Feas = {x ∈ S | Ax = b}, with S being a closed convex set, and
where there is known a point ē ∈ int(S ∩ dom(f)).

In this section we recast (6.1) into conic form, then interpret the complexity
results obtained by applying Algorithms 1 and 2 to the conic refomulation. Before
proceeding, we recall notation from §1.

Let 〈 , 〉 be the (computational) inner product on E , and ‖ ‖ the associated
norm. Let P be the linear operator orthogonally projecting E onto the kernel of A.

Recall D̄ denotes the diameter of the sublevel set {x ∈ Feas | f(x) ≤ f(ē)}. The
diameter is assumed to be finite, implying the optimal value f∗ is attained at some
feasible point.

Recall f̂ is a user-chosen scalar satisfying f̂ > f(ē) (hence, (ē, f̂) ∈ int(epi(f))),
and recall

r̂ := sup{r | ‖x− ē‖ ≤ r and Ax = b ⇒ x ∈ S and f(x) ≤ f̂} , (6.2)

a positive scalar (because ē ∈ int
(
S ∩ dom(f)

)
).

The values D̄ and r̂ are not assumed to be known, but do appear in complexity
results.

For later reference, observe the convexity of f implies

f(ē) ≤ r̂
D̄+r̂

f∗ + D̄
D̄+r̂

f̂ ,
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which in turn implies
1

1− f(ē)−f∗
f̂−f∗

≤ 1 + D̄/r̂ . (6.3)

As S and epi(f) are closed and convex, there exist closed, convex cones K1,K2 ⊆
E × R× R for which

S × R = {(x, t) | (x, 1, t) ∈ K1} and epi(f) = {(x, t) | (x, 1, t) ∈ K2} .

Letting K := K1 ∩ K2, clearly the optimization problem (4.1) is equivalent to

minx,s,t t
s.t. Ax = b

s = 1
(x, s, t) ∈ K ,

(6.4)

and has the same optimal value, f∗. The conic program (6.4) is of the same form
as CP, the focus of preceding sections. Clearly,

Affine = {(x, 1, t) | Ax = b} , and for scalars z, Affinez = {(x, 1, z) | Ax = b} .

For distinguished direction, choose e = (ē, 1, f̂ ), which clearly lies in the interiors
of K1 and K2, and thus lies in int(K). This distinguished direction, along with the
cone K, determines the map (x, s, t) 7→ λmin(x, s, t) on E × R× R.

For z < f∗, the conic problem 6.4 – and hence the problem 6.1 – is, by Theo-
rem 2.3, equivalent to

maxx,s,t λmin(x, s, t)
s.t. (x, s, t) ∈ Affinez ,

(6.5)

It is to this problem that supgradient methods are applied.

Choose the computational inner product on E × R× R to to be〈
(x1, s1, t1), (x2, s2, t2)

〉
:= 〈x1, x2〉+ s1s2 + t1t2 ,

in which case

PL(x, s, t) = (P (x), 0, 0) .

Observe for all scalars z,

Levelz = {(x, 1, z) | x ∈ Feas and f(x) ≤ z} . (6.6)

Recall that the Lipschitz constant M for the map (x, s, t) 7→ λmin(x, s, t) re-
stricted to Affinez is independent of z. Since by (6.2),

Affinef̂ ∩ B̄(e, r̂) ⊆ K ,

Proposition 3.2 implies

M ≤ 1/r̂ . (6.7)

Choose the input x̄ to Algorithms 1 and 2 as x̄ = (ē, 1, f(ē)), which clearly is
feasible for the conic program (6.4). Note that (6.6) then implies the horizontal
diameter of the relevant sublevel set for the conic program satisfies

Diamf(ē) = D̄ . (6.8)

Algorithm 2 requires input 0 < ε < 1, but not f∗. Applying Algorithm 2 results
in a sequence of iterates (xk, 1, tk) for which the projections (x′k, 1, t

′
k) := π(xk, 1, tk)
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satisfy x′k ∈ Feas and f(x′k) ≤ t′k (simply because (x′k, 1, t
′
k) is feasible for the conic

program (6.4)).

Since (x0, 1, t0) = (ē, 1, f(ē)) ∈ bdy(K), we have π(x0, 1, t0) = (x0, 1, t0) – in
particular, the objective value of π(x0, 1, t0) is f(ē). Consequently, the sequence of
points x′k not only lie in Feas, but by Theorem 5.1 satisfies

` ≥ 8

(
D̄

r̂

)2 (
1

ε2
+

1

ε
log4/3

(
1 +

D̄

r̂

))
(6.9)

⇒ min
k≤`

f(x′k)− f∗

f̂ − f∗
≤ ε , (6.10)

where for (6.9) we have used (6.3), (6.7), (6.8), and for (6.10) have used f(x′k) ≤ t′k.

For Algorithm 1, which requires input f∗ but not ε, points (x′k, 1, t
′
k) are gener-

ated for which the sequence {x′k} is feasible and, by Theorem 4.5, satisfies

` ≥ 4

(
D̄

r̂

)2

·

(
4

3

(
1− ε
ε

)2

+ 4

(
1− ε
ε

)
(6.11)

+ log2

(
1− ε
ε

)
+ log2

(
D̄

r̂

)
+ 1

)
(6.12)

⇒ min
k≤`

f(x′k)− f∗

f̂ − f∗
≤ ε . (6.13)

We prove Theorem 1.1 by showing Algorithm A is “equivalent” to applying Algo-
rithm 2 as above. Likewise, we prove Theorem 1.2 by showing algorithm B is equiv-
alent to Algorithm 1. To be in position to establish these equivalences, however,

we need a characterization of the supdifferentials ∂̂λmin(x, s, t), a characterization
in terms of the original problem (6.1).

7. A Practical Characterization of Supdifferentials,
and the Proofs of Theorems 1.1 and 1.2

We continue with the setting and notation developed in Section 6.

We provide a practical characterization of the supgradients for the “λmin func-
tion,” a characterization expressed in terms of the original problem (6.1). The
characterization provides the means for other algorithms designed using the frame-
work to be implemented directly in terms of (6.1), avoiding computation of the
conic reformulation.

For the reader’s convenience, we recall key sets appearing in Section 1 that also
appear in the characterization below.

For x′ ∈ bdy(S), let

G1(x′) :=

{
−1

〈v, ē− x′〉
v | ~0 6= v ∈ NS(x′)

}
.

For (x′, t′) ∈ bdy(epi(f)), let

G2(x′, t′) :=

{
−1

〈v, ē− x′〉+ (f̂ − t′)δ
v | (~0, 0) 6= (v, δ) ∈ Nepi(f)(x

′, t′)

}
,
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where here, normality is with respect to the inner product that assigns pairs (x1, t1),
(x2, t2) the value 〈x1, x2〉+ t1t2.

Finally, letting bdy1 := {(x′, t′) | x′ ∈ bdy(S)} and bdy2 := bdy(epi(f)), define
for (x′, t′) ∈ bdy1 ∪ bdy2 ,

G(x′, t′) :=


G1(x′) if (x′, t′) ∈ bdy1 \ bdy2 ,

G2(x′, t′) if (x′, t′) ∈ bdy2 \ bdy1 ,

hull(G1(x′) ∪ G2(x′, t′)) if (x′, t′) ∈ bdy1 ∩ bdy2 .

Proposition 7.1. Assume (x, 1, t) ∈ Affine, and assume t < f̂ . If (x′, 1, t′) =
π(x, 1, t), then

PL( ∂̂λmin(x, 1, t) ) = {(P (v), 0, 0) | −v ∈ G(x′, t′)} .

Proof: Proposition 3.1 implies for all y ∈ E × R× R,

∂̂λmin(y) = {υ ∈ −NK(y − λmin(y)e) |
〈
e, υ
〉

= 1}
= −{υ ∈ NK(y − λmin(y)e) |

〈
e, υ
〉

= −1} . (7.1)

However,

if y = (x, 1, t) ∈ Affine and t < f̂ , (7.2)

then π(y) is a positive multiple of y − λmin(y)e (using λmin(y) < 1 (Lemma 2.2),
and π(y) = e− 1

1−λmin(y) (y− e)), and thus has the same normal cone to K. Hence,

in this case, (7.1) is equivalent to

∂̂λmin(y) = −{υ ∈ NK(π(y) ) |
〈
e, υ
〉

= −1} . (7.3)

As int(K) 6= ∅ and K = K1 ∩ K2, if y ∈ K then

NK(y) = hull(NK1(y) ∪NK2(y) ) .

Thus, for y as in (7.2), using (7.3) we have

∂̂λmin(y) = −{υ ∈ hull(NK1(π(y)) ∪NK2(π(y)) ) |
〈
e, υ
〉

= −1} . (7.4)

Since e ∈ int(Ki) (i = 1, 2),

y ∈ Ki ∧ υ ∈ NKi
(y) ∧

〈
e, υ
〉

= 0 ⇒ υ = 0 .

Consequently, it follows from (7.4) that for y as in (7.2),

∂̂λmin(y) = −hull(N1(π(y)) ∪N2(π(y))) ,

where for i = 1, 2 and y′ ∈ Ki,

Ni(y′) :=

{
{v ∈ NKi

(y′) |
〈
e, υ
〉

= −1} if y′ ∈ bdy(Ki),
{~0} if y′ ∈ int(Ki).

Clearly, then,

PL(∂̂λmin(y)) = −hull
(
PL(N1(π(y))) ∪ PL(N2(π(y)))

)
. (7.5)

Since S × R = {(x, t) | (x, 1, t) ∈ K1} , if y′ = (x′, 1, t′) ∈ bdy(K1) then

NK1
(y′) = {(v, γ, 0) | v ∈ NS(x′) ∧ 〈x′, v〉 = 0} ,
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the equation to ensure perpendicularity to the ray through y′. Thus, a vector
(v, γ, δ) is an element of N1(y′) if and only if v ∈ NS(x′), δ = 0 and

〈x′, v〉 + γ = 0
〈ē, v〉 + γ = −1

(note v cannot be ~0). However, for ~0 6= v ∈ NS(y′), there is a unique scaling of v
for which there exist γ and δ satisfying the three equations, namely,

v 7→ −1
〈v,ē−x′〉 (v, −〈x

′, v〉, 0) .

The denominator in the scaling is negative, because ē ∈ int(S). It follows that

PL(N1) = { −1
〈v,ē−x′〉 (P (v), 0, 0) | ~0 6= v ∈ NS(x′)} . (7.6)

Similarly, for y′ = (x′, 1, t′) ∈ bdy(K2), a vector (v, γ, δ) is in N2(y′) if and only
(v, δ) ∈ Nepi(f)(x

′, t′) and

〈x′, v〉 + γ + δt′ = 0

〈ē, v〉 + γ + δf̂ = −1

(note (v, δ) cannot be (~0, 0)). For (~0, 0) 6= (v, δ) ∈ Nepi(f)(x
′, t′), the unique scaling

for which there exists γ satisfying the equations is

(v, δ) 7→ −1
〈v,ē−x′〉+(f̂−t′)δ

(v, −〈x′, v〉 − t′δ, δ) .

The denominator is negative, because (ē, f̂) ∈ int(epi(f)). It follows that

PL(N2) = { −1
〈v,ē−x′〉+(f̂−t′)δ

(P (v), 0, 0) | (~0, 0) 6= (v, δ) ∈ Nepi(f)(x
′, t′)} . (7.7)

Together, (7.5), (7.6) and (7.7) establish the proposition. �

Proofs of Theorems 1.1 and 1.2, and of (1.7): We first establish Theorem 1.1,
and then remark on the few changes required to establish Theorem 1.2 by the same
approach.

By “Algorithm 2,” we mean the application of Algorithm 2 to the conic opti-
mization problem (6.4), as presented in the preceding section.

Due to complexity bound (6.9), (6.10) established for Algorithm 2, it suffices to
show the two algorithms are equivalent in that the iterates generated by Algorithm
2 are “identical” to those generated by Algorithm A.

The initial iterates for Algorithm 2 are (x0, 1, t0) = (x′0, 1, t
′
0) = (ē, 1, f(ē), and

for Algorithm A are (x0, t0) = (x′0, t
′
0) = (ē, f(ē)). For beginning an inductive proof

showing the two algorithms are equivalent, observe that the initial iterate (x0, t0)
(resp., (x′0, t

′
0)) for Algorithm A is obtained simply by eliminating the “1” from the

initial iterate (x0, 1, t0) (resp., (x′0, 1, t
′
0)) for Algorithm 2.

For the inductive step, assume eliminating “1” from the iterate (xk, 1, tk) (resp.,
(x′k, 1, t

′
k)) computed by Algorithm 2 results in the iterate (xk, tk) (resp., (x′k, t

′
k))

computed by Algorithm A.

The first iterate computed by Algorithm 2 in Step 1 is

(x̃k+1, 1, tk) = (xk, 1, tk) + ε
2‖PLḡ‖2PLḡ where ḡ ∈ ∂̂λmin(x′k, 1, t

′
k) ,

whereas Algorithm A computes

x̃k+1 = xk − ε
2‖Pg‖2Pg where g ∈ G(x′k, t

′
k)



“EFFICIENT” GENERAL SUBGRADIENT-METHODS 27

(and thereafter relies on the pair (x̃k+1, tk) in the same manner that Algorithm 2
relies on the triple (x̃k+1, 1, tk)). Thus, due to the identity provided by Proposi-
tion 7.1, the algorithms can be considered equivalent in this computation.

Algorithm 2 next computes (x′k+1, 1, t
′
k+1) := π(x̃k+1, 1, tk), the point in the

boundary of K encountered when moving from (ē, 1, f̂) in direction (x̃k+1, 1, tk) −
(ē, 1, f̂). Due to the definition of K, however, this is the (only) feasible point (x, 1, t)
for which there exists α ≥ 0 such that

x = x(α) := ē+ α · (x̃k+1 − ē) and t = t(α) := f̂ + α · (tk − f̂)

and either x ∈ bdy(S) or (x, t) ∈ bdy(epi(f)). Thus, for the iterate (x′k+1, 1, t
′
k+1)

computed by Algorithm 2, we have (x′k+1, t
′
k+1) = π′(x̃k+1, tk), where π′ is de-

fined by (1.3). Thus, eliminating “1” from the iterate (x′k+1, 1, t
′
k+1) computed by

Algorithm 2 gives the iterate (x′k+1, t
′
k+1) computed by Algorithm A.

Observe, moreover, for Algorithm A, t′k+1 = f̂ + αk+1 · (tk − f̂), and thus,

αk+1 =
f̂ − t′k+1

f̂ − tk
. (7.8)

Algorithm A decides how to define its iterate (xk+1, tk+1) based on whether
αk+1 ≥ 4/3, whereas Algorithm 2 decides how to define its iterate (xk+1, 1, tk+1)

based on whether f̂ − t′k+1 ≥ 4
3 (f̂ − tk). Thus, due to (7.8) and the equivalence of

the two algorithms up until now, it is simple to verify that removing “1” from the
iterate (xk+1, 1, tk+1) for Algorithm 2 gives the iterate (xk+1, tk+1) for Algorithm
A.

Similarly, the proof of Theorem 1.2 is accomplished by showing Algorithm B is
“equivalent” to Algorithm 1, and making use of the complexity result (6.11), (6.12),
(6.13) for Algorithm 1. The proof of equivalence is virtually identical to the one
above, the main difference being that the scalar αk used by Algorithm B has to be
related to the analogous scalar used by Algorithm 1 – in particular, for equivalence,

the identity α(xk,f
∗)−1

α(xk,f∗)
= λmin(xk, 1, f

∗) is needed.

The identity, however, is easily established. Indeed, α(xk, f
∗) is the smallest

scalar α for which the point (x, t) = (ē, f̂) + α · ((xk, f∗) − (ē, f̂)) satisfies either
x ∈ bdy(S) or (x, t) ∈ bdy(epi(f)). Due to the definition of K, however, this is
readily seen to equal the smallest scalar α for which e+ α · ((xk, 1, f∗)− e) lies in
the boundary of K. Hence, from (2.5), α(xk, f

∗) = 1
1−λmin(xk,1,f∗)

. Rearrangement

establishes the desired identity.

Finally, immediately after the statement of Theorem 1.2, it is claimed in (1.7)
that Algorithm B converges linearly when f is a piecewise linear function and Feas
is polyhedral. This is immediate from the fact that Algorithm 1 converges linearly
when K is a polyhedral cone (Corollary 4.2). �
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