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Abstract. Increasing complexity of both scientific simulations and high performance computing
system architectures are driving the need for adaptive workflows, in which the composition and
execution of computational and data manipulation steps dynamically depend on the evolutionary
state of the simulation itself. Consider for example, the frequency of data storage. Critical phases
of the simulation should be captured with high frequency and with high fidelity for post-analysis,
however we cannot afford to retain the same frequency for the full simulation due to the high cost
of data movement. We can instead look for triggers, indicators that the simulation will be entering
a critical phase, and adapt the workflow accordingly.

In this paper, we present a methodology for detecting triggers and demonstrate its use in the
context of direct numerical simulations of turbulent combustion using S3D. We show that chemical
explosive mode analysis (CEMA) can be used to devise a noise-tolerant indicator for rapid increase
in heat release. However, exhaustive computation of CEMA values dominates the total simulation,
thus is prohibitively expensive. To overcome this computational bottleneck, we propose a quantile
sampling approach. Our sampling based algorithm comes with provable error/confidence bounds, as
a function of the number of samples. Most importantly, the number of samples is independent of
the problem size, thus our proposed sampling algorithm offers perfect scalability. Our experiments
on homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition
(RCCI) simulations show that the proposed method can detect rapid increases in heat release, and
its computational overhead is negligible. Our results will be used to make dynamic workflow deci-
sions regarding data storage and mesh resolution in future combustion simulations. The proposed
sampling-based framework is generalizable and we detail how it could be applied to a broad class of
scientific simulation workflows.

Keywords: Sublinear algorithms; quantile sampling; in situ data analysis; chemical
explosive mode analysis (CEMA); S3D; adaptive workflow; judicious I/O;

1. Introduction. Steady improvements in computing resources enable ever more
enhanced scientific simulations, however Input/Output (I/O) constraints are imped-
ing their impact. Historically, scientific computing workflows have been defined by
three independent stages (see Fig. 1.1(a)): 1) a pre-processing stage comprising ini-
tialization and set up (for example mesh generation, or initial small-scale test runs);
2) the scientific computation itself (in which data is periodically saved to disk at a
prescribed frequency); and 3) post-processing and analysis of data for scientific in-
sights. With improved computing resources scientists are increasing the temporal
resolution of their simulations. However, as computational power continues to out-
pace I/O capabilities, the gap between time steps saved to disk keeps increasing. This
compromise in the fidelity of the data being saved to disk makes it impossible to track
features with timescales smaller than that of I/O frequency. Moreover, this situation
is projected to worsen as we look ahead to future architectures with improvements in
computational power continuing to significantly outpace I/O capabilities [26, 2], see
Tab. 1.1.
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Fig. 1.1: (a) An illustration of a traditional workflow made up of 3 stages: 1) pre-
procesing, 2) scientific computation and I/O at a prescribed rate, 3) analysis as a post-
process. (b) Computational capabilities are outpacing I/O on future architectures,
causing a change in workflows as some portion of the analysis moves in situ. Most
current day workflows remain static, with the frequency of I/O and analysis being
prescribed upfront by the scientists. (c) This paper introduces the use of indicators
and triggers to support adaptive workflows. The indicator and trigger are lightweight
functions evaluated at a high frequency to make dynamic data-driven control-flow
decisions.

Consequently, we are seeing a paradigm shift away from the use of prescribed I/O
frequencies and post-process-centric data analysis, towards a more flexible concurrent
paradigm in which raw simulation data is processed in situ as it is computed, see
Fig. 1.1 (b). In spite of the paradigm shift, concurrent processing does not provide a
complete solution, as it requires all analysis questions be posed a priori. This is not
always possible as scientists often analyze their data in an interactive and exploratory
fashion. One potential solution, is to store data judiciously for only the time segments
that will merit further analysis. However, the problem with this approach is that the
computation required to automatically and adaptively make decisions regarding the
workflow (e.g,. I/O and/or in situ data analysis frequencies) based on simulation state
can be prohibitively expensive in their own right. Therefore, we argue that one of
the more pressing fundamental research challenges is the need for efficient, adaptive,
data-driven control-flow mechanisms for extreme-scale scientific simulation workflows,
which is the primary goal of this work.

Here we introduce a methodology that is broadly applicable, yet can be specialized
to provide confidence guarantees for application-specific simulations and underlying
phenomena. Our methodology comprises three steps:

1. Identify a noise-resistant indicator that can be used to track changes in sim-
ulation state.

2. Devise a trigger which specifies that a property of the indicator has been met.
3. Design efficient and scalable algorithms to compute indicators and triggers.

To make decisions in a data-driven fashion, a user-defined indicator function must be
computed and measured in situ at a relatively regular and high-frequency. Along with
the indicator, the application scientist defines an associated trigger, a function that
returns a boolean value indicating that the indicator has met some property, for exam-
ple a threshold value. Together, indicators and triggers define data-driven control-flow
mechanisms within a scientific workflow, see Fig. 1.1(c). While this methodology is
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Table 1.1: Expected exascale architecture parameters for the design of two “swim
lanes” of very different design choices [26, 2]. Note the drastic difference between
expected improvements in I/O and compute capacities in both swim lanes.

System Parameter 2011 2018 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW ≤ 20 MW 3

System Memory 0.3 PB 32-64 PB 100-200
Total Concurrency 225K 1B× 10 1B × 100 40000-400000
Node Performance 125 GF 1TF 10 TF 8-80
Node Concurrency 12 1000 10000 83-830

Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660
System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67
I/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30

very intuitive and conceptually quite simple, the challenges lie in defining indicators
and triggers that capture the appropriate scientific information while remaining cost
efficient in terms of runtime, memory footprint, and I/O requirements so that they
can be deployed at the high frequency that is required.

In this article we demonstrate how recent advances in sublinear algorithms [11, 20,
21] can be used to create efficient indicators and triggers to enable data-driven control-
flow mechanisms, even in those cases where standard implementations of the indicator
and trigger would be significantly too expensive. Sublinear algorithms are designed to
estimate properties of a function over a massive discrete domain while 1) accessing only
a tiny fraction of the domain, and 2) quantifying the error or uncertainty due to using
only a sample of the data. Sublinear indicators and triggers operate on a sample whose
size is dependent on the accuracy of the desired result, rather than the input size.
Consequently, sublinear indicators and triggers can be deployed with high confidence
to make workflow decisions in extreme-scale simulations. Sublinear algorithms have
their limitations; in particular, they are not amenable for those control-flow decisions
that are based on anomaly detection. However, they are well suited to control-flow
decisions regarding general trends in data, e.g., based on quantile plots of trends of
computationally expensive quantities of interest.

While our proposed approach is general, the first two steps can be made applica-
tion dependent, leveraging some knowledge of the underlying physics. In this paper
we demonstrate our approach applied to dynamic workflow decisions in the context of
direct numerical simulations of turbulent combustion using S3D [8]. In this use case,
workflow decisions regarding both grid resolution and I/O frequency can be made
based on the detection of a rapid increase in heat release. This means our indicator
should be a precursor to heat release, and not the heat release itself. What precedes
the heat release? (see Fig. 2.2.) Recent studies have shown that chemical explosive
mode analysis (CEMA) is a good lead indicator of heat release events [17, 25], and
in this paper we show that CEMA can be used to devise a noise-tolerant indicator
function and trigger. CEMA is a point-wise metric computed at each grid point. Our
analysis of the distribution of CEMA values shows that the range of CEMA values
covered by the top percentiles, compared to the full range of CEMA values, shrinks
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right before heat release and then expands afterwards. This change in distribution of
quantiles is illustrated in Fig. 3.1 and provides the basis for our indicator and trigger.

Now that we have an intuition for what can be a good lead indicator for heat
release, the next step is to devise an indicator function and associated trigger that
quantify the shrinking/expansion of the portion of top quantiles of CEMA values
over the full range. The challenge here is the noise tolerance. While the range of
the CEMA values is defined by the minimum and the maximum, these values are,
by definition, outliers of the distribution, and thus their adoption will lead to noise-
sensitive triggers. Instead we use the quantiles of the distribution, which remain stable
among instances of the same distribution. For instance, we can replace the minimum
with the 1-percentile and the maximum with the 98-percentile, still capturing the
concept of range, but yielding a much more noise-tolerant trigger, as supported by
experimental results (see §4).

The final step is to design efficient and scalable algorithms for the indicators and
triggers we have devised. Our experiments show that our CEMA-based indicators
and triggers work well in practice, however, exhaustive computation of CEMA val-
ues can dominate the total simulation computation time and are thus prohibitively
expensive. To overcome this computational bottleneck, we propose a sampling ap-
proach to estimate the quantiles. Our sampling based algorithm comes with provable
error/confidence bounds that are only a function of the number of samples. With only
48K samples, the error will be less than %1 with confidence %99.9, which in large-
scale simulation runs leads to only a few samples per processor. Most importantly,
the number of samples is independent of the problem size, thus our proposed sam-
pling algorithm offers perfect scalability. Our experiments on homogeneous charge
compression ignition (HCCI) and reactivity controlled compression ignition (RCCI)
simulations show that the proposed method can detect heat release, with negligi-
ble computational overhead. Moreover our results will be used to make dynamic
workflow decisions regarding data storage and mesh resolution in future combustion
simulations.

The rest of the paper is organized as follows. §2 provides the background for
our work; we first review the need for and the state of adaptive workflows. Then we
overview the mathematically rich field of sublinear algorithms and describe how this
field can be instrumental in designing indicators and triggers for adaptive workflows.
We conclude §2 with motivation of the combustion use case that is used throughout
our paper. §3 discusses the process of identifying a noise-resistant indicator and
trigger for phase change in a simulation, and includes physics intuitions for how and
why CEMA can be used to construct an indicator for heat release for our combustion
use case. In §4 we demonstrate how to compute the indicator and trigger efficiently
using a sublinear approach and we put all the pieces together in §5 to demonstrate
our technique on a full scale simulation. Finally, we conclude with §6.

2. Background. We begin this section by reviewing recent work in enabling
complex scientific computing workflows. We then provide an overview of sublinear
algorithms and discuss how these mathematical techniques can be deployed to make
data driven decisions in situ. We conclude this section with a brief overview of our
combustion use case.

2.1. Adaptive data-driven workflows and concurrent analysis frame-
works. As we move to next generation architectures, scientists are moving away from
traditional workflows in which the simulation state is saved at prescribed frequencies
for post-processing analysis. There are a number of concurrent analysis frameworks
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available, wherein raw simulation output is processed as it is computed, decoupling
the analysis from I/O. Both in situ [29, 7, 10] and in transit [28, 1, 4] processing
are based on performing analyses as the simulation is running, storing only the re-
sults, which are typically several orders of magnitude smaller than the raw data. This
reduction mitigates the effects of limited disk bandwidth and capacity. Operations
sharing primary resources of the simulation are considered in situ, while in transit
processing involves asynchronous data transfers to secondary resources.

Concurrent analyses are often performed at frequencies that are prescribed by
the scientists a priori. For those analyses that are not too expensive – in terms of
runtime (with respect to a simulation time step), memory footprint, and output size –
the prescription of frequencies is a viable approach. However, for those analyses that
are too expensive, prescribed frequencies will not suffice because the scientific phe-
nomenon that is being simulated typically does not behave linearly (e.g., combustion,
climate, astrophysics). When scientists choose a prescribed I/O or analysis frequency
that is frequent enough to capture the science of interest, the costs incurred are too
great, while a prescribed frequency that is cost-effective and less frequent may miss
the underlying scientific effects that simulation is intended to capture. An alternative
approach would be to perform expensive analyses and I/O in an adaptive fashion,
driven by the data itself. In [19, 18], such techniques have been developed based
on entropy of information in the data, and building piecewise-linear fits of quanti-
ties of interest. These approaches fit within the methodology proposed here and are
domain-agnostic. In this work we present a strategy that can leverage the scientists’
physics intuitions, even when the in situ analyses that captures those intuitions would
otherwise be too expensive to compute.

2.2. Sublinear algorithms. A recent development in theoretical computer sci-
ence and mathematics is the study of sublinear algorithms, which aim to understand
global features of a data set while using limited resources. Often enough, we do not
need to look at the entire data to determine some of its important features. The field
of sublinear algorithms [11, 20, 21] makes precise the settings when this is possible and
combines discrete math and algorithmic techniques with statistical tools to quantify
error and give trade-offs with sample sizes. This confidence measure is necessary for
adoption of such techniques by the scientific computing community, whose scientific
results can be used to make high-impact decisions.

Formally, given a function, f : D → R, we assume for any x ∈ D, we can query
f(x). For example, in S3D simulations we have D = [n]3 as a structured grid, and
R = R can be the temperature values. If D = [n] and R = {0, 1}, then f represents
an n-bit binary string. If R = {A, T,G,C}, f could represent a DNA segment. If
D = [n]2, the function could represent a matrix (or a graph). Note D can also be an
unstructured grid, modeled as a graph. Similarly, almost any data analysis input can
be cast as a collection of functions over a discrete or discretized domain.

We are interested in some specific property of f , which is phrased as a yes/no
question. For instance, in a jet simulation we can ask if there exists a high-temperature
region spanning the x-axis of the grid. How can we determine if f satisfies property P
without querying all of f? It is impossible to give an exact answer without knowledge
of f . To formalize what can be inferred by querying o(|D|) values of f , we use a notion
of the distance to P 1. Every function f has a distance to P, denoted εf , where εf = 0

1 f(n) = o(g(n)) means for all c > 0 there exists some k > 0 such that 0 ≤ f(n) < cg(n) for all
n ≥ k. The value of k must not depend on n, but may depend on c.
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iff f satisfied P. To provide an exact answer to questions regarding P, we determine
whether εf = 0 or εf 6= 0. However, approximate answers can be given by choosing
some error parameter ε > 0 and then determining whether we can distinguish εf = 0
from εf > ε. The theory of sublinear algorithms shows whether the latter question
can be resolved by an algorithm that samples o(|D|) function values.

For a sublinear algorithm, there are usually three parameters of interest: the
number of samples t, the error ε, and the confidence δ. As described earlier, the error
is expressed as the distance to P. Analysis shows that for a given t, we can estimate
the answer within error ε with a confidence of > 1− δ. Conversely, given ε, δ, we can
compute the number of samples required.

Although at a high level, any question that can be framed in terms of determining
global properties of a large domain is subject to a sublinear analysis, surprisingly, the
origins of this field have nothing to do with “big data” or computational challenges
in data analysis. The birth of sublinear algorithms is in computational complexity
theory [22]. Hence, practical performances of these methods on real applications have
not been fully investigated. Recent work by some of the authors showcase the potential
of sampling algorithms in graph analysis [23, 24, 16, 14, 13, 3], and the generation of
application-independent generation of colormaps [27].

2.3. Potential of sublinear algorithms in enabling adaptive workflows.
The construction of a scalable and performant indicator function comprises a number
of technical challenges. First, algorithms will be sharing compute resources with the
simulation, which poses constraints on the algorithmic choices. In particular, memory
is expected to be a bottleneck in exascale computers and beyond (see Tab. 1.1), and
thus we may have to work with data structures of the application, and not be able to
build auxiliary data structures that will improve the performance of our algorithms.
Secondly, the data layout will be dictated by the simulation, locally at the node level
and globally at the system level. This layout will not necessarily be favorable for
our algorithms, yet pre-processing to move the data will be infeasible at large scales.
Thirdly, computation of the indicator needs to be fast, so that it does not slow down
the simulation computation. For instance, our analysis for judicious I/O cannot take
more time than the I/O itself.

We expect sampling-based algorithms, especially sublinear algorithms, to play an
important role in the design of indicator functions at the exascale era and beyond.
First, the small number of samples grant runtime efficiency, which enable working con-
currently with the simulation, with negligible effect on runtime. The error/confidence
bounds quantify the compromise in accuracy compared to full analysis. Moreover,
for most problems, the number of samples required only depend on error/confidence
bounds, which lead to perfect scalability of these algorithms for extreme problem sizes.
The memory requirements of sublinear algorithms are also small, and typically only in
the order of the samples. In some cases, additional data structures may be necessary
to enable random sampling, but even such structures are not memory-intensive.

We claim that sublinear algorithms can play a critical role for in situ analysis.
With this paper, we will showcase one application of sublinear algorithms, and we
hope that our success will draw attention to this field with high potential.

2.4. Combustion use case. Throughout this paper we demonstrate our ap-
proach applied to a combustion use case, using S3D [8], a direct numerical simulation
(DNS) of combustion in turbulence. The combustion simulations in our use case per-
tain to a class of internal combustion (IC) engine concept, called premixed-charge
compression ignition (PCCI). The central idea is that the air-fuel mixture is allowed
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to ignite on its own, as opposed to being forced to ignite through a spark, as is done
in conventional spark-ignited (SI) engines. This results in substantial improvements
in fuel efficiency. However, one of the roadblocks to this technology is that the igni-
tion is difficult to control. In particular, it is difficult to predict the precise moment
of ignition, which is important for such an engine to be practical. It is undesirable
to have simultaneous ignition of the entire mixture, or even a large fraction of the
mixture, which would result in knocking, damaging the engine.

Fig. 2.1: In a Homogenous Compression Charge Ignition simulation many small heat
kernels slowly develop prior to auto-ignition. In this image, regions of high heat
kernels are shown in orange and regions of high vorticity are shown in green.

Within the broad framework of PCCI, several ideas have been proposed to alle-
viate the difficulty noted above. All of them seek to control the ignition process by
staggering it in time, i.e. different parcels of the air-fuel mixture ignite at different
times, so that the overall heat release is delocalized in time. This is done typically
by stratifying the mixture, i.e. mixture properties are varied spatially in such a way
that the desired heat release profile is obtained. Here, we are interested in two specific
techniques called homogeneous-charge compression ignition (HCCI) [5] and reactivity-
controlled compression ignition (RCCI) [15, 6]. In both cases, heat release starts out in
the form of small kernels at arbitrary locations in the simulation domain, see Fig. 2.1.
Eventually, multiple kernels ignite as the overall heat release reaches a global max-
imum and subsequently declines. Since these simulations are computationally and
storage-intensive, we want to run the simulation at a coarser grid resolution and save
data less frequently during the early build-up phase. When the heat release events
occur, we want to run the simulation at the finest grid granularity possible, and store
the data as frequently as possible. Therefore, it is imperative to be able to predict
the start of the heat release event using an indicator and trigger that serve to inform
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the application to adjust its grid resolution and I/O frequency accordingly, see Fig. 2.2.
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Fig. 2.2: The minimum (blue), maximum (red) and mean (black) heat release values
for each time step in the simulation. Early in the simulation, we want to run at
a coarser grid resolution and save data less frequently. When heat release events
occur, we want to run the simulation at the finest granularity, and save the data as
frequently as possible. The vertical dotted lines in this figure define a range of time
steps within which we would like to make this workflow transition (as identified by a
domain expert).

3. Designing a Noise-Resistant Indicator and Trigger. While general-
purpose indicators could be computed (e.g. entropy of a quantity of interest), we
argue that application domain-specific indicators in many cases will best capture the
phenomena of interest. In this section we describe the design of an indicator and
trigger for heat release for our combustion use case. To provide context, we begin by
discussing the intuitions that informed our design.

3.1. Chemical Explosive Mode Analysis. One of the most reliable tech-
niques to predict incipient heat release is the chemical explosive mode analysis (CEMA).
CEMA is a pointwise computational technique described in detail by Lu et al. [17] and
Shan et al. [25]. A brief description is provided here for reference. The conservation
equations for reacting species can be written as

Dy

Dt
= g(y) ≡ ω(y) + s(y)

The vector y in CEMA represents temperature and reacting species mass fractions, ω
is the reaction source term and s is the mixing term. The Jacobian of the right hand
side can be written as
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Jg =
∂g(y)

∂y
= Jω + Js, where Jω =

∂ω(y)

∂y
and Js =

∂s(y)

∂y
.

The chemical Jacobian, Jω can be used to infer chemical properties of the mixture.
This is done using an eigen-decomposition of the Jacobian. If the eigenvalues of the
Jacobian corresponding to the non-conservative modes are arranged in descending
order of the real part, λe is defined as the first eigenvalue and λi are the remaining
eigenvalues. The eigenmode associated with λe is defined as a chemical explosive
mode (CEM) if

Re(λe) > 0, for λe = beJωae, (3.1)

where be and ae are the left and right eigenvectors respectively for λe. The presence
of a CEM indicates the propensity of a mixture to ignite. CEMA is a pointwise metric,
typically computed at every grid point in the simulation domain. The criterion defined
above then indicates whether that point will undergo ignition or whether it has already
undergone ignition. If it has undergone ignition, we have Re(λe) < 0.

Time Step

0 100 200 300 400 500 600 700 800

C
E

M
A

 P
er

ce
n

ti
le

s

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

p
0.01  0.1

p
0.2  0.9

p
0.91  1.0

 

Fig. 3.1: In this percentile plot of CEMA values, the lowest blue curve and the highest
red curve correspond to the 1 and 100 percentiles (p0.01 and p1), respectively. The
blue curves correspond to p0.01...0.1, the green curves to p0.2...0.9 and the red curves to
p0.91...1. We notice that as the simulation progresses, the distance between the higher
percentiles (red curves) decreases then suddenly increases. Our aim is to define a
function that captures when this spread in the high percentiles occurs, as this serves
as a good indicator of ignition (it falls within the user-defined window of true trigger
time steps, indicated by the vertical dotted lines).

Our CEMA-based indicator is based on global trends of CEMA over time. Con-
sider Fig. 3.1 which provides a summary of the trends of CEMA values across all time
steps in a simulation. At timestep t, let C(t) be the array of CEMA values on the
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underlying mesh. It is convenient to think of C(t) ∈ RN , where N is the total number
of grid points. This array is distributed among M processors such that each process

accesses N/M points of the field. Let Ĉ(t) be the sorted version of C(t). For α ∈ (0, 1],

the α-percentile is the entry Ĉ(t)dαNe. More specifically, it is the value in Ĉ(t) that is

greater than at least dαNe values in Ĉ(t). We denote this value by pα(t).

We notice that as the simulation progresses, the distance between the higher
percentiles (red curves) decreases then suddenly increases. This is illustrated in the
plot by the spread in the red curves that occurs just before the dashed line (indicating
ignition). What does this mean? Suppose the range of CEMA values (at time t) is
[x, y]. If the distribution of CEMA values was uniform in [x, y], then the α-percentile
would have value around x + α(y − x). Suppose the distribution was highly non-
uniform, with a large fraction of small (close to x) values. Then, for large α, we
expect the α-percentile to be smaller than x + α(y − x). Alternately, for (large)
α < β, in the uniform case, the difference between these percentiles is (β−α)(y− x).
If many values are small, we expect this difference to be larger. Essentially, the gaps
between the high percentiles become larger as more CEMA values move towards the
lower end of the range.

Our empirical observation is consistent with the underlying physics. From a
physical point of view, this trend in the distribution of CEMA values indicates the
formation of the first ignition kernels in the fuel-air mixture. As some of these kernels
become fully burnt, their CEMA values become negative. As a parcel of fluid tran-
sitions from fully unburnt to partially burnt to fully burnt, its temperature increases
monotonically and the CEMA value associated with it reaches a peak value before
crossing zero and attaining a negative value indicating a fully burnt state. The CEMA
values for several other kernels that are in different stages of ignition, i.e. partially
burnt, lie between those for unburnt (large positive) and burnt (negative) mixtures.
The large range of CEMA values in partially burnt mixtures explains the range of
values seen in the percentile plots as ignition is initiated in the mixture.

3.2. Designing a Noise-Resistant CEMA-Based Indicator. We introduce
an indicator function, P-indicator that quantifies the distribution of the top quantiles
of CEMA values over time. The P-indicator measures the ratio of the range of the
top percentiles to the full range of CEMA values. Our indicator function relies on the
range of CEMA values, which are defined by their minimum and maximum. However,
the maximum and the minimum of a distribution, by definition, are outliers, and thus
they can change drastically between instances even when the underlying distribution
does not change. Hence, we avoid the maximum and minimum and replace them with
high and low quantiles of the distribution.

Formally, quantiles are defined as values taken at regular intervals from the inverse
of the cumulative distribution function of a random variable. For a given data set,
quantiles are used to divide the data into equal sized sets after sorting, and the
quantiles are the values on the boundary between consecutive subsets. A special case
is dividing 100 equal groups, when we can refer to quantiles as percentiles. This
paper focuses on percentiles with numbers in the [0, 1] range (although all techniques
presented here can be generalized for any quantiles). For example, the 0.5 percentile
will refer to the median of the data set.
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Fig. 3.2: Pα,β,γ(t) values evaluated at each time step. Here we illustrate α0 = 0.94,
β = 0.98 and γ = 0.01 for time step 340 of a simulation.

We substitute the maximum with a high percentile, which we denote by the β-
percentile where β is typically in the range [0.95, 0.99] and the minimum with a low
percentile, which we denote by the γ-percentile where γ is typically in the range
[0.01, 0.05]. This substitution provides stability to our measurements, without com-
promising what we want to measure.

Consider the following notation: Let A ∈ RN , be an array in sorted order. The α
percentile of this sorted array is exactly the entry AdαNe. We use pα to refer to this
value (i.e., pα = AdαNe. The A array will change at each step of the simulation, and
thus we will use A(t) and pα(t) to refer to the data on step t of the simulation.

We define our indicator on a given array A using 3 parameters: α, β and γ.
As described above, we use pβ(t) and pγ(t) as substitutes for the maximum and the
minimum of A(t) respectively, see Fig. 3.2. We want to detect whether the range
covered by top quantiles shrinks, and α represents the lower end of the top quantiles.
Therefore, the range of top quantiles we measure is [pα(t), pβ(t)]. In our indicator,
we choose α < β (typically in the range [0.95, 0.99]) and γ (typically in the range
[0.01, 0.05]). We measure the spread at time t by the P-indicator:

Pα,β,γ(t) =
pα(t)− pγ(t)

pβ(t)− pγ(t)
. (3.2)

In this indicator, the denominator corresponds to the full range of CEMA values,
while the numerator corresponds to the range after the top quantiles are removed.
When the CEMA values are uniformly distributed, Pα,β,γ(t) ≈ (α−γ)/(β−γ) ≈ α/β.
When there is a significant shift towards lower values, Pα,β,γ(t) will become smaller.
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Fig. 3.3: Plots showing the (top row) percentiles of the heat release rate, (middle
row) percentiles of CEMA, and (bottom row) the P-indicator, as indicated. In the
percentile plots, the lowest blue curve and the highest red curve correspond to the
1 and 100 percentiles (p0.01 and p1), respectively. The blue curves correspond to
p0.01...0.1, the green curves to p0.2...0.9 and the red curves to p0.91...1. The P-indicator
shown is evaluated for α0 = 0.94, β = 0.98 and γ = 0.01. The vertical dotted lines
crossing the images indicate a window of acceptable “true” trigger time steps, as
identified by a domain expert. For the RCCI cases, the trigger time ranges are based
on the High Temperature Heat Release (HTHR), i.e., the second peak in the Heat
Release Rate (HRR) profiles.

Fig. 3.3 illustrates percentile plots for heat release (top row) and CEMA (middle
row). In the percentile plots, the lowest blue curve and the highest red curve cor-
respond to the 1 and 100 percentiles (p0.01 and p1), respectively. The blue curves
correspond to p0.01...0.1, the green curves to p0.2...0.9 and the red curves to p0.91...1.
The P-indicator evaluated using (3.2) for α = 0.94, β = 0.98 and γ = 0.01 is shown
in the bottom row of Fig. 3.3. Results are generated for four test cases described in
Tab. 3.1. The vertical dotted lines were identified by a domain expert who, via exam-
ination of heat release and CEMA percentile plots, visually located the time steps in
the simulation where the mesh resolution and I/O frequency should be increased. We
refer to these time steps as the “true” trigger time steps we wish to identify with the
P-indicator and trigger functions. Note, for the RCCI cases, there are two ignition
ranges. To simplify the following exposition, we focus on the second rise in the heat
release rate profiles, as this is the ignition stage of interest to the scientists. However,
we note that our approach is robust in identifying the first ignition stage as well.

3.3. Defining a Trigger. In addition to defining a noise-resistant indicator
function, we also need to define a trigger function that returns a boolean value, cap-
turing whether a property of the indicator has been met. Looking at Fig. 3.3, we
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Table 3.1: Four Combustion Use Cases analyzed in this study. The “true” trigger
time ranges are estimated based on 95 − 100th percentiles of the heat release rate.
The computed time ranges were evaluated using our quantile sampling approach. For
the RCCI cases, the trigger time ranges are based on the High Temperature Heat
Release, i.e., the second peak in the Heat Release Rate profiles.

Problem Number of Number of “True” Trigger Computed
Instance Grid Points Species Time Range Trigger Time

HCCI, T=15 451,584 28 250-315 250-262
HCCI, T=40 451,584 28 175-225 213-220
RCCI, case 6 2,560K 116 38-50 28-45
RCCI, case 7 2,560K–10,240K 116 42-58 35-50

notice that across all experiments from Tab. 3.1, the P-indicator is decreasing during
the true trigger time step windows. Therefore, we seek to find a value τP ∈ (0, 1),
such that Pα,β,γ(t) crosses τP from above, as the simulation time t progresses.

Fig. 3.4 plots the trigger time steps as a function of τP for a variety of configura-
tions of α and β for the four use cases desribed in Tab. 3.1. The horizontal dashed lines
indicate the true trigger range identified by our domain expert. We consider those
values of τP that fall within the horizontal dashed lines to be viable τP values for our
trigger. We find that across all use cases, there are similar viable ranges of values for
τP where the predicted trigger time steps do not exhibit large variations. In Fig. 3.5
we provide a plot the trigger time steps as a function of τP for Pα=0.94,β=0.98,γ=0.01(t)
that shows the viable range of τP is [0.725, 0.885].

4. Computing Indicators and Triggers Efficiently: A Sublinear Ap-
proach. The previous section showed that a CEMA-based P-indicator and trigger
are robust to noise fluctuations and act as a precursor to rapid heat release in combus-
tion simulations. In this section we provide some details regarding its computational
cost, which can be prohibitive for large-scale simulations. We then introduce an effi-
cient method to estimate the P-indicator. Our method is based on quantile sampling
and it comes with provable bounds on accuracy as a function of the number of sam-
ples. Most importantly, the required number of samples for a specified accuracy is
independent of the size of the problem, hence our sampling based algorithms offers
excellent scalability.

4.1. Computational Cost of CEMA. Although CEMA is useful for predict-
ing ignition, it is expensive to compute and thus historically has not been used as
a predictive measure. Computing CEMA values involves constructing a large, dense
matrix at every grid point, and computing its eigendecomposition. For the use cases
considered here, the time taken to compute the CEMA values scales as the time taken
to compute the eigendecomposition of an M ×M matrix, where M is the number
of species. Since the Jacobian does not have any spatial structure, the time taken
for the CEMA computation step is O(M3), which makes it increasingly expensive for
larger chemical mechanisms. As seen in Tab. 4.1, for the ethanol HCCI case presented
here that was simulated with 28-species, the cost of computing the CEMA value at
every grid point was approximately 5 times the cost of one simulation time-step. The
RCCI case, on the other hand included 116-species and the cost was roughly 60 times
that of a single time step. Although it is infeasible to compute CEMA at every grid
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Fig. 3.4: This figure shows the trigger time steps as a function of τP for a variety of
configurations of α and β for the four use cases desribed in Tab. 3.1. The horizontal
dashed lines indicate the true trigger range identified by our domain expert. The
P-indicator is evaluated with percentiles computed using all N grid points for the
different use cases, as indicated.
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Fig. 3.5: This figure plots the trigger time steps as a function of τP for
Pα=0.94,β=0.98,γ=0.01(t). There is a range of viable values of τP ∈ [0.725, 0.885] that
predict early stage heat release.

point, our indicator function is defined in terms of distribution of CEMA values, C(t),
and this can be easily approximated by a sampling mechanism, that has provable
guarantees on the error.

4.2. Approximating percentiles by sampling. To remind our notation, we
have an array A ∈ RN , in sorted order. Our aim is to estimate the α-percentile of
A. (We use pα to denote the percentiles.) Note that this is exactly the entry AdαNe.
Here is a simple sampling procedure.

1. Sample k independent, uniform indices r1, r2, . . . , rk in {1, 2, . . . , N}.
Denote by Â the sorted array [A(r1), A(r2), . . . , A(rk)].

2. Output the α-percentile of Â as the estimate, p̂α.

In the next section, we quantitatively show that our estimation, p̂α, is approxi-
mately close to the the true pα. Such sampling arguments were also used in automatic
generation of colormaps for massive data [27].

4.3. Theoretical bounds on performance. Our analysis relies on the follow-
ing fundamental result by Hoeffding, which provides a concentration inequality for
sums of independent random variables.

Theorem 4.1 (Hoeffding [12] or Theorem 1.1 in [9]). Let X1, X2, . . . , Xk be
independent random variables with 0 ≤ Xi ≤ 1 for all i = 1, . . . , k. Define X =
1
k

∑k
i=1Xi. For any positive t, we have

Pr[|X −E[X]| ≥ t] ≤ 2 exp(−2t2/k).
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Table 4.1: Additional cost associated with computing CEMA indices at every grid
point (no sub-sampling) for two chemical mechanisms. Cost is given in seconds of
wall-clock time per overall simulation time step.

Fuel Mechanism Cost without Cost with Cost
size (species) CEMA (sec/ts) CEMA (sec/ts) factor

Ethanol 28 0.3 1.5 5
Primary Reference

Fuel (PRF) 116 3.0 180.0 60

Lemma 4.2. Fix α and parameters δ, ε ∈ (0, 1), such that α > ε and α + ε ≤ 1.

Set k = d log(4/δ)2ε2 e. Then p̂α ∈ [pα−ε, pα+ε] with probability at least 1− δ.

Proof. Let Xi be the (Bernoulli) indicator random variable for the event ri <
(α− ε)N . (i.e.,Xi = 1, if ri < (α− ε)N , and zero otherwise.) Note that

E[Xi] = Pr[Xi = 1] = Pr[ri < (α− ε)N ] < α− ε.

By linearity of expectation, E[
∑
i≤kXi] < k(α − ε). By Hoeffding’s inequality

(Thm. 4.1),

Pr[
∑
i≤k

Xi −E[
∑
i≤k

Xi] ≥ εk] ≤ 2 exp(−2ε2k).

The latter is at most δ/2. Thus, with probability > 1− δ/2,∑
i≤k

Xi ≤ E[
∑
i≤k

Xi] + εk < αk.

In plain English, with probability at least 1 − δ/2, the number of random indices
strictly less than (α− ε)N is strictly less than αk.

We repeat a similar argument with indicator random variable Yi for the event
ri < (α + ε)N . So E[Yi] > α + ε and E[

∑
i≤k Yi] > k(α + ε). By Hoeffding’s

inequality,

Pr[E[
∑
i≤k

Yi]−
∑
i≤k

Yi > εk] < δ/2.

With probability at least 1− δ/2, the number of random indices at most (α+ ε)N is
strictly more than αk.

By the union bound on probabilities, both events hold simultaneously with prob-
ability > 1− δ. In this situation, the α-percentile of the sample lies between the pα−ε
and pα+ε.

It bears emphasizing that the number of samples, k, is independent of the problem
size, N , and only depends on ε, δ. So, the required number of samples only depends
on the desired accuracy, not on the size of the data. This is the key to the scalability
of our approach.

To compute the P-indicator, Pα,β,γ , we just employ the procedure above to get
estimates p̂α, p̂β , p̂γ . We can use the same samples (with only an additive increase to
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k) for all estimates, so we do not have to repeat the procedure 3 times. That yields

the approximate P-indicator, denoted by P̂α,β,γ .
Theorem 4.3. Fix α, β, γ and parameters δ, ε ∈ (0, 1) such that α < β − 2ε and

ε < min(α, β, γ). Set k = d log(12/δ)2ε2 e. With probability > 1− δ,

P̂α,β,γ ∈ [Pα−ε,β+ε,γ+ε, Pα+ε,β−ε,γ−ε].

Proof. Apply Lem. 4.2 for each of α, β, γ with error parameter δ/3. That gives
the value of k as stated in the theorem. By the union bound on probabilities, all
the following hold simultaneously with probability > 1 − δ: p̂α ∈ [pα−ε, pα+ε], p̂β ∈
[pβ−ε, pβ+ε], and p̂γ ∈ [pγ−ε, pγ+ε], Hence,

P̂α,β,γ =
p̂α − p̂γ
p̂β − p̂γ

≤ pα+ε − p̂γ
pβ−ε − p̂γ

≤ pα+ε − pγ−ε
pβ−ε − pγ−ε

For the last inequality, observe that for fixed x < y, (x − z)/(y − z) is a decreasing

function of z. An analogous argument proves the lower bound for P̂α,β,γ .
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Fig. 4.1: The number of samples needed for different error rates and different levels
of confidence. A few data points at 99.9% confidence are highlighted.

Fig. 4.1 shows the number of samples needed for different error and confidence
rates. We show three different curves for difference confidence levels. Increasing the
confidence has minimal impact on the number of samples. The number of samples
is fairly low for error rates of 0.1 or 0.01, but it increases with the inverse square of
the desired error. Nonetheless, the four million samples required for an error rate
of ε = .001 at 99.9% confidence requires only tens of samples per processor at the
extreme scales. In practice, ε = .01 at 99.9% confidence, thus 48,000 samples was
enough to compute robust estimates.

4.3.1. Interpretation of the bounds. Our bounds on quantile estimations are
based on which quantile we sample. That is our sampling algorithm may return the α+
ε-th quantile instead of α-th quantile, and we can quantify this error, ε, as a function
of the number of samples. However, it does not quantify the difference between pα
and p̂α = pα+ε. Subsequently, Thm. 4.3 shows that the range we sample can be made
arbitrarily close to the original range by increasing the number of samples, and bounds
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the error in the range for any given sample size. Yet, it does not bound the difference
between Pα,β,γ and P̂α,β,γ , which depends on the distribution of the data. However,
this is not a critical issue for our purposes, as we argue next, and empirically verify
with experimental results in the next section.

The difference between Pα,β,γ and P̂α,β,γ will be disproportional to ε only when
there are gaps in the distribution around one of the three parameters, α, β, or γ.
Note that these three parameters are user specified, and they are used to quantify
the range of top percentiles. If the underlying distribution is such that we expect
many such gaps frequently, then our metric itself will be extremely sensitive to the
choice of the input parameters, even if compute the metric exactly. That is our metric
should not produce vastly different results when we choose α = 0.940 or α = 0.941.
However, there is still a possibility that such gaps may form, just like any other low
probability event. One trick to improve robustness of our metric against such low
probability events is to pick the input parameters randomly from a specified range.
That is instead of specifying γ as 0.03 we can pick it randomly in the range [0.02, 0.04].
By such randomness, even if there is a gap at point, φ, the probability that φ is in
the [β − ε, β + ε] range will approach to zero with increasing number of samples and
thus decreasing ε.

However, we want to note that this is only a theoretical exercise. From a practical
perspective, we have not observed any gaps in the distribution and pα+ε is a good
estimate for pα, and it gets better with more samples. For the experiments in the
remainder of this paper, we have not used the randomization technique when choosing
the parameters, γ, α, and β.

4.4. Empirical evaluation of the sampling based algorithm. In this sec-
tion we present our empirical evaluation of the proposed sampling techniques. Experi-
ments in this section will focus on only the evaluation of the proposed algorithm, since
we first want to verify that the proposed sampling technique accurately estimates the
P-indicator. In the next section, we will put all pieces together and study how the
P-indicator and the proposed technique perform together in situ as the simulation is
running.

In the first set of experiments, we investigate the error in quantile ranges. For
these experiments, we use 16 randomly selected instances of CEMA distributions from
various HCCI and RCCI simulations. These instances are named such that the first
part refers to the simulation type and case, and the last part refers to the time step.
We use sampling to estimate the α = 0.94 percentile, which returns an entry from the
distribution. Then we check the percentile of this entry in the full data, say α+ ε. In
the first set of experiments, we focus on this difference ε, which we bounded in our
theoretical analysis.

Fig. 4.2 (a) presents the results of our investigation into the error of quantile ranges
for various data sets and increasing number of samples: 12,000, 24,000, and 48,000.
For this figure, we ran our sampling algorithm 100 times for each instance (i.e., a data
set and number of samples combination) and computed ε. The figure presents the
average |ε| for each instance. As the figure shows, sampling yields accurate estimations
in all data sets, and the error drops with increasing number of samples. It becomes
extremely small for 48,000 samples. Here an error of 0.001 means we will be using
p0.941 quantile instead of p0.940. We did not find it necessary to investigate increasing
the number of samples further.

In Fig. 4.2 (b), we show the distribution of errors in percentiles sampled for the
100 runs of each dataset using 48,000 samples. In this plot, the central mark (red)
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Fig. 4.2: (a) Error in the percentile sampled as the average of absolute values of 100
runs on various data sets with increasing number of samples. (b) The distribution of
errors of each data set for the percentile study using 48,000 samples.

shows the median error, while the edges of the (blue) box are the 25th and 75th
percentiles. The whiskers extend to the most extreme points considered not to be
outliers, and the outliers (red plus marks) are plotted individually. As this figure
shows, the estimates are consistently accurate, and the results in practice are much
better than those indicated by Thm. 4.3. According this theorem, 48,000 samples lead
to an error of ≈ 0.01 with a confidence of %99. This means in 100 experiments we
expect to have 1 run for which the error is > 0.01. However, in the 16 data sets with
100 runs each the maximum error was 0.005, half of what the upper bound indicates.
These results show that sampling enables us to sample a quantile that is consistently
accurate.

In the next set of experiments, we look at how our indicator is affected by the
minor errors in the quantile. More specifically, we want to see how the difference
between pα and pα+ε affect our indicator. For those experiments, we used 16 randomly
selected instances of CEMA distributions from various HCCI and RCCI simulations
and computed the P-indicator exactly, and using sampling with parameters, γ = 0.01
α = 0.94, and β = 0.98. While we repeated the same experiments with different

h
cc

i-
1
5
-2

2
5

h
cc

i-
1
5
-2

5
0

h
cc

i-
1
5
-2

7
5

h
cc

i-
1
5
-3

0
0

h
cc

i-
4
0
-2

0
0

h
cc

i-
4
0
-2

2
5

h
cc

i-
4
0
-2

5
0

h
cc

i-
4
0
-2

7
5

rc
ci
-6

-2
0

rc
ci
-6

-4
0

rc
ci
-6

-6
0

rc
ci
-6

-8
0

rc
ci
-7

-2
0

rc
ci
-7

-4
0

rc
ci
-7

-6
0

rc
ci
-7

-8
0

0

0.002

0.004

0.006

0.008

0.01

0.012

12K

24K

48K

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

h
cc

i−
1
5
−
2
2
5

h
cc

i−
1
5
−
2
5
0

h
cc

i−
1
5
−
2
7
5

h
cc

i−
1
5
−
3
0
0

h
cc

i−
4
0
−
2
0
0

h
cc

i−
4
0
−
2
2
5

h
cc

i−
4
0
−
2
5
0

h
cc

i−
4
0
−
2
7
5

rc
ci
−
6
−
2
0

rc
ci
−
6
−
4
0

rc
ci
−
6
−
6
0

rc
ci
−
6
−
8
0

rc
ci
−
7
−
2
0

rc
ci
−
7
−
4
0

rc
ci
−
7
−
6
0

rc
ci
−
7
−
8
0

(a) Average Error (b) Distribution of errors

Fig. 4.3: (a) Errors in estimation of the P-indicator for increasing number of samples.
(b) The distribution of errors in estimation of the P-indicator for 48,000 samples.

parameters, we have not observed any sensitivities of our tests to the choice the
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parameters, hence we will present results for only this setting.

Fig. 4.3(a) presents results for our indicator tests for various data sets and in-
creasing number of samples: 12,000, 24,000, and 48,000. For this figure, we ran our
sampling algorithm 100 times on each data set and number of samples, and computed
the difference between exact and estimated values of the P-indicator for each instance.
The figure presents the average absolute error for each instance. As the figure shows,
sampling produces accurate estimations in all data sets, and the error drops with
increasing number of samples. The bounds on Thm. 4.3 does not apply in this case.
but regardless, the errors are very small, and certainly sufficient to detect any trend
in the distribution of the underlying values.

Fig. 4.3(b) shows the distribution of errors for the P-indicator test for 100 runs
of each dataset using 48,000 samples. In this plot, the central mark (red) shows
the median error, while the edges of the (blue) box are the 25th and 75th percentiles.
The whiskers extend to the most extreme points considered not to be outliers, and the
outliers (red plus marks) are plotted individually. As this figure shows, the estimates
are consistently accurate.

Fig. 4.4: Plots illustrating the variability of the trigger time steps predicted by the P-
indicator and trigger as a function of the number of samples per processors. The data
for these plots was generated via 200 realizations of the P-indicator with α = 0.94,
β = 0.98 and γ = 0.01, and with τP drawn from [0.725, 0.885]. The horizontal dashed
lines define the range of time steps within which we would like to make the workflow
transition (as identified by a domain expert).

Lastly, we performed a series of experiments examining the variation in the trigger
time steps as a function of the number of samples used per processor. The data for
Fig. 4.4 was generated via 200 realizations of the P-indicator with α = 0.94, β = 0.98
and γ = 0.01, and τP drawn from [0.725, 0.885]. The horizontal dashed lines in this
figure define the range of true trigger time steps within which we would like to make
the workflow transition (as identified by a domain expert). This plot demonstrates
that, even across a wide range of τP values, with a small number of samples per
processor, the quantile sampling approach can accurately estimate the true trigger
time steps as defined by the domain expert. The next step will be putting all the
pieces together to see how we can predict heat release in situ, within a simulation
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run.

5. Putting all pieces together: Diagnosing heat release with sublinear
algorithms in S3D. The algorithm described in the previous section was deployed
in situ for a two-dimensional direct numerical simulation (DNS) of the ethanol HCCI
problem (Case HCCI, T=40 in Tab. 3.1). The DNS was run on half a million grid
points with 784 processors. 20 points were sampled at random from each processor
for the CEMA analysis, generating a total of 15680 samples for computing the trigger
with the P-indicator. The parameters for computing the metric were chosen as follows:
α = 0.94, β = 0.98 and γ = 0.01. This corresponds to less than 4% of the total
simulation volume.

Fig. 5.1 shows the P-indicator being computed in situ inside the simulation code.
From top to bottom, the rows show the result when the indicator is computed every
10, 100 and 1000 time steps. As the frequency of computing these indicator increases,
the signal tends to get noisier. However, the overall trends and triggers do not change.
These images show that our quantile-sampling approach provides a well defined trig-
ger, using τP ∈ [0.725, 0.885] and can be used with confidence to predict the rapid
rise in the heat release rate that we require to guide temporal and spatial refinement
decisions in situ.

As can be inferred from Tab. 4.1, performing the CEMA analysis on all grid
points would increase the cost of the simulation by a factor of 5, or 400%, which is
clearly infeasible. Using the sublinear sampling algorithm on the other hand, incurs an
overhead of only 1% on the total simulation cost when performed every ten time-steps.
The cost savings are even more dramatic in larger, three-dimensional production runs,
as the number of samples required does not increase with the number of grid points.
Furthermore, we note the cost savings are further increased for larger mechanisms
such a primary reference fuel (PRF), composed of a blend of iso-octane and n-heptane.
For the PRF mechanism, the CEMA overhead without sublinear sampling would be
a factor of 60 or more. We plan to deploy this algorithm in situ in future large
three-dimensional production simulations using S3D, especially with large chemical
mechanisms such as PRF.

6. Conclusion. We have proposed an approach for enabling dynamic, adaptive,
extreme-scale scientific computing workflows. We introduce the notion of indicators
and triggers that are computed in situ, that support data-driven control-flow decisions
based on the simulation state. For those indicators and triggers that are computation-
ally prohibitive to compute, we demonstrate how sublinear algorithms enable their
estimation with high confidence while incurring extremely low computational over-
heads.

Throughout this paper, we demonstrate our approach in practice using a proposed
indicator to detect changes in the underlying physics of a combustion simulation. The
goal of the indicator is to predict rapid heat release in direct numerical simulations
of turbulent combustion. We show that chemical explosive mode analysis (CEMA)
can be used to devise a noise-tolerant indicator for rapid increase in heat release.
Specifically, we study the distribution of CEMA values, and show that heat release is
preceded by a decrease in the range of top quantiles in this distribution. We devise an
indicator to quantify this intuition and show that it can serve as a robust precursor
for heat release. The cost of exhaustive computation of CEMA values dominates the
total simulation time, and we propose a sublinear algorithm based on quantile sam-
pling to overcome this computational bottleneck. Our algorithm comes with provable
error/confidence bounds, as a function of the number of samples. Most importantly,
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Fig. 5.1: Plots showing P-indicator being computed every 10 (top), 100 (middle) and
1000 (bottom) time steps.

the number of samples is independent of the problem size, thus our proposed sam-
pling algorithm offers perfect scalability. Our experiments show that our sublinear
algorithm is nearly as accurate as an exact algorithm that relies on exhaustive com-
putation, while taking only a fraction of the time. Essentially, sampling in this case
provides the algorithmic foundation to turn a critical yet intractable indicator into
a practical indicator that takes negligible time. Our experiments on homogeneous
charge compression ignition (HCCI) and reactivity controlled compression ignition
(RCCI) simulations show that the proposed method can predict heat release, and its
computational overhead is negligible.

The impact of this paper is two fold. From the applications’ perspective, we have
introduced an important tool that enables adaptive workflows in combustion simu-
lations, an important area of computational science and engineering. Our proposed
methods, enable the controlling of mesh granularities, and adaptive I/O frequencies.
It is already becoming critically important to have adaptive control over these quanti-
ties, but will be crucial as we look ahead to exascale computing. From an algorithmic
perspective, our work showcased how sublinear algorithms, a recent development in
theoretical computer science can be applied in situ. We believe these algorithmic
techniques hold great potential for in situ analysis, and we expect them to be more
widely used in the near future.
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