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Abstract. Organisms and ecological groups accumulate evidence to make decisions. Classic
experiments and theoretical studies have explored this process when the correct choice is fixed during
each trial. However, we live in a constantly changing world. What effect does such impermanence
have on classical results about decision making? To address this question we use sequential analysis
to derive a tractable model of evidence accumulation when the correct option changes in time. Our
analysis shows that ideal observers discount prior evidence at a rate determined by the volatility
of the environment, and the dynamics of evidence accumulation is governed by the information
gained over an average environmental epoch. A plausible neural implementation of an optimal
observer in a changing environment shows that, in contrast to previous models, neural populations
representing alternate choices are coupled through excitation. Our work builds a bridge between
statistical decision making in volatile environments and stochastic nonlinear dynamics.
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1. Introduction. To navigate a constantly changing world, we intuitively use
the most recent and pertinent information. For instance, when planning a route
between home and work we use recent reports of accidents and weather. We discount
older information, as our environment is in constant flux: The clouds threatening rain
last night may have dissipated, and an accident reported an hour ago has likely been
cleared. The optimal strategy is therefore to weight recent evidence more strongly.

How to make decisions in face of uncertainty and impermanence is a question
that recurs in fields ranging from economics to ecology and neuroscience. Mam-
mals [8, 11, 12, 24], insects [13, 38], single cells [3], and animal collectives [28] gather
evidence to make decisions. However information about the state of the world is typ-
ically incomplete and perception is noisy. Therefore, animals make choices based on
uncertain evidence. The case of an observer deciding between two alternatives based
on a series of noisy measurements has been studied extensively when the environ-
ment is static [8,23,32,45]. In this case humans [36], and other mammals [11,24] can
accumulate incoming evidence near optimally to reach a decision.

Stochastic accumulator models provide a plausible neural implementation of de-
cision making between two or more alternatives [4,43]. These models are analytically
tractable [8], and can implement optimal decision strategies [10]. Remarkably, there
is also a parallel between these models and experimentally observed neural activity.
Recordings in animals during a decision task suggest that neural activity reflects the
weight of evidence for one of the choices [24].

A key assumption in many models is that the correct choice is fixed in time,
i.e. decisions are made in a static environment. This assumption may hold in
the laboratory, but natural environments are seldom static [17, 34]. Recent exper-
imental evidence suggests that human observers integrate noisy measurements near
optimally even when the state of the environment changes. For instance, when ob-
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servers need to decide between two options and the corresponding reward changes in
a history-dependent manner, human behavior approximates that of a Bayes optimal
observer [5]. An important feature of evidence accumulation in volatile environments
is an increase in learning rate when recent observations do not support a current es-
timate [31]. Both behavioral and fMRI data show that human subjects employ this
strategy when they must predict the position of a stochastically moving target [29].
Experimental work thus suggests that humans adjust evidence valuation to account
for environmental variability.

However, the dynamics of decision making in changing environments has not been
fully investigated. To address this question we extend optimal stochastic accumulator
models to a changing environment. These extensions are amenable to analysis, and
reveal that an optimal observer discounts old information at a rate adapted to the
frequency of environmental changes. As a result, the certainty that can be attained
about any of the choices is limited. Our approach frames the decision making process
in terms of a first passage problem for a doubly stochastic nonlinear model that can be
examined using techniques of nonlinear dynamics. Extending previous work, we also
identify accurate piecewise linear approximations to the nonlinear model. This model
also suggests a biophysical neural implementation for evidence integrators consisting
of neural populations whose activity represents the evidence in favor of a particular
choice. When the environment is not static, optimal evidence discounting can be
performed exactly by populations coupled through excitation. We also show that
the computation can be well approximated by appropriately tuned classical linear
population models [10,30,41,44].

2. Optimal decisions in a static environment. We develop our model in
a way that parallels the case of a static environment with two possible states. We
therefore start with the derivation of the recursive equation for the log-likelihood ratio
of the two states, and the approximating stochastic differential equation (SDE), when
the underlying state is fixed in time.

To make a decision, an optimal observer integrates a stream of measurements
to infer the present environmental state. In the static case, this can be done using
sequential analysis [12, 45]: An observer makes a stream of independent, noisy mea-
surements, ξ1:n = (ξ1, ξ2, ..., ξn), at equally spaced times, t1:n = (t1, t2, ..., tn). The
probability of each measurement, f+(ξn) := Pr(ξn|H+), and f−(ξn) := Pr(ξn|H−),
depends on the environmental state. Combined with the prior probability, Pr(H±),
of the states, this gives the ratio of probabilities,

Rn =
Pr(H+|ξ1:n)

Pr(H−|ξ1:n)
=
f+(ξ1)f+(ξ2) · · · f+(ξn)

f−(ξ1)f−(ξ2) · · · f−(ξn)

Pr(H+)

Pr(H−)
,

which can also be written recursively [45]:

Rn =

(
f+(ξn)

f−(ξn)

)
·Rn−1, (2.1)

where R0 = Pr(H+)/Pr(H−) can describe an observer’s prior belief about the proba-
bility of the two choices.

With a fixed number of observations, the ratio in Eq. (2.1) can be used to make
a choice that minimizes the total error rate [32], or maximizes reward [23]. Eq. (2.1)
gives a recursive relation for the log-likelihood ratio, yn = lnRn,

yn = yn−1 + ln
f+(ξn)

f−(ξn)
. (2.2)
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Fig. 3.1. Evidence accumulation in a changing environment. (A) The environmental state
transitions from state H+ to H− and back with rates ε+ and ε−, respectively. Observations follow
state dependent probabilities, f±(ξ) = Pr(ξ|H±). (B) The distributions of the measurements, ξn,
change with the environmental state. Each individual observation changes the log-likelihood ratio,
ln(Ln,+/Ln,−). A single realization is shown. (C,D) The evolution of the continuous approximation
of the log-likelihood ratio, y(t), (panel C) and the log probabilities x±(t) (panel D). At time t,
evidence favors the environmental state H+ if y(t) > 0, or, equivalently, if x+(t) > x−(t).

When the time between observations, ∆t = tj − tj−1, is small, we can use the Func-
tional Central Limit Theorem (p. 357 in [6]) to approximate this stochastic process
by the stochastic differential equation (SDE) [8, 35],

dy = g±dt+ ρ±dWt, (2.3)

where Wt is a Wiener process, and the constants g± = 1
∆tEξ[ln

f+(ξ)
f−(ξ) |H±] and ρ2

± =

1
∆tVarξ[ln

f+(ξ)
f−(ξ) |H±] depend on the environmental state. Below we approximate other

discrete time process, such as that given by Eq. (2.2), with SDEs. Details of these
derivations are provided in the Appendix.

In state H+ we have g+∆t =
∫∞
−∞ f+(ξ) ln f+(ξ)

f−(ξ)dξ. The drift between two ob-

servations thus equals the Kullback–Leibler divergence between f+ and f−, i.e. the
strength of the observed evidence from a measurement in favor of H+ [14]. An equiv-
alent interpretation holds for g−. Hence g+ and g− are the rates at which an optimal
observer accumulates information. We will use this observation to interpret the pa-
rameters of the model in a changing environment.

3. Two alternatives in a changing environment. We use the same assump-
tions to derive a recursive equation for the log-likelihood ratio between two alternatives
in a changing environment. The state of the environment, H(t), is H+ or H−, but
can now change in time (See Fig. 3.1A,B). When the environment is in one of these
two possible states, the statistics of the observations are fixed. Observation statistics
are therefore piecewise stationary in time. An observer infers the present state from a
sequence of observations, ξ1:n, made at equally spaced times, t1:n with ∆t = tj − tj−1

and characterized by probabilities f±(ξn) := Pr(ξn|H±). The state of the environ-
ment changes according to a telegraph process (e.g., p. 77 in [21]), and the probability
of a change between two observations is ε±∆t := Pr(H(tn) = H∓|H(tn−1) = H±).
We assume that ε+ and ε− are known to the observer.

The probabilities, Ln,± = Pr(H(tn) = H±|ξ1:n), then satisfy (See Appendix A):

Ln,± ∝ f±(ξn) ((1−∆tε±)Ln−1,± + ∆tε∓Ln−1,∓) , (3.1)
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Fig. 3.2. In a dynamic environment, the dynamics of the log-likelihood ratio, y, depends on
the rates of switching between states. (A) When ε± = 0, the environment is static, and the model
reduces to the one derived in Section 2. (B) When then environment changes slowly, |ε±| � 1,
the log-likelihood ratio, y, can saturate. (C) In a rapidly changing environment, y tends not to
equilibrate. (D) When ε+ = 0 and ε− > 0, the task becomes a change detection problem.

with proportionality constant Pr(ξ1:n−1)/Pr(ξ1:n). As in the static case, the ratio
of the probabilities of the two environmental states at time tn, can be determined
recursively (See Appendix A), and equals

Rn =
Ln,+
Ln,−

=
f+(ξn)

f−(ξn)

(1−∆tε+)Rn−1 + ∆tε−
∆tε+Rn−1 + 1−∆tε−

. (3.2)

In this expression, the ratio of probabilities at the time of the previous observations,
Rn−1, is discounted in a way that depends on the frequency of environmental changes,
ε±. This equation, and the continuum limits we discuss below, have been derived
previously [16,50], but their dynamics were not analyzed.

Eq. (3.2) describes a variety of cases of evidence accumulation studied previously
(See Fig. 3.2): If the environment is fixed (ε± = 0), we recover Eq. (2.1). If the
environment starts in state H−, changes to H+, but cannot change back (ε− > 0, ε+ =
0), we obtain

Rn =
f+(ξn)

f−(ξn)

Rn−1 + ∆tε−
1−∆tε−

,

a model used in change point detection [1, 39,49].
We can again approximate evolution of yn = lnRn, i.e. the stochastic process

describing the evolution of the log of the likelihood ratio in Eq. (3.2), by an SDE:

dy = [g(t) + ε−(e−y + 1)− ε+(ey + 1)︸ ︷︷ ︸
nonlinearity

]dt+ ρ(t)dWt,

(3.3)
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where g(t) = 1
∆tEξ

[
ln f+(ξ)

f−(ξ)

∣∣∣∣H(t)

]
, and ρ2(t) = 1

∆tVarξ

[
ln f+(ξ)

f−(ξ)

∣∣∣∣H(t)

]
. Note that the

drift and variance are no longer constant, but depend on the state of the environment

H(t) at time t. We use Eξ

[
F (ξ)

∣∣∣∣H(t)

]
to denote the expectation of F (ξ) when ξ is

drawn from the distribution associated with the current state H(t), i.e. f±(ξ) when
H(t) = H±. In Appendix B we derive Eq. (3.3) as the continuum limit of the discrete
process yn.

As a consequence of the nonlinearity of Eq. (3.3) the state variable y(t) will not
drift indefinitely when g(t) is fixed for some time interval t ∈ [a, b]. Rather, trajectories
will tend to accumulate about the single fixed point of the noise-free system (the
case, ρ(t) ≡ 0). Importantly, more volatile environments (larger ε±) correspond to
fixed points that are closer to the midline y = 0, allowing for more rapid changes
in sign [y(t)]. The observer’s belief about the environmental state is encoded by the
log-likelihood ratio, and changes at a rate related to the frequency of environmental
changes.

The nonlinear term in Eq. (3.3) does not appear in Eq. (2.3). It serves to discount
older evidence by a factor determined by environmental volatility, i.e. the frequencies
of changes in environmental states, ε±. In previous work such discounting was modeled
heuristically by a linear term [41–43], however our derivation shows that the resulting
Ornstein-Uhlenbeck (OU) process is only an approximation of an optimal observer’s
evidence accumulation process.

3.1. Equal switching rates between two states. When ε := ε+ = ε−, the
frequencies of switches between states are equal. Eq. (3.3) then becomes

dy = g(t)dt− 2ε sinh(y)dt+ ρ(t)dWt. (3.4)

The steepness of the function sinh(y) at large values of y ensures that evidence is
discounted more rapidly for large log-likelihood ratios than for small ones (Fig. 3.4F,
below). As a result, evidence builds up faster when y is closer to zero, i.e. the
observer is more uncertain. If we rescale time using τ = εt, the rate of switches
between environmental states is unity. We obtain an equation for yτ := y(τ/ε):

dyτ = [g̃(τ)] dτ − 2 sinh(yτ )dτ + [ρ̃(τ)] dWτ , (3.5)

where g̃(τ) := g(t)/ε = g(τ/ε)/ε and ρ̃(τ) := ρ(τ/ε)/
√
ε. Recall that g(t) is the rate

of evidence accumulation in the present state, and ε−1 is the average time spent in
each state. Hence, g̃(τ) = g(t)/ε can be interpreted as the information gained over
an average duration of the present environmental state.

When observations follow Gaussian distributions, f± ∼ N (±µ, σ2), then g(t) =
±2µ2/σ2, ρ = 2µ/σ, and

dyτ = sign[g̃(τ)]mdτ − 2 sinh(yτ )dτ +
√

2m dWτ , (3.6)

where m = 2µ2/(σ2ε). Thus, the behavior of this system is completely determined by
the single parameter m, the information gain over an average environmental epoch.

We now analyze the results of two decision-making processes that utilize the log-
likelihood ratio. Under the interrogation protocol, the observer waits until a given time
τ = T and reports sign [yτ (T )] = ±1. Under the free response protocol, we assume
that the observer uses a predetermined threshold, θ, waits until time τ∗ at which the
decision variable meets this threshold, |yτ (τ∗)| = θ, and then reports sign [yτ (τ∗)]. For
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Fig. 3.3. Dependence of the probability of the correct response (accuracy) on normalized
information gain, m, in a symmetric environment. (A) Accuracy in an interrogation protocol
increases with m and interrogation time, t, but saturates. Horizontal bars on left indicate the
accuracy when the environment is in a single state for a long time, as in Eq. (3.7). (B) When
the observer responds freely accuracy is similar, but saturates at 1. The increase in accuracy with
waiting time is exceedingly slow for low m. We fix εij ≡ ε for all i 6= j, gi ≡ g, and set m = g/ε ≡ 20.
(C) Accuracy in an interrogation protocol decreases with the number of alternatives N (See Section
4 for N > 2), saturating at ever lower levels. (D) The free response protocol results in similar
behavior, but the accuracy saturates at 1. The increase in accuracy with waiting time is exceedingly
slow for higher numbers of alternatives N .

Eq. (3.6), the probabilities of a correct response (accuracy) under both interrogation
(Fig. 3.3A) and free response (Fig. 3.3B) protocols increase with m. When an
optimal observer is interrogated about the state of the environment at time T , the
answer is determined by the sign of the log-likelihood ratio, yτ . Since observers
discount old evidence at a rate increasing with 1/m, decisions are effectively based
on a fixed amount of evidence, and accuracy saturates at a value smaller than 1 (Fig.
3.3A). On the other hand, accuracy arbitrarily close to 1 can be obtained in the free
response protocol by increasing the threshold θ (Fig. 3.3B). Equations for the case of
multiple alternatives (N > 2) are provided in Section 4, and increasing N decreases
accuracy for a fixed decision time (Fig. 3.3C,D).

If the environment in Eq. (3.6) remains in a single state for a long time, the
log-likelihood ratio, yτ , approaches a stationary distribution,

S±(yτ ) = K exp

(
±yτ −

2 cosh(yτ )

m

)
, H̃(τ) = H±, (3.7)

where H̃(τ) := H(τ/ε) and K is a normalization constant. Details on finding the
stationary density of the Fokker-Planck equation associated with a nonlinear SDE
such as Eq. (3.6) can be found in Ch.5 of [21]. The distribution, Eq. (3.7), is concen-
trated around ȳτ± = ± sinh−1 m

2 , the fixed points of the deterministic counterpart of
Eq. (3.6) obtained by setting Wτ ≡ 0. Since old evidence is continuously discounted,

6



the belief of an optimal observer tends to saturate. In contrast, no stationary distri-
bution exists when ε = 0, and the environment is static: Aggregating new evidence
then always tends to increase an optimal observer’s belief in one of the choices.

Since S±(y) is obtained by assuming that the environment is trapped in a single

state for an extended time,
∫∞

0
S+(y)dy =

∫ 0

−∞ S−(y)dy provides an upper bound on
the accuracy (Fig. 3.3A). To achieve accuracy a in the free response protocol (Fig.
3.3B), we require |yτ | ≥ ln a

1−a [8]. While the threshold θ = ln a
1−a that yτ (τ) must

cross to obtain a specific accuracy, a, does not change with m, the time to reach this
threshold increases steeply with a and decreases with m. This is partly due to the
fact that for smaller m, environmental switches are rapid, causing frequent changes
in the drift of yτ (τ) and keeping it close to the midline yτ = 0.

3.2. Linear approximation of the SDE. An advantage of Eq. (3.3) is that
it is amenable to standard methods of stochastic analysis. We can find an accurate
piecewise linear approximation to Eq. (3.3), although, for simplicity, we focus on
Eq. (3.6). The piecewise OU process that models an observer that linearly discounts
evidence has the form

dyτ = b(sign[g̃(τ)]mdτ +
√

2mdWτ ) + λyτdτ. (3.8)

For Eq. (3.8) to be the continuum limit of a linear log-likelihood update process, the
drift and diffusion need to be co-scaled by the common parameter b. We begin by
focusing on a linear approximation of Eq. (3.6) with the same equilibria and local

stability, obtained by setting λ = −
√
m2 + 4 and b =

√
1 + 4

m2 sinh−1 m
2 . Individual

realizations of Eq. (3.8) and Eq. (3.6) agree in quickly changing environments (Fig.
3.4A, m = 1), but are less similar in slowly changing environments (Fig. 3.4B, m =
10; see also panel C). Thus, as observer performance improves, the nonlinear term in
Eq. (3.6) becomes more important. Note that the corresponding drift-diffusion model,
dyτ = sign [g̃(τ)]mdτ +

√
2mdWτ , is qualitatively different as it lacks a restorative

leak term. This difference becomes more pronounced as m increases (Fig. 3.4C).
Eq. (3.8) can be integrated explicitly using standard methods in stochastic cal-

culus [21]. Furthermore, the accuracies of both systems saturate to a value smaller
than 1 in the interrogation protocol as the interrogation time increases (Fig. 3.4C).

This linearized approximation can differ considerably from the full nonlinear
model. For instance, in the interrogation protocol the performance of an ideal observer
modeled by Eq. (3.6) increases with interrogation time (Fig. 3.4D), and accuracy ap-
proaches 1 as m diverges. In contrast, the accuracy of an observer that discounts
evidence linearly limits to a value below 1 as m diverges. Indeed, this can be seen by
employing the quasi-steady state approximation (fixing sign[g̃(τ)] = 1), and comput-
ing

∫∞
0
T (y)dy, where T (y) is the steady state distribution of the OU process given

in Eq. (3.8) with λ = −
√
m2 + 4 and b =

√
1 + 4

m2 sinh−1 m
2 , to obtain

Um :=

∫ ∞
0

T (y)dy =
1

2
+

1

2
erf

(√
m

2
√
m2 + 4

)
,

and limm→∞ Um = 1
2 + 1

2erf 1√
2
≈ 0.84 < 1.

In general, there is a family of linear approximations to Eq. (3.6) given by
Eq. (3.8), where λ ∈ (−∞, 0]. However, the choice of λ depends on the way we
measure the quality of the approximation. For example, we may want to maximize
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Fig. 3.4. Closest linear approximations of the nonlinear SDE, Eq. (3.6). (A,B) Single realiza-
tions of the nonlinear Eq. (3.6), linear approximation Eq. (3.8), and corresponding drift-diffusion
model dyτ = sign[g̃(τ)]mdτ +

√
2mdWτ , in (A) a quickly changing environment (m = 1), and (B)

a slowly changing environment (m = 10). We used the same realizations of drift g̃(τ), and noise
Wτ for all models. (C) In the interrogation protocol, accuracy increases faster in the nonlinear
Eq. (3.6) than in the linear approximation Eq. (3.8). Accuracy eventually decreases in the drift
model since all evidence is weighted equally across time. (D) In the limit t → ∞, accuracy satu-
rates below unity in both the nonlinear model and linear approximation. The linear model discounts
evidence sub-optimally, and hence performs worse. (E) Accuracy under the interrogation protocol
with stopping time τ = 1 for the linear model, Eq. (3.8), with leak λ (blue ticks: λbest, black tick:
λ = −2). Optimal λ-values for the linear approximation (blue curves) result in accuracy that is
very close to that of the optimal nonlinear model, Eq. (3.6) (red lines). (F) Plot of 2 sinh(yτ )
demonstrating two possible linear approximations: most accurate linear approximation from panel
E (blue), linearization of 2 sinh(yτ ) at the origin (black).

decision accuracy under the interrogation policy with a specific stopping time, or
maximize accuracy under the free response policy. In general, we need numerical
optimization methods to identify the λ that provides the best linear approximation.
Without loss of generality, we can fix b ≡ 1 in Eq. (3.8), since the rescaling zτ = yτ/b
preserves sign [zτ ] = sign [yτ ] and eliminates b. Thus, we need only study the system
dyτ = sign [g̃(τ)]mdτ +

√
2m dWτ + λyτdτ . For a given m, there is a single value,

λ = λbest, that maximizes the accuracy of decisions after an interrogation at τ = 1
(Fig. 3.4E). However, there is a different λbest for each value of m. Interestingly,
the best linear approximation has accuracy close to that of the nonlinear system. We
note that the linear approximation at the origin (λ = −2, see also Fig. 3.4F) did not
perform well. Since the accuracy has saturated at τ = 1 (Fig. 3.4C), the optimal
value of λ will not change significantly for larger interrogation times.

Similarly, λbest will change with different thresholds under the free response pro-
tocol, or with other measures of performance, such as reward rate [8]. In contrast, the
nonlinear model given by Eq. (3.6), reflects the log-likelihood ratio exactly. Therefore,
we can use this single model for any decision that can be made optimally using the
log-likelihood ratio.

4. Multiple alternatives in a changing environment. We next extend our
analysis of evidence accumulation in changing environments to the case of multiple
alternatives. With multiple environmental states, Hi (i = 1, ..., N), the optimal ob-
server computes the present probability of each state (Fig 4.1A) from a sequence of
measurements, ξ1:n. Measurements have probability fi(ξn) := Pr(ξn|Hi) dependent
on the states Hi [4,9] (Fig 4.1B). We assume that the state of the environment, H(t),
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changes as a memoryless process. A change from state j to i between two measure-
ments occurs with probability εij∆t = Pr(H(tn) = Hi|H(tn−1) = Hj) for i 6= j, and
Pr(H(tn) = Hi|H(tn−1) = Hi) = 1−

∑
j 6=i ∆tεji (Fig 4.1A).

We again use sequential analysis to obtain the probabilities Ln,i = Pr(H(t) =
Hi|ξ1:n) that the environment is in state Hi given observations ξ1:n. The index that
maximizes the posterior probability, ı̂ = argmaxi Ln,i, corresponds to the most prob-
able state, given the observations ξ1:n. Following the approach above, we obtain (See
Appendix D):

Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
fi(ξn)

1−
∑
j 6=i

∆tεji

Ln−1,i +
∑
j 6=i

∆tεijLn−1,j

 .

Again after taking logarithms, xn,i = lnLn,i, we can approximate the discrete stochas-
tic process in Eq. (4), with an SDE:

dx = g(t)dt+ Λ(t)dWt +K(x)dt, (4.1)

where the drift has components gi(t) = 1
∆tEξ [ln fi(ξ)|H(t)], Λ(t)Λ(t)T = Σ(t) with

entries Σij = 1
∆tCovξ[ln fi(ξ), ln fj(ξ)|H(t)], components of Wt are independent

Wiener processes, and Ki(x) =
∑
j 6=i(εije

xj−xi − εji). The drift gi is maximized
in environmental state Hi (Fig 4.1C,D).

We can recover the case of two alternatives by setting N = 2 and exchanging the
numbers in Eq. (4.1) with ± to obtain the approximating SDEs:

dx± = [g±(t) +
(
ε∓e

x∓−x± − ε±
)
]dt+ dW±, (4.2)

where 〈WiWj〉 = Σij(t) · t for i, j ∈ {+,−}. We obtain Eq. (3.3) by setting y :=
x+ − x−. Note that since x± = ln(L±) are the log-likelihoods, y := x+ − x− =
ln(L+/L−) is the log-likelihood ratio. Analogous expressions for the log-likelihood
ratios yij = ln(Li/Lj) are derived in Appendix E. The matrix of these log-likelihood
ratios quantifies how much more likely one alternative is compared to others (e.g.,
Fig. 4.1C) [18].
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Fig. 4.2. Evidence accumulation with a continuum of choices. The observer infers the state
of the environment, Hθ, where θ ∈ [−1, 1], and the state changes at discrete points in time. (A)
In slowly changing environments, the distribution of the log probabilities, xθ, can nearly equilibrate
between switches (Solid line represents the true state of the environment at time t. For clarity, we

show results of simulations without noise, Ŵθ ≡ 0). (B) In quickly changing environments, the dis-
tribution does not have time to equilibrate between switches. (C) In slowly changing environments,

the most probable state of the environment, θ̂(t) = argmaxθxθ(t) (thin lines), fluctuates around the

true value (thick line). (D) In quickly changing environments, θ̂(t) fluctuates more widely, as it is
in a transient state much of the time.

5. A continuum of states in a changing environment. Lastly, we consider
the case of a continuum of possible environmental states. This provides a tractable
model for recent experiments with observers who infer the location of a hidden, in-
termittently moving target from noisy observations. Evidence suggests that humans
update their beliefs quickly and near optimally when observations indicate that the
target has moved [29].

Suppose the environmental state, H(t), intermittently switches between a contin-
uum of possible states, Hθ, where θ ∈ [a, b]. An observer again computes the proba-
bilities of each state from observations, ξ1:n, with distributions fθ(ξn) := Pr(ξn|Hθ).
The environment switches from state θ′ to state θ between observations with tran-
sition probabilities εθθ′dθ∆t := Pr(H(tn) = Hθ|H(tn−1) = Hθ′) for θ 6= θ′, and

Pr(H(tn) = Hθ|H(tn−1) = Hθ) = 1 −
∫ b
a

∆tεθ′θdθ
′ (See Appendix F for details).

From Eq. (4) the expression for the probabilities Ln,θ = Pr(H(tn) = Hθ|ξ1:n) is
derived in Appendix F, yielding:

Ln,θ =
Pr(ξ1:n−1)

Pr(ξ1:n)
fθ(ξn)

((
1−

∫ b

a

∆tεθ′θdθ
′

)
Ln−1,θ +

∫ b

a

∆tεθθ′Ln−1,θ′dθ
′

)
.

We again approximate the logarithms of the probabilities, lnLn,θ, by a temporally
continuous process,

dxθ(t) = gθ(t)dt+ dŴθ(t) +Kθ(x(t))dt, (5.1)

where, x = (xθ)θ∈[a,b], gθ(t) = 1
∆tEξ [ln fθ(ξ)|H(t)], Ŵθ is a spatiotemporal noise term
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with mean zero and covariance function given by

Σθθ′(t) =
1

∆t
Covξ [ln fθ(ξ), ln fθ′(ξ)|H(t)] ,

andKθ(x) =
∫ b
a

(εθθ′e
xθ′−xθ −εθ′θ)dθ′ is an interaction term describing the discounting

process.
The drift gθ(t) is maximal when θ agrees with the present environmental state.

The most likely state, given observations up to time t, is θ̂(t) = argmaxθxθ(t).
In slowly changing environments, the log probability xθ(t) nearly equilibrates to

a distribution with a well-defined peak between environmental switches (Fig. 4.2A).
This does not occur in quickly changing environments (Fig. 4.2B). However, each
logarithm, xθ(t) approaches a stationary distribution if the environmental state re-
mains fixed for a long time. The term Kθ(x) in Eq. (5.1) causes rapid departure from
this quasi-stationary density when the environment changes, a mechanism proposed
in [29].

Even when the environment is stationary for a long time, noise in the observations
stochastically perturbs the log probabilities, xθ(t), over the environmental states.

This leads to fluctuations in the estimate θ̂(t) of the most probable alternative (Fig.
4.2C,D). Thus, as opposed to the case of a discrete space of N alternatives, the
observer’s estimate of the most probable choice will change continuously, fluctuating
about the continuum of possible alternatives. Unless changes are too rapid, the peak
of the log probability distribution, θ̂(t), fluctuates around the true environmental
state, and tracks abrupt changes in Hθ(t). This is in line with recent observations in
human behavioral data [22,29].

6. A neural implementation of an optimal observer. Previous neural
models of decision making typically relied on mutually inhibitory neural networks
[10,30,43,46], with each population representing one alternative. These models match
the recorded neural activity and responses of monkeys performing two-alternative
forced-choice decision tasks, where single trial stimuli have stationary statistics [24].
Even when reward rates are varied across trials, animals can adjust their behavior
near-optimally from trial-to-trial in ways that are well captured by mutually inhibitory
models [20]. Interestingly, these networks also provide a plausible model of decision-
making in house-hunting honeybee swarms [33]. In previous studies, it has been
shown that a single fixed point can be stabilized in linear population models, as long
as the strength of mutual inhibition is weaker than the leak of individual popula-
tions [8, 10, 43]. As we will show, a complementary approach in linear population
models is to consider a mutually excitatory network, with arbitrary leak in individual
populations. As with the linear approximations discussed above, such models perform
suboptimal inference in changing environments, but can approach the performance of
the ideal nonlinear discounting process given by Eq. (3.3).

Optimal inference in dynamic environments with two states, H+ and H−, can be
performed by mutually excitatory nonlinear neural populations with activities (firing
rates) r+ and r− evolving according to:

dr+ = [I+(t)− αr+ + F+(r− − r+)] dt+ dW+, (6.1a)

dr− = [I−(t)− αr− + F−(r+ − r−)] dt+ dW−, (6.1b)

where the transfer functions are F±(x) = −αx/2+ ε∓ex− ε±, the mean input I±(t) =
I0
± when H(t) = H± and vanishes otherwise, W± are Wiener processes representing
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Fig. 6.1. Neural population models of evidence accumulation. (A) Two populations u± receive
a fluctuating stimulus with mean I±; they are mutually coupled by excitation (circles) and locally
affected by inhibition/leak (flat ends). When I+ > 0, the fixed point of the system has coordinates
satisfying x+ > x− as shown in the plots of the associated potentials. (B) Taking ε± → 0 in
Eq. (6.1) generates a mutually inhibitory network that perfectly integrates inputs I± and has a flat
potential function. (C) With N = 3 alternatives, three populations coupled by mutual excitation can
still optimally integrate the inputs I1,2,3, rapidly switching between the fixed point of the system in
response to environmental changes.

the variability in the input signal with covariance defined as in Eq. (4.2) (See Appendix
D). Thus, I±(t)dt + dW± represents the total input to population r±. When α > 0
and sufficiently small, population activities are modulated by self-inhibition/leak, and
mutual excitation (Fig. 6.1A). The parameter α determines the leak in each individual
population, which depends on both the time constants and recurrent architecture of
the local network [46]. The difference y = r+ − r− evolves according to the SDE for
the log-likelihood ratio, Eq. (3.3). In the limit of a stationary environment, ε± → 0,
we obtain a linear integrator dr± = [I±dt+ dW±] − α(r+ + r−)dt/2, as in previous
studies [8, 30].

To show that the populations mutually excite each other, we set W+ = W− = 0,
and study the dynamics in the vicinity of the fixed points of Eqs. (6.1). When the
environment has not changed for a long time, Eq. (6.1) approaches a fixed point
(r̄+, r̄−) with

(r̄+, r̄−) =

(
I0
+ + ε−e−ȳ+ − ε+

α
+
ȳ+

2
,
ε+eȳ+ − ε−

α
− ȳ+

2

)
,

when I+(t) = I0
+ and I−(t) = 0 and

(r̄+, r̄−) =

(
ε−e−ȳ− − ε+

α
+
ȳ−
2
,
I0
− + ε+eȳ− − ε−

α
− ȳ−

2

)
,
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when I+(t) = 0 and I−(t) ≡ I0
−, where

ȳ± = ln

[
±I0
± + ε− − ε+

2ε+
+

√
(±I0

± + ε− − ε+)2

4ε2+
+
ε−
ε+

]
.

Note that by increasing (decreasing) α, the fixed points (r̄+, r̄−) move closer to (farther
from) the origin (0, 0). To determine the sign of the coupling near these fixed points,
note that the Jacobian matrix of (F+, F−) has the form:

J(r+, r−) =

[
α/2− ε−er−−r+ −α/2 + ε−er−−r+

−α/2 + ε+er+−r− α/2− ε+er+−r−

]
. (6.2)

For ε± > 0, taking α < 2 min{ε−e−ȳ, ε+eȳ} will guarantee that the sign of the Jaco-

bian matrix is

[
− +
+ −

]
in a region that contains the fixed point. This corresponds

to a neural network with self-inhibition/leak and mutual excitation illustrated in Fig.
6.1A.

We can compare our results to previous studies of linear connectionist models [8,
10, 43] by deriving a linear rate model that best accumulates evidence in changing
environments. To do so, we focus on the best linear approximation of the log-likelihood
ratio, given by Eq. (3.8). We have shown that when the coefficients of the linear
models are tuned appropriately, their accuracy is remarkably close to that of the full
nonlinear model (Fig. 3.4E). Assuming symmetric switching (ε± ≡ ε), the following
system describes a linear rate model that can be mapped to the linear Eq. (3.8):

dr+ = [I+(t)− κr+ + γr−] dt+ dW+, (6.3a)

dr− = [I−(t)− κr− + γr+] dt+ dW−. (6.3b)

Here κ > 0 denotes the leak in each population’s activity, and γ > 0 is the strength
of mutual excitation between populations. Selecting I±(t) = I0 when H(t) = H±
and zero otherwise, it can be shown that the system will tend to the quasi-equilibria

(r+, r−) =
I0

κ2 − γ2
· (κ, γ) and

I0
κ2 − γ2

· (γ, κ) in either case. Stability of these fixed

points is given by the nonzero eigenvalue λ = −(κ+ γ) < 0, so these quasi-equilibria
are always attractive. Note also that the reduced SDE for the difference y = r+ − r−
will take the form dy = [Id(t)− (κ+ γ)y] dt + dWd, where Id(t) = I+(t) − I−(t)
and Wd = W+ − W−, which matches the form of Eq. (3.8). Thus, in addition to
the large leak in mutually inhibitory networks [8, 10, 43], linear population networks
with mutual excitation possess a stable fixed point for arbitrary leak κ and mutual
excitation γ. Any particular decision task has an optimal λ in Eq. (3.8). Thus, a
linear neural network could be trained to learn this best evidence discounting rate if
supplemented with a plasticity rule that properly tunes the excitation strength γ.

Returning to the nonlinear model given by Eq. (6.1), the dynamics is matched to
the timescale of the environment determined by ε±, and solutions approach stationary
distributions if input is constant. The network’s dynamics is very sensitive to changes
in inputs, a feature absent in population models with winner-take-all dynamics [48].
Even when ε is small, Eq. (6.1) has a single attracting state determined by the mean
inputs I0

±. We illustrate the response of the model to inputs using potentials (Fig.
6.1A). In contrast to the single attractor of Eq. (6.1), mutually inhibitory models can
possess a neutrally stable line attractor that integrates inputs (ε± ≡ 0, Fig. 6.1B) [27].
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We can extend our results to N > 2. In [4], the reliability of motion information
was assumed to vary during a trial, and the optimal model encoded the posterior
probability distribution over the possible stimulus space. Here, we assume the true
hypothesis, H(t), changes in time. For an arbitrary but finite number of possible al-
ternatives, {H1, ...,HN}, decisions can be performed optimally by neural populations
(r1, ..., rN ) coupled by mutual excitation

dri =

Ii(t)− αri +
∑
j 6=i

Fij(rj − ri)

dt+ dŴi(t), (6.4)

where the mean input is Ii(t) = I0
i when H(t) = Hi and 0 otherwise and the noise

vector (dŴ1(t), ...,dŴN (t))T = Λ(t)dWt describes input noise with Λ(t) defined as
in Eq. (4.1). Population firing rates are again determined by inhibition/leak within
each population and excitation between populations as described by the arguments
of the firing rate function

Fij(r) = −αr/N + εije
r − εji.

In this case coupling between populations is again excitatory (Fig. 6.1C).
Note that, as in the case of N = 2 alternatives, taking the limit of Eq. (6.4) as

εij → 0, we obtain linear integrators [30]

dri =

Ii(t)− α N∑
j=1

rj/N

dt+ dŴi(t).

The nonlinear population rate models described by Eq. (6.1) and Eq. (6.4) react
rapidly, but not instantaneously, to changes in their inputs. Recent evidence suggests
that in monkeys the activity of single neurons in area LIP exhibits jumps, rather than
a gradual increase as previously suggested [26]. Furthermore, the performance of rats
and humans discriminating the direction of auditory click sequences can be optimally
fit by a pulse–accumulating mechanism with zero noise [11]. However, the activity of
a population of cells encoding behavior may still ramp upwards or downwards.

7. Discussion. We have derived a nonlinear stochastic model of optimal ev-
idence accumulation in changing environments. Importantly, the resulting SDE is
not an OU process, as suggested by previous heuristic models [35, 41, 43]. Rather,
an exponential nonlinearity allows for optimal discounting of old evidence, and rapid
adjustment of decision variables following environmental changes. As a result, the
certainty of an optimal observer tends to saturate, even if the environment happens
to be stuck in a single state for long periods of time.

We have made several assumptions about the model to simplify the derivations.
Our ideal observer is assumed to be aware both of the uncertainty of their own mea-
surements and about the frequency with which the environment changes. A more
realistic model would require that a naive observer learn the underlying volatility of
the environment. Modeling the case of initially unknown transition rates leads to
hierarchical models that identify the location of change-points [47]. However, this
approach quickly grows in computational complexity, since the probability of change
points is determined by accounting for all possible transition histories [1]. We also
assumed that changes in the environment follow a memoryless process. In more gen-
eral cases, we would not be able to obtain a recursive equation for the probability
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of a state. An ideal observer would have to use all previous observations at each
step, rather than integrating the present observation with the posterior probability
obtained with the previous observation. This process cannot be approximated by an
SDE.

Sequential sampling in dynamic environments with two states has been studied
previously in special cases, such as adapting spiking models, capable of responding to
environmental changes [16]. Likelihood update procedures have also been proposed
for multiple alternative tasks in the limit εij → 0 [2, 18], but their dynamics was
not analyzed. A related case of a temporally changing context has also been exam-
ined [40]. One important conclusion of our work is that m = g/ε, the information gain
over the characteristic environmental timescale, is the key parameter determining the
model’s dynamics and accuracy. It is easy to show that equivalent parameters gov-
ern the dynamics of likelihoods of multiple choices. This allows for a straightforward
approximation of the nonlinear model by a linear SDE, which can be analyzed fully.

Models of evidence accumulation are of interest in disciplines ranging from neu-
roscience and robotics to psychology and economics. They can help us understand
how decisions are made in cells, animals, ecological groups, and social networks. We
presented a principled derivation of a series of nonlinear stochastic models amenable
to stochastic analysis, and have used quasi-static approximations, first passage tech-
niques, and dimensional analysis to examine their dynamics. Thus we have built a
bridge between classic models in signal detection theory and nonlinear stochastic pro-
cesses. Continuous stochastic models have been very useful in interpreting human
decision making in static environments [8,24]. Dynamic environments offer a promis-
ing future direction for theory and experiments to probe the biophysical mechanisms
that underlie decisions.
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APPENDIX

In this appendix, we present the derivations for the probability update formulas and
their approximations discussed in the main text. We begin by deriving the update
expression for the probability ratio, Rn, in the case of two alternatives in a changing
environment. The result is a nonlinear recursive equation. Subsequently, we show
how to approximate the log-likelihood ratio, yn = lnRn, using a SDE. To make the
approximation precise, it is key to view the discrete equation for yn as a family of
equations parameterized by the time interval, ∆t, over which each observation, ξn, is
made [8]. Furthermore, we extend our derivations to multiple (N > 2) alternatives,
and show that the log probability updates can be approximated by a nonlinear system
of SDEs in the continuum limit. With the appropriate scaling of the probabilities,
fi(ξ) = Pr(ξ|Hi), we can make precise the correspondence between the discrete and
continuum models of posterior probability evolution. Lastly, we present a derivation
for the stochastic integro–differential equation that represents the log probability for
a continuum of possible environmental states, θ ∈ [a, b].

Note that throughout the appendix, we use notation involving a subscript ∆t.
This helps us define a family of stochastic processes indexed by the spacing between
observations ∆t = tn − tn−1. For instance, f∆t,±(ξ) represents the probability of

15



an observation, ξ, in environmental state H± (or, in the language of statistics, when
hypothesis H± holds). This probability changes with the timestep ∆t. This approach
allows us to properly take the continuum limit ∆t → 0. However, for simplicity we
refrain from using this notation in the main text. Rather, we treat the limiting SDEs
as approximations of discrete update processes. Also, we slightly abuse notation and
write fi(ξ) = Pr(ξ|Hi), even when ξ is a continuous random variable.

Appendix A. Likelihood ratio for two alternatives. We begin by deriving
the recursive update equation for the probabilities Ln,± := Pr(H(tn) = H±|ξ1:n)
associated with each alternative H±, where each observation (measurement), ξi, is
made at time ti. This is the probability that alternative H± is true at time tn, given
that the series of observations ξ1:n has been made. Importantly, the underlying truth
changes stochastically, and in a memoryless way, with transition probabilities given
by ε∆t,± := Pr(H(tn) = H∓|H(tn−1) = H±), so that Pr(H(tn) = H±|H(tn−1) =
H±) = 1 − ε∆t,±. We begin by examining the probability Ln,+ associated with the
alternative H+. Using Bayes’ rule and the law of total probability (Ch. 3 in [37]) we
can relate the current probability, Ln,+, to the conditional probabilities at the time
of the previous observation, tn−1:

Ln,+ =
1

Pr(ξ1:n)

∑
s=±

Pr(ξ1:n|H(tn) = H+, H(tn−1) = Hs)

× Pr(H(tn) = H+, H(tn−1) = Hs),

marginalizing over the joint distribution for the current H(tn) and previous H(tn−1)
environmental states. Next, we can apply the definition of the conditional probability
Pr(H(tn) = H+|H(tn−1) = Hs) to write

Ln,+ =
1

Pr(ξ1:n)

∑
s=±

Pr(ξ1:n|H(tn) = H+, H(tn−1) = Hs)

× Pr(H(tn) = H+|H(tn−1) = Hs)Pr(H(tn−1) = Hs).

Furthermore, we can split the joint condition on the first term by using the fact
that the probability of making an observation ξn is independent of H(tn−1) when we
condition on the present state H(tn) = H+ of the environment, so Pr(ξ1:n|H(tn) =
H+, H(tn−1) = Hs) = Pr(ξn|H(tn) = H+)Pr(ξ1:n−1|H(tn−1) = Hs) and

Ln,+ =
1

Pr(ξ1:n)

∑
s=±

Pr(ξn|H(tn) = H+)Pr(ξ1:n−1|H(tn−1) = Hs)

× Pr(H(tn) = H+|H(tn−1) = Hs)Pr(H(tn−1) = Hs).

Lastly, we apply Bayes’ rule to switch the order of Pr(ξ1:n−1|H(tn−1) = Hs), yielding
terms involving Ln−1,s = Pr(H(tn−1) = Hs|ξ1:n−1). In addition, we use Pr(H(tn) =
H+|H(tn−1) = H+) = 1− ε∆t,+ and Pr(H(tn) = H+|H(tn−1) = H−) = ε∆t,− so that

Ln,+ =
Pr(ξ1:n−1)Pr(ξn|H(tn) = H+)

Pr(ξ1:n)
((1− ε∆t,+)Ln−1,+ + ε∆t,−Ln−1,−) , (A.1)

where L0,+ = Pr(H(t0) = H+).
Similarly, we can obtain an update equation for the probability Ln,− of the alter-

native H− at time tn:

Ln,− =
Pr(ξ1:n−1)Pr(ξn|H(tn) = H−)

Pr(ξ1:n)
(ε∆t,+Ln−1,+ + (1− ε∆t,−)Ln−1,−) , (A.2)
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where L0,− = Pr(H(t0) = H−).
From Eqs. (A.1) and (A.2), the ratio Rn = Ln,+/Ln,− is readily seen to satisfy

the recursive equation

Rn =
f∆t,+(ξn)

f∆t,−(ξn)

(1− ε∆t,+)Rn−1 + ε∆t,−
ε∆t,+Rn−1 + 1− ε∆t,−

, (A.3)

where f∆t,±(ξn) = Pr(ξn|H(tn) = H±) is the distribution for each choice parameter-

ized by the timestep ∆t = tn − tn−1, and R0 = Pr(H+,t0)
Pr(H−,t0) .

Appendix B. The continuum limit for the log-likelihood ratio of two
alternatives. In this section, we derive a continuum equation for the log-likelihood
ratio yn := lnRn. We will proceed by first defining a family of stochastic difference
equations for yn, which are parameterized by the timestep, ∆t = tn − tn−1, between
pairs of observations. By choosing an appropriate parameterization, we obtain a
continuum limit that is a SDE. To begin, we divide both sides of Eq. (A.3) by Rn−1

and take logarithms to yield

yn − yn−1 = ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ln

1− ε∆t,+ + ε∆t,−e
−yn−1

1− ε∆t,− + ε∆t,+eyn−1
. (B.1)

Following [7, 8], we assume that the time interval between individual observations,
∆t, is small. Denote by ∆yn = yn − yn−1 the change in the log-likelihood ratio due
to the observation at time tn. By assumption, the probability that the environment
changes between two observations scales linearly with ∆t up to higher order terms, so
that ε∆t,± := ∆tε± + o(∆t). Omitting higher order terms in ∆t, Eq. (B.1) can then
be rewritten as

∆yn = ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ln(1 + ∆t(−ε+ + ε−e

−yn−1))− ln(1 + ∆t(−ε− + ε+e
yn−1)).

Since we assumed ∆t � 1, we can use the approximation ln(1 + a) ≈ a which is
valid to linear order in |a| � 1. We also assume that the change in the log-likelihood
ratio, ∆yn, is small over the time interval ∆t, so yn−1 can be replaced by yn on the
right-hand side of the equation. We obtain

∆yn ≈ ln
f∆t,+(ξn)

f∆t,−(ξn)
+ ∆t(ε−(e−yn + 1)− ε+(1 + eyn))

= Eξ

[
ln
f∆t,+(ξn)

f∆t,−(ξn)

∣∣∣∣H(tn)

]
+

(
ln
f∆t,+(ξn)

f∆t,−(ξn)
− Eξ

[
ln
f∆t,+(ξn)

f∆t,−(ξn)

∣∣∣∣H(tn)

])
+ ∆t(ε−(e−yn + 1)− ε+(1 + eyn)), (B.2)

where we have conditioned on the state of the environment, H(tn) = H± at time tn.
Replacing the index n, with the time t, we can therefore write

∆yt ≈ ∆tg∆t(t) +
√

∆tρ∆t(t)η + ∆t(ε−(e−yt + 1)− ε+(1 + eyt)), (B.3)

where η is random variable with standard normal distribution, and

g∆t(t) :=
1

∆t
Eξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
ρ2

∆t(t) :=
1

∆t
Varξ

[
ln
f∆t,+(ξ)

f∆−(ξ)

∣∣∣∣H(t)

]
. (B.4)
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As before, Eξ

[
F (ξ)

∣∣∣∣H(t)

]
is the expectation of F (ξ) when ξ is drawn from the dis-

tribution f±(ξ) associated with the current state H(t) = H±. Clearly, the drift g∆t

and variance ρ2
∆t will diverge or vanish unless f∆t,±(ξ) are scaled appropriately in

the ∆t→ 0 limit. We discuss different ways of introducing such a scaling in the next
section.

Assuming that we have well-defined limits g(t) := lim∆t→0 g∆t(t) and ρ2(t) :=
lim∆t→0 ρ

2
∆t(t), the discrete-time stochastic process, Eq. (B.3), approaches the SDE

dy = g(t)dt+ ρ(t)dWt + (ε−(e−y + 1)− ε+(1 + ey))dt, (B.5)

where Wt is a standard Wiener process. This limit holds in the sense of distributions.
Roughly, the smaller ∆t is, the closer the distributions of the random variables yn and
y(tn) whose evolutions are described by Eq. (B.1), and Eq. (B.5), respectively. This
correspondence can be made precise using the Donsker Invariance Principle (p.520
in [6]).

In sum, Eq. (B.5), can be viewed as an approximation of the logarithm of the
likelihood ratio whose evolution is given exactly by Eq. (A.3). For a fixed interval ∆t,
the parameters of the two equations are related via Eq. (B.4), and ε∆t,±/∆t = ε±.

Appendix C. Precise correspondence. We now discuss two approaches in
which the correspondence between Eqs. (B.1) and (B.5) can be made exact. We
choose a specific scaling for the drift and variance arising from each observation, ξn.
Suppose that over the time interval ∆t, an observation, ξn, is a result of r∆t separate
observations – for example the measurement of the direction of r∆t different moving
dots [24]. In this case the estimate of the average of the individual measurements –
e.g., the average of the velocities of dots in a display – will have both a mean and a
variance that increase linearly with ∆t.

As a concrete example we can compute g(t) and ρ(t) in SDE (B.5) when obser-
vations, ξn, follow normal distributions with mean and variance scaled by ∆t,

f∆t,±(ξ) =
1√

2π∆tσ2
e−(ξ−∆tµ±)2/(2∆tσ2).

Using Eq. (B.4) it is then straightforward to compute [7, 8],

g∆t(t) = ± (µ+ − µ−)2

2σ2
= g±,

ρ2
∆t(t) =

(µ+ − µ−)2

σ2
= ρ2,

and note that g(t) ∈ {g+, g−} is a telegraph process (e.g., p. 77 in [21]) with the
probability masses P (g±, t) evolving according to the master equation Pt(g±, t) =
∓ε+P (g+, t)± ε−P (g−, t). In this case ρ2(t) = ρ2 remains constant.

More generally, we can obtain an identical result by considering that each obser-
vation made on a time interval consists of a number of sub-observations, each with
statistics that scale with the length of the interval and the number of sub-observations.
We define a family of stochastic processes parameterized by k, the number of sub-
observations made in an interval of length ∆t. As above, when k = 1, we assume that
an observation ξn is the result of r∆t separate observations. Assuming r is large, note
that for k > 1 each of the k subobservations contain roughly rk = br∆t/kc obser-
vations with mean and variance that scale linearly with rk ∝ ∆t/k. We can achieve
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this by approximating ln
f∆t,+(ξn)
f∆t,−(ξn) in Eq. (B.2) by the family of stochastic processes

parameterized by k [8]

k∑
l=1

∆t

k
ln
f+(ξl)

f−(ξl)
+

k∑
l=1

√
∆t√
k

(
ln
f+(ξl)

f−(ξl)
− Eξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

])
.

The scaling in this approximation guarantees that the drift is given by the limit

g(t) = lim
∆t→0

g∆t(t) = lim
∆t→0

1

∆t
Eξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
= Eξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

]
and the variance

ρ2(t) = lim
∆t→0

ρ2
∆t = lim

∆t→0

1

∆t
Varξ

[
ln
f∆t,+(ξ)

f∆t,−(ξ)

∣∣∣∣H(t)

]
= Varξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

]
.

Furthermore, as k →∞, by the Central Limit Theorem,

∆yt ≈
k∑
l=1

∆t

k
ln
f+(ξl)

f−(ξl)
+

k∑
l=1

√
∆t√
k

(
ln
f+(ξl)

f−(ξl)
− Eξ

[
ln
f+(ξ)

f−(ξ)

∣∣∣∣H(t)

])
+ ∆t(ε−(e−yt + 1)− ε+(1 + eyt))

converges in distribution to

∆yt ≈ ∆tg(t) +
√

∆tρ(t)η + ∆t(ε−(e−yt + 1)− ε+(1 + eyt)),

where η is a standard normal random variable. Taking the limit ∆t → 0 yields
Eq. (B.5). When observations follow Gaussian distributions, f± ∼ N (±µ, σ2), then
g(t) = ±2µ2/σ2, ρ = 2µ/σ, and

dy =
[
g(t) + (ε−(e−y + 1)− ε+(1 + ey))

]
dt+ ρ dW,

where dW is a standard white noise process.

Appendix D. Continuum limit for log probabilities with multiple al-
ternatives. We now describe the calculation of the continuum limit of the recursive
system defining the evolution of the probabilities Ln,i = Pr(H(tn) = Hi|ξ1:n) of one
among multiple alternatives (environmental states), Hi, i = 1, .., N . The state of the
environment, and equivalently the correct choice at time t, again change stochasti-
cally. We assume that the transitions between the alternatives are memoryless, with
transition rates ε∆t,ij := Pr(H(tn) = Hi|H(tn−1) = Hj). Using Bayes’ rule and rear-
ranging terms (analogous to the derivation of Eqs. (A.1) and (A.2)), we can express
each probability Ln,i in terms the probability at the time of the previous observation,
Ln−1,j ,

Ln,i =
Pr(ξ1:n−1)

Pr(ξ1:n)
Pr(ξn|Hi, tn)

N∑
j=1

ε∆t,ijLn−1,j .

Since we are only interested in comparing the magnitude of the probabilities, we can

drop the common prefactor Pr(ξ1:n−1)
Pr(ξ1:n) , and use the fact that

∑N
j=1 ε∆t,ji = 1 (since

ε∆t,ij is a left stochastic matrix) to write ε∆t,ii = 1−
∑
j 6=i ε∆t,ji and obtain

Ln,i = f∆t,i(ξn)

1−
∑
j 6=i

ε∆t,ji

Ln−1,i +
∑
j 6=i

ε∆t,ijLn−1,j

 , (D.1)
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where f∆t,i(ξn) = Pr(ξn|Hi, tn). From Eq. (D.1), it follows that log of the rescaled
probabilities, xi := lnLi, satisfies the recursive relation

xn,i − xn−1,i = ln f∆t,i(ξn) + ln

1−
∑
j 6=i

ε∆t,ji +
∑
j 6=i

ε∆t,ije
xn−1,j−xn−1,i

 .

To derive an approximating SDE, we denote by ∆xn,i = xn,i−xn−1,i, the change
in the log probability due to an observation at time tn. As before, we assume ε∆t,ij :=
∆tεij + o(∆t) for i 6= j, and drop the higher order terms, giving

∆xn,i = ln f∆t,i(ξn) + ln

1−
∑
j 6=i

∆tεji +
∑
j 6=i

∆tεije
xn−1,j−xn−1,i

 .

Assuming ∆t � 1, we again use the approximation ln(1 + a) ≈ a for |a| � 1. We
also assume that the change in the log probability, |∆xn,i| � 1, is small over the time
interval ∆t, so that

∆xn,i ≈ ln f∆t,i(ξn) + ∆t
∑
j 6=i

(
εije

xn,j−xn,i − εji
)

=Eξ [ln f∆t,i(ξ)|H(tn)] + (ln f∆t,i(ξn)− Eξ [ln f∆t,i(ξ)|H(tn)])

+ ∆t
∑
j 6=i

(
εije

xn,j−xn,i − εji
)
, (D.2)

where we condition on the current state of the environment H(tn) ∈ {H1, ...,HN}.
Replacing the index n, by the time t, we can therefore write

∆xt,i ≈ ∆tg∆t,i(t) +
√

∆tρ∆t,i(t)ηi + ∆t
∑
j 6=i

(
εije

xt,j−xt,i − εji
)
, (D.3)

where ηi’s are correlated random variables with standard normal distribution

g∆t,i(t) :=
1

∆t
Eξ [ ln f∆t,i(ξ)|H(t)]

ρ2
∆t,i(t) :=

1

∆t
Varξ [ ln f∆t,i(ξ)|H(t)] .

The correlation of ηi’s is given by

Corrξ[ηi, ηj ] := Corrξ [ ln f∆t,i(ξ), ln f∆t,j(ξ)|H(t)] .

Note that Eq. (D.3) is the multiple-alternative version of Eq. (B.3). Equivalently, we
can write Eq. (D.3) as

∆xt,i ≈ ∆tg∆t,i(t) +
√

∆tŴ∆t,i + ∆t
∑
j 6=i

(
εije

xt,j−xt,i − εji
)
,

where Ŵ∆t := (Ŵ∆t,1, . . . , Ŵ∆t,N ) follows a multivariate Gaussian distribution with
mean zero and covariance matrix Σ∆t given by

Σ∆t,ij =
1

∆t
Covξ [ ln f∆t,i(ξ), ln f∆t,j(ξ)|H(t)] .

20



Finally, taking the limit ∆t→ 0, and assuming that the limits

gi(t) := lim
∆t→0

g∆t,i(t), and Σij(t) := lim
∆t→0

Σ∆t,ij(t), (D.4)

are well defined, we obtain the system of SDEs

dxi = gi(t)dt+ dŴi(t) +
∑
j 6=i

(
εije

xj−xi − εji
)

dt, (D.5)

or equivalently as the vector system

dx = g(t)dt+ Λ(t)dWt +K(x)dt,

where g(t) = (g1(t), ..., gN (t))T and Λ(t)Λ(t)T = Σ(t) are defined using the limits in
Eq. (D.4), Ki(x) =

∑
j 6=i (εije

xj−xi − εji), and the components of Wt are independent
Wiener processes. We can recover Eq. (B.5) by taking N = 2, letting y = x1 − x2,
and exchanging the indices 1 and 2 with + and −, respectively.

As in the case of two alternatives, Eq. (D.5) can be viewed as an approximation
of the logarithm of the probability whose evolution is given exactly by Eq. (D.1). For
a fixed interval ∆t, the parameters of these equations are related via Eq. (D.5), and
ε∆t,ij/∆t = εij .

The limits gi(t) := lim∆t→0 g∆t,i(t) and Σij(t) := lim∆t→0 Σ∆t,ij(t) are defined
when the statistics of the observations scale with ∆t. As we argued above, this can
be obtained by considering observations drawn from a normal distribution with mean
and variance scaled by ∆t:

f∆t,i(ξ) =
1√

2π∆tσ2
e−(ξ−∆tµi)

2/(2∆tσ2).

Alternatively, the required scaling can also be obtained when each observation made
on a time interval consists of a number of sub-observations, (ξ1, . . . , ξk), with mean
and variance scaled by ∆t

k . To do so we approximate ln f∆t,i(ξn) in Eq. (D.2) by

k∑
l=1

∆t

k
ln fi(ξl) +

k∑
l=1

√
∆t√
k

(ln fi(ξl)− Eξ [ln fi(ξ)|H(t)]) .

Appendix E. Log-likelihood ratio for multiple alternatives. We can
also derive a continuum limit for the log-likelihood ratio for any two choices i, j ∈
{1, 2, ..., N}. From Eq. (D.1), the likelihood ratio Rn,ij = Ln,i/Ln,j . We note that
this will provide us with a matrix of stochastic processes. We start with the recursive
equation

Rn,ij =
f∆t,i(ξn)

f∆t,j(ξn)

(
1−

∑
k 6=i ε∆t,ki

)
Rn−1,ij +

∑
k 6=i ε∆t,ikRn−1,kj

1−
∑
k 6=j ε∆t,kj +

∑
k 6=j ε∆t,jkRn−1,kj

.

We can thus derive the continuum equation for the log-likelihood ratio yn,ij :=
lnRn,ij , as we did in the case of two alternatives. Since yij(t) is the difference
yij(t) = xi(t)− xj(t), from Eq. (D.5) we obtain

dyij = (gi(t)−gj(t))dt+dŴi(t)−dŴj(t)+
∑
k 6=i

(εikeyki − εki) dt−
∑
k 6=j

(εjkeykj − εkj) dt,
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or

dyij =

gij(t) +

∑
k 6=j

εkj −
∑
k 6=i

εki +
∑
k 6=i

εike
yki −

∑
k 6=j

εjke
ykj

dt+ dŴij , (E.1)

where gij(t) = Eξ

[
ln fi(ξ)

fj(ξ)

∣∣∣H(t)
]

and Ŵ is a Wiener process with covariance matrix

given by Covξ

[
Ŵij , Ŵi′j′

∣∣∣H(t)
]

= Covξ

[
ln fi(ξ)

fj(ξ)
, ln fi′ (ξ)

fj′ (ξ)

∣∣∣H(t)
]
. We can also write

Eq. (E.1) in vector form

dy = gdt+ Λ(t)dWt + K(y)dt,

where Kij(y) =
∑
k 6=j εkj −

∑
k 6=i εki +

∑
k 6=i εike

yki −
∑
k 6=j εjke

ykj , Λ(t)Λ(t)T =
Σ(t) is the covariance matrix, and the components of Wt are independent Wiener
processes.

Appendix F. Log probabilities for a continuum of alternatives. Finally,
we examine the case where an observer must choose between a continuum of hypothe-
ses Hθ where θ ∈ [a, b]. Thus, we will first derive a discrete recursive equation for
the evolution of the probabilities Ln,θ = Pr(H(tn) = Hθ|ξ1:n). The state of the envi-
ronment, the correct choice at time t, again changes according to a continuous time
Markov process. We define this stochastically switching process through its transition
rate function ε∆t,θθ′ , which is given for θ′ 6= θ as∫ θ2

θ1

ε∆t,θθ′dθ := Pr
(
H(tn) ∈ H[θ1,θ2]

∣∣ H(tn−1) = Hθ′) ,

where H[θ1,θ2] is the set of all states Hθ with θ in the interval [θ1, θ2]. Thus, ε∆t,θθ′

describes the probability of a transition over a timestep, ∆t, from state Hθ′ to some
state Hθ, with θ ∈ [θ1, θ2]. This means that Pr(H(tn) = Hθ|H(tn−1) = Hθ) =

1 −
∫ b
a
ε∆t,θ′θdθ

′. As in the derivation of the multiple alternative 2 ≤ N < ∞ case,
we can express each probability Ln,θ at time tn in terms of the probabilities Ln−1,θ′

at time tn−1, so

Ln,θ =
Pr(ξ1:n−1)

Pr(ξ1:n)
Pr(ξn|H(tn) = Hθ)

×

(
Pr(H(tn) = Hθ|H(tn−1) = Hθ)Ln−1,θ +

∫ b

a

ε∆t,θθ′Ln−1,θ′dθ
′

)
.

Notice that the sum from the N < ∞ case, as in Eq. (D.1), has been replaced with
an integral over all possible hypotheses Hθ′ , θ

′ ∈ [a, b] and a term corresponding to
the probability of the environment not changing. Again we drop the common factor
Pr(ξ1:n−1)
Pr(ξ1:n) , since we wish to compare the magnitudes of the probabilities. We obtain

Ln,θ = f∆t,θ(ξn)

([
1−

∫ b

a

ε∆t,θ′θdθ
′

]
Ln−1,θ +

∫ b

a

ε∆t,θθ′Ln−1,θ′dθ
′

)
, (F.1)

where f∆t,θ(ξn) = Pr(ξn|H(tn) = Hθ). From Eq. (F.1), we can thus derive a recursive
relation for the log of the rescaled probabilities xn,θ := lnLn,θ in terms of xn−1,θ so

xn,θ − xn−1,θ = ln f∆t,θ(ξn) + ln

(
1−

∫ b

a

ε∆t,θ′θdθ
′ +

∫ b

a

ε∆t,θθ′e
xn−1,θ′−xn−1,θdθ′

)
.
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To approximate this discrete-time stochastic process with a SDE, we denote by
∆xn,θ = xn,θ − xn−1,θ, the change in log probability due to the observation at time
tn. Furthermore, we assume ε∆t,θθ′ := ∆tεθθ′ + o(∆t) and drop higher order terms,

∆xn,θ = ln f∆t,θ(ξn) + ln

(
1−

∫ b

a

∆tεθ′θdθ
′ +

∫ b

a

∆tεθθ′e
xn−1,θ′−xn−1,θdθ′

)
.

Assuming ∆t� 1, we again use the approximation ln(1+a) ≈ a for |a| � 1. Assuming
|∆xn,θ| � 1,

∆xn,θ ≈ ln f∆t,θ(ξn) + ∆t

∫ b

a

(
εθθ′e

xn,θ′−xn,θ − εθ′θ
)

dθ′

= Eξ [f∆t,θ(ξ)|H(tn)] + (ln f∆t,θ(ξn)− Eξ [ln f∆t,θ(ξ)|H(tn)])

+ ∆t

∫ b

a

(
εθθ′e

xn,θ′−xn,θ − εθ′θ
)

dθ′,

conditioned on the current state of the environment H(tn) = Hϕ where ϕ ∈ [a, b].
Exchanging the index n with the time, t, we can therefore write

∆xt,θ ≈∆tg∆t,θ(t) +
√

∆tρ∆t,θ(t)ηθ + ∆t

∫ b

a

(
εθθ′e

xt,θ′−xt,θ − εθ′θ
)

dθ′, (F.2)

where ηθ’s are correlated random variables which marginally follow a standard normal
distribution, and

g∆t,θ(t) :=
1

∆t
Eξ [ ln f∆t,θ(ξ)|H(t)] ,

ρ2
∆t,θ(t) :=

1

∆t
Varξ [ ln f∆t,θ(ξ)|H(t)] .

The correlation of ηi’s is given by

Corrξ[ηθ, ηθ′ ] := Corrξ [ ln f∆t,θ(ξ), ln f∆t,θ′(ξ)|H(t)] .

Equivalently, we can write Eq. (F.2) as

∆xt,θ ≈ ∆tg∆t,θ(t) +
√

∆tŴ∆t,θ + ∆t

∫ b

a

(
εθθ′e

xt,θ′−xt,θ − εθ′θ
)

dθ′,

where Ŵ∆t := (Ŵ∆t,θ)θ∈[a,b]. For θ ∈ [a, b], Ŵ∆t,θ is a Gaussian process in the
sense that any finite subset of points {θ1, ..., θn} ∈ [a, b] have a multivariate Gaussian
distribution with mean zero and covariance, Σ∆t,θθ, given by

Σ∆t,θθ′ =
1

∆t
Covξ [ ln f∆t,θ(ξ), ln f∆t,θ′(ξ)|H(t)] .

Finally, taking the limit ∆t→ 0, and assuming that the limits

gθ(t) := lim
∆t→0

g∆t,θ(t), and Σθθ′(t) := lim
∆t→0

Σ∆t,θθ′(t), (F.3)

are well defined, we obtain the system of SDEs

dxθ = gθ(t)dt+ dŴθ(t) +

∫ b

a

(
εθθ′e

xθ′−xθ − εθ′θ
)

dθ′dt, (F.4)
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or equivalently as the system of SDEs

dx = g(t)dt+ Λ(t)dWt +K(x)dt,

where g(t) =
(
gθ(t)

)
θ∈[a,b]

and Λ(t)Λ(t)T = Σ(t) are defined using the limits in

Eq. (F.3), K(x) =
∫ b
a

(εθθ′e
xθ′−xθ − εθ′θ) dθ′, and the components of Wt are indepen-

dent Wiener processes.

While we have formally taken the limit of the discrete Eq. (F.2), it is important
to note that establishing the well-posedness of stochastic integrodifferential equations
is not straight-forward. Conditions for the existence and uniqueness of solutions to
certain nonlinear stochastic partial differential equations (SPDEs) are demonstrated in
Ch.7 of [15]. This approach considers the solutions to SPDEs to be random processes
that take their values in a Hilbert space of functions. Recently, this concept has
been extended to provide general conditions on the constituent functions of stochastic
neural fields to ensure the existence of solutions [19,25]. The form of stochastic neural
fields is closely related to Eq. (F.4), since both types of equation possess a linear drift
and a convolution defining a nonlocal coupling between their state variables. It may be
possible to utilize these previous approaches to establish the existence and uniqueness
of solutions to Eq. (F.4) in future studies.
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