
ar
X

iv
:1

50
6.

01
95

9v
4

 [
m

at
h.

N
A

]
 2

2
D

ec
 2

01
5

REGULARIZED COMPUTATION OF APPROXIMATE
PSEUDOINVERSE OF LARGE MATRICES USING LOW-RANK

TENSOR TRAIN DECOMPOSITIONS

NAMGIL LEE† AND ANDRZEJ CICHOCKI‡

Abstract. We propose a new method for low-rank approximation of Moore-Penrose pseudoin-
verses (MPPs) of large-scale matrices using tensor networks. The computed pseudoinverses can be
useful for solving or preconditioning of large-scale overdetermined or underdetermined systems of lin-
ear equations. The computation is performed efficiently and stably based on the modified alternating
least squares (MALS) scheme using low-rank tensor train (TT) decompositions and tensor network
contractions. The formulated large-scale optimization problem is reduced to sequential smaller-scale
problems for which any standard and stable algorithms can be applied. Regularization technique is
incorporated in order to alleviate ill-posedness and obtain robust low-rank approximations. Numer-
ical simulation results illustrate that the regularized pseudoinverses of a wide class of non-square or
nonsymmetric matrices admit good approximate low-rank TT representations. Moreover, we demon-
strated that the computational cost of the proposed method is only logarithmic in the matrix size
given that the TT-ranks of a data matrix and its approximate pseudoinverse are bounded. It is
illustrated that a strongly nonsymmetric convection-diffusion problem can be efficiently solved by
using the preconditioners computed by the proposed method.

Key words. Alternating least squares (ALS), density matrix renormalization group (DMRG),
curse of dimensionality, solving of huge system of linear equations, low-rank tensor approximation,
matrix product operators, matrix product states, preconditioning, generalized inverse of huge matri-
ces, tensor networks, big data.

AMS subject classifications. 15A09, 65F08, 65F20, 65F22

1. Introduction. In this paper, we consider the approximate numerical solution
of very large-scale systems of linear equations

(1.1) Ax = b, A ∈ R
I×J , b ∈ R

I .

In the case that both the number of equations I and the number of unknowns J
have an exponential rate of increase, e.g., I = PN and J = QN with N ≥ 20 and
P,Q ≥ 2, standard numerical solution methods cannot be applied directly without
exploiting structure of the matrix such as the sparsity due to high computational and
storage costs. Such an exponential increase with size of the matrix is referred to as
the curse of dimensionality. For example, standard numerical methods for solving
high-dimensional partial differential equations often become intractable as the dimen-
sionality of the involved operators and functions increases. We consider structured
matrices with billions of rows and columns and beyond, without any assumption that
the data matrix is sufficiently sparse.

In order to break the curse of dimensionality, low-rank tensor decomposition tech-
niques are gaining growing attention in numerical computing and signal processing
[6, 9, 10, 23, 33, 52]. A tensor of order N is an N -dimensional array. Higher-order
tensors arise from various sources such as multi-dimensional data analysis [11, 34]

†Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi,
Saitama 3510198, Japan. (namgil.lee@riken.jp).

‡Skolkovo Institute of Science and Technology (Skoltech), Moscow 143025, Russia, and Sys-
tems Research Institute, Polish Academy of Sciences, Warsaw, Poland, and Laboratory for Ad-
vanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 3510198, Japan.
(cia@brain.riken.jp).

1

http://arxiv.org/abs/1506.01959v4
mailto:namgil.lee@riken.jp
mailto:cia@brain.riken.jp

2 N. LEE AND A. CICHOCKI

and high-dimensional problems in scientific computing [23, 33]. Tensor decomposi-
tion techniques transform such higher-order tensors into low-parametric data repre-
sentation formats. Comprehensive surveys about traditional tensor decomposition
methods such as CANDECOMP/PARAFAC (CP) and Tucker formats are provided
in [11, 34]. However, traditional tensor decomposition methods have limitations in
high-order tensor approximation and numerical computing [23, 33]. On the other
hand, modern tensor decomposition methods such as the hierarchical Tucker (HT)
[22, 26] and tensor train (TT) formats [41, 44] are promising tools for breaking down
the curse of dimensionality. For instance, once large-scale matrices and vectors are
reshaped into higher-order tensors and represented approximately in TT format (e.g.,
see [30, 32]), basic algebraic operations such as addition and matrix-by-vector mul-
tiplication can be performed with logarithmic storage and computational complexity
[41].

We mostly focus on the TT format, which is equivalent to the matrix product
states (MPS) with open boundary conditions (OBC) in quantum physics [51]. Algo-
rithms for solving optimization problems using TT formats, due to its simple linear
structure of separation of variables (or dimensions), are often presented in simple
recursive forms, please see, e.g., TT-rank truncation algorithm [41].

However, previous studies on numerical algorithms for solving systems of linear
equations based on TT formats focus mostly on the cases of square data matrices, i.e.,
A ∈ R

I×J with I = J ; see, e.g., TT-GMRES [15], alternating least squares (ALS)
[28], modified alternating least squares (MALS) [28], density matrix renormalization
group (DMRG) [43], and alternating minimal energy (AMEn) [17]. In order to apply
the existing algorithms to the case of non-square or strongly nonsymmetric coefficient
matrices, the normal equation ATAx = ATb can be considered, in which the solution
is equivalent in the sense of minimum of the linear least squares problem. However,
the matrix product ATA is often extremely ill-conditioned since the singular values
of A are squared. The ill-conditioning can slow down the convergence rate and reduce
accuracy of developed algorithms.

Our main objective is to develop a new method to compute an approximation to
the Moore-Penrose pseudoinverse (MPP) of A, i.e., PT ≈ A† ∈ R

J×I , and solve the
preconditioned system

(1.2) PTAx = PTb,

when I ≥ J , or APTy = b with the substitution x = PTy when I ≤ J . The
preconditioned matrix PTA (resp. APT) should be square and near symmetric, and
have more uniformly distributed eigenvalues possibly far away from zero to improve
the convergence property of an iterative method.

We can compute an approximate MPP PT ≈ A† ∈ R
J×I by minimizing the cost

function

(1.3) Fλ(P) =
∥

∥IJ −PTA
∥

∥

2

F
+ λ‖P‖2F, λ ≥ 0,

assuming without loss of generality that I ≥ J . The objective function (1.3) with
λ = 0 has been considered widely for the computation of preconditioners by, e.g.,
sparse approximate inverse (SPAI) preconditioners [5, 24] and generalized approx-
imate inverse (GAINV) preconditioners [12]. Most approximate inverse techniques
are claimed to be largely immune to the risk of breakdown during the preconditioner
construction [5]. The general case that λ ≥ 0 was considered by, e.g., the optimal
low-rank regularized inverse matrix approximation [7, 8]. The regularization term is

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 3

helpful for alleviating ill-posedness of the minimization problem (1.3) and improv-
ing the convergence property of the proposed algorithm. The simulation results in
Section 4 illustrate that the regularization approach is also helpful for avoiding over-
estimation of TT-ranks of the pseudoinverses.

We propose a new method for computing the approximate generalized inverse PT

in the form of a low-rank TT decomposition. Many of the sparse approximate inverse
algorithms such as the SPAI preconditioners [24] assume that approximate inverses are
sparse, however, inverses of sparse matrices are often not sparse. On the other hand,
matrices represented in TT format do not have to be sparse, instead, they are required
to have relatively small TT-ranks. It has been shown that inverses and preconditioners
of several classes of important matrices such as Laplace-like operators and banded
Toeplitz matrices admit approximate low-rank TT representations [4, 30, 31, 32, 45].

Holtz, Rohwedder, and Schneider [28] and Oseledets and Dolgov [43] developed
DMRG (also called as MALS) methods for solving systems of linear equations with
square matrices in TT formats. The application to matrix inversion is presented
in [43]. However, the matrix inversion method proposed in [43] is applicable only
to square matrices. And when we want to apply this approach, the linear matrix
equation PTA = IJ is converted to a larger linear least squares (LS) problem. On
the other hand, the proposed method can be applied to general non-square matrices,
whose pseudoinverses can be efficiently computed without a need to solve a larger
linear LS problem. Finally, once an approximate pseudoinverse is computed, the pre-
conditioned linear system can be solved by applying existing TT-based optimization
algorithms such as the ones developed in [17, 42, 43]. Numerical simulation results
illustrate that the approximate generalized inverses obtained by the proposed method
provide usually low TT-ranks with a sufficiently small approximation error. The re-
sulting preconditioned linear systems can be solved by existing TT-based algorithms
much faster than linear systems without preconditioning. A wide class of structured
matrices in TT format are considered and demonstrated to have low TT-rank precon-
ditioners.

The paper is organized as follows. In Section 2, we describe briefly mathematical
representations for TT decomposition. In Section 3, we design a new tensor network
and develop a MALS algorithm for computing approximate pseudoinverses. In Section
4, experimental results are presented to demonstrate the validity and effectiveness of
the proposed method. In Section 5, discussion and concluding remarks are given.

2. The TT Decompositions.

2.1. Notation. We will briefly describe notation for tensors and tensor opera-
tions used in this paper. We refer to [11, 14, 34] for further details. Scalars, vectors,
and matrices are denoted by lower-case letters (a, b, . . .), lower-case bold letters (a,
b, . . .), and upper-case bold letters (A, B, . . .), respectively. Nth-order tensors, i.e.,
N -way arrays (for N ≥ 3), are denoted by calligraphic letters (A, B, . . .). For a
tensor X ∈ R

I1×I2×···×IN , where In is the size of the nth mode, the (i1, i2, . . . , iN)th
entry of X is denoted by xi1,i2,...,iN . Mode-n fibers of a tensor X ∈ R

I1×I2×···×IN are
column vectors xi1,...,in−1,:,in+1,...,iN ∈ R

In determined by fixing all the indices except
for the nth index. The mode-1 contracted product of tensors A ∈ R

I1×I2×···×IN and
B ∈ R

IN×J2×J3×···×JM is a binary operation defined by the tensor1

(2.1) A • B ∈ R
I1×I2×···×IN−1×J2×J3×···×JM

1 We call for simplicity such operation mode-1 contraction, because the mode one of a tensor B
is contracted with the mode N of a tensor A.

4 N. LEE AND A. CICHOCKI

I I J I K

J

I1 I3=J1

I2

J3

J2

(a) (b)

Rn-1

Jn

In

Rn Rn-1

In

Jn

Rn

A

I

J

B

(c) (d)

Fig. 1. Tensor network diagrams for (a) vector, matrix, and third-order tensor, (b) mode-1
contracted product of two third-order tensors, (c) left-orthogonalized and right-orthogonalized fourth-
order tensors, and (d) trace(AB) for matrices A ∈ R

I×J and B ∈ R
J×I .

with entries

(A • B)i1,i2,...,iN−1,j2,j3,...,jM =

IN
∑

iN=1

ai1,i2,...,iN biN ,j2,j3,...,jM .

The mode-1 contracted product is a natural generalization of the matrix-by-matrix
product to higher-order tensors. Note that it has associativity: (A•B)•C = A•(B•C)
for any tensors A, B, and C of proper sizes.

Basic symbols for tensor are shown in Figure 1. In particular, symbols for vectors
(1st-order tensors), matrices (2nd-order tensors), and 3rd-order tensors are illustrated
in Figure 1(a), while the mode-1 contraction of two 3rd-order tensors is illustrated in
Figure 1(b).

Indices i1, i2, . . . , iN , which run through in = 1, 2, . . . , In, can be grouped in a
single multi-index i1i2 · · · iN .2 The following two notations are defined based on the
multi-index.

Definition 2.1. For a fixed n ∈ {1, 2, . . . , N}, the nth canonical matricization
of a tensor X ∈ R

I1×···×IN is defined by the matrix [27]

(2.2) X{n} ∈ R
I1I2···In×In+1···IN ,

with entries

(X{n})i1i2···in,in+1···iN = xi1,i2,...,iN .

Definition 2.2. For a fixed n ∈ {1, 2, . . . , N}, the mode-n matricization of a
tensor X ∈ R

I1×···×IN is defined by the matrix [34]

(2.3) X(n) ∈ R
In×I1I2···In−1In+1···IN ,

with entries

(X(n))in,i1···in−1in+1···iN = xi1,i2,··· ,iN .

2 The multi-index can be defined by either the big-endian i1i2 · · · iN = iN + (iN−1 − 1)IN +
· · ·+(i1 − 1)I2I3 · · · IN or the little-endian i1i2 · · · iN = i1 +(i2 − 1)I1 + · · ·+(iN − 1)I1I2 · · · IN−1.
In this paper, we use the little-endian convention unless otherwise mentioned.

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 5

Note that the columns of the mode-n matricization X(n) are the mode-n fibers of X .
Moreover, the vectorization of a tensor X ∈ R

I1×···×IN is defined as the Nth canonical
matricization

(2.4) vec(X) ≡ x{N} ∈ R
I1I2···IN ,

whose entries are (vec(X))i1i2···iN = xi1,i2,...,iN .

2.2. The HT Format. The hierarchical Tucker (HT) and tensor train (TT)
formats are low-parametric representations for vectors, matrices, and higher-order
tensors. The HT format, introduced by Hackbusch and his coworkers [25, 26], can be
considered as a more general model than the TT format, but most techniques for TT
format can be extended to HT format and the generalization is often straightfoward,
e.g., see [36].

Let V = V (1)⊗· · ·⊗V (N) be a tensor product space, where V (n) (1 ≤ n ≤ N) are
Hilbert spaces. For example, we can consider that V (n) = R

In with the innerproduct
defined by 〈v,w〉 = vTw, or V (n) = R

In×Jn with 〈V,W〉 = trace(VTW). For
N > 1, a binary tree TN is called a dimension tree if

(a) all nodes t ∈ TN are non-empty subsets of {1, . . . , N},
(b) the set troot = {1, . . . , N} is the root node of TN , and
(c) each node t ∈ TN with |t| ≥ 2 has two children t1, t2 ∈ TD such that t is a

disjoint union t = t1 ∪ t2.

A dimension tree determines recursive partitioning of the modes {1, . . . , N}, e.g., see
Figures 2(a) and (b). We denote the set of all leaf nodes by L ⊂ TN and the set of
children of a non-leaf node t by S(t) ⊂ TN .

Let (Rt)t∈TN
be positive integers with Rtroot = 1. An element x ∈ V is an HT

tensor with TN -rank bounded by (Rt)t∈TN
if

(a) there exists a finite dimensional subspace U (t) = span{u
(t)
rt : 1 ≤ rt ≤ Rt} ⊂

V (t) for each leaf node t ∈ L, and
(b) there exists a coefficient tensor G(t) ∈ R

Rt1
×Rt2

×Rt for each non-leaf node
t ∈ TN\L, such that

(c) intermediate vectors u
(t)
rt ∈

⊗

n∈t V
(n) (1 ≤ rt ≤ Rt) for each non-leaf node

t ∈ TN\L are defined recursively by

(2.5) u(t)
rt =

Rt1
∑

rt1=1

Rt2
∑

rt2=1

g(t)rt1 ,rt2 ,rt
u(t1)
rt1

⊗ u(t2)
rt2

, {t1, t2} = S(t),

and x is represented by x = u
(troot)
1 .

For example, if the tree TN is the binary tree as illustrated in Figure 2(a), then a
corresponding HT tensor x ∈ V can be written as

x = u
({1,2,3,4})
1 =

∑

· · ·
∑

g({1,2,3,4})r12,r34,r1234g
({1,2})
r1,r2,r12g

({3,4})
r3,r4,r34u

(1)
r1 ⊗ u(2)

r2 ⊗ u(3)
r3 ⊗ u(4)

r4 .

This rather abstract representation in (2.5) can be immediately applied to the cases
when V (n) = R

In or V (n) = R
In×Jn .

2.3. The TT Format. The TT format, introduced in scientific computing by
Oseledets and his coworkers [41, 42, 43, 44, 45], can be considered as a special case of
the HT format when the dimension tree has a linear structure, such as the example

6 N. LEE AND A. CICHOCKI

{1,2,3,4}

{1,2}

{1} {2} {3} {4}

{3,4}
{1} {2,3,4}

{1,2,3,4}

{2} {3,4}

{3} {4}

(a) (b)

Fig. 2. Illustration of two typical examples of dimension trees for HT tensors of order N = 4.
(a) A balanced tree structure which can generate an HT format and (b) an unbalanced tree structure
which can generate a TT format.

in Figure 2(b). The TT representations for large scale vectors, matrices, and higher-
order tensors can also be derived from the recursive definition of the HT format in
(2.5).

If we suppose that V (n) = R
In , then a large scale vector x ∈ R

I1···IN ≡ V can be
represented in TT format by sums of Kronecker products

(2.6) x =

R1
∑

r1=1

R2
∑

r2=1

· · ·

RN−1
∑

rN−1=1

x
(1)
1,:,r1

⊗ x(2)
r1,:,r2 ⊗ · · · ⊗ x

(N)
rN−1,:,1

,

where x
(n)
rn−1,:,rn ∈ R

In are mode-2 fibers of 3rd-order tensors X (n) ∈ R
Rn−1×In×Rn .

The 3rd-order tensors X (n) are called TT-cores, R1, R2, . . . , RN−1 are called TT-
ranks, and we define R0 = RN = 1. We assume for convenience that the first and the
last TT-cores (matrices) are also 3rd-order tensors of size 1×I1×R1 and RN−1×IN×1,
respectively. We call the TT representations in (2.6) (for large-scale vectors) as the
vector TT format, which is equivalent to the MPS with open boundary conditions
(OBC) (see Figure 3(a)(top).)

A higher-order tensor X ∈ R
I1×···×IN is said to be represented in TT format if

its vectorization vec(X) ∈ R
I1···IN is represented in TT format (2.6), i.e., x = vec(X).

In this case, the tensor X can be expressed by the mode-1 contracted products of
3rd-order TT-cores (see Figure 3(a)(top))

(2.7) X = X (1) • X (2) • · · · • X (N),

where X (n) ∈ R
Rn−1×In×Rn are the 3rd-order TT-cores.

Note that TT decompositions (2.7) of a tensor X may not be unique, and the
TT-ranks R1, . . . , RN−1 depend on a specific decomposition. From (2.7), we have
rank(X{n}) ≤ Rn, n = 1, . . . , N − 1. However, if a TT decomposition of a tensor X

is minimal, i.e., all TT-cores have full left and right rank as rank(X
(n)
(3)) = Rn and

rank(X
(n)
(1)) = Rn−1, then the TT-ranks of minimal TT decompositions are unique

and satisfy rank(X{n}) = Rn, n = 1, . . . , N−1. The TT-ranks of a tensor X is defined
as the TT-ranks of a minimal TT decomposition. See [25, 27] for more details.

The storage cost can be significantly reduced if large-scale vectors and matrices
can be approximately represented in TT formats with relatively small TT-ranks. For
example, the storage complexity for a vector x ∈ R

I1···IN represented in TT format is
O(NQR2) with Q = maxn(In) and R = maxn(Rn) [41].

On the other hand, if we suppose that V (n) = R
In×Jn , then a large scale matrix

A ∈ R
I1···IN×J1···JN ≡ V can be represented in TT format as sums of Kronecker

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 7

I1 I2 IN

X
(1)

X
(1)

X
(N)

I=I1I2···IN

x

I1 I2 IN

R1 R2 RN-1

R1 R2 RN-1 RN

J1

I2 IN

J2 JN

A
(1)

A
(2)

A
(N)

I1

J=J1J2···�N

I=I1I2···IN

A

�1

I2 IN

�2 �N

I1

R1 R2 RN-1

R1 R2 RN-1 RN

(a) (b)

Fig. 3. Tensor network diagrams for TT decomposition of large-scale vectors and matrices. (a)
Large-scale vector in vector TT format, which is equivalent to either the MPS with open boundary
conditions (OBC) (top) or the MPS with periodic boundary conditions (PBC) (bottom), and (b)
large-scale matrix in matrix TT format, which is equivalent to either the MPO with OBC (top), or
MPO with PBC (bottom).

products

(2.8) A =

RA
1

∑

rA
1
=1

RA
2

∑

rA
2
=1

· · ·

RA
N−1
∑

rA
N−1

=1

A
(1)

1,:,:,rA
1

⊗A
(2)

rA
1
,:,:,rA

2

⊗ · · · ⊗A
(N)

rA
N−1

,:,:,1
,

where A
(n)

rAn−1
,:,:,rAn

∈ R
In×Jn are the slice matrices of 4th-order core tensors A(n) ∈

R
RA

n−1×In×Jn×RA
n , and RA

1 , R
A
2 , . . . , R

A
N−1 are TT-ranks with RA

0 = RA
N = 1. The TT

format for large-scale matrices in (2.8) is equivalent to the matrix product operators
(MPO) in quantum physics [51], and we refer to it as the matrix TT format (see
Figure 3(b)(top)).

2.4. Extraction of Core Tensor for Matrix TT Format. For practical
and theoretical purposes, we will introduce alternative representations for large-scale
matrices based on the matrix TT format or MPO, which will be used for describing
the proposed algorithm.

The vectorization, which is an operation on matrices, can be extended to ma-
trices represented in matrix TT format as follows. Let I = I1I2 · · · IN and J =
J1J2 · · · JN . For a matrix A ∈ R

I×J in matrix TT format (2.8) with TT-cores

A(n) ∈ R
RA

n−1×In×Jn×RA
n , the extended vectorization of A can be defined by the

vector in TT format, with slight abuse of our notation,

(2.9) vec(A) =

RA
1

∑

rA
1
=1

· · ·

RA
N−1
∑

rA
N−1

=1

vec(A
(1)

1,:,:,rA
1

)⊗ · · · ⊗ vec(A
(N)

rAN−1
,:,:,1

) ∈ R
IJ ,

i.e., each of the 4th-order TT-cores A(n) is reshaped into the 3rd-order TT-core of
size Rn−1 × InJn ×Rn.

Let

(2.10) p = vec(P) ∈ R
IJ

8 N. LEE AND A. CICHOCKI

I1J1 In-1Jn�1

Fig. 4. The TT format for the Nth-order tensor P in (2.12). The TT-cores are grouped into
three sets and their contractions are denoted by P<n, P(n,n+1), and P>n+1.

denote the extended vectorization (2.9) of a large-scale matrix P ∈ R
I×J in matrix

TT format whose 4th-order TT-cores can be reshaped into 3rd-order cores

(2.11) P(n) ∈ R
Rn−1×Kn×Rn , Kn ≡ InJn, ∀n,

for the corresponding vector p. From the expression (2.7), the Nth-order tensor
P ∈ R

K1×···×KN determined by p = vec(P) can be written as the mode-1 contracted
products (see Figure 4)

P = P(1) • P(2) • · · · • P(N) ∈ R
K1×K2×···×KN .

For n = 1, 2, . . . , N , the mode-1 contracted products of left TT-cores and right TT-
cores are respectively denoted by

P<n = P(1) • P(2) • · · · • P(n−1) ∈ R
K1×···×Kn−1×Rn−1 ,

P>n = P(n+1) • P(n+2) • · · · • P(N) ∈ R
Rn×Kn+1×···×KN ,

and we define P<1 = P>N = 1. The Nth-order tensor P ∈ R
K1×···×KN can be

rewritten by

(2.12) P = P<n • P(n,n+1) • P>n+1, n = 1, 2, . . . , N − 1,

where

P(n,n+1) = P(n) • P(n+1) ∈ R
Rn−1×Kn×Kn+1×Rn+1

is the mode-1 contracted product of the two neighboring TT-cores. The so-called
frame matrix [28, 35] for our model is defined by

(2.13) P6= =
(

P>n+1
(1)

)T

⊗ IKn+1
⊗ IKn

⊗
(

P<n
(n)

)T

∈ R
IJ×Rn−1KnKn+1Rn+1 ,

where P<n
(n) ∈ R

Rn−1×K1···Kn−1 and P>n+1
(1) ∈ R

Rn+1×Kn+2···KN are the mode-n and

mode-1 matricizations of the tensors P<n and P>n+1, respectively.
From the expressions (2.12) and (2.13), we can derive an expression for the vector

p = vec(P) (2.10) as a product of the frame matrix and a local vector pn:

(2.14) p = P6=pn ∈ R
IJ , n = 1, 2, . . . , N − 1,

where

pn = vec(P(n,n+1)) ∈ R
Rn−1KnKn+1Rn+1

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 9

is the vectorization of the merged TT-core P(n,n+1).
In order to simplify computation and improve efficiency of our algorithm, we need

to orthogonalize core tensors. For this purpose, left- or right-orthogonalization of the
3rd-order TT-cores P(n) ∈ R

Rn−1×Kn×Rn is defined as follows [27].
Definition 2.3 (Left- or right-orthogonalization [27]). A 3th-order tensor U ∈

R
I×J×K is called left-orthogonalized if its mode-3 matricization U(3) ∈ R

K×IJ has
orthonormal rows as

U(3)U
T
(3) = IK ,

and right-orthogonalized if its mode-1 matricization U(1) ∈ R
I×JK has orthonormal

rows as

U(1)U
T
(1) = II .

We note that the left- or right-orthogonalization of 4th-order TT-cores P
(n)

∈
R

Rn−1×In×Jn×Rn can be defined by the left- or right-orthogonalization of the reshaped
3rd-order TT-cores P(n) ∈ R

Rn−1×Kn×Rn , where Kn = InJn. The left- or right-

orthogonalized 4th-order tensors P
(n)

∈ R
Rn−1×In×Jn×Rn are denoted by the tensor

network diagram shown in Figure 1(c). We can show that the mode-n matricization
P<n

(n) and the mode-1 matricization P>n+1
(1) have orthonormal rows if the TT-cores

P(1), . . . ,P(n−1) are left-orthogonalized and P(n+2), . . . ,P(N) are right-orthogonalized
[38]. Consequently, the frame matrix P6= in (2.13) will have orthonormal columns if
the TT-cores are properly left- or right-orthogonalized.

3. Computation of Approximate Pseudoinverse Using TT Decompo-
sition. Without loss of generality, we assume that I ≥ J for a large-scale matrix
A ∈ R

I×J with I = I1I2 · · · IN and J = J1J2 · · · JN . We formulate the following
optimization problem: for λ ≥ 0,

min
P

∥

∥IJ −PTA
∥

∥

2

F
+ λ‖P‖2F

s.t. P ∈ T≤R ⊂ R
I×J ,

(3.1)

where T≤R denotes the set of TT tensors of TT-ranks bounded by rank R = (R1, . . . ,

RN−1). We denote the cost function by Fλ(P) ≡
∥

∥IJ −PTA
∥

∥

2

F
+λ‖P‖2F. We assume

that the matrix A ∈ R
I×J is given in matrix TT format (2.8).

3.1. Modified Alternating Least Squares (MALS) Algorithm. In the
MALS scheme, for each n ∈ {1, 2, . . . , N−1} at each iteration, only the n and (n+1)th
TT-cores are optimized while the other TT-cores are fixed. The large-scale optimiza-
tion problem (3.1) can then be reduced to a set of much smaller scale optimization
problems as we explain below.

Note that the cost function in (3.1) can be expressed, in matrix form, as

Fλ(P) = J + trace
(

PTAATP− 2PTA+ λPTP
)

.

Let p = vec(P) ∈ R
IJ denote the extended vectorization (2.9) of the matrix P ∈

R
I×J . From the matrix TT representation (2.8), we can derive that

(3.2) vec(ATP) = (IJ⊗AT)p = (IJ⊗A)Tp,

10 N. LEE AND A. CICHOCKI

where IJ⊗A ∈ R
IJ×J2

denote the (extended) Kronecker product defined by Kro-
necker products between core tensors as

IJ⊗A =

RA
1

∑

rA
1
=1

· · ·

RA
N−1
∑

rAN−1
=1

(IJ1
⊗A

(1)

1,:,:,rA
1

)⊗ · · · ⊗ (IJN
⊗A

(N)

rA
N−1

,:,:,1
).

Using the expressions (3.2), we can express Fλ(P) in the vectorized form as

Fλ(p) = J + pT(IJ⊗AAT)p− 2pTa+ λpTp,

where a = vec(A) ∈ R
IJ . From the expression (2.14) and the orthogonality of the

columns of the frame matrix P6=, Fλ(P) can be further simplified as

(3.3) Fλ(pn) = J + pT
nAnpn − 2pT

nbn + λpT
npn,

where An and bn are the relatively small-scale matrices and vectors defined by

(3.4) An = (P6=)T(IJ⊗AAT)P6= ∈ R
Rn−1KnKn+1Rn+1×Rn−1KnKn+1Rn+1

and

(3.5) bn = (P6=)Tvec(A) ∈ R
Rn−1KnKn+1Rn+1 , n = 1, . . . , N − 1.

Finally, we can obtain a set of reduced linked optimization problems:

min
pn

pT
nAnpn − 2pT

nbn + λpT
npn

s.t. pn = vec(P(n,n+1)) ∈ R
Rn−1KnKn+1Rn+1 ,

(3.6)

for n = 1, 2, . . . , N − 1. It should be noted that the size of the matrix An can be
much smaller than AAT under the condition that Rn−1 and Rn+1 are relatively low
and bounded.

Figure 5 illustrates a tensor network diagram representing the cost function
trace(PTAATP − 2PTA + λPTP) both in matrix and vectorized forms. The trace
is indicated by the blue line connecting the start block with the end block (e.g., see
Figure 1(d)). In order to solve the optimization problem (3.1), each matrix is rep-
resented approximately in matrix TT format. The large-scale optimization problem
can then be reduced to a smaller-scale optimization problem, where the reduced cost
functions are described as pT

nAnpn − 2pT
nbn + λpT

npn (n = 1, 2, . . . , N − 1).
The relatively small-scale matrix An and vector bn in the reduced local problem

can be computed efficiently by recursive contractions of the core tensors in the tensor
network diagram in Figure 5. The recursive computation procedure for the tensor

network contractions can be described as follows. Let Z
(m)
1 ∈ R

(Rm−1R
A
m−1)

2×(RmRA
m)2

and Z
(m)
2 ∈ R

Rm−1R
A
m−1×RmRA

m be matrices defined by

Z
(m)
1 =

∑

im,jm,i′m,j′m

P
(m)

:,im,jm,: ⊗A
(m)
:,im,j′m,: ⊗A

(m)
:,i′m,j′m,: ⊗P

(m)

:,i′m,jm,:,

Z
(m)
2 =

∑

im,jm

P
(m)

:,im,jm,: ⊗A
(m)
:,im,jm,:, m = 1, . . . , N,

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 11

=

~

pT IJ A⊗ p -2pT a pT pIJ A
T

⊗

IJ IJJ2 IJ IJ

PT A AT P -2PT A PT P

I I

J J

I IJ

J

P
(n)

P
(n+1)

P
(n)

P
(n+1)

-2P(n)

P
(n+1)

P
(n)

P
(n+1)

P
(n)

P
(n+1)

A
(n+1)I

J
n+1
⊗

A
(n)I

J
n
⊗

A
(n+1)I

J
n+1
⊗

A
(n)I

J
n
⊗

A
(n+1)

A
(n)

Rn-1

Rn+1

Rn-1

Rn+1

Kn

Kn+1

K1

Kn-1

KN

Kn+2

Kn

Kn+1

K1

Kn-1

KN

Kn+2

J1
2

Jn-1
2

Jn
2

Jn+1
2

Jn+2
2

JN
2

Rn-1

Rn+1

Rn-1

Rn+1

Rn-1

Rn+1

Rn-1

Rn+1

Kn

Kn+1

K1

Kn-1

KN

Kn+2

Kn

Kn+1

K1

Kn-1

KN

Kn+2

=

=

=

=

~ =

~

=

=

=

=

=

=

+ +

+ +

+ +

P
(n,n+1) P

(n,n+1)
-2P(n,n+1)P

(n,n+1)
P
(n,n+1)

Kn

Rn-1

Kn+1

Rn+1

Kn

Rn-1

Kn+1

Rn+1

Kn

Rn-1

Kn+1

Rn+1

Kn

Rn-1

Kn+1

Rn+1
+ +

P
(n)

P
(n+1)

P
(n)

P
(n+1)

-2P(n)

P
(n+1)

P
(n)

P
(n+1)

P
(n)

P
(n+1)

A
(n+1)

A
(n)

A
(n+1)

A
(n)

A
(n+1)

A
(n)

In

Rn-1

Jn+1
Rn+1

Jn

In+1

In

Rn-1

Jn+1

Rn+1

Jn

In+1

Rn-1

Rn+1

Rn-1

Rn+1

Rn-1

Rn+1

In

Jn+1

Jn

In+1

In

In+1Jn+1

Jn

+ +

R
>n+1
1

L
<n
1 L<n2

R>n+1
2

Fig. 5. Conceptual tensor network diagrams for the trace(PTAATP−2PTA+λPTP) for the
optimization of the n and (n+1)th TT-cores, i.e., P(n,n+1) = P(n)•P(n+1), in the MALS algorithm.
The large-scale optimization problem is reduced to set of equivalent and much smaller optimization
problems, which are expressed by minimization of cost functions: pT

nAnpn − 2pT
nbn + λpT

npn with
pn = vec(P(n,n+1)) ∈ R

Rn−1KnKn+1Rn+1 (1 ≤ n ≤ N − 1). The left- and right-orthogonalized
TT-cores of P are indicated by the half-filled squares.

12 N. LEE AND A. CICHOCKI

where P
(m)

∈ R
Rm−1×Im×Jm×Rm and A(m) ∈ R

RA
m−1×Im×Jm×RA

m are the 4th-order
TT-cores for the matrices P,A ∈ R

I×J in matrix TT format (2.8). Note that the
trace terms in the cost function Fλ(P) can be expressed by

trace(PTAATP) = Z
(1)
1 Z

(2)
1 · · ·Z

(N)
1 , trace(PTA) = Z

(1)
2 Z

(2)
2 · · ·Z

(N)
2 .

Two 4th-order tensors L<m
1 and R>m

1 and two matrices L<m
2 and R>m

2 with sizes

L<m
1 ∈ R

Rm−1×RA
m−1×RA

m−1×Rm−1 , R>m
1 ∈ R

Rm×RA
m×RA

m×Rm ,

L<m
2 ∈ R

Rm−1×RA
m−1 , R>m

2 ∈ R
Rm×RA

m ,

are defined recursively by, for p = 1, 2,

(3.7) vec
(

L<1
p

)

= 1, vec
(

L<m
p

)T
= vec

(

L<m−1
p

)T
Z(m−1)
p , m = 2, 3, . . . , n,

(3.8)
vec(R>N

p) = 1, vec
(

R>m
p

)

= Z(m+1)
p vec

(

R>m+1
p

)

, m = N − 1, N − 2, . . . , n+ 1.

The tensor L<m
1 defined in (3.7) can be efficiently computed by contractions of the

tensors {L<m−1
1 , P(m−1), A(m−1), A(m−1), P(m−1)}. The tensor R>m

1 and matrices
L<m
2 and R>m

2 can be computed similarly.
Finally, the matrix An can be computed by contractions of the tensors {L<n

1 ,
A(n), A(n), A(n+1), A(n+1), R>n+1

1 }, as illustrated in Figure 5. The vector bn can be
computed by contractions of the tensors {L<n

2 , A(n), A(n+1), R>n+1
2 }. In practice,

however, the local matrix An is not computed explicitly, but the matrix-by-vector
multiplication Anx for some x ∈ R

Rn−1KnKn+1Rn+1 is used by standard iterative
methods. See Section 3.2.8 for more detail.

After the solution, the resulting merged tensor P(n,n+1) ≡ P(n) • P(n+1) is de-
composed into two separate TT-cores via the δ-truncated SVD [41]: for the matrix

P
(n,n+1)
{2} ∈ R

Rn−1Kn×Kn+1Rn+1 ,

(3.9) [U1,S1,V1] = SVDδ

(

P
(n,n+1)
{2}

)

,

with the subsequent updates Rn = min(rank(U1), Rn), P
(n)T
(3) = U1, and P

(n+1)
(1) =

S1V
T
1 . In this way, the TT-ranks can be adaptively determined during the iteration

process, and the TT-cores can be left- or right-orthogonalized.
The proposed MALS algorithm3 for the computation of an approximate Moore-

Penrose pseudoinverse of large-scale matrices is described in Algorithm 1.

3.2. Properties and Practical Considerations.

3.2.1. Existence and Uniqueness of Solution. The proposed algorithm can
be applied to general singular or non-singular structured matrices A ∈ R

I×J provided
in TT format. Moreover, it can be in quite straightforward way extended to the
minimization of a more general objective function4

(3.10) Fλ(P;B) =
∥

∥BT −PTA
∥

∥

2

F
+ λ‖P‖2F,

3We have also developed an alternating least squares (ALS) algorithm (without merging two
TT-cores), but its performance was slightly lower than the MALS algorithm presented here.

4Representing regularized LS solution for ÃX = B, where Ã = AT.

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 13

Algorithm 1: MALS algorithm for computing approximate pseudoinverse

input : A ∈ R
I1I2···IN×J1J2···JN in matrix TT format, ǫ > 0 (tolerance

parameter), δ > 0 (truncation parameter).

output: P ∈ R
I1I2···IN×J1J2···JN in matrix TT format with TT-cores P

(n)

(1 ≤ n ≤ N) and TT-ranks R1, R2, . . . , RN−1.

1 Initialize P randomly with right-orthogonalized TT-cores P(3),P(4), . . . ,P(N).
2 Set L<1

p = 1, p = 1, 2. Compute R>n
p , n = 2, 3, . . . , N, p = 1, 2 by (3.8).

3 repeat
4 for n = 1, 2, . . . , N − 2 do

// Optimization

5 Optimize P(n,n+1) by solving the local optimization problem (3.6).
// Matrix Factorization by SVD

6 Compute δ-truncated SVD: [U1,S1,V1] = SV Dδ

(

P
(n,n+1)
{2}

)

.

7 Update Rn = min(rank(U1), Rn).

8 Update P
(n)

= reshape(U1, Rn−1 × In × Jn ×Rn).

9 Update P
(n+1)

= reshape(S1V
T
1 , Rn × In+1 × Jn+1 ×Rn+1).

10 Compute L<n+1
p , p = 1, 2 by (3.7).

11 end
12 for n = N − 1, N − 2, . . . , 2 do
13 Perform optimization and matrix factorization similarly
14 end

15 until a stopping criterion is met (See (3.18));

where B ∈ R
J×L is a given matrix in TT format and P ∈ R

I×L. For the above cost
function, we can construct a similar tensor network as shown in Figure 5. A minimizer
of the objective function Fλ(P;B), without constraints, is known as a least squares
(LS) solution. In the case that λ > 0, the solution is unique and it can be expressed
by

(3.11) P∗
λ =

(

AAT + λII

)−1

AB, λ > 0.

On the other hand, if λ = 0, then the solution may not be unique and it can be
expressed by

(3.12) P∗
0 =

(

A†)TB+ Z,

where Z ∈ R
I×L is any matrix satisfying ZTA = 0. If Z = 0, then we call it a

minimum-norm LS solution, and it is unique. If B = IJ , then the unique solution
is equal to the (transposed) Moore-Penrose pseudoinverse. Furthermore, it has been
shown that (see [2])

P∗
λ →

(

A†)TB as λ → 0.

The solution to the local optimization problem (3.6), which is also a standard LS
problem, can be written in the same way by

(3.13) p∗
n =

(

An + λIRn−1KnKn+1Rn+1

)†
bn.

14 N. LEE AND A. CICHOCKI

Note that the local optimal solution (3.13) is the minimum-norm LS solution for the
local optimization problem. Note that, from the expression (2.14), taking into account
that the frame matrix P6= has orthonormal columns,

‖pn‖
2
F = ‖P‖2F.

3.2.2. Stability and Stopping Criterion. From (3.3), we note that the value
of the objective function Fλ(P) for the global optimization problem (3.1) is exactly the
same as the value of the objective function for the local optimization problem (3.6)
neglecting irrelevant constant J . Therefore, we can conclude that the value of the
original objective function will monotonically decrease during the iteration process.

Proposition 3.1 (Monotonicity). Let Pλ,t ∈ R
I×J denote the estimated solution

at the iteration t = 0, 1, 2, . . . , and P∗
λ,t+1 ∈ R

I×J the estimated solution obtained by

replacing the n and (n+ 1)th TT-cores of Pλ,t with the solution p∗
n = vec(P(n,n+1)∗)

to the reduced optimization problem (3.6). Then,

(3.14) Fλ(Pλ,t) ≥ Fλ(P
∗
λ,t+1).

Moreover, we can easily compute the value of the global objective function from
the value of the local objective function at each iteration. We define

(3.15) rλ(P) =
(Fλ(P))1/2

J1/2
,

and call it as the relative residual. Note that the minimum value of Fλ(P) can be
expressed in terms of the singular values of the matrix A as follows:

(3.16) Fmin
λ ≡ min

P∈RI×J
Fλ(P) = Fλ(P

∗
λ) = J −

rank(A)
∑

r=1

σ2
r

σ2
r + λ

,

where σr are the nonzero singular values of A. So, the minimum value of the relative
residual is bounded as

(3.17) 1−
rank(A)

J
≤ min

P∈RI×J
r2λ(P) =

Fmin
λ

J
≤ 1,

where the lower bound can be attained when λ = 0, and the upper bound when
λ = ∞.

Given a tolerance parameter ǫ > 0, the stopping criterion of the MALS algorithm
can be executed when a rate of decrease of the relative residual is smaller than ǫ as

(3.18) r2λ(Pλ,t−N+2)− r2λ(Pλ,t) < ǫ2 · r2λ(Pλ,t−N+2).

However, due to the machine precision, the computed rλ value can be not sufficiently
precise if its value decreases to a very small value relative to the norm ‖IJ‖F = J1/2.
In this case, it should be computed directly using the matrices A and P represented
in TT format, rather than indirectly using An, bn, P

(n), and P(n+1).

3.2.3. Selection of Truncation Parameter. The truncation parameter δ in
the δ-truncated SVD step affects the accuracy and the convergence speed. If δ is too
small, estimated TT-ranks may increase fast and the computational cost can become

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 15

high. If δ is too large, on the other hand, the algorithm may not be able to achieve
desired accuracy. Hence, a δ value determines the trade-off between computational
cost and accuracy. We note that Oseledets [41] considered δ0 = (N − 1)−1/2ǫ in the
context of low-rank approximation, and Lee and Cichocki [39] set δ = 100δ0 for the
first N−1 iterations and then set δ = δ0 for the rest of the iterations. In our numerical
simulations in this paper, we used a fixed value δ = 10−6(N−1)−1/2 unless mentioned
otherwise.

3.2.4. Conditioning of Local Optimization Problems. Note that the con-
tracted matrix An in the expression (3.4) is symmetric and positive definite, and the
frame matrixP6= has orthonormal columns if the TT-cores P(m) (m = 1, . . . , n−1) are
left-orthogonalized and P(m) (m = n+ 2, . . . , N) are right-orthogonalized. Assuming
the orthonormality of P6=, we can show that (see [28])

λmin(AAT) ≤ λmin(An) ≤ λmax(An) ≤ λmax(AAT),

where λmin(M) and λmax(M) are the minimum and maximum of the eigenvalues of a
real symmetric matrix M, respectively. Therefore, keeping the TT-cores either left-
and right-orthogonalized is important for running the MALS algorithm efficiently,
especially when we use any standard iterative method for solving local optimization
problems.

3.2.5. Avoiding Breakdowns. Some of the popular and efficient algorithms
for computing preconditioners suffer from unexpected failures (which is often referred
to as breakdowns) during the preconditioner construction step, e.g., in incomplete
factorization methods [5]. On the other hand, the proposed MALS algorithm is free
of such risks, because we can freely choose any efficient and reliable method for local
optimizations. In the experiments, we used the Matlab function gmres as a standard
iterative method for the computation of the solution to the reduced optimization
problems (3.6).

3.2.6. An Effect of Regularization to Convergence. The regularization
term not only alleviates the ill-posedness of the optimization problem (3.1) (or more
generally (3.10)), but also improves the convergence property of the proposed algo-
rithm.

Let P∗
λ be the global solution defined by (3.11), Pλ,t the estimate at the current

iteration (t = 0, 1, 2, . . .), and Rλ,t = AB − (AAT + λII)Pλ,t the residual. Since

AB = (AAT + λII)P
∗
λ for λ > 0, we can derive that (see also [3])

(3.19) ‖P∗
λ −Pλ,t‖

2
F ≤

∥

∥

∥
(AAT + λII)

−1
∥

∥

∥

2

2
‖Rλ,t‖

2
F ≤ κ2

2(λ) · ‖P
∗
λ‖

2
F ·

‖Rλ,t‖
2
F

‖AB‖
2
F

,

where κ2(λ) = ‖AAT + λII‖2‖(AAT + λII)
−1‖2 is the spectral condition number of

the matrix AAT+λII . It is clear that the larger the λ value is, the smaller the values
of κ2(λ) and ‖P∗

λ‖
2
F become. So, the regularization with λ > 0 reduces multiplicative

factors on the right-hand side of (3.19), which improves the convergence speed of the
current estimate Pλ,t to the global solution P∗

λ.

3.2.7. Preconditioning of Large-Scale Systems of Linear Equations. The
estimated pseudoinverse can be helpful for preconditioning of system of linear equa-
tions (see, (1.2).) By using the estimated preconditioner, we can convert overde-
termined or underdetermined systems of linear equations into well-posed determined

16 N. LEE AND A. CICHOCKI

systems. In addition, any nonsymmetric data matrix A can be converted to a square
symmetric matrix approximately, as stated in the following proposition.

Proposition 3.2 (Symmetricity). Let A ∈ R
I×J denote a given matrix with

I ≥ J , P∗
λ ∈ R

I×J the minimizer of Fλ(P) defined in (3.11) and (3.12) with B = IJ ,
Fmin

λ the minimum value defined in (3.16), and

(3.20) Gλ(P) = Fλ(P)− Fmin

λ .

Then, it holds that, for any λ ≥ 0 and P ∈ R
I×J ,

(3.21)
∥

∥PTA−ATP
∥

∥

2

F
≤ 2Gλ(P)− 2λ ‖P−P∗

λ‖
2
F .

For the proof of Proposition 3.2, we formulate the following lemma, which can be
derived immediately after some algebraic manipulation.

Lemma 3.3. For λ ≥ 0,

Gλ(P) = Fλ(P)− Fλ(P
∗
λ) =

∥

∥PTA−P∗T
λ A

∥

∥

2

F
+ λ ‖P−P∗

λ‖
2
F .(3.22)

Proof. Proof of Proposition 3.2. From Lemma 3.3, it follows that

∥

∥PTA−ATP
∥

∥

2

F
=

∥

∥PTA−P∗T
λ A+P∗T

λ A−ATP
∥

∥

2

F
≤ 2

∥

∥PTA−P∗T
λ A

∥

∥

2

F

= 2Gλ(P) − 2λ ‖P−P∗
λ‖

2
F .

The distribution of the eigenvalues and the singular values of the preconditioned
matrix PTA affects the convergence of an iterative method. The following theorem
states that the eigenvalues and the singular values of PTA obtained by the proposed
method can be made close to the eigen/singular values of the matrix P∗T

λ A by de-
creasing the Gλ(P) value.

Theorem 3.4. Let A,P∗
λ ∈ R

I×J (I ≥ J) and Gλ(P) be defined as in Proposi-
tion 3.2. Then, for any λ ≥ 0 and P ∈ R

I×J ,

J
∑

r=1

∣

∣λr([P
TA]S)− λr(P

∗T
λ A)

∣

∣

2
≤ Gλ(P) − λ ‖P−P∗

λ‖
2
F ,(3.23)

J
∑

r=1

∣

∣σr(P
TA)− σr(P

∗T
λ A)

∣

∣

2
≤ Gλ(P) − λ ‖P−P∗

λ‖
2
F ,(3.24)

where [N]S = (N+NT)/2, λr(M) are the eigenvalues of a real symmetric matrix M,
σr(N) are the singular values of a matrix N, and both λr(M) and σr(N) are arranged
in decreasing order.

Proof. Since for anyM ∈ R
J×J , it holds that ‖M‖2F−‖[M]S‖

2
F = ‖M−MT‖2F/4 ≥

0, we can derive, by the substitution M = PTA−P∗T
λ A, that

∥

∥PTA−P∗T
λ A

∥

∥

2

F
≥

∥

∥[PTA]S −P∗T
λ A

∥

∥

2

F
.

We can expand the right hand side of the above inequality as

(3.25)
∥

∥[PTA]S −P∗T
λ A

∥

∥

2

F
=

∥

∥[PTA]S
∥

∥

2

F
+
∥

∥P∗T
λ A

∥

∥

2

F
− 2 · trace

(

[PTA]S ·ATP∗
λ

)

.

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 17

Note that, for a matrix M ∈ R
J×J with a Shur decomposition M = QTQT, we have

‖M‖2F = ‖T‖2F ≥ ‖diag(T)‖22 =

J
∑

r=1

|λr(M)|2.

As it is stated in [37, Lemma II.1], the following relations hold: for any J×J Hermitian
matrices M and N,

J
∑

r=1

λr(M)λJ−r+1(N) ≤ trace(MN) ≤

J
∑

r=1

λr(M)λr(N).

By using the above inequalities, we can derive that

∥

∥[PTA]S −P∗T
λ A

∥

∥

2

F
≥

J
∑

r=1

(

|λr([P
TA]S)|

2 + |λr(P
∗T
λ A)|2 − 2λr([P

TA]S)λr(P
∗T
λ A)

)

=

J
∑

r=1

∣

∣λr([P
TA]S)− λr(P

∗T
λ A)

∣

∣

2
.

(3.26)

The result in (3.23) follows using Lemma 3.3.
To prove the result in (3.24), we use the expression

(3.27)
∥

∥PTA−P∗T
λ A

∥

∥

2

F
=

∥

∥PTA
∥

∥

2

F
+
∥

∥P∗T
λ A

∥

∥

2

F
− 2 · trace

(

PTA ·ATP∗
λ

)

.

For a matrix M ∈ R
J×J , we have ‖M‖2F =

∑J
r=1 |σr(M)|2. By applying the von

Neumann’s trace inequality [40], which states that, for J × J matrices M and N,

|trace(MN)| ≤

J
∑

r=1

σr(M)σr(N),

we can finally derive that

∥

∥PTA−P∗T
λ A

∥

∥

2

F
≥

J
∑

r=1

∣

∣σr(P
TA)− σr(P

∗T
λ A)

∣

∣

2
.

Similarly, we can obtain the result in (3.24) by using Lemma 3.3.
From (3.23) of Theorem 3.4, we can say that the eigenvalues of the matrix [PTA]S

can become close to those of the symmetric positive semidefinite matrix P∗T
λ A when

Gλ(A) is small enough. If A is of full column rank, then the smallest eigenvalue
of [PTA]S can approach to λJ (P

∗T
λ A) = σ2

J/(σ
2
J + λ) > 0, where σj = σj(A), so

the preconditioned matrix PTA can also become positive definite. In addition, from
(3.24) of Theorem 3.4, the spectral condition number of PTA also can be made close
to that of P∗T

λ A by decreasing Gλ(P) gradually.

3.2.8. Computational Complexity. The most time-consuming step in the
MALS algorithm is the optimization step for solving the reduced optimization prob-
lems (3.6). Let Q = maxn(In, Jn), R = maxn(Rn), and RA = maxn(R

A
n). For a fast

computation of the solution, we can apply standard iterative methods such as the
gmres in Matlab for solving the system of linear equations (An+λIRn−1KnKn+1Rn+1

)x

18 N. LEE AND A. CICHOCKI

R RRA RA
Q Q

Q Q

R RA RA
Q Q

Q Q

RA

Q

R RA
Q

Q Q

RA

QQ

RA

R

Q

Q Q

R

RA

Q

RA

RA

Q

R

Q

Q

Q

RA

RA

QQ

RAR RRR

A
(n+1)

A
(n)

A
(n+1)

A
(n)

X

R
>n+1
1

L
<n
1

Fig. 6. A procedure for the sequential computation of the matrix-by-vector multiplica-
tion Anx with a vector x ∈ R

Rn−1InJnIn+1Jn+1Rn+1 , which can be carried out by a sequen-
tial contraction of the tensors {L<n

1 , X , A(n), A(n), A(n+1), A(n+1), R>n+1
1 }, where X ∈

R
Rn−1×In×Jn×In+1×Jn+1×Rn+1 is a 6th-order tensor. The mode sizes are denoted for simplic-

ity by Q = maxn(In, Jn), R = maxn(Rn), and RA = maxn(RA
n).

= bn. In this case, the matrix An does not need to be computed explicitly, instead
the matrix-by-vector multiplication Anx can be computed faster by the gradual (re-
cursive) contraction of the tensors {L<n

1 , X , A(n), A(n), A(n+1), A(n+1), R>n+1
1 }, as

illustrated in Figure 6. The computational complexity for the multiplication Anx is
O(R3R2

AQ
4 + R2R3

AQ
5). Since the computational cost for each iteration is indepen-

dent of the order N if R,RA, and Q are bounded, the total computational cost for
optimizing every TT-cores is logarithmic in the matrix size QN ×QN .

On the other hand, the explicit computation of the matrix An can be performed
by the iterative contraction of the tensors {L<n

1 , A(n), A(n), A(n+1), A(n+1), R>n+1
1 },

and its computational complexity is O(R4R2
AQ

4 + R2R3
AQ

5). Moreover, a direct
method, such as the LU factorization or the pseudoinverse, for solving the system
Anx = bn can cost up to O(R6Q6).

The estimated preconditioner is reusable and does not need to be updated during
the process of solving the preconditioned system of linear equations. However, the
preconditioner P in the TT format needs to take small TT-ranks because the product
PTA increases the TT-ranks [41]. Note that in the case of sparse approximate inverse
preconditioning techniques [5], similarly, the product PTA would deteriorate sparsity
of A even if both P and A are sparse. In such cases, the preconditioning can be
performed implicitly.

4. Numerical Simulations. In the simulation study, we considered several ma-
trices including rectangular matrices and nonsymmetric matrices in order to check va-
lidity and evaluate performance of the proposed MALS algorithm. We also compared
the proposed method with an alternative method which applies a “standard” MALS
method to solve the large scale system of linear equations (see also [43])

(4.1) (IJ⊗AAT + λII⊗IJ)vec(P) = vec(A).

In practice, the matrix IJ⊗AAT is represented in matrix TT format with 4th-order
TT-cores of the sizes (RA

n−1)
2 × InJn × InJn × (RA

n)
2, n = 1, 2, . . . , N . Due to

the relatively large sizes of the TT-cores, the computational cost for the matrix-by-
vector multiplication in the standard MALS algorithm has complexity ofO(R3R2

AQ
4+

R2R4
AQ

6) [43].
The TT-ranks of the estimated pseudoinverse were bounded by R = (50, . . . , 50).

We repeated the simulations 30 times with random initializations and averaged the
results. In the simulation results, we calculated the value of the relative residual rλ
(3.15) as described in Section 3.2.2. Our code was implemented in Matlab. We used
the Matlab version of TT-Toolbox [42] for building and manipulating TT formats for
large-scale matrices and vectors. Simulations were performed on a desktop computer

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 19

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

j=0,1,…,2N−1

σ j

B=0.3
B=0.5
B=0.7

0 5 10 15 20 25 30
0

0.01

0.1

1

k=0,1,…,2N−1

c k

(a) σj (b) ck

Fig. 7. (a) The (unordered) prescribed eigen/singular values σj of the 2N ×2N circulant matrix
C and (b) the entries ck of C, with N = 5 and various values of B = 0.3, 0.5, 0.7. The rectangular

matrix A ∈ R
2N+1×2N has the same singular values as C.

with an Intel Core i7 4960X CPU at 3.60 GHz with 32 GB of memory running
Windows 7 Professional and Matlab R2010b.

4.1. Example 1: Rectangular Circulant Matrices with Prescribed Sin-

gular Values. Rectangular matrices A ∈ R
2N+1×2N were defined by A = 1√

2

[

C
C

]

,

whereC = [ci−j]ij ∈ R
2N×2N are circulant matrices, i.e., ck = ck−2N , k = 0, 1, . . . , 2N−

1, whose entries were determined in the following way. The (unordered) eigen/singular
values of C were first prescribed by, with J = 2N , (see, Figure 7(a))

σj = f(j) =
1

B
max

(

0,

∣

∣

∣

∣

j

J
− 0.5

∣

∣

∣

∣

+B − 0.5

)

, B > 0, j = 0, . . . , J − 1.

Then, the entries ck of the circulant matrix C were determined by the discrete Fourier
inverse transform (IFFT) of the eigen/singular values [13], i.e., (see, Figure 7(b))

ck = ifft(σj) =
1

J

J−1
∑

j=0

σj exp

(

2πijk

J

)

.

The very large scale vector [ck]k represented in TT format can be efficiently com-
puted by the QTT-FFT algorithm [16], which is available in TT-Toolbox [42]. By
construction, the matrix A has the same singular values as C. We note that A is
ill-conditioned when B ≤ 0.5.

Figure 8 illustrates that the relative residual decreases monotonically as the iter-
ation proceeds. From Figure 8(a), we can see that the proposed algorithm converges
relatively fast within one or two full sweeps (1 full sweep is equal to 2(N − 2) itera-
tions) in the case that λ > 0, and the TT-ranks of the estimated pseudoinverse also
remain at low values. On the other hand, without regularization (i.e., λ = 0), we can
see that the convergence is slow, and the TT-ranks also grow very quickly during the
iteration process.

For comparison of the computational costs, we set the tolerance parameter at
ǫ = 0.2. Figure 9 illustrates the computational costs and the estimated TT-ranks
by the proposed MALS algorithm (MALS-PINV) and the standard MALS algorithm

20 N. LEE AND A. CICHOCKI

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

Iteration

r λ

N=50, B=0.5

λ=0.001
λ=0.0001
λ=0

0 50 100 150 200 250 300
0

10

20

30

40

50

Iteration

m
ax

(R
n)

N=50, B=0.5

(a) Relative residual (b) Maximum of TT-ranks

Fig. 8. Convergence of the proposed MALS algorithm for various values of the regularization
parameter λ for the 2N+1 × 2N rectangular circulant matrices with prescribed singular values and
N = 50, B = 0.5. (a) Relative residual versus iteration, and (b) maximum of the TT-ranks of the
estimated pseudoinverse versus iteration. The markers on the lines indicate half-sweeps, i.e., every
N − 2 iterations.

(Std MALS), for various values of 20 ≤ N ≤ 100 and B ∈ {0.3, 0.5, 0.7}. Some values
of the computational time are not displayed in the figure if it was larger than 360
seconds. We can see that the computational costs increased only logarithmically with
the matrix size 2N+1 × 2N . The computation time of the proposed MALS algorithm
was much smaller than that of the standard MALS algorithm (typically, by one or
even two orders) as analyzed theoretically in Section 3.2.8 and in the first paragraph
of Section 4. Moreover, the computation time for the regularized optimization with
λ > 0 was shorter than that for the optimization without regularization, i.e., λ = 0.
In addition, for the case of ill-conditioned matrices with either B = 0.3 or B =
0.5, no regularization with λ = 0 resulted in large estimated TT-ranks and high
computational costs, whereas the regularization with λ > 0 significantly reduced
estimated TT-ranks and also computational costs.

4.2. Example 2: Randomly Generated Matrices with Prescribed Singu-

lar Values. Nonsymmetric matricesA ∈ R
2N×2N were constructed inN -dimensional

matrix TT format using

A = UΣVT,

where Σ = diag(σ0, σ1, . . . , σ2N−1) is a diagonal matrix of singular values, and U and
V are 2N × 2N orthogonal matrices with TT-ranks equal to 1, i.e.,

U = U(1) ⊗ · · · ⊗U(N), V = V(1) ⊗ · · · ⊗V(N),

and U(n) ∈ R
2×2 and V(n) ∈ R

2×2 are randomly generated orthogonal matrices. The
singular values were determined by

σj = 10−
j

JK0 , j = 0, 1, . . . , 2N − 1,

for fixed 0 < K0 ≤ 1. The largest singular value is equal to 1, and the singular values
decay to zero as the index j increases in a rate determined by K0. The TT-ranks of
the matrix A and the inverse A−1 are the same as those of Σ and Σ−1, respectively,
which are RA

n = RA−1

n = 1 (1 ≤ n ≤ N − 1).

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 21

20 40 60 80 100

10
0

10
2

N

T
im

e
(s

)

B=0.3

20 40 60 80 100

10
0

10
2

N

T
im

e
(s

)

B=0.5

Std MALS, λ=0
MALS−PINV, λ=0
Std MALS, λ=0.1
MALS−PINV, λ=0.1

20 40 60 80 100

10
0

10
2

N

T
im

e
(s

)

B=0.7

20 40 60 80 100
0

10

20

30

40

50

N

m
ax

(R
n)

B=0.3

20 40 60 80 100
0

10

20

30

40

50

N

m
ax

(R
n)

B=0.5

20 40 60 80 100
0

10

20

30

40

50

N

m
ax

(R
n)

B=0.7

Std MALS, λ=0
MALS−PINV, λ=0
Std MALS, λ=0.1
MALS−PINV, λ=0.1

(a) B = 0.3 (b) B = 0.5 (c) B = 0.7

Fig. 9. Computational cost versus N (top row) and maximum of the estimated TT-ranks
versus N (bottom row), for the 2N+1 × 2N rectangular circulant matrices with various values of
20 ≤ N ≤ 100, B ∈ {0.3, 0.5, 0.7}, and λ ∈ {0, 0.1}. Some values of the computational time are
not displayed in the figure if it was larger than 360 seconds. Std MALS means the standard MALS
method applied for solving the linear system (4.1), and MALS-PINV means the proposed MALS
method.

Figure 10 illustrates the convergence of the proposed MALS algorithm for various
values of the regularization parameter λ for the matrices with N = 50 (250 × 250 ∼
1015× 1015) and K0 = 0.5. The convergence was monotonic, i.e., the relative residual
was nonincreasing during the iteration process. The larger λ values resulted in larger
relative residual values, as described in Section 3.2.2. Since the matrix A is not ill-
conditioned when K0 = 0.5, the convergence was relatively fast, and the estimated
TT-ranks were small. In Figure 10(b), when λ = 0 the estimated TT-ranks were
Rn = 1, which are equal to the true TT-ranks of the inverse A−1.

Figure 11(a) shows that the obtained minimal relative residual values were not
different for various values of N , but they were different over various values of K0.
In addition, Figure 11(b) shows that the relative residual values were different for
various values of the regularization parameter λ. The simulation results illustrated
in Figures 11(a) and (b) are consistent and in agreement with the analysis in Sec-
tion 3.2.2.

4.3. Example 3: Laplace Operator. The 1-D discrete Laplace operator of
size 2N × 2N with Dirichlet-Dirichlet boundary condition is considered [30]:

A = tridiag(−1, 2,−1) ∈ R
2N×2N .

The matrix A is square and symmetric, and its explicit TT representation and TT-
ranks were already investigated and presented in [30]. The TT-ranks of the inverse
A−1 are also known to be (R1, R2, . . . , RN−1) = (4, 5, 5, . . . , 5, 4) [30].

Figure 12 illustrates the convergence of the MALS algorithm for various values
of λ ∈ {0, 10−6, 10−4, 10−2} and a fixed N = 60. The relative residual decreased
monotonically, but the convergence was slow when the λ value was small in the range
λ ∈ {0, 10−6}. In Figure 12(b), for the small λ values, the maximum of the estimated

22 N. LEE AND A. CICHOCKI

0 50 100 150 200 250 300
10

−15

10
−10

10
−5

10
0

Iteration

r λ

N=50, K
0
=0.5

λ=0.01
λ=0.0001
λ=1e−006
λ=1e−008
λ=0

0 50 100 150 200 250 300
0

2

4

6

8

10

Iteration

m
ax

(R
n)

N=50, K
0
=0.5

(a) Relative residual (b) Maximum of TT-ranks

Fig. 10. Convergence of the MALS algorithm for various values of the regularization parameter
λ for the 2N × 2N randomly generated matrices with prescribed singular values and N = 50 and
K0 = 0.5. (a) Relative residual versus iteration, and (b) maximum of the TT-ranks of the estimated
pseudoinverse versus iteration. The markers on the lines indicate half-sweeps, i.e., every N − 2
iterations.

0.1 0.2 0.3 0.4 0.5 0.6
10

−15

10
−10

10
−5

10
0

K
0

r λ

λ=0

N=10
N=20
N=30
N=40
N=50

0.1 0.2 0.3 0.4 0.5 0.6
10

−15

10
−10

10
−5

10
0

K
0

r λ

N=50

λ=0.01
λ=0.0001
λ=1e−006
λ=1e−008
λ=0

(a) λ = 0, N ∈ {10, . . . , 50} (b) λ = {0, . . . , 0.01}, N = 50

Fig. 11. (a) Relative residual (rλ) versus K0 for various values of N , and (b) relative residual
(rλ) versus K0 for various values of the regularization parameter λ, for the 2N × 2N randomly
generated matrices with prescribed singular values.

TT-ranks increased largely during the iteration process, whereas for the larger λ
values (λ = 10−4, 10−2), the TT-ranks were relatively small. Note that the values
λ = 10−4, 10−2 are still relatively small compared to the diagonal entries of AAT

in (3.11), which are 5 or 6. We can conclude that the regularization with a λ > 0
value is necessary to obtain low-rank approximate pseudoinverses of ill-conditioned
large-scale matrices.

The computational costs for the estimation of the pseudoinverses are illustrated in
Figure 13 together with the estimated maximum TT-ranks. It is illustrated that the
computational time increased logarithmically with the matrix size 2N × 2N , and the
estimated TT-ranks were bounded over all N values. Moreover, the proposed MALS
algorithm needs shorter computational time than the standard MALS algorithm.

4.4. Example 4: Convection-Diffusion Equation. In order to demonstrate
the effectiveness of the proposed algorithm in preconditioning nonsymmetric systems

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 23

0 200 400 600 800
10

−2

10
−1

10
0

Iteration

r λ

N=60

λ=0.01
λ=0.0001
λ=1e−006
λ=0

0 200 400 600 800
0

10

20

30

40

50

Iteration

m
ax

(R
n)

N=60

(a) Relative residual (b) Maximum of TT-ranks

Fig. 12. Convergence of the proposed MALS algorithm illustrated by (a) relative residual (rλ)
and (b) maximum of the TT-ranks of the estimated pseudoinverses, for various values of the regu-
larization parameter λ for the 260 × 260 discrete Laplace operator (N = 60). The markers on the
lines indicate half-sweeps, i.e., every N − 2 iterations.

20 40 60 80 100
10

−1

10
0

10
1

10
2

N

T
im

e
(s

)

Std MALS, λ=0
MALS−PINV, λ=0
Std MALS, λ=0.01
MALS−PINV, λ=0.01

20 40 60 80 100
0

10

20

30

40

50

60

70

80

N

m
ax

(R
n)

Std MALS, λ=0
MALS−PINV, λ=0
Std MALS, λ=0.01
MALS−PINV, λ=0.01

(a) Computation time (b) Maximum of TT-ranks

Fig. 13. (a) Computation time and (b) maximum of the TT-ranks of the estimated pseudoin-
verse, for the 2N × 2N discrete Laplace operators for various values of the regularization parameter
λ ∈ {0, 10−2}. Std MALS means the standard MALS method applied for solving the linear system
(4.1), and MALS-PINV means the proposed MALS method.

of linear equations, we consider the 3-D convection-diffusion equation on the unit cube
[0, 1]3 described in [49]:

(4.2) uxx + uyy + uzz + cux = f,

where the function f is defined by the solution

(4.3) u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).

By finite difference discretization, each axis is discretized by 2M + 2 grid points in-
cluding the boundary points. The number of equations is 2M · 2M · 2M = 23M = 2N

with N = 3M . We set c = 2N−10. It is noted in [49] that the matrix A is a strongly
nonsymmetric matrix, and it has eigenvalues with large imaginary parts, which slow
the convergence of conjugate gradient-type algorithms such as Bi-CGSTAB.

First, the regularized inverses of the coefficient matrix were estimated by the
proposed algorithm. Figure 14 illustrates the convergence of the proposed algorithm

24 N. LEE AND A. CICHOCKI

0 100 200 300
10

−3

10
−2

10
−1

10
0

Iteration

r λ

N=30, λ=0.0001

δ=2*10−3

δ=2*10−5

δ=2*10−7

0 100 200 300
0

10

20

30

40

50

Iteration

m
ax

(R
n)

N=30, λ=0.0001

(a) Relative residual (b) Maximum of TT-ranks

Fig. 14. Convergence of the proposed MALS algorithm for various values of the truncation pa-
rameter δ = 2 · 10−3, 2 · 10−5, 2 · 10−7 for the discretized convection-diffusion equation with N = 30
and λ = 10−4. (a) Relative residual and (b) maximum of the TT-rank of the estimated pseudoin-
verse. The markers on the lines indicate half-sweeps, i.e., every N − 2 iterations.

15 30 45 60 75 90
10

−1

10
0

10
1

10
2

N

T
im

e
(s

)

λ=1e−006
λ=0.0001
λ=0.01

15 30 45 60 75 90
0

10

20

30

40

50

N

m
ax

(R
n)

λ=1e−006
λ=0.0001
λ=0.01

15 30 45 60 75 90
10

−6

10
−4

10
−2

10
0

N

r λ

(a) Computation time (b) Maximum of TT-ranks (c) Relative residual

Fig. 15. (a) Computation time, (b) maximum of the estimated TT-ranks, and (c) relative resid-
uals obtained by the proposed MALS algorithm for the 2N ×2N coefficient matrix of the convection-
diffusion equation for various values of the regularization parameter λ = 10−6, 10−4, 10−2.

for three truncation parameter values: δ = 2 · 10−3, 2 · 10−5, and 2 · 10−7. We can
see that smaller δ values result in a faster convergence per each iteration, but the
TT-ranks also increase faster, which may cause high computational costs. On the
other hand, a too large value of δ may result in large relative residuals. Since the
TT-ranks of the estimated pseudoinverse influence the computational cost in the next
step of solving a preconditioned system of linear equations, it is important to balance
the approximation accuracy and TT-ranks of the estimated pseudoinverse.

Figure 15 illustrates the computation time for the estimation of the regularized
pseudoinverses, for various values of N and regularization parameter λ, when the
truncation parameter was set at δ = 10−4(N − 1)−1/2. Large λ value, e.g., λ = 0.01,
resulted in relatively small TT-ranks and short computation time for N = 15, 90.

Next, we computed solutions to the convection-diffusion equation (4.2) numer-
ically by using the function dmrg solve2 [43] in TT-Toolbox [42], where the linear
equation was either preconditioned or not by the estimated regularized pseudoinverse.
For solving local optimization problems in the dmrg solve2, we used one of the three
different Matlab functions, gmres, bicgstab, and pcg, in order to compare them
for solving nonsymmetric systems of linear equations. However, we found almost no
differences in performances between them in this simulation, so, we only presented
the results of the bicgstab. The dmrg solve2 algorithm converged to the relative

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 25

15 30 45 60 75 90
10

−1

10
0

10
1

10
2

N

T
im

e
(s

)

DMRG(A)

DMRG(PTA)

15 30 45 60 75 90
10

−1

10
0

10
1

10
2

N

T
im

e
(s

)

DMRG(A)

DMRG(PTA)

(a) λ = 100 (b) λ = 10−6

Fig. 16. Comparison of the performances of the numerical solution algorithm (dmrg solve2

[42, 43]) for solving of the linear systems without preconditioning (DMRG(A)) and preconditioned
systems (DMRG(PTA)) described in Section 4.4. For local optimizations for dmrg solve2, the
Matlab function bicgstab was applied for the cases that (a) λ = 100 and (b) λ = 10−6.

residual tolerance of 10−4 within 20 full-sweeps mostly (one full-sweep is equivalent
to solving the local problems 2(N − 2) times) for 15 ≤ N ≤ 90. The computational
costs for solving the linear systems are illustrated in Figures 16(a) and (b), where the
preconditioned systems were solved much faster than without preconditioning. The
estimated TT-ranks of the solution x ranged between 10 and 15 and were almost con-
stant as N increased (although not presented here), implying that the computational
costs were affected mostly by the convergence of the local algorithm. In addition, it
should be noted that the computational costs for solving the square linear systems as
illustrated in Figure 16 were lower than the costs for the preconditioner computation
in Figure 15(a).

5. Conclusion and Discussion. We presented a new MALS algorithm for the
computation of approximate pseudoinverses of extremely large-scale structured ma-
trices using low-rank TT decomposition. The proposed method can estimate the
Moore-Penrose pseudoinverses of any nonsymmetric or nonsquare structured matrices
in low-rank matrix TT format approximately, so it can be useful for preconditioning
overdetermined or underdetermined large-scale systems of linear equations.

The proposed method provides stability and the fast convergence speed even for
very ill-conditioned large-scale matrices by regularization. The regularized solutions
were shown to have relatively small TT-ranks in the numerical simulations, so the
computational costs for the construction of preconditioners and solution to huge sys-
tems of linear equations were significantly smaller than without regularization. The
regularization technique is especially important when the size of a data matrix is huge
and ill-conditioned.

The proposed algorithm converts the large-scale minimization problem into se-
quential smaller-scale optimization problems to which any standard optimization
methods can be applied. The convergence to the desired solution is stable and rela-
tively fast because the TT-ranks of the approximate inverses can be adaptively deter-
mined during the iteration process, and the decrease in the objective function value
is monotonic. The computational cost for running the proposed MALS algorithm is
logarithmic in the matrix size under the assumption of boundedness of TT-ranks.

The estimated pseudoinverses were applied to preconditioning of the strongly

26 N. LEE AND A. CICHOCKI

nonsymmetric matrix occurring in systems of linear equations in the convection-
diffusion equation problem. Several standard iterative algorithms such as GMRES,
Bi-CGSTAB, and PCG showed the improved convergence in the numerical simula-
tions, which demonstrate the effectiveness of the proposed algorithm by precondition-
ing and symmetrizing the coefficient matrix.

The main advantage of the proposed method lies in its applicability to any rect-
angular huge structured matrices. Moreover, the regularization technique employed
in the proposed method helps to compute approximate pseudoinverses reliably for any
ill-conditioned structured matrices which admit low-rank TT approximations.

The developed algorithm can further be directly applied to the following ar-
eas. First, the computation of regularized Moore-Penrose pseudoinverses is closely
related to the regularized (filtered) solution of systems of linear equations Ax = b,
by x̂ = P∗T

λ b, where P∗T
λ ≈ A† [7, 8]. Second, the large scale generalized eigenvalue

decomposition (GEVD) problem described by Ax = λBx for a square matrix A
and a nonsingular square matrix B [21] can be transformed to a standard eigenvalue
decomposition problem B−1Ax = λx if the large-scale inverse matrix B−1 can be
approximately computed in TT format efficiently. Once the large-scale matrices A
and B−1 are represented in TT format, the multiplication B−1A can be relatively
easily performed [41]. Third, a special case of the optimization problem (3.10) arises
in important subspace clustering problems [54], which can also be efficiently solved
using the proposed algorithm based on TT decompositions.

REFERENCES

[1] R. Andreev and C. Tobler, Multilevel preconditioning and low-rank tensor iteration for
space-time simultaneous discretizations of parabolic PDEs, Numer. Linear Algebra Appl.,
22 (2015), pp. 317–337.

[2] J. C. A. Barata and M. S. Hussein, The Moore-Penrose pseudoinverse: A tutorial review of
the theory, Braz. J. Phys., 42 (2012), pp. 146–165.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, 1994.

[4] D. Braess and W. Hackbusch, Approximation of 1/x by exponential sums in [1,∞), IMA J.
Numer. Anal., 25 (2005), pp. 685–697.

[5] M. Benzi and M. Tůma, A comparative study of sparse approximate inverse preconditioners,
Appl. Numer. Math., 30 (1999), pp. 305–340.

[6] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc.
Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[7] J. Chung and M. Chung, An efficient approach for computing optimal low-rank regularized
inverse matrices, Inverse Problems, 30 (2014), 114009.

[8] J. Chung, M. Chung, and D. P. O’Leary, Optimal regularized low rank inverse approxima-
tion, Linear Algebra Appl., 468 (2015), pp. 260–269.

[9] A. Cichocki, Era of big data processing: A new approach via tensor networks and tensor
decompositions, arXiv:1403.2048, 2014.

[10] A. Cichocki, Tensor networks for big data analytics and large-scale optimization problems,
arXiv:1407.3124, 2014.

[11] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Fac-
torizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Sep-
aration, Wiley, Chichester, 2009.

[12] X. Cui and K. Hayami, Generalized approximate inverse preconditioners for least squares
problems, Japan J. Indust. Appl. Math., 26 (2009), pp. 1–14.

[13] P. J. Davis, Circulant matrices, Wiley, New York, 1979.
[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-

position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
[15] S. V. Dolgov, TT-GMRES: Solution to a linear system in the structured tensor format,

Russian J. Numer. Anal. Math. Model., 28 (2013), pp. 149–172.

PSEUDOINVERSE COMPUTATION USING TENSOR TRAIN 27

[16] S. Dolgov, B. Khoromskij, D. Savostyanov, Superfast Fourier transform using QTT ap-
proximation, J. Fourier Anal. Appl., 18 (2012), pp. 915–953.

[17] S. V. Dolgov and D. V. Savostyanov,Alternating minimal energy methods for linear systems
in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271.

[18] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider, Optimization problems in
contracted tensor networks, Comput. Vis. Sci., 14 (2011), pp. 271–285.

[19] A. Falcó and W. Hackbusch, On minimal subspaces in tensor representations, Found. Com-
put. Math., 12 (2012), pp. 765–803.

[20] L. Giraldi, A. Nouy, and G. Legrain, Low-rank approximate inverse for preconditioning
tensor-structured linear systems, SIAM J. Sci. Comput., 36 (2014), pp. A1850–A1870.

[21] G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition, Johns Hopkins
University Press, Baltimore, 1996.

[22] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054.

[23] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitt., 36 (2013), pp. 53–78.

[24] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[25] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012.
[26] W. Hackbusch and S. Kühn, A new scheme for the tensor representation. J. Fourier Anal.

Appl., 15 (2009), pp. 706–722.
[27] S. Holtz, T. Rohwedder, and R. Schneider, On manifolds of tensors of fixed TT-rank,

Numer. Math., 120 (2012), pp. 701–731.
[28] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor opti-

mization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713.
[29] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the chemical mas-

ter equation using quantized tensor trains, PLoS Comput. Biol., 10 (2014), e1003359.
doi:10.1371/journal.pcbi.1003359

[30] V. A. Kazeev and B. N. Khoromskij, Low-rank explicit QTT representation of the Laplace
operator and its inverse, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 742–758.

[31] B. N. Khoromskij, Tensor-structured preconditioners and approximate inverse of elliptic op-
erators in R

d, Constr. Approx., 30 (2009), pp. 599–620.
[32] B. N. Khoromskij, O(dlogN)-quantics approximation of N-d tensors in high-dimensional

numerical modeling, Constr. Approx., 34 (2011), pp. 257–280.
[33] B. N. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey on

recent advances, Chemometr. Intell. Lab. Syst., 110 (2012), pp. 1–19.
[34] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51

(2009), pp. 455–500.
[35] D. Kressner, M. Steinlechner, and A. Uschmajew, Low-rank tensor methods with sub-

space correction for symmetric eigenvalue problems, SIAM J. Sci. Comput., 36 (2014),
pp. A2346–A2368.

[36] D. Kressner and C. Tobler, Preconditioned low-rank methods for high-dimensional elliptic
PDE eigenvalue problems, Comput. Methods Appl. Math., 11 (2011), pp. 363–381.

[37] J. B. Lasserre, A trace inequality for matrix product, IEEE Trans. Autom. Control, 40 (1995),
pp. 1500–1501.

[38] N. Lee and A. Cichocki, Fundamental tensor operations for large-scale data analysis in tensor
train formats, arXiv:1405.7786, 2014.

[39] N. Lee and A. Cichocki, Estimating a few extreme singular values and vectors for large-scale
matrices in tensor train format, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 994–1014.

[40] L. Mirsky, A trace inequality of John von Neumann, Monatsh. Math., 79 (1975), pp. 303–306.
[41] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[42] I. V. Oseledets, MATLAB TT-Toolbox, Version 2.3, June 2014,

https://github.com/oseledets/TT-Toolbox.
[43] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in the

TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739.
[44] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to

use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759.
[45] I. V. Oseledets, E. E. Tyrtyshnikov, and N. L. Zamarashkin, Tensor-train ranks of ma-

trices and their inverses, Comput. Meth. Appl. Math., 11 (2011), pp. 394–403.
[46] T. Rohwedder and A. Uschmajew, On local convergence of alternating schemes for opti-

mization of convex problems in the tensor train format, SIAM J. Numer. Anal., 51 (2013),
pp. 1134–1162.

28 N. LEE AND A. CICHOCKI

[47] D. V. Savostyanov, S. V. Dolgov, J. M. Werner, and I. Kuprov, Exact NMR simulation
of protein-size spin systems using tensor train formalism, Phys. Rev. B, 90 (2014), 085139.

[48] M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. A. K. Suykens, Learning with
tensors: A framework based on convex optimization and spectral regularization, Machine
Learning, 94 (2014), pp. 303–351.

[49] P. Sonneveld and M. B. van Gijzen, IDR(s): A family of simple and fast algorithms for
solving large nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 1035–
1062.

[50] L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer, Exact line and plane search
for tensor optimization, Comput. Optim. Appl. (2015), pp. 1–22. doi:10.1007/s10589-015-
9761-5

[51] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states,
Ann. Phys., 326 (2011), pp. 96–192.

[52] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, Breaking the curse of dimen-
sionality using decompositions of incomplete tensors: Tensor-based scientific computing
in big data analysis, IEEE Signal Process. Mag., 31 (2014), pp. 71–79.

[53] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B.,
48 (1993), pp. 10345–10356.

[54] Y.-L. Yu and D. Schuurmans, Rank/norm regularization with closed-form solutions: Appli-
cation to subspace clustering, in Proceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence, F. Cozman and A. Pfeffer, eds., AUAI Press, Corvallis,
Oregon, 2011, pp. 778–785.

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

r λ

N=50, B=0.3

λ=0.1
λ=0.01
λ=0.001
λ=0.0001
λ=0

0 50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

Iteration

r λ

N=50, B=0.7

0 200 400 600
10

−2

10
−1

10
0

Iteration

r λ

N=60

0 200 400 600
0

20

40

60

Iteration

m
ax

(R
n)

N=60

0 10 20 30 40 50 60
10

0

10
1

10
2

n=0,1,...,N

T
T

−
R

an
ks

, R
n

N=60

λ=0.01
λ=0.0001
λ=1e−006
λ=0

0 20 40 60
10

0

10
1

10
2

n=0,1,...,N

T
T

−
R

an
ks

, R
n

N=60

λ=0.01
λ=0.0001
λ=1e−006
λ=0

15 30 45 60 75 90
10

−1

10
0

10
1

10
2

Dimension, N

T
im

e
(s

)

DMRG(A) + GMRES
DMRG(A) + BICGSTAB
DMRG(A) + PCG

DMRG(PTA) + GMRES

DMRG(PTA) + BICGSTAB

DMRG(PTA) + PCG

