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Abstract

In this paper we present a general framework in which to rigorously study
the effect of spatio-temporal noise on traveling waves and stationary patterns.
In particular the framework can incorporate versions of the stochastic neural
field equation that may exhibit traveling fronts, pulses or stationary patterns.
To do this, we first formulate a local SDE that describes the position of the
stochastic wave up until a discontinuity time, at which point the position of
the wave may jump. We then study the local stability of this stochastic front,
obtaining a result that recovers a well-known deterministic result in the small-
noise limit. We finish with a study of the long-time behavior of the stochastic
wave.

1 Introduction
Deterministic traveling waves have been widely used to model phenomena in a huge
range of scientific areas, including chemical kinetics, population dynamics, combus-
tion, transport in porous media, electroconvection and neuroscience. More gener-
ally, equations that exhibit spatial patterns are ubiquitous in the biomedical sciences
and are a key lens through which emergent phenomena are studied (see for example
[25, 26, 30] and [31]). However, the effect of noise on these equations is much less
well-developed, and works in this direction have in the past tended to focus either
on specific situations (see for example [1, 17] for the case of the Ginzburg-Landau
equation or [10, 18] for the FKPP equation), or numerical approximations (see for
example [24]).

∗This work was partially supported by the European Union Seventh Framework Programme
(FP7) under grant agreement no. 269921 (BrainScaleS), no. 318723 (Mathemacs) and the Human
Brain Project (HBP).
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The goal of this paper is to introduce a framework in which it is possible to study
stochastic perturbations of traveling wave solutions to a general class of evolution
equations (which may include PDEs and integral equations). Our specific motivation
is the recent interest in stochastic versions of the neural field equation ([3, 4, 14, 23]).
The (deterministic) neural field equation and its variants are used in the neuroscience
literature to model the spatio-temporal dynamics of macroscopic cortical activity
(see [2] for a review). In particular, as outlined in more detail in Section 3 below,
one reason these equations are interesting is that they exhibit a traveling wave
solution of the form u(t, x) = ϕ0(x− ct) for all t ≥ 0, x ∈ R and some speed c ∈ R,
where the wave form ϕ0 satisfies the stationary equation

0 = Aϕ0 + f(ϕ0), (1.1)

and A and f are explicit linear and nonlinear operators respectively. Due to trans-
lation invariance, it follows that ϕα := ϕ0(·+ α) is also a solution for any α ∈ R, so
that we in fact have a family (ϕα)α∈R of solutions to (1.1). The stochastic evolution
equation of interest is then given by

dut = [Aut + f(ut)]dt+ εB(t)dWQ
t , t ≥ 0, (1.2)

whose solution (ut)t≥0 is a functional-valued process i.e. ut : R → R for all t ≥ 0.
Here ε > 0, (WQ

t )t≥0 is a Hilbert space-valued noise and B(t) is an operator-valued
diffusion coefficient made precise below. However, instead of working in the specific
case of these neural field equations, we instead formulate general conditions on A,
f and (ϕα)α∈R that allow us to study the effect of noise on a general class of wave
and pattern forms. The conditions are broad enough to include the important cases
of traveling fronts and pulses.

One of the main ideas used in our work (developing those presented in [4] and
[23]), is to compare the solution (ut)t≥0 of (1.2) to the family of deterministic fronts
(ϕα)α∈R. It is clear that if ε = 0 and u0 = ϕ0 then ut = ϕ0 for all t ≥ 0. However,
when ε > 0 the ‘stochastic front’ will move in time i.e. the noise will influence the
speed of the wave. To describe this movement, it is natural to consider the dynamics
of the global minimum of the map

α 7→ ‖ut − ϕα‖2, t ≥ 0, (1.3)

where ‖ · ‖ is the norm on an appropriate Hilbert space. Indeed, if α attains this
minimum, then ϕα is the front closest to ut, and we say that the stochastic front is
at position α ∈ R. However, a key point our analysis highlights is that the dynamics
of a global minimum of (1.3) may be quite complicated. In particular the global
minimum may not be uniquely defined, may be discontinuous as a function of time,
and there may exist many local minima (meaning that a gradient-descent method
to approximate the minimum of (1.3) may only converge towards one of many local
minimum).
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Despite these complications, in Section 5 below, we show that we can locally
describe the behavior of any local minimum of (1.3) with an SDE. This goes further
than the work of [4] and [23], since our description is exact rather than a first order
ε-expansion or an approximation. We can also see that the solution of the SDE
exists exactly up until the point at which the local minimum may become a saddle
point.

The second part of this work (Sections 6 and 7) focuses on the local stability for
small ε and long-time behavior of the stochastic wave fronts. An important result
from the deterministic literature on traveling waves is that under some conditions
(in particular on the spectrum of A) and in the case when ε = 0, if the initial
condition ‖u0 − ϕ0‖ is small enough, then there exists an α ∈ R such that

‖ut − ϕα‖ ≤Me−bt, t ≥ 0,

for some constantsM > 0 and b > 0 i.e. the solution to (1.2) converges exponentially
fast to one of the deterministic fronts. A natural question is therefore to ask if there
exist related results in the stochastic setting, where one can recover the deterministic
result in the limit as ε → 0. One of our main results (Corollary 6.4) does exactly
this. It is worth highlighting that our techniques do not involve any order expansions
in ε. The drawback of this result is that it is local in nature, since it guarantees
convergence only up until the first time that the noise becomes too big (although
of course this becomes infinite in the limit as ε → 0). The aim of the final section
(Section 7) is thus to try and study the long-time behavior of ‖ut − ϕβ∗t ‖

2, where
β∗t is any global minimum of the map (1.3) for all t ≥ 0. As mentioned above,
this analysis is complicated by the fact that the process β∗t is highly discontinuous.
However, we can still derive a description of ‖ut − ϕβ∗t ‖

2 for all t ≥ 0 under some
conditions (see Theorem 7.3).

The organization of the paper is as follows. In Section 2 we describe the general
deterministic setting we consider, and state our assumptions. Section 3 then goes
on to describe three motivating examples that fit into the general setting. Section 4
introduces the stochastic version of the general traveling wave equation, and shows
that such equations are well-posed, while in Section 5 we describe what we mean by
the position of the stochastic front. Finally, as mentioned, Sections 6 and 7 deal with
the local stability and long-time behavior of the stochastic wave fronts respectively.

Notation: As usual, C(Rd) and C∞(Rd) will denote the spaces of real-valued functions
on Rd that are continuous and smooth respectively. Moreover Lp(Rd) (p ≥ 1), will
be the space of p-integrable functions with respect to the Lebesgue measure on Rd.
Finally, for general Banach spaces E1, E2, we will denote by L(E1, E2) the space of
bounded linear operators : E1 → E2.
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2 General setting
Let E0 be a Banach space of RN -valued functions over Rd, for N, d ≥ 1. Let A and
f be linear and nonlinear operators respectively acting in E0. Suppose that there
exists a family (ϕα)α∈R ⊂ E0 such that

Aϕα + f(ϕα) = 0, ∀α ∈ R. (2.1)

Let H := [L2(Rd)]N , equipped with the standard inner product denoted by 〈·, ·〉 and
norm ‖ · ‖. Let E := ϕ0 +H (i.e. u ∈ E if and only if u = ϕ0 + v for some v in H),
endowed with the topology inherited from H.

We make use of the following assumptions on (ϕα)α∈R, f and A, which are similar
to those imposed in [30, Chapter 5].

Assumption 2.1. Assume that the family (ϕα)α∈R satisfies the following conditions.

(i) The derivatives [dk/dαk]ϕα (the derivatives being taken in the norm of the
space H) exist for k ∈ {1, 2, 3} and are all in the space H. We will denote
these derivatives by ϕ′α, ϕ′′α, and ϕ′′′α respectively.

(ii) α 7→ ϕ′α, ϕ
′′
α, ϕ

′′′
α are all globally Lipschitz, ‖ϕ′α‖, ‖ϕ′′α‖, ‖ϕ′′′α ‖ are all independent

of α, and integration by parts holds i.e. 〈ϕ′0, ϕ′0〉 = −〈ϕ′′0, ϕ0〉.

(iii) ϕ′α ∈ D(A∗) for all α ∈ R, α 7→ A∗ϕ′α is globally Lipschitz and ‖A∗ϕ′α‖ is
independent of α.

(iv) 〈ϕ′α, ϕ′β+α〉 → 0 as |β| → ∞, uniformly in α ∈ R, lim|α|→∞ |〈ϕ′α, ϕα−ϕ0〉| > 0
and either of the following hold:

(a) ‖ϕα − ϕ0‖ → ∞ as |α| → ∞; or

(b) ϕ0 ∈ H and ‖u− ϕα‖ → ‖ϕ0‖+ ‖u‖ as |α| → ∞, for all u ∈ E (= H).

It is worth noting that we do not assume that ϕ0 ∈ H necessarily. However,
under these assumptions we have that ϕα − ϕ0 ∈ H for any α ∈ R and therefore
ϕα + v ∈ E for all v ∈ H and α ∈ R.

Assumption 2.2. Assume that the nonlinear function f acting in E is such that:

(i) f is defined on all of E, and for all u ∈ E there exists f ′(u) ∈ L(H,H) such
that for all v ∈ H,

lim
h→0

∥∥∥∥f(u+ hv)− f(u)

h
− f ′(u)v

∥∥∥∥ = 0;

(ii) supu∈E ‖f ′(u)‖L(H,H) < ∞ (so that H 3 v 7→ f(ϕα + v) is globally Lipschitz
∀α ∈ R);
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(iii) the map H 3 v 7→ f ′(v + ϕα) is globally Lipschitz ∀α ∈ R.

Assumption 2.3. Assume that the operator A is such that:

(i) The restriction of A to H (also denoted by A) is the generator of a C0-
semigroup on H. Therefore (under Assumption 2.2 (i)) Lα = A + f ′(ϕα) :
H → H is also the generator of C0-semigroup on H for all α ∈ R.

(ii) The spectrum σ(Lα) of Lα is such that

σ(Lα) ⊂ {λ ∈ C : Re(λ) + a|Im(λ)| ≤ −b} ∪ {0},

for some positive constants a and b, independent of α. Note that by differentiat-
ing (2.1) with respect to α, 0 is always a simple eigenvalue of Lα corresponding
to eigenvector ϕ′α.

In what follows we will make precise at the start of each section which of these
assumptions are needed. In particular, we only use Assumption 2.3 (ii) in Section
6.

3 Examples
We will have two specific examples in mind that fit into this general setting: trav-
eling fronts and pulses. These are outlined in greater detail further below. However
our framework should be applicable to many other spatially-extended patterns, in-
cluding Turing-type instabilities of reaction-diffusion systems, mechanical buckling
or wrinkling, patterns in bacterial chemotaxis and a huge range of phenomena in
neuroscience (as typically modeled using neural field equations). See [26] for a survey
of all of the above, and [2, 6, 9, 12, 20] for a survey of applications in neuroscience.

3.1 Traveling fronts

One important example of a traveling front, that has motivated this work (and
should be kept in mind throughout), is the classical neural field equation in one
dimension. This equation has the following form:

∂tut(x) = −ut(x) +

∫
R
w(x− y)F (ut(y))dy, t ≥ 0, x ∈ R, (3.1)

where w ∈ C(R) ∩ L1(R) is the connectivity function, and F : R → R is a smooth
and bounded sigmoid function (known as the nonlinear gain function). It is known
(see [13] for example) that under some conditions on the functions w and F (in
particular that there exist precisely three solutions to the equation x = F (x) at 0, a
and 1 with 0 < a < 1), then there exists a unique (up to translations) function
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û ∈ C∞(R) and speed c ∈ R such that ut(x) = û(x− ct) is a solution to (3.1), where
û is such that

lim
x→−∞

û(x) = 0, lim
x→∞

û(x) = 1,

so that û is indeed a wave front. Note that in this case û itself is not in L2(R), but
it can be shown that all derivatives of û are bounded and in L2(R).

Substituting û(x−ct) into (3.1), we see that û is such that 0 = Aû+f(û), where
Au := cu′ − u and f(u) = w ∗ F (u), and ∗ denotes convolution as usual. Moreover,
due to translation invariance, we have that ûα := û(·+ α) is also such that

0 = Aûα + f(ûα), α ∈ R. (3.2)

We are thus in a specific situation of the general setup described in the previous
section, with H = L2(R) and ϕα := ûα. Indeed, it is straightforward to check that
Assumptions 2.1, 2.2 and 2.3 (i) are satisfied (in particular Assumption 2.1 (iv) (a))
since all derivatives of û are bounded and in L2(R). Assumption 2.3 (ii) is more
difficult to check and is the subject of recent and ongoing research (we are aware
for example of a forthcoming article by E. Lang and W. Stannat in this direction).
It is at least satisfied in the case where the function F is replaced by the Heaviside
function (see [7, 28, 29, 32]). It should however be noted that one should be careful
when comparing results for Heaviside functions with results for smooth sigmoid
functions. Other recent works that have studied the stability of traveling waves for
smooth nonlinear gain functions F include [15].

3.2 Traveling pulses

One can modify the classical neural field equation (3.1) to produce traveling pulse
solutions in the following way. Indeed consider the system{

∂tut = −ut +
∫
Rw(· − y)F (ut(y))dy − vt, t ≥ 0

∂tvt = θut − βvt,
(3.3)

where as above F : R→ R is a smooth and bounded sigmoid function, w ∈ C(R) ∩
L1(R) and θ > 0, β ≥ 0 are some constants with θ << β . This is called the neural
field equation with adaptation (see for example [2, Section 3.3] for a review). This
time we look for a solution to (3.3) of the form (ut, vt) = (û(· − ct), v̂(· − ct)) for
some c ∈ R, such that û(x) and v̂(x) decay to zero as x → ±∞. Substituting this
into (3.3), we are thus looking for a solution to the equation

cU ′(x) =

(
−1 −1
θ −β

)
U(x) + f(U)(x), x ∈ R, (3.4)

where U(x) = (û(x), v̂(x)), and f(U)(x) := (w ∗ F (û)(x), 0)T , for all x ∈ R.
It can be shown (see [27, Section 3.1] or [16]) that there exists (again under

some conditions on the parameters) a smooth function U := (û, v̂) ∈ [L2(R)]2 and
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speed c ∈ R such that U is a solution to (3.4). Moreover û and v̂ are both smooth
functions whose derivatives are all bounded and in L2(R). Thus, again by translation
invariance we have that Uα := U(·+ α) ∈ [L2(R)]2 is a solution to

AUα + f(Uα) = 0

for all α ∈ R, where

AU := cU ′ −
(
−1 −1
θ −β

)
U, ∀U ∈ [L2(R)]2.

Once again we are thus in a specific situation of the general setup described in Section
2, this time with H = [L2(R)]2 and ϕα := Uα. Indeed, it is again straightforward to
check that Assumptions 2.1, 2.2 and 2.3 (i) are satisfied (this time ϕ0 ∈ H, so that
E = H and we can show that Assumption 2.1 (iv) (b) holds). Since û(x) → 0 as
x→ ±∞, we say that the solution is a traveling pulse.

Assumption 2.3 (ii) is again more difficult to check but it is still satisfied in
the case where the function F is replaced by the Heaviside function (see again
[7, 28, 29, 32]).

4 Generalized stochastic traveling wave equation
Suppose that (ϕα)α∈R, f and A satisfy Assumptions 2.1, 2.2 and 2.3 (i) respectively.
Consider the following stochastic evolution equation

dut = [Aut + f(ut)]dt+ εB(t)dWQ
t , (4.1)

where ε > 0 and (WQ
t )t≥0 is anH-valuedQ-Wiener process on the filtered probability

space (Ω,F , {Ft}t≥0,P) with Q a bounded, symmetric, non-negative definite linear
operator on H such that Tr(Q) < ∞. We work with the following assumptions on
the noise:

Assumption 4.1. Assume that:

(i) B : [0,∞) → L(H,H) is continuous, and there exists a constant C with
‖B(t)‖L(H,H) ≤ C for all t ≥ 0.

(ii) B(t) is a unitary operator on H for all t ≥ 0 i.e. B(t)∗B(t) = Id for all t ≥ 0.

We will work in the general setting, but we will keep the three examples of
Section 3 in mind.

Proposition 4.2. Suppose that the (deterministic) initial condition u0 is such that
vα0 := u0 − ϕα ∈ H for some α ∈ R. Then stochastic evolution equation (4.1) has
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a unique solution, which can be decomposed (in a non-unique way) as ut = ϕα + vαt
where (vαt )t≥0 is the unique weak (and mild) H-valued solution to

dvαt = [Avαt + f(ϕα + vαt )− f(ϕα)]dt+ εB(t)dWQ
t , t ≥ 0,

with initial condition vα0 i.e.

vαt = PA
t v

α
0 +

∫ t

0

PA
t−s [f(ϕα + vαs )− f(ϕα)] ds+ ε

∫ t

0

PA
t−sB(s)dWQ

s , t ≥ 0.

where (PA
t )t≥0 is the semigroup generated by A.

Proof. The proof of this result is a straightforward application of [8, Theorem 7.4]
using the globally Lipschitz assumption on f (Assumption 2.2 (ii)), the fact that
A generates a C0-semigroup on H (Assumption 2.3 (i)) and the assumptions on B
above. This is also a generalization of [21, Theorem 3.1], though the proof is the
same.

Remark 4.3. We remark that for traveling waves, (4.1) is in the the moving coordi-
nate frame. To illustrate what we mean by this, suppose again we are in the concrete
situation of the standard neural field equation described in Section 3.1, so that there
is a solution û(x − ct) to (3.1) for some speed c. The stochastic version of this
equation with purely additive noise would then be dut = [−ut +w ∗F (ut)]dt+ dWQ

t .
In the moving frame (i.e. under the change of variable x 7→ x − ct), the equation
becomes

dut = [Aut + w ∗ F (ut)]dt+B(t)dWQ
t ,

where as above Au = cu′− u, u ∈ D(A) and now B(t)v := v(·+ ct) for v ∈ H. It is
clear that such a B clearly satisfies Assumption 4.1.

5 Tracking the wave front
Suppose that (ϕα)α∈R, f and A satisfy Assumptions 2.1, 2.2 and 2.3 (i) respectively.
Consider the solution (ut)t≥0 to (4.1) with initial condition u0 such that u0−ϕ0 ∈ H
according to Proposition 4.2.

If ε = 0 and u0 = ϕ0, we would have that ut = ϕ0 for all t ≥ 0. However, in
the case when ε > 0, the solution (ut)t≥0 started from ϕ0 will resemble a stochastic
wave front, and its “position” will move. In order to be able to keep track of this
movement, we first have to give a precise definition of the position of the stochastic
front at any time t ≥ 0.

To this end, we look for another decomposition of the solution (ut)t≥0 to (4.1) as

ut = zt + ϕβt , t ≥ 0, (5.1)

for some general R-valued stochastic process (βt)t≥0 of bounded quadratic variation.

8



Ideally, for each time t ≥ 0 we would like to choose βt in order to minimize the
function

α 7→ m(t, α) := ‖ut − ϕα‖2 (5.2)

over α ∈ R, so that ϕβt is then the closest of the family {ϕα : α ∈ R} of stationary
solutions to the stochastic front ut in the H-norm. We would then be able to say
that βt is the position of the stochastic wave front ut at time t.

If u0 = ϕ0, it is clear that there is a unique global minimizer of m(0, ·), which is
obtained at 0. However, for times t > 0 things are more complicated. The following
observation at least guarantees the existence of a global minimizer of the function
under our conditions.

Lemma 5.1. At every t ≥ 0 there exists at least one global minimum of the function
α 7→ m(t, α) = ‖ut − ϕα‖2.

Proof. Suppose we are in case of Assumption 2.1 (iv) (a). We have that for any
t ≥ 0 and α ∈ R

‖ut − ϕα‖ = ‖v0
t + ϕ0 − ϕα‖

where (v0
t )t≥0 is theH-valued process as defined in Proposition 4.2. Thus ‖ut−ϕα‖ ≥

‖ϕ0 − ϕα‖ − ‖v0
t ‖ → ∞ as α→ ±∞, so the result holds by continuity.

On the other hand, suppose we are in case of Assumption 2.1 (iv) (b). Suppose
(for a contradiction) that ‖ut − ϕα‖ > ‖ϕ0‖+ ‖ut‖ = ‖ϕα‖+ ‖ut‖ for some α ∈ R.
Then by the triangle inequality ‖ϕα‖ + ‖ut‖ < ‖ut − ϕα‖ ≤ ‖ϕα‖ + ‖ut‖, which is
a contradiction. Together with the fact that ‖ut − ϕα‖ → ‖ϕ0‖+ ‖ut‖ as α→ ±∞
by assumption, we again have the result.

It is important to make two remarks at this point, both of which are illustrated in
the concrete case of the traveling front solution to the neural field equation below.
Firstly, in general we do not expect there to exist a unique global minimizer of
m(t, ·) at every time t ≥ 0. The point is that we can have certain noises WQ(t, x)
or initial conditions such that the solution (ut)t≥0 to the equation (4.1) is at some
time equally close in the H-norm to ϕα1 and ϕα2 with α1 6= α2.

The second important remark is that if u0 = ϕ0 and we continuously track the
position of the initial global minimum ofm(t, ·), as we do in the next section, then the
noise might be such that this global minimum first becomes a local minimum, and
then might even cease to be a minimum at all (it becomes a saddle point). Therefore
any process (βt)t≥0 attempting to keep track of a global minimum of m(t, ·) given
by (5.2) (and hence to keep track of the position of the stochastic front) must be
allowed to be discontinuous.

In view of these two remarks we cannot simply define βt to be the global minimum
of m(t, ·) for all t. Instead, in the next section we study the behavior of any local
minimum of m(t, ·) up until the point at which it may become a saddle point.
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Illustration: The neural field equation

Consider again the neural field equation (3.1) discussed in Section 3, but with an
added continuous deterministic forcing term t 7→ gt ∈ C(R) i.e.

∂tut = −ut +

∫
R
w(· − y)F (ut(y))dy + gt, (5.3)

for t ≥ 0. We can simulate solutions to this equation, both in the case when gt(x) = 0
and gt(x) = 0.5 cos(t)e−10x2 , starting from the same initial condition. The results
are shown in Figure 1.

Figure 1: Simulations of the solution to (5.3) with w(x) = 10e−20|x| and F (x) = 0.5[1 +
tanh(10(x− 0.25))]. On the left gt ≡ 0, while on the right gt(x) = 0.5 cos(t)e−10x2 .

We can now plot the function α 7→ m(t, α) given by (5.2) i.e. α 7→ ‖ϕα − ut‖2

where (ut)t≥0 is a solution to (5.3) and gt(x) = 0.5 cos(t)e−10x2 (see Figure 2).

Figure 2: Plots of the function α 7→ ‖ϕα − ut‖ for different times t, where (ut)t≥0 is a
solution to (5.3) and gt(x) = 0.5 cos(t)e−10x2 .
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Figure 2 illustrates nicely the fact that the global minimum around α = 0.5 at
t = 0 becomes a local minimum in between t = 0.95 and t = 1.0, and therefore that
the position of the global minimum has jumped in between these times. Moreover,
at t = 1.1 we see that the initial minimum has become a saddle point.

5.1 The dynamics of local minima of α 7→ m(t, α)

The aim of this section is to derive an R-valued SDE that describes the behavior of
any local minimum of the function α 7→ m(t, α) given by (5.2), up until the point
where it is no longer necessarily a local minimum.

In order to obtain this equation, first suppose that β0 is a local minimum of
m(0, ·). The basic idea is then to look for a solution βt ∈ R to

d

dβt
‖ut − ϕβt‖2 = −2〈ut − ϕβt , ϕ′βt〉 = 0, (5.4)

up until the first time t when the solution is no longer necessarily a local minimum.
Such a time t can be characterized by the first time that the second derivative

d2

dβ2
t

‖ut − ϕβt‖2 = −2〈ut, ϕ′′βt〉

becomes 0. Although ut is not necessarily in H (in particular in the traveling front
case – see Section 3.1), 〈ut, ϕ′′βt〉 is well-defined since thanks to Proposition 4.2, we
may write ut = v0

t +ϕ0, where (v0
t )t≥0 is a well-defined H-valued stochastic process.

Thus (after an integration by parts)

− 〈ut, ϕ′′βt〉 = 〈ϕ′0, ϕ′βt〉 − 〈v
0
t , ϕ

′′
βt〉 =: γ(βt, v

0
t ), (5.5)

which is clearly well-defined. Our solution to (5.4) will therefore only be up until
the first time that γ(βt, v

0
t ) = 0.

The SDE describing the solution to (5.4) up until this time is the following:

dβt = µ(t, βt, v
0
t )dt+ σ(t, βt, v

0
t )dW

Q
t , t ≥ 0, (5.6)

where (v0
t )t≥0 is the H-valued process defined in Proposition 4.2,

•
σ(t, x, v) :=

b(t, x)

γ(x, v)
, ∀x ∈ R, v ∈ H, (5.7)

where γ is defined by (5.5) and b : R+ ×R→ L(H,R) is given by b(t, x)(v) =
ε〈ϕ′x, B(t)v〉 for all v ∈ H;

•

µ(t, βt, v
0
t ) =

3∑
k=1

µk(t, βt, v
0
t ), where µk(t, x, v) :=

ak(t, x, v)

γ(x, v)k
,
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for x ∈ R, v ∈ H and k ∈ {1, 2, 3}, where ak : R+ ×R×H → R are functions
given by

a1(t, x, v) := 〈v, A∗ϕ′x〉+ 〈f(v + ϕ0)− f(ϕ0), ϕ′x〉
a2(t, x, v) := ε2〈B(t)QB∗(t)ϕ′x, ϕ

′′
x〉

a3(t, x, v) :=
ε2

2
〈v + ϕ0 − ϕx, ϕ′′′x 〉〈B(t)QB∗(t)ϕ′x, ϕ

′
x〉.

(5.8)

Formally, the SDE (5.6) can be obtained by Itô’s formula and a comparison of
coefficients: if one assumes that (βt)t≥0 satisfies an SDE driven by (WQ

t )t≥0 with
drift and diffusion coefficients to be determined, then by formally applying Itô’s
formula, one can write down an SDE for (〈ut − ϕβt , ϕ′βt〉)g≥0. Setting the result to
zero (since we want a solution to (5.4)) and comparing coefficients leads to (5.6).

However, since we cannot find any (infinite-dimensional) Itô-type lemma that
directly applies to our situation, we take care in Proposition 5.3 below to rigorously
prove the result. In any case, we start with the following existence and uniqueness
result.

Proposition 5.2. Let τ be a stopping time with respect to the filtration {Ft}t≥0. For
any Fτ -measurable random variable βτ such that γ(βτ , v

0
τ ) > 0 almost surely (where

γ is defined in (5.5)) and E(β2
τ ) < ∞, there exists a unique continuous solution

(βt)t∈[τ,τ∞) to the SDE (5.6), with initial condition βτ at τ , up until the stopping
time τ∞ = limn→∞ τn > τ , where

τn := inf{t ≥ τ : γ(βt, v
0
t ) = 1/n}.

In other words

βt∧τn = βτ +
3∑

k=1

∫ t∧τn

τ

µk(s, βs, v
0
s)ds+

∫ t∧τn

τ

σ(s, βs, v
0
s)dW

Q
s , t ≥ τ, n ≥ 1.

Proof. The proof follows the fairly standard proof of existence and uniqueness of
solutions to SDEs with locally Lipschitz coefficients up until an explosion time (see
for example [19, Theorem 1.18]). We however recall the key arguments here, since
we are in a slightly non-standard set-up. We also suppose that τ = 0 (the general
case is the same).

Step 1: Existence. Define for t ≥ 0, x ∈ R, v ∈ H such that ‖v‖ ≤ R and n ≥ 1,

σn(t, x, v) =

{
b(t,x)
γ(x,v)

if x is s.t γ(x, v) ≥ 1
n

nb(t, x) otherwise
,

and similarly

µnk(t, x, v) =

{
ak(t,x,v)
γ(x,v)k

if x is s.t γ(x, v) ≥ 1
n

nkak(t, x, v) otherwise
,
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for k ∈ {1, . . . , 3}. Then define, for n ≥ 1, (βnt )t≥0 to be the solution to the SDE

dβnt =
3∑

k=1

µnk(t, βnt , v
0
t )dt+ σn(t, βnt , v

0
t )dW

Q
t , t ≥ 0, (5.9)

with initial condition βn0 = β0. This is a stochastic differential equation driven by a
Hilbert space-valued process that fits into the standard framework of Da Prato and
Zabczyk described in [8]. In particular it has a unique continuous (strong) solution
that does not explode up until time

ρR := inf{t > 0 : ‖v0
t ‖ > R}, (5.10)

for all R > 0 (note that ρR is independent of βn for all n). This follows from standard
methods since it can be checked that σn(t, ·, v) and µnk(t, ·, v), k = 1, 2, 3 are globally
Lipschitz for v ∈ H such that ‖v‖ ≤ R (independently of t), using Assumptions 2.1
and 2.2. For example if x, y ∈ R are such that γ(x, v) ≥ 1/n, γ(y, v) ≥ 1/n for
v ∈ H such that ‖v‖ ≤ R then

‖σn(t, x, v)− σn(t, y, v)‖L(H,R) =

∥∥∥∥b(t, x)γ(y, v)− b(t, y)γ(x, v)

γ(x, v)γ(y, v)

∥∥∥∥
L(H,R)

≤ n2‖b(t, x)− b(t, y)‖L(H,R)|γ(y, v)|+ n2‖b(t, y)‖L(H,R)|γ(y, v)− γ(x, v)|
≤ n2εC(1 +R)|x− y|

where C depends on the Lipschitz constants of x 7→ ϕ′x and x 7→ ϕ′′x, as well as
‖ϕ′0‖, ‖ϕ′′0‖ and supt≥0 ‖B(t)‖L(H,H). The last inequality follows from the facts that
‖b(t, x)−b(t, y)‖L(H,R) ≤ ε‖B(t)‖L(H,H)‖ϕ′x−ϕ′y‖, ‖b(t, x)‖L(H,R) ≤ ε‖B(t)‖L(H,H)‖ϕ′0‖,
|γ(x, v)−γ(y, v)| ≤ ‖ϕ′0‖‖ϕ′x−ϕ′y‖+‖v‖‖ϕ′′x−ϕ′′y‖ and |γ(y, v)| ≤ ‖ϕ′0‖2 +‖v‖‖ϕ′′0‖.
The same holds if x, y ∈ R are such that γ(x, v) ≥ 1/n and γ(y, v) < 1/n, or
vice-versa, and trivially holds if γ(x, v) < 1/n and γ(y, v) < 1/n.

Finally, we have that limR→∞ ρR = ∞ almost surely thanks to Theorem 4.2.
Thus there exists a unique continuous solution (βnt )t≥0 to (5.9) for all t ≥ 0.

Now, with (βnt )t≥0 uniquely defined by (5.9), we set

τn := inf{t ≥ 0 : γ(βnt , v
0
t ) = n−1, or γ(βn+1

t , v0
t ) = n−1}.

This makes sense because t 7→ γ(βnt , v
0
t ) is almost surely continuous and by the

conditions on β0, γ(βn0 , v
0
0) > n−1 almost surely for some n large enough. We then

have that βnt = βn+1
t for all t ≤ τn since by definition σn(t, x, v0

t ) = σn+1(t, x, v0
t )

for all x such that γ(x, v0
t ) ≥ n−1. In other words, (βnt∧τn)t≥0 and (βn+1

τn )t≥0 are
solutions to the same equation. Moreover, τn is the first time that γ(βnt∧τn , v

0
t ) =

γ(βn+1
t∧τn , v

0
t ) ≤ 1/n. In particular τn ≤ τn+1.

Let τ∞ = limn→∞ τn. Define βt := βnt , ∀t ∈ [0, τn). Then τn is the first time
γ(βt, v

0
t ) ≤ 1/n. Finally since

βnt = β0 +
3∑

k=1

∫ t

0

µnk(s, βns , v
0
s)ds+

∫ t

0

σn(s, βns , v
0
s)dW

Q
s ,
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together with the facts that βt∧τn = βnt , σn(s, βns , v
0
s) = b(s, βs)/γ(βs, v

0
s), and

µnk(s, βns , v
0
s) = ak(s, βs, v

0
s)/γ(βs, v

0
s)
k for all s ≤ τn and k ∈ {1, . . . , 3} we have

that

βt∧τn = β0 +
3∑

k=1

∫ t∧τn

0

µk(s, βs, v
0
s)ds+

∫ t∧τn

0

σ(s, βs, v
0
s)dW

Q
s ,

for all t ≥ 0, n ≥ 1. In other words (βt)t≥0 is a solution to (5.6) up until time τ∞.

Step 2: Uniqueness. Suppose that (β̃t)t≥0 is another continuous solution to (5.6) with
initial condition β0 up until time τ̃∞. Let ρn be the first time that either γ(βt, v

0
t )

or γ(β̃t, v
0
t ) is equal to 1/n (again for n large enough so that γ(β0, v

0
0) > n−1). Then

(βt∧ρn)t≥0 and (β̃t∧ρn)t≥0 are solutions to the equation (5.9), so that by uniqueness
of solutions to this equation, βt = β̃t for all t ≤ ρn, and ρn is the first time that
γ(βt∧ρn , v

0
t ) = γ(β̃t∧ρn , v

0
t ) ≤ 1/n. Hence τ̃∞ = τ∞ = limn→∞ ρn and β̃t = βt for all

t ∈ [0, τ∞).

Proposition 5.3. Let τ be a stopping time with respect to the filtration {Ft}t≥0.
Let βτ be an Fτ -measurable random variable such that γ(βτ , v

0
τ ) > 0 almost surely,

E(β2
τ ) <∞ and

〈uτ − ϕβτ , ϕ′βτ 〉 = 0.

Then the solution (βt)t∈[τ,τ∞) to the SDE (5.6), as defined in Proposition 5.2 is such
that

〈ut − ϕβt , ϕ′βt〉 = 0, ∀t ∈ [τ, τ∞).

Proof. The proof is a rather standard adaptation of [8, Theorem 4.17], and therefore
we have not included every detail.

Without loss of generality we may assume that τ = 0. Let τn be as in Proposition
5.2, so that τn ↑ τ∞. Define

ξn := inf

{
t ∈ [0, τn] :

∥∥∥∥∫ t

0

B(s)dWQ
s

∥∥∥∥ ≥ n or |βt| ≥ n

}
,

with ξn = τn if the set is empty. It may be seen that (ξn)n≥1 is nondecreasing,
and that limn→∞ ξn = τ∞ a.s. Define for any t ≥ 0 βnt = βt∧ξn and v0,n

t = v0
t∧ξn

where as above (v0
t )t≥0 is the H-valued solution to the SDE in Proposition 4.2

(with α = 0). Let ∆(v, α) : H × R → R := −〈v + ϕ0 − ϕα, ϕ′α〉 and Π = (ti)
M
i=1

be a partition of [0, t] for some t ≥ 0. For some family {θk}M−1
k=1 ⊂ [0, 1] to be

specified below, set wk = θkv
0,n
tk

+ (1 − θk)v0,n
tk+1

and ζk = θkβ
n
tk

+ (1 − θk)βntk+1
. Let

Xk = (v0,n
tk+1
− v0,n

tk
, βntk+1

− βntk). We note that the double Fréchet derivative of ∆,
evaluated at (wk, ζk), and in the direction Xk is

D2∆(wk, ζk) ·Xk ·Xk = −2〈v0,n
tk+1
− v0,n

tk
, ϕ′′ζk〉(β

n
tk+1
− βntk)

− 〈wk + ϕ0 − ϕζk , ϕ′′′ζk〉(β
n
tk+1
− βntk)

2. (5.11)
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By Taylor’s theorem,

∆(v0,n
t , βnt )−∆(v0

0, β0) =
M−1∑
k=1

γ(βntk , v
0,n
tk

)(βntk+1
− βntk)− 〈v

0,n
tk+1
− v0,n

tk
, ϕ′βntk

〉

+
1

2

M−1∑
k=1

D2∆(wk, ζk) ·Xk ·Xk, (5.12)

for some {θk}M−1
k=1 ⊂ [0, 1]. As the partition Π → 0, we find thanks to Proposition

4.2 that

M−1∑
k=1

〈v0,n
tk+1
− v0,n

tk
, ϕ′βntk

〉

→
∫ ξn∧t

0

[〈A∗ϕ′βs , v
0
s〉+ 〈f(v0

s + ϕ0)− f(ϕ0), ϕ′βs〉]ds+ ε

∫ ξn∧t

0

〈ϕ′βs , B(s)dWQ
s 〉.

Similarly, thanks to (5.6),

M−1∑
k=1

γ(βntk , v
0,n
tk

)(βntk+1
−βntk)→ ε

∫ t∧ξn

0

〈ϕ′βs , B(s)dWQ
s 〉+

3∑
l=1

∫ t∧ξn

0

al(s, βs, v
0
s)

γ(βs, v0
s)
l−1
ds,

as Π→ 0. We then have to deal with the second order terms in the Taylor expansion
(5.12). According to (5.11), there remain two terms on the right-hand side of (5.12)
to handle:

−
M−1∑
k=1

〈v0,n
tk+1
− v0,n

tk
, ϕ′′ζk〉(β

n
tk+1
− βntk) and − 1

2

M−1∑
k=1

〈wk + ϕ0 − ϕζk , ϕ′′′ζk〉(β
n
tk+1
− βntk)

2.

For the first of these terms, by again using Proposition 4.2 and (5.6) it is standard
to show that

lim
Π→0

M−1∑
k=1

〈v0,n
tk+1
− v0,n

tk
, ϕ′′ζk〉(β

n
tk+1
− βntk)

= ε2 lim
Π→0

M−1∑
k=1

∫ tk+1∧ξn

tk∧ξn
〈ϕ′′βntk , B(s)dWQ

s 〉
∫ tk+1∧ξn

tk∧ξn

〈ϕ′βs , B(s)dWQ
s 〉

γ(βs, v0
s)

=: ε2 lim
Π→0

J(Π).

almost surely. In order to find this limit, following the standard method to prove
Itô’s lemma (see [8, Theorem 4.17] or [21, Theorem 3.3.3]) and using the infinite
dimensional Itô isometry (see [8, Theorem 4.12])we have

E

[(
J(Π)−

∫ t∧ξn

0

〈ϕ′′βs , B(s)QB∗(s)ϕ′βs〉
γ(βs, v0

s)
ds

)2
]
→ 0
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as Π→ 0. We establish through an analogous argument that

lim
Π→0

M−1∑
k=1

〈wk + ϕ0 − ϕζk , ϕ′′′ζk〉(β
n
tk+1
− βntk)

2

= ε2

∫ t∧ξn

0

〈v0
s + ϕ0 − ϕβs , ϕ′′′βs〉

γ(βs, v0
s)

2
〈B(s)QB∗(s)ϕ′βs , ϕ

′
βs〉ds,

almost surely. Finally, by taking the size of the partition Π to 0 in (5.12), and
using the definitions of the functions a1, a2 and a3 given in (5.8), we see that for any
t ≤ ξn, ∆(v0

t , βt) = ∆(v0
0, β0) so that (since ut = v0

t + ϕ0)

〈ut − ϕβt , ϕ′βt〉 = 〈v0
t + ϕ0 − ϕβt , ϕ′βt〉 = 〈v0

0 + ϕ0 − ϕβ0 , ϕ′β0〉 = 0, t ∈ [0, ξn],

by assumption. Since this holds for any n and ξn ↑ τ∞ we have the result.

Corollary 5.4. Suppose that we are in the situation of Proposition 5.3, and (βt)t∈[τ,τ∞)

is again the solution to the SDE (5.6) up until time τ∞, as defined in Proposition
5.2. Then lim supt→τ∞ |βt| <∞. Moreover, suppose that the probability that

〈uτ∞ − ϕα, ϕ′α〉 = 0, ∀α ∈ I, (5.13)

for any interval I ⊂ R with nonempty interior is zero. Then limt→τ∞ βt exists almost
surely.

Remark 5.5. The assumption (5.13) in the above Corollary ensures that, with prob-
ability 1, the function α 7→ m(τ∞, α) = ‖uτ∞ − ϕα‖2 is not ‘flat’ over a nonempty
interval. If this function did become flat at τ∞, it is natural that limt→τ∞ βt would
be undefined.

We expect that in most applications, it is impossible that there exists an interval
I ⊂ R with nonempty interior such that

〈u− ϕα, ϕ′α〉 = 0, ∀α ∈ I,

whenever u ∈ E. For example, by differentiating with respect to α an arbitrary num-
ber of times and assuming smoothness, this would be impossible if
u ∈ s̄p{ϕα, ϕ′α, ϕ′′α, . . . , α ∈ I}.

Proof of Corollary 5.4. Without loss of generality, suppose τ = 0. We firstly prove
that almost surely lim supt→τ∞ |βt| < ∞. Assume for a contradiction that for a set
of paths of nonzero measure, lim supt→τ∞ |βt| =∞. Then, thanks to Assumption 2.1
(iv), and the continuity of t 7→ ut for all t ≥ 0, for any ε ≥ 0 we can find a sequence
of times (ξk)k≥1 such that

• ξk ↑ τ∞ as k →∞,

• ‖v0
τ∞ − v

0
ξk
‖ ≤ ε

k
for all k ≥ 1,
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• 〈ϕ′β
ξk
, ϕ′β

ξj
〉| ≤ ε

k
for all j ∈ {1, . . . , k − 1}, k ≥ 1,

• |〈ϕ′β
ξk
, ϕβ

ξk
− ϕ0〉| ≥ κ for all k ≥ 1 and some κ > 0.

Now define (ek)
M
k=1 to be part of an orthogonal basis for H for some M ≥ 1 to

be chosen later, defined through the Gram-Schmidt procedure and based on the
functions (ϕ′β

ξk
)Mk=1. That is, e1 = ϕ′βξ1 and

ek = ϕ′β
ξk
−

k−1∑
j=1

〈ej, ϕ′β
ξk
〉

‖ej‖2 ej, so that
∥∥v0

τ∞

∥∥2 ≥
M∑
k=1

〈v0
τ∞ , ek〉

2

‖ek‖2
.

Now

〈v0
τ∞ , ek〉 = 〈v0

τ∞ , ek − ϕ
′
β
ξk
〉+ 〈v0

τ∞ − v
0
ξk , ϕ

′
β
ξk
〉+ 〈v0

ξk − ϕβξk + ϕβ
ξk
, ϕ′β

ξk
〉

= 〈v0
τ∞ , ek − ϕ

′
β
ξk
〉+ 〈v0

τ∞ − v
0
ξk , ϕ

′
β
ξk
〉+ 〈uξk − ϕ0 − ϕβ

ξk
+ ϕβ

ξk
, ϕ′β

ξk
〉

= 〈v0
τ∞ , ek − ϕ

′
β
ξk
〉+ 〈v0

τ∞ − v
0
ξk , ϕ

′
β
ξk
〉+ 〈ϕβ

ξk
− ϕ0, ϕ

′
β
ξk
〉

since 〈uξk − ϕβξk , ϕ
′
β
ξk
〉 = 0. Therefore

〈v0
τ∞ , ek〉 ≥ |〈ϕ

′
β
ξk
, ϕβ

ξk
− ϕ0〉| − ‖v0

τ∞‖‖ek − ϕ
′
β
ξk
‖ − ‖v0

τ∞ − v
0
ξk‖‖ϕ

′
0‖. (5.14)

Now, by definition of ek, for k ∈ {1, . . . ,M},∥∥∥ek − ϕ′β
ξk

∥∥∥2

=
k−1∑
j=1

〈ϕ′β
ξk
, ej〉2 ≤ 2

k−1∑
j=1

〈ϕ′β
ξk
, ϕ′β

ξj
〉2 + 2‖ϕ′0‖2

k−1∑
j=1

‖ej − ϕ′β
ξj
‖2

≤ 2ε2

∞∑
j=1

1

k2
+ 2‖ϕ′0‖2

k−1∑
j=1

‖ej − ϕ′β
ξj
‖2 = ε2C + 2‖ϕ′0‖2

k−1∑
j=1

‖ej − ϕ′β
ξj
‖2,

where we have used our choice of ξk, and C = 2
∑∞

j=1
1
k2
. By the discrete Gronwall

inequality, this yields∥∥∥ek − ϕ′β
ξk

∥∥∥2

≤ ε2C +
k−1∑
j=1

2ε2C‖ϕ′0‖2 exp

(
k−1∑
i=j+1

2‖ϕ′0‖2

)
≤ ε2CMeCM ,

for a new constant C depending on ‖ϕ′0‖ but independent of ε and M . Returning
now to (5.14), we see that agin thanks to our choice of ξk,

〈v0
τ∞ , ek〉 ≥ κ− ‖v0

τ∞‖εCMeCM − ε

k2
‖ϕ′0‖ ≥ κ/2

for ε small enough so that ε(‖v0
τ∞‖CMeCM + ε‖ϕ′0‖) ≤ κ/2. Thus

∥∥v0
τ∞

∥∥2 ≥
M∑
k=1

〈v0
τ∞ , ek〉

2

‖ek‖2
≥ κ2

4

M∑
k=1

1

‖ek‖2
.
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This is clearly a contradiction if we take M large enough since ‖ek‖ → ‖ϕ0‖ as
k →∞ (which implies that

∑M
k=1 ‖ek‖−2 →∞ as M →∞).

We now prove that limt→τ∞ βt exists almost surely under assumption (5.13). Fix
α < ᾱ. Define

ξ0 := inf{t ∈ [0, τ∞) : βt ≥ ᾱ},
and

ξ2k+1 := inf{t ∈ (ξ2k, τ∞) : βt ≤ α}, ξ2k+2 := inf{t ∈ (ξ2k+1, τ∞) : βt ≥ ᾱ},

for all k ≥ 0, with inf{∅} = τ∞ by convention. Suppose for a contradiction that
ξn < τ∞ for all n.

Let
sn = sup

θ∈[α,ᾱ]

(|〈uξn − ϕθ, ϕ′θ〉|) ,

and let θ∗n ∈ [α, ᾱ] be such that this supremum is attained (this exists by continuity).
Suppose for contradiction that sn 6→ 0 as n → ∞ i.e. that there exists a

subsequence (snr)
∞
r=1 such that for some δ > 0, snr ≥ δ for all r ≥ 1. We know that

for all r ≥ 1 there exists some t ∈ [ξnr , ξnr+1], such that 〈ut − ϕθ∗nr , ϕ
′
θ∗nr
〉 = 0. This

is because at time ξnr , ᾱ (or α) is a local minimum of the function α 7→ ‖uξnr −ϕα‖2

while at time ξnr+1 α (or ᾱ) is. Therefore, by continuity, since θ∗nr ∈ [α, ᾱ], there
must exist t ∈ [ξnr , ξnr+1] such that θ∗nr is a local minimum of this function. In this
case

sup
r,s∈[ξnr ,ξnr+1]

‖ur − us‖2 ≥ ‖ut − uξnr‖2 ≥ 1

‖ϕ′0‖
2 〈ut − uξnr , ϕ

′
θ∗nr
〉2

=
1

‖ϕ′0‖
2 〈ut − ϕθ∗nr + ϕθ∗nr − uξnr , ϕ

′
θ∗nr
〉2

=
1

‖ϕ′0‖
2 〈uξnr − ϕθ∗nr , ϕ

′
θ∗nr
〉2 =

s2
nr

‖ϕ′0‖2
≥ δ2

‖ϕ′0‖
2 .

This is a contradiction since we are assuming that ξn < τ∞ for all n. Indeed it
implies infinite oscillations (of a nontrivial magnitude) of ‖ut‖ over a compact time
interval. We can therefore conclude that sn → 0 as n→∞.

By the continuity of ut, we thus see that for all α ∈ [α, ᾱ],

〈uξ∞ − ϕα, ϕ′α〉 = 0,

where ξ∞ = limn→∞ ξ
n. In fact it is easy to see that ξ∞ = τ∞ (the process (βt)t∈[0,τ∞)

cannot oscillate infinitely often before τ∞ by continuity). Therefore we have that

〈uτ∞ − ϕα, ϕ′α〉 = 0,

for all α ∈ [α, ᾱ]. This event occurs with probability zero by assumption (5.13),
which implies that the event {ξn < τ∞, ∀n} also occurs with probability zero,
proving the result.
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5.2 Comparison with previous work

We include this section to make the explicit comparison between the dynamics of the
local minimum of (5.2) we describe in Section 5.1 and the work of [4] and [23]. Both
of these articles work in the specific case of the stochastic version of the classical
neural field equation (see Section 3.1).

In [4] a formal expansion in ε is used to try and deduce the dynamics of the
position of the stochastic wave front, and the conclusion is that it is essentially
Brownian to first order in ε (see [4, Equation (2.25) and (2.26)]). With our approach
and definition of the position of the stochastic wave front, we allow for the fact that
the position may jump. Moreover, before the time of the first jump we can also
formally expand βt with respect to ε, where t < τ∞ and (βt)t∈[0,τ∞) is the solution
to (5.6) according to Proposition 5.2 (assume that u0 = ϕ0 so that β0 = 0). Indeed,
by (5.6)

βt =

∫ t

0

〈v0
s , A

∗ϕ′βs〉+ 〈f(v0
s + ϕ0)− f(ϕ0), ϕ′βs〉

γ(βs, v0
s)

ds+ ε

∫ t

0

〈ϕ′βs , B(s)dWQ
s 〉

γ(βs, v0
s)

+O(ε2).

Now, by Proposition 4.2 we see that formally v0
t = O(ε) and by the definition of γ

in (5.5), this implies that γ(βt, v
0
t )
−1 = 1/‖ϕ′0‖2 +O(ε) for t < τ∞. Thus

βt =
1

‖ϕ′0‖2

∫ t

0

〈v0
s ,L∗0ϕ′0〉ds+

ε

‖ϕ′0‖2

∫ t

0

〈ϕ′βs , B(s)dWQ
s 〉+O(ε2)

where L0 := A + f ′(ϕ0). In our setup this formula would replace [4, Equation
(2.26)]. The reason for the difference is the choice of Hilbert space H. Indeed, as
pointed out to us by E. Lang, if we instead defined βt to minimize the function
α 7→ ‖ut − ϕα‖2

L2(ρα) with the weight ρα := Ψα/ϕ
′
α, where Ψα is a vector in the

null space of L∗α, then we would (to a first order approximation in ε) arrive at [4,
Equation (2.26)]. For further details, as well as other reasons why this weight seems
to be a natural one, we refer to the forthcoming PhD thesis of E. Lang.

In [23], the idea of minimizing α 7→ ‖ut − ϕα‖2 is used as we do to keep track of
the position of the stochastic front. However, rather than describing the dynamics
of the minima of α 7→ ‖ut−ϕα‖2 explicitly, a gradient-descent adaptation procedure
is proposed, whereby (βt)t≥0 in (5.1) is defined via an ODE to converge dynamically
towards the nearest local minimum with a certain speed. As such, our solution to
the SDE (5.6) should be recovered by this adaptation procedure with infinite speed.

6 Local stability
Once again suppose that (ϕα)α∈R, f and A satisfy Assumptions 2.1, 2.2 and 2.3 (i)
respectively, but now suppose also that Assumption 2.3 (ii) is satisfied. Again let
(ut)t≥0 = (v0

t + ϕ0)t≥0 be the solution to (4.1) with (deterministic) initial condition
u0 such that u0 − ϕ0 ∈ H according to Proposition 4.2.
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Suppose that (βt)t∈[0,τ∞) is the solution to the SDE (5.6) with initial condition
β0 such that 〈u0 − ϕβ0 , ϕ′β0〉 = 0 and γ(β0, v

0
0) > 0 (i.e. β0 is a local minimum of

m(0, ·) given by (5.2)), where τ∞ = inf{t > 0 : γ(βt, v
0
t ) = 0} (see Proposition 5.2).

Recall from (5.1) that zt is defined by

zt = ut − ϕβt , t ∈ [0, τ∞). (6.1)

Then it is easy to see that (zt)t∈[0,τ∞) satisfies the stochastic evolution equation

dzt = [Lαzt +G(zt, βt, α)]dt+ εB(t)dWQ
t − dϕβt (6.2)

for any α ∈ R, where

G(z, β, α) := f(z + ϕβ)− f(ϕβ)− f ′(ϕα)z, ∀z ∈ H,α, β ∈ R, (6.3)

and Lα is the operator defined by

Lαz := Az + f ′(ϕα)z, ∀z ∈ D(A) = D(Lα). (6.4)

Let (Uα(t))t≥0 be the C0-semigroup generated by Lα. Note that Lα does indeed
generate a C0-semigroup, since by Assumption 2.3 (i) A generates a C0-semigroup
and f ′(ϕα) : H → H is bounded (see [11, Theorem 1.3, Chapter III]). Moreover
thanks to Assumption 2.3 (ii) on the operator A, we have the following result found
in [30, Lemma 1.2, Chapter 5].

Lemma 6.1. For any t ≥ 0 and α ∈ R, Uα(t) can be decomposed as

Uα(t) = Pα + Vα(t),

where Pα is the projection operator onto the subspace of H spanned by ϕ′α and
(Vα(t))t≥0 is a semigroup on H such that for some b > 0 it holds that

‖Vα(t)‖ ≤ exp(−bt),

for any t ≥ 0 and α ∈ R.

The first result of the section is the following, which helps us understand the
dynamics of the process (‖zt‖2)t≥0.

Theorem 6.2. For any t ∈ [0, τ∞), it holds that

d ‖zt‖2 ≤ −b ‖zt‖2 dt+ 2ε〈zt, B(t)dWQ
t 〉+ 2 〈zt, G(zt, βt, βt)〉 dt

+ ε2

[
Tr(Q)−

‖Q 1
2ϕ′βt‖

2

γ(βt, v0
t )

]
dt, (6.5)

where b > 0 is the constant appearing in Lemma 6.1.
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Remark 6.3. (i) It is worth remarking that the final term in (6.5) is in fact
stabilizing as t → τ∞. Indeed, by our assumption on the initial condition,
we have that γ(βt, v

0
t ) > 0 for any t < τ∞. Therefore thanks to the sign of

that final term, as t ↑ τ∞ this term converges to −∞. This is consistent with
the fact that ‖zt‖2 = ‖ut − ϕβt‖2 does not explode as t ↑ τ∞ even though
γ(βt, v

0
t ) ↓ 0 (see Corollary 5.4).

(ii) We can also see in the first term in (6.5) the effect of the exponential decay of
the semigroup (Vα(t))t≥0 in the decomposition of (Uα(t))t≥0 (see Lemma 6.1).
This occurs precisely because we have chosen the process (βt)t≥0 to be such that
zt = ut − ϕβt is orthogonal to the space spanned by ϕ′βt (see Proposition 5.3).
The effect of the projection part of Uβt(t) on zt is thus zero for all t ≥ 0.

Before we prove the theorem, we state a corollary which exploits the exponential
decay term in (6.5), yielding exponential decay in the limit as ε→ 0.

Corollary 6.4. Suppose that the initial condition ‖z0‖ and ε > 0 are small enough
so that

‖z0‖2 + ε
1
2 + 2b−1ε2Tr(Q) <

‖ϕ′0‖2

2‖ϕ′′0‖
∧ b2

32c2
, (6.6)

where b is the same as in Lemma 6.1 and c is the Lipschitz constant of f ′. Define

ρε := inf

{
t > 0 : 2

∫ t

0

ebr/2〈zr, B(r)dWQ
r 〉 ≥ ε−

1
2

}
.

Then τ∞ > ρε and

‖zt‖2 ≤ e−
b
2
t(‖z0‖2 + ε

1
2 ) + 2b−1ε2Tr(Q)(1− e−

b
2
t) (6.7)

for all t ∈ [0, ρε]. In particular, since ρε → ∞ almost surely as ε → 0, in the limit
as ε→ 0 we recover the inequality

‖zt‖2 ≤ e−
b
2
t ‖z0‖2 , t ≥ 0. (6.8)

Remark 6.5. The inequality (6.8) should be compared to the classical results about
the stability of traveling waves in the deterministic setting such as [30, Theorem
1.1, Chapter 5]. Indeed (6.8) agrees exactly with this result, since it says that if the
initial condition u0 is such that ‖u0−ϕβ0‖ is small enough, then the solution to the
deterministic equation (i.e (4.1) with ε = 0) will converge exponentially fast towards
ϕα where α = limt→∞ βt.

Note that the point of the decomposition in (6.2) is that the operator Lα given
by (6.4) is linear (it is in fact the linearization of D(A) 3 v 7→ Av + f(ϕα + v)).
However, we can also consider (zt)t∈[0,τ∞) as a solution to the stochastic evolution
equation given by

dzt = [Azt + f(ϕβt + zt)− f(ϕβt)]dt+ εB(t)dWQ
t − dϕβt . (6.9)
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From this point of view, we can obtain a similar inequality to that of Theorem 6.2
where we preserve the nonlinearity. This theorem is useful for the long-time results
in the following section. We remark that the following result holds without the
Assumption 2.3 (ii).

Theorem 6.6. Suppose there exists ω0 ∈ R such that
∥∥PA

t

∥∥ ≤ exp(tω0) for all
t ≥ 0. For v ∈ H, let

Ξ(v) := lim sup
h↓0

1

h

(
‖PA

h v‖2 − ‖v‖2
)
. (6.10)

Then for any t in [0, τ∞), it holds that

d ‖zt‖2 ≤ [Ξ(zt) + 2〈f(ϕβt + zt)− f(ϕβt), zt〉] dt+ 2ε〈zt, B(t)dWQ
t 〉

+ ε2

[
Tr(Q)−

‖Q 1
2ϕ′βt‖

2

γ(βt, v0
t )

]
dt.

6.1 Proofs

In order to prove the results of Section 6, we will need the following lemmas.

Lemma 6.7. There exists a constant K such that for all α1, α2 ∈ R and h ≥ 0,

‖Uα1+α2(h)− Uα2(h)‖ ≤ Kα1h,

(recall that (Uα(t))t≥0 is the semigroup generated by Lα given by (6.4)).

Proof. Note that ‖Uα1+α2(h)− Uα2(h)‖ ≤ ‖Uα1(h)− U0(h)‖, since ‖Uα(t)‖ ≤ 1 for
all α ∈ R. The operator (Lα1 − L0) = f ′(ϕα1)− f ′(ϕ0) is bounded over its domain
E by assumption. We may therefore use the variation of parameters formula [11,
Page 161] to write for any v ∈ H

(Uα1(h)− U0(h))v =

∫ h

0

U0(h− r) (f ′(ϕα1)− f ′(ϕ0))Uα1(r)vdr.

The result now follows from the Lipschitz property of f ′ and α 7→ ϕα, as well as the
fact that ‖Uα(t)‖ ≤ 1 for all α ∈ R.

Lemma 6.8. For G defined by (6.3), it holds that

‖G(z, β, β)‖ ≤ c

2
‖z‖2, ∀z ∈ H, β ∈ R,

where c is the Lipschitz constant of f ′ (which is independent of z and β).
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Proof. We first note (by Assumption 2.2 (ii) on f) that we may write

f(z + ϕβ)− f(ϕβ) =

∫ 1

0

f ′(θz + ϕβ)zdθ.

Therefore

G(z, β, β) =

∫ 1

0

[f ′(θz + ϕβ)− f ′(ϕβ)]zdθ,

so that

‖G(z, β, β)‖ ≤
∫ 1

0

‖f ′(θz + ϕβ)− f ′(ϕβ)‖dθ‖z‖ ≤ c

∫ 1

0

θdθ‖z‖2,

where c is the Lipschitz constant of f ′.

We can now prove Theorem 6.2.

Proof of Theorem 6.2. Suppose that s ≤ t ≤ T < τ∞. We have that the mild
solution to (6.2) is given by

zt = Uα(t−s)zs+
∫ t

s

Uα(t−r)G(zr, βr, α)dr+ε

∫ t

s

Uα(t−r)B(r)dWQ
r −
∫ t

s

Uα(t−r)dϕβr .

(6.11)
Applying Uα(T − t) on both sides of (6.11) and using the SDE (5.6) governing the
behavior of (βt)t∈[0,τ∞), we see that

Uα(T − t)zt = Uα(T − s)zs +

∫ t

s

Uα(T − r)κ1(r, βr, v
0
r)dW

Q
r

+

∫ t

s

Uα(T − r)κ2(zr, v
0
r , βr, α)dr,

where for notational purposes we have set κ1(r, βr, v
0
r) := εB(r)−ϕ′βrσ(r, βr, v

0
r) and

κ2(zr, v
0
r , βr, α) := G(zr, βr, α)− ϕ′βrµ(r, βr, v

0
r)−

ε2

2

〈ϕ′βr , Qϕ
′
βr
〉

γ(βr, v0
r)

2
ϕ′′βr , r ∈ [0, τ∞),

where we recall that σ(r, βr, v
0
r) is defined in (5.7). Let Yr = Uα(T − r)zr for any

r ∈ [0, T ]. Then it follows from Ito’s Lemma (see [8, Theorem 4.17]) that

‖Yt‖2 = ‖Ys‖2 + 2

∫ t

s

〈Yr, Uα(T − r)κ1(r, βr, v
0
r)dW

Q
r 〉

+ 2

∫ t

s

〈Yr, Uα(T − r)κ2(zr, v
0
r , βr, α)〉dr

+

∫ t

s

Tr
(
Uα(T − r)κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗U∗α(T − r)

)
dr.
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Now taking T = t, and choosing α = βt this yields

‖zt‖2 = ‖Uβt(t− s)zs‖
2 + 2

∫ t

s

〈Uβt(t− r)zr, Uβt(t− r)κ1(r, βr, v
0
r)dW

Q
r 〉

+ 2

∫ t

s

〈Uβt(t− r)zr, Uβt(t− r)κ2(zr, v
0
r , βr, βt)〉dr

+

∫ t

s

Tr
(
Uβt(t− r)κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗U∗βt(t− r)

)
dr. (6.12)

Now take a partition (tk)
M
k=0 of points between [s, t], with tk − tk−1 = h for some

h > 0. Applying the above formula repeatedly, we find that

‖zt‖2 − ‖zs‖2 =
M∑
k=1

∥∥Uβtk (h)ztk−1

∥∥2 −
∥∥ztk−1

∥∥2

+ 2
M∑
k=1

∫ tk

tk−1

〈
Uβtk (tk − r)zr, Uβtk (tk − r)κ2(zr, v

0
r , βr, βtk)

〉
dr

+
M∑
k=1

∫ tk

tk−1

Tr
(
Uβtk (h)κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗U∗βtk

(h)
)
dr

+ 2
M∑
k=1

∫ tk

tk−1

〈Uβtk (tk − r)zr, Uβtk (tk − r)κ1(r, βr, v
0
r)dW

Q
r 〉. (6.13)

Note that the potential unboundedness of the generator of Uα makes things a little
more difficult. The aim is to deduce from (6.13) that

‖zt‖2 ≤ ‖zs‖2 − b
∫ t

s

‖zr‖2 dr + 2

∫ t

s

〈zr, κ1(r, βr, v
0
r)dW

Q
r 〉

+

∫ t

s

[
2
〈
zr, κ2(zr, v

0
r , βr, βr)

〉
+ Tr

(
κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗) ]dr, (6.14)

where b > 0 is as in Lemma 6.1. In order to prove this claim we treat each term in
(6.13) separately.

First term: We firstly claim that (noting the dependence of M on h)

lim
h→0

M∑
k=1

(∥∥Uβtk (h)ztk−1

∥∥2 −
M∑
k=1

∥∥∥Uβtk−1
(h)ztk−1

∥∥∥2
)

= 0. (6.15)

Indeed, using the reverse triangle inequality, the fact that ‖Uα(t)‖ ≤ 1 and Lemma
6.7, by setting K̄ = supr∈[s,t] ‖zr‖ we see that∣∣∣∣∣

M∑
k=1

∥∥Uβtk (h)ztk−1

∥∥2 −
∥∥∥Uβtk−1

(h)ztk−1

∥∥∥2

∣∣∣∣∣ ≤ 2K̄
M∑
k=1

∥∥∥(Uβtk (h)− Uβtk−1
(h))ztk−1

∥∥∥
≤ 2(t− s)KK̄ sup

r1,r2∈[s,t]:|r1−r2|≤h
|βr2 − βr1|,
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which converges to 0 as h→ 0 by the continuity of (βr)r∈[0,τ∞). Therefore

lim sup
h→0

M∑
k=1

[∥∥Uβtk (h)ztk−1

∥∥2 − ‖ztk−1
‖2
]

= lim sup
h→0

M∑
k=1

[∥∥∥Uβtk−1
(h)ztk−1

∥∥∥2

− ‖ztk−1
‖2

]

≤ lim
h→0

M∑
k=1

[
e−bh − 1

]
‖ztk−1

‖2 ≤ −b
∫ t

s

‖zr‖2dr,

where the second line follows from Lemma 6.1 and the fact that by Proposition 5.3
〈zr, ϕβr〉 = 0 for all r ∈ [0, τ∞).

Second term: We have that

2
M∑
k=1

∫ tk

tk−1

〈
Uβtk (tk − r)zr, Uβtk (tk − r)κ2(zr, v

0
r , βr, βtk)

〉
dr

= 2

∫ t

s

〈
Uβk(r)(k(r)− r)zr, Uβk(r)(k(r)− r)κ2(zr, v

0
r , βr, βk(r))

〉
dr

where k(r) := tk if r ∈ (tk−1, tk] for k ∈ {1, . . . ,M}. Since it holds that ‖Uβk(r)(k(r)−
r)v− v‖ → 0 as h→ 0 for any v ∈ H and r ∈ (τk−1, τk] by Lemma 6.7), we see that
by the dominated convergence theorem

2
M∑
k=1

∫ tk

tk−1

〈
Uβtk (tk − r)zr, Uβtk (tk − r)κ2(zr, v

0
r , βr, βtk)

〉
dr → 2

∫ t

s

〈
zr, κ2(zr, v

0
r , βr, βr)

〉
dr,

as h→ 0.

Third term: Similarly to the second term, we have

M∑
k=1

∫ tk

tk−1

Tr
(
Uβtk (h)κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗U∗βtk

(h)
)
dr

→
∫ t

s

Tr
(
κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗) dr

as h→ 0.

Fourth term: For the final term in (6.13), observe that

2
M∑
k=1

∫ tk

tk−1

〈Uβtk (tk − r)zr, Uβtk (tk − r)κ1(r, βr, v
0
r)dW

Q
r 〉

= 2

∫ t

s

〈zr, κ1(r, βr, v
0
r)dW

Q
r 〉+ 2

∫ t

s

〈
J(k(r), r)zr, κ1(r, βr, v

0
r)dW

Q
s

〉
,
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where k(r) is defined as in the bound for the second term above, and for notational
purposes we have set J(k(r), r) := U∗βk(r)(k(r)− r)Uβk(r)(k(r)− r)− I. Now

E

[(∫ t

s

〈
J(k(r), r)zr, κ1(r, βr, v

0
r)dW

Q
r

〉)2
]

=

∫ t

s

〈
J(k(r), r)zr, κ1(r, βr, v

0
r)Qκ

∗
1(r, βr, v

0
r)J(k(r), r)zr

〉
dr. (6.16)

This goes to zero as h→ 0 through the dominated convergence theorem, so that we
conclude that

2
M∑
k=1

∫ tk

tk−1

〈Uβtk (tk − r)zr, Uβtk (tk − r)κ1(r, βr, v
0
r)dW

Q
r 〉 → 2

∫ t

s

〈zr, κ1(r, βr, v
0
r)dW

Q
r 〉,

almost surely as h→ 0.

Conclusion: Using the above calculations, we can thus see that by taking the limit
as h → 0 in (6.13), (6.14) holds almost surely. It remains to deduce the required
inequality from (6.14).

Firstly we can note that since 〈zr, ϕ′βr〉 = 0 for all r ∈ [0, τ∞) we have by definition
of κ1 and κ2 that

〈zr, κ1(r, βr, v
0
r)dW

Q
r 〉 = ε〈zr, B(r)dWQ

r 〉, (6.17)

and

〈zr, κ2(zr, v
0
r , βr, βr)〉 = 〈zr, G(zr, βr, βr)〉 −

ε2

2

〈ϕ′βr , Qϕ
′
βr
〉

γ(βr, v0
r)

2
〈zr, ϕ′′βr〉. (6.18)

Moreover, we can calculate (using the assumption that B∗(r)B(r) = Id)

Tr
(
κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗) = ε2Tr(Q) + ε2

〈Qϕ′βr , ϕ
′
βr
〉

γ(βr, v0
r)

2

(
‖ϕ′0‖2 − 2γ(βr, v

0
r)
)
.

(6.19)

Substituting these three observations into (6.14) then yields the result.

Proof of Corollary 6.4. By a simple application of Itô’s formula to ebt/2‖zt‖2, thanks
to Theorem 6.2 for any t < τ∞, we have

‖zt‖2 ≤ e−
b
2
t ‖z0‖2 − b

2

∫ t

0

e−
b
2

(t−r)‖zr‖2dr + 2ε

∫ t

0

e−
b
2

(t−r)〈zr, B(r)dWQ
r 〉

+ 2

∫ t

0

e−
b
2

(t−r) 〈zr, G(zr, βr, βr)〉 dr + 2b−1ε2Tr(Q)(1− e−
b
2
t),
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Thus by Lemma 6.8, and by the definition of ρε, it follows that for t < τ∞ ∧ ρε

‖zt‖2 ≤ e−
b
2
t ‖z0‖2 − b

2

∫ t

0

e−
b
2

(t−r)‖zr‖2dr + ε
1
2 e−

b
2
t

+ c

∫ t

0

e−
b
2

(t−r)‖zr‖3dr + 2b−1ε2Tr(Q)(1− e−
b
2
t). (6.20)

Define ρ̃ := inf{t > 0 : ‖zt‖ ≥ b/4c}, so that ρ̃ > 0 a.s. by our assumption (6.6).
Then for t < τ∞ ∧ ρε ∧ ρ̃ it holds that

‖zt‖2 ≤ e−
b
2
t ‖z0‖2 + ε

1
2 e−

b
2
t +

1

2
sup
r≤t
‖zr‖2(1− e−

b
2
t) + 2b−1ε2Tr(Q)(1− e−

b
2
t).

This implies that

sup
r≤t
‖zr‖2 ≤ 2

(
‖z0‖2 + ε

1
2 + 2b−1ε2Tr(Q)

)
<

b2

16c2
(6.21)

for all t < τ∞∧ρε∧ ρ̃ by the assumption (6.6). Then we must have that τ∞∧ρε < ρ̃,
so that (6.21) holds for all t < τ∞ ∧ ρε. Returning to (6.20), we thus see that

‖zt‖2 ≤ e−
b
2
t ‖z0‖2 − b

4

∫ t

0

e−
b
2

(t−r)‖zr‖2dr + ε
1
2 e−

b
2
t + 2b−1ε2Tr(Q)(1− e−

b
2
t)

≤ e−
b
2
t(‖z0‖2 + ε

1
2 ) + 2b−1ε2Tr(Q)(1− e−

b
2
t),

for all t < τ∞ ∧ ρε.
Finally, again by the assumption (6.6), it follows that ‖zt‖2 ≤ ‖ϕ′0‖2/2‖ϕ′′0‖ for

all t < τ∞∧ ρε. The point is then that on [0, τ∞∧ ρε) we have by definition of γ (see
(5.5)) that

γ(βt, v
0
t ) = −〈ut, ϕ′′βt〉 = ‖ϕ′0‖2 − 〈zt, ϕ′′βt〉 ≥ ‖ϕ

′
0‖2 − ‖zt‖‖ϕ′′0‖ ≥

‖ϕ′0‖2

2
,

so that τ∞ > ρε, recalling that by definition τ∞ is the first time that γ(βt, v
0
t ) = 0.

In conclusion, we have that under the assumption (6.6) it holds that τ∞ > ρε
and

‖zt‖2 ≤ e−
b
2
t(‖z0‖2 + ε

1
2 ) + 2b−1ε2Tr(Q)(1− e−

b
2
t)

for all t ∈ [0, ρε].

We can finally prove Theorem 6.6.

Proof of Theorem 6.6. The proof is very similar to that of Theorem 6.2 but this
time we consider (zt)t∈[0,T ] for T < τ∞ as a mild solution to (6.9) i.e.

zt = PA
t−szs+

∫ t

s

PA
t−r (f(zr + ϕβr)− f(ϕβr)) dr+ε

∫ t

s

PA
t−rB(r)dWQ

r −
∫ t

s

PA
t−rdϕβr ,

(6.22)
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for all s ≤ t ≤ T . In a very similar way to the derivation of (6.12) in the proof of
Theorem 6.2, we see that

‖zt‖2 =
∥∥PA

t−szs
∥∥2

+ 2

∫ t

s

〈PA
t−rzr, P

A
t−r (f(zr + ϕβr)− f(ϕβr)) dr

+ 2

∫ t

s

〈PA
t−rzr, P

A
t−rκ1(r, βr, v

0
r)dW

Q
r 〉+ 2

∫ t

s

〈PA
t−rzr, P

A
t−rκ3(zr, v

0
r , βr)〉dr

+

∫ t

s

Tr
(
PA
t−rκ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗(PA

t−r)
∗) dr.

where κ1(r, βr, v
0
r) := εB(r)− ϕ′βrσ(r, βr, v

0
r) as in the proof of Theorem 6.2 and

κ3(zr, v
0
r , βr) := −µ(r, βr, v

0
r)ϕ

′
βr −

ε2

2

〈ϕ′βr , Qϕ
′
βr
〉

γ(βr, v0
r)

2
ϕ′′βr .

Again take a partition (tk)
M
k=0 of points between [s, t], with tk − tk−1 = h for some

h > 0. Applying the above formula repeatedly, we find that

‖zt‖2 − ‖zs‖2

=
M∑
k=1

(∥∥PA
h ztk−1

∥∥2 −
∥∥ztk−1

∥∥2
+ 2

∫ tk

tk−1

〈
PA
tk−rzr, P

A
tk−r (f(zr + ϕβr)− f(ϕβr))

〉
dr

)

+
M∑
k=1

∫ tk

tk−1

(
2
〈
PA
tk−rzr, P

A
tk−rκ3(zr, v

0
r , βr)

〉
+ Tr

(
PA
h κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗(PA

h )∗
))
dr

+ 2
M∑
k=1

∫ tk

tk−1

〈PA
tk−rzr, P

A
tk−rκ1(r, βr, v

0
r)dW

Q
r 〉. (6.23)

Once again the aim is to take the lim sup as h→ 0 in the above. The second, third
and fourth terms are dealt with in exactly the same way as in the proof of Theorem
6.2, so it suffices to concentrate on the first term.

To this end note that
M∑
k=1

(∥∥PA
h ztk−1

∥∥2 −
∥∥ztk−1

∥∥2
+ 2

∫ tk

tk−1

〈
PA
tk−rzr, P

A
tk−r (f(zr + ϕβr)− f(ϕβr))

〉
dr

)

=
M∑
k=1

(∥∥PA
h ztk−1

∥∥2 −
∥∥ztk−1

∥∥2
)

+ 2

∫ t

s

〈
PA
k(r)−rzr, P

A
k(r)−r (f(zr + ϕβr)− f(ϕβr))

〉
dr

where k(r) := tk if r ∈ (tk−1, tk] for k ∈ {1, . . . ,M}. By the assumption in the
theorem that there exists ω0 ∈ R such that

∥∥PA
t

∥∥ ≤ exp(tω0) for all t ≥ 0, it follows
that ‖PA

h ztk−1
‖2 − ‖ztk−1

‖2 ≤ [exp(2ω0h) − 1]‖ztk−1
‖2. Combining this observation

with the reverse Fatou lemma, we see that

lim sup
h→0

M∑
k=1

(∥∥PA
h ztk−1

∥∥2 −
∥∥ztk−1

∥∥2
)
≤
∫ T

0

Ξ(zr)dr.
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The dominated convergence theorem also implies that as h→ 0,∫ t

s

〈
PA
k(r)−rzr, P

A
k(r)−r (f(zr + ϕβr)− f(ϕβr))

〉
dr →

∫ t

s

〈zr, f(zr + ϕβr)− f(ϕβr)〉 dr.

With this in hand, together with the limits calculated for the second, third and
fourth terms of (6.23) in the proof Theorem 6.2, we see that taking the lim sup as
h→ 0 in (6.23) yields

‖zt‖2 ≤ ‖zs‖2 +

∫ t

s

Ξ(‖zr‖)dr + 2

∫ t

s

〈zr, κ1(r, βr, v
0
r)dW

Q
r 〉

+ 2

∫ t

s

〈zr, f(zr + ϕβr)− f(ϕβr)〉 dr

+

∫ t

s

[
2
〈
zr, κ3(zr, v

0
r , βr)

〉
+ Tr

(
κ1(r, βr, v

0
r)Qκ1(r, βr, v

0
r)
∗) ]dr. (6.24)

Moreover, we can then use (6.17), (6.19) and the definition of κ3 to conclude.

7 Long-time behavior
Again suppose that (ϕα)α∈R, f and A satisfy Assumptions 2.1, 2.2 and 2.3 (i) respec-
tively, and that (ut)t≥0 = (v0

t + ϕ0)t≥0 is the solution to (4.1) with (deterministic)
initial condition u0 such that u0 − ϕ0 ∈ H according to Proposition 4.2.

Let t 7→ β∗t be any function on [0,∞) such that for all t ≥ 0, β∗t is a global
minimum of the map R 3 α 7→ m(t, α) = ‖ut − ϕα‖2. Note that β∗t exists for all
t ≥ 0 by Lemma 5.1 but it may not be unique. Define

z∗t := ut − ϕβ∗t , t ≥ 0.

The main result of this section is Theorem 7.3, which generalizes the inequality
of Theorem 6.6 to arbitrary time. This theorem is a first step in the long-time
analysis of the system. The global stability results of [5] lends one hope that, for
some traveling wave systems, we might be able to get some sort of long-time bound
on ‖z∗t ‖

2. In particular, one may infer from [5, Theorem 3.1] that, under some
technical assumptions, if ε = 0 (i.e. there is no stochastic term), u0 ∈ E and u0 is
continuous, then

∥∥ut − ϕβ∗t ∥∥∞ → 0 (in supremum norm) as t → ∞. Coming back
to our stochastic setting with ε > 0, this motivates us to wonder if the stabilizing
effect of the internal dynamics of the deterministic system could balance the disorder
coming from the noise. In such a case then a long-time bound on ‖z∗t ‖

2 might be
possible. Unfortunately [5] uses the method of comparison of ODE’s, and the bounds
are not easy to adapt to our semigroup formalism. Nevertheless, the development,
in future work, of some bounds on the drift term in Theorem 7.3 could facilitate for
example a long-time bound on the growth of E

[
‖z∗t ‖

2] (see also Remark 7.6).
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Assumption 7.1. For t ≥ 0, let Qt :=
∫ t

0
B(s)∗(PA

t−s)
∗QPA

t−sB(s)ds. Assume that
for all t > 0 and for all α, β ∈ R, α 6= β,

〈ϕα − ϕβ, Qt(ϕα − ϕβ)〉 6= 0. (7.1)

Note that a sufficient condition for this to hold is that Q is strictly positive.

Assumption 7.2. For α ∈ R and t > 0, define

Kϕ(α, t) :=

 〈ϕ′α, Qtϕ
′
α〉 〈ϕ′′α, Qtϕ

′
α〉 〈ϕ′′′α , Qtϕ

′
α〉

〈ϕ′′α, Qtϕ
′
α〉 〈ϕ′′α, Qtϕ

′′
α〉 〈ϕ′′α, Qtϕ

′′′
α 〉

〈ϕ′′′α , Qtϕ
′
α〉 〈ϕ′′α, Qtϕ

′′′
α 〉 〈ϕ′′′α , Qtϕ

′′′
α 〉

 .

Let Oϕ(α, t) be an orthonormal matrix and Λϕ(α, t) a diagonal matrix with diagonal
entries (λϕ1 (α, t), λϕ2 (α, t), λϕ3 (α, t)) such that

Kϕ(α, t) = Oϕ(α, t)TΛϕ(α, t)Oϕ(α, t). (7.2)

We choose Oϕ(α, t) and Λϕ(α, t) to be continuous in α (for each t > 0). Assume that
for each α ∈ R and t > 0, no more than one of (λϕi (α, t))i=1,2,3 is zero. Assume also
that ϕ′′′′α ∈ H (the derivative w.r.t. α) exists everywhere and its norm is uniformly
bounded.

We recall the definition of Ξ(v) for v ∈ H in Theorem 6.6 as the map Ξ(v) :=
lim suph↓0

1
h

(
‖PA

h v‖2 − ‖v‖2
)
.

Theorem 7.3. Suppose Assumptions 7.1 and 7.2 are satisfied, and that there exists
ω0 ∈ R such that

∥∥PA
t

∥∥ ≤ exp(tω0) for all t ≥ 0. Then for all t > 0, β∗t is almost
surely unique. Furthermore for any 0 ≤ s < t <∞ it holds almost surely that

‖z∗t ‖
2 ≤ ‖z∗s‖

2 +

∫ t

s

(
Ξ(z∗r ) + 2〈f(ϕβ∗r + z∗r )− f(ϕβ∗r ), z

∗
r 〉+ ε2

[
Tr(Q)−

‖Q 1
2ϕ′β∗r‖

2

γ(β∗r , v
0
r)

])
dr

+ 2ε

∫ t

s

〈z∗r , B(r)dWQ
r 〉.

Remark 7.4. The inequality in Theorem 7.3 holds despite the fact that z∗t and β∗t
may not be continuous in time. If z∗t ∈ D(A), then Ξ(z∗t ) = 2〈z∗t , Az∗t 〉. If this holds
for all t ≥ 0, the inequality in Theorem 7.3 becomes an equality.

Remark 7.5. Assumptions 7.1 and 7.2 are used to ensure that |Dδ,T | → 0 as δ → 0
for any T ≥ 0, where Dδ,T is defined in the course of the proof. This proof is given in
Lemma 7.12, and demonstrates that if the noise is uncorrelated at any two distinct
points in space, then through the Girsanov theorem (ut)t≥0 will also be uncorrelated.
We think that this is by no means necessary for |Dδ,T | → 0 as δ → 0. In fact, it is
possible that even if the noise is quite degenerate, the dynamics of A and f might
ensure that (ut)t≥0 is not.
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Remark 7.6. Suppose that there were to exist constants b, C > 0 such that, for all
u ∈ E,

Ξ(u− ϕα) + 2〈f(u)− f(u− ϕα), u− ϕα〉 ≤ −b ‖u− ϕα‖2 + C,

where α is a global minimizer of α 7→ ‖u− ϕα‖2. Then a consequence of Theorem
7.3 would be that

E ‖z∗t ‖
2 ≤ (1− e−bt)C + e−btE ‖z∗0‖

2 + ε2Tr(Q)(1− e−bt), ∀t ≥ 0.

That is, we would obtain a bound on E ‖z∗t ‖
2 which holds uniformly for all t >

0. Unfortunately, at the moment we do not have any examples where the above
inequality holds. However, we believe that it might be possible for some traveling
waves, particularly if we work in a Hilbert space with weighted inner product, and
plan to investigate this in the future.

7.1 Proof of Theorem 7.3 and Lemma 7.12

In order to prove Theorem 7.3, we introduce the following definitions.

The set Eδ: For δ ∈ (0, 1) define Eδ ⊂ E by u ∈ Eδ ⇔ i) u ∈ E, ii) ∃ a unique
global minimum Γ(u) of α 7→ ‖u− ϕα‖2, and iii) for all α ∈ [Γ(u) − δ,Γ(u) + δ],
γ(α, u) > δ, where we recall that γ(·, u) is the ‘curvature’ of the map α 7→ ‖u− ϕα‖2

given by (5.5).

The set EM
δ : For M > 0 and δ ∈ (0, 1), let EM

δ ⊂ Eδ be such that u ∈ EM
δ ⇔ i)

u ∈ Eδ, ii) ‖u− ϕ0‖ < M , and iii) for all α ∈ R\[Γ(u)− δ,Γ(u) + δ],

‖u− ϕα‖ >
∥∥u− φΓ(u)

∥∥+ δ3(δ ‖ϕ′0‖+ 2M)−1.

The stopping time ρδT : For T > 0, we define ρδT := inf
{
t ≤ T : ‖v0

t ‖ ≥ δ−1
}
, with

ρδT = T if the set is empty.

The process (ηδt )t∈[0,T ]: For T > 0, we now introduce the process (ηδt )t∈[0,T ], for any
δ ∈ (0, γ(β∗0 , u0 − ϕ0)) in the following recursive way. Let τ 0 = inf{t ≥ 0 : ut ∈
Eδ−1

δ } ∧ ρδT , and for any k ≥ 0, let

τ 2k+1 = inf
{
t ≥ τ 2k : ut /∈ Eδ−1

δ/2

}
∧ ρδT ,

τ 2k+2 = inf
{
t ≥ τ 2k+1 : ut ∈ Eδ−1

δ

}
∧ ρδT .

Note that we are hiding the dependence of τn on δ and T for notational sake (to
avoid too many subscripts). For t ∈ [τ 2k, τ 2k+1], define ηδt = β∗t (where (β∗t )t≥0 is as

31



in the theorem). On the other hand for t ∈ (τ 2k+1, τ 2k+2), define ηδt = ηδ
τ2k+1 , and

for t ∈ [0, τ 0) define ηδt = 0. If t ∈ [ρδT , T ], then define ηδt = ηδ
ρδT
. Let

Dδ,T :=
∞⋃
k=0

(τ 2k+1, τ 2k+2). (7.3)

The following lemma shows that the process (ηδt )t∈[0,T ] is well-defined for any T > 0.

Lemma 7.7. Let T, δ > 0. Then there exists n ≥ 1 such that τn = ρδT almost
surely. In particular the process (ηδt )t∈[0,T ] described above is well-defined for any
T > 0, δ > 0.

Proof. Suppose for a contradiction that τn < ρδT for all n ≥ 1.

Step 1: We first claim that for all κ > 0, there exists k0 ≥ 1 such that for all k ≥ k0

|Γ(uτ2k)− Γ(uτ2k+1)| ≤ κ almost surely.
To see this, suppose otherwise. Then for some κ > 0 there exists a subsequence

(kr)r≥1 such that |Γ(uτ2kr ) − Γ(uτ2kr+1)| ≥ κ for all r ≥ 1. Now it is clear by
continuity of (ut)t≥0 and Lemma 7.9 below that uτn ∈ E2δ−1

δ/3 for all n ≥ 1. Thus
by Lemma 7.10, there exists υ > 0 such that for all r, ‖uτ2kr − uτ2kr+1‖ ≥ υ, which
contradicts the continuity of (ut)t≥0.

By the claim we thus have that for k sufficiently large

[Γ(uτ2k+1)− δ/2,Γ(uτ2k+1) + δ/2] ⊂ [Γ(uτ2k)− δ,Γ(uτ2k) + δ] . (7.4)

Step 2: The second step is to establish that there exists a constant κ∗ > 0

lim sup
k→∞

‖uτ2k+1 − uτ2k‖ ≥ κ∗. (7.5)

This implies that there are infinitely many nontrivial oscillations over the interval
[0, ρδT ], which is clearly a contradiction and thus proves the lemma.

The rest of the proof is thus devoted to showing (7.5). There are two (non
exclusive) possible reasons why uτ2k+1 /∈ Eδ−1

δ/2 . The first possibility is that there
exists an α ∈ [Γ(uτ2k+1)− δ/2,Γ(uτ2k+1) + δ/2] such that γ(α, uτ2k+1) ≤ δ/2. In this
case, since uτ2k ∈ Eδ−1

δ by definition, thanks to (7.4) it must be that γ(α, uτ2k) > δ.
This means that

‖uτ2k+1 − uτ2k‖ =
∥∥v0

τ2k+1 − v0
τ2k

∥∥ ≥ |〈v0
τ2k+1 − v0

τ2k
, ϕ′′α〉|

‖ϕ′′0‖

=
γ(α, uτ2k)− γ(α, uτ2k+1)

‖ϕ′′0‖
≥ δ

2 ‖ϕ′′0‖
,

so that (7.5) holds in this case.
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The other possible reason why uτ2k+1 /∈ Eδ−1

δ/2 is that there exists an α such that
|α− Γ(uτ2n+1)| ≥ δ

2
and∥∥∥uτ2k+1 − ϕΓ(u

τ2k+1 )

∥∥∥ ≥ ‖uτ2k+1 − ϕα‖ −
1

8
δ3(δ ‖ϕ′0‖ /2 + 2δ−1)−1.

Now by Taylor’s theorem, for some λ ∈ [0, 1],∥∥∥ϕΓ(u
τ2k+1 ) − ϕΓ(u

τ2k
)

∥∥∥ ≤ ∥∥∥ϕ′λΓ(u
τ2k+1 )+(1−λ)Γ(u

τ2k
)

∥∥∥ |Γ(uτ2k+1)− Γ(uτ2k)|

= ‖ϕ′0‖ |Γ(uτ2k+1)− Γ(uτ2k)| ≤ ‖ϕ′0‖κ,

for any κ > 0 by taking k large enough by Step 1. From Lemma 7.8 and the
definition of Eδ,∥∥∥uτ2k − ϕΓ(u

τ2k
)

∥∥∥ ≤ ‖uτ2k − ϕα‖ − min
(
δ2, (α− Γ(uτ2k))

2
)
× δ

δ ‖ϕ′0‖+ 2δ−1
.

Thus by the reverse triangle inequality, we find using the above three equations that

‖uτ2k+1 − uτ2k‖ ≥
∥∥∥uτ2k+1 − ϕΓ(u

τ2k+1 )

∥∥∥− ∥∥∥uτ2k − ϕΓ(u
τ2k

)

∥∥∥− ∥∥ϕΓ(u2k+1) − ϕΓ(u2k)

∥∥
≥ ‖uτ2k+1 − ϕα‖ − ‖uτ2k − ϕα‖+ min

(
δ2, (α− Γ(uτ2k))

2
)
× δ

δ ‖ϕ′0‖+ 2δ−1

− δ3

8(δ ‖ϕ′0‖ /2 + 2δ−1)
− ‖ϕ′0‖κ, (7.6)

for any κ > 0 by taking k large enough. Moreover, for such k

|α− Γ(uτ2k)| ≥ |α− Γ(uτ2k+1)| − |Γ(uτ2k+1)− Γ(uτ2k)|

≥ |α− Γ(uτ2k+1)| − κ ≥ δ

2
− κ.

Therefore, for κ ∈ (0, δ/2) and k large enough

min
(
δ2, (ᾱ− Γ(uτ2k))

2
)
× δ

δ ‖ϕ′0‖+ 2δ−1
− δ3

8(δ ‖ϕ′0‖ /2 + 2δ−1)
− ‖ϕ′0‖κ

≥
(
δ

2
− κ
)2

× δ

δ ‖ϕ′0‖+ 2δ−1
− δ3

4(δ ‖ϕ′0‖+ 4δ−1)
− ‖ϕ′0‖κ

≥ δ2

2(δ‖ϕ′0‖+ 4δ−1)2
− κ

(
δ2

δ ‖ϕ′0‖+ 2δ−1
+ ‖ϕ′0‖

)
≥ δ2

4(δ‖ϕ0‖+ 4δ−1)2
=: κ̄,

by choosing κ small enough, and then k large enough. Applying this to (7.6), we
then have that for k large enough, ‖uτ2k+1 − uτ2k‖ ≥ κ̄+‖uτ2k+1 − ϕα‖−‖uτ2k − ϕα‖.
Since ‖uτ2k+1 − ϕα‖−‖uτ2k − ϕα‖ ≥ −‖uτ2k+1 − uτ2k‖, we find that ‖uτ2k+1 − uτ2k‖ ≥
1
2
κ̄, for k large enough. This shows that (7.5) holds in this second case too, which

proves the result.
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We can now turn to the proof of Theorem 7.3.

Proof of Theorem 7.3. We first prove the theorem for the case s = 0 and t = T . We
also assume for now that there exists a δ such that u0 ∈ Eδ, and so τ 0 = 0. Assume
that δ is small enough so that supr∈[0,T ] ‖v0

t ‖ ≤ δ−1, so that ρδT = T . Define

yδr = ur − ϕηδr , r ∈ [0, T ], (7.7)

where (ηδr)r∈[0,T ] is defined above. The process (ηδr)r∈[0,T ] has been constructed piece-
wise on each interval [τ 2k, τ 2k+2) for k ≥ 0 (with τ 0 := 0), with ηδ satisfying the
SDE (5.6) on [τ 2k, τ 2k+1] and being constant on the interval [τ 2k+1, τ 2k+2) (and equal
to β∗

τ2k+1). Then

∥∥yδT∥∥2 −
∥∥yδ0∥∥2 ≤

∞∑
k=0

(∥∥yδτ2k+1

∥∥2 −
∥∥yδτ2k∥∥2

+
∥∥yδτ2k+2

∥∥2 −
∥∥yδτ2k+1

∥∥2
)
.

By definition, on Dcδ,T := [0, T ]\Dδ,T , the process ηδ follows the solution of the
SDE (5.6). We may therefore apply Theorem 6.6 to see that

∥∥yδT∥∥2−
∥∥yδ0∥∥2 ≤

∫
Dcδ,T

Ξ(yδr)+2〈f(ϕηδr+yδr)−f(ϕηδr ), y
δ
r〉dr+2ε

∫
Dcδ,T

〈yδr , B(r)dWQ
r 〉

+ ε2

∫
Dcδ,T

[
Tr(Q)−

‖Q 1
2ϕ′

ηδr
‖2

γ(ηδr , v
0
r)

]
dr +

∞∑
k=0

(∥∥yδτ2k+2

∥∥2 −
∥∥yδτ2k+1

∥∥2
)
.

Moreover, for r ∈ Dcδ,T , ηδr = β∗r by defintion. Therefore

‖z∗T‖
2 − ‖z∗0‖

2 ≤
∫
Dcδ,T

Ξ(z∗r ) + 2〈f(ϕβ∗r + z∗r )− f(ϕβ∗r ), z
∗
r 〉dr

+ 2ε

∫
Dcδ,T

〈z∗r , B(r)dWQ
r 〉+ ε2

∫
Dcδ,T

[
Tr(Q)−

‖Q 1
2ϕ′β∗r‖

2

γ(β∗r , v
0
r)

]
dr +R(δ)

where

R(δ) :=
∞∑
k=0

(∥∥yδτ2k+2

∥∥2 −
∥∥yδτ2k+1

∥∥2
)
.

Thanks to Lemma 7.12, it can thus be seen that the following claim is sufficient to
establish the theorem.

Claim: We claim that R(δ)→ 0 almost surely as δ → 0.

Proof of claim: By definition of the process (ηδt )t∈[0,T ] we have that for any k ≥ 0,

‖yδτ2k+2‖2 ≤ ‖yδτ2k+2−‖
2.
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Therefore

R(δ) ≤
∞∑
k=0

(∥∥yδt∧τ2k+2−
∥∥2 −

∥∥yδt∧τ2k+1

∥∥2
)
.

Now since ηδ is constant on [τ 2k+1, τ 2k+2), and using the fact that yδr = v0
r + ϕ0 −

ϕηδ
τ2k+1

for all r ∈ [τ 2k+1, τ 2k+2),∥∥yδτ2k+2−
∥∥2 −

∥∥yδτ2k+1

∥∥2
= ‖v0

τ2k+2‖2 − ‖v0
τ2k+1‖2 + 2〈v0

τ2k+2 − v0
τ2k+1 , ϕ0 − ϕηδ

τ2k+1
〉.

Moreover, by Itô’s lemma and Proposition 4.2 we can see that for any 0 ≤ s ≤ r∥∥v0
r

∥∥2
=
∥∥PA

r−sv
0
s

∥∥2
+ 2

∫ r

s

〈PA
r−θv

0
θ , P

A
r−θ(f(ϕ0 + v0

θ)− f(ϕ0))〉dθ

+ 2ε

∫ r

s

〈PA
r−θv

0
θ , P

A
r−θB(θ)dWQ

θ 〉+ ε2

∫ r

s

Tr
(
B∗(θ)(PA

r−θ)
∗QPA

r−θB(θ)
)
dθ.

For r ∈ Dδ,T , write r̄ = inf{τ 2k : k ≥ 0, τ 2k ≥ r} and r = sup{τ 2k+1 : k ≥
0, τ 2k+1 ≤ r}. We thus see that

|R(δ)| ≤
∞∑
k=0

∣∣∣‖v0
τ2k+2‖2 − ‖v0

τ2k+1‖2 + 2〈v0
τ2k+2 − v0

τ2k+1 , ϕ0 − ϕηδ
τ2k+1
〉
∣∣∣

≤
∞∑
k=0

∣∣∣ ∥∥PA
τ2k+2−τ2k+1v

0
τ2k+1

∥∥2 − ‖v0
τ2k+1‖2

∣∣∣
+2

∫
Dδ,T

∣∣∣〈PA
r̄−rv

0
r , P

A
r̄−r[f(ϕ0 +v0

r)−f(ϕ0)]
〉∣∣∣dr+2ε

∣∣∣ ∫
Dδ,T

〈
PA
r̄−rv

0
r , P

A
r̄−rB(r)dWQ

r

〉∣∣∣
+ ε2

∫
Dδ,T

Tr
(
B∗(r)(PA

r̄−r)
∗QPA

r̄−rB(r)
)
dr

+ 2
∞∑
k=0

∣∣∣〈PA
τ2k+2−τ2k+1v

0
τ2k+1 − v0

τ2k+1 , ϕ0 − ϕηδ
τ2k+1

〉∣∣∣
+2

∫
Dδ,T

∣∣∣〈PA
r̄−r[f(ϕ0+v0

r)−f(ϕ0)], ϕ0−ϕηδr
〉∣∣∣dr+2ε

∣∣∣ ∫
Dδ,T

〈
ϕ0−ϕηδr , P

A
r̄−rB(r)dWQ

r

〉∣∣∣.
(7.8)

By Lemma 7.12, we have that |Dδ,T | → 0 almost surely as δ → 0. Therefore
τ 2k+2 − τ 2k+1 → 0 almost surely, for every k ≥ 0. Since (PA

r )r≥0 is a strongly
continuous semigroup (see Assumption 2.3 (i)), we thus have that first term on the
right-hand side of (7.8) converges to 0 almost surely. Moreover, so does the fifth term
thanks to the dominated convergence theorem. All the other non-stochastic integral
terms are similarly easy to handle thanks the dominated convergence theorem. The
stochastic integral term can be also shown to converge to 0 almost surely as δ → 0
by taking expectations. We note also that the other claim in the theorem – i.e. the
almost sure uniqueness of β∗t for each t – is proved in the course of Lemma 7.12.
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We assumed at the start of the proof that s = 0, t = T and u0 ∈ Eδ for some
sufficiently small δ. We now treat the more general case when these assumptions do
not hold. First, if s 6= 0, then almost surely there exists a δ > 0 such that us ∈ Eδ
(this is noted in the proof of Lemma 7.12). The proof of this case now proceeds
exactly as above, with τ 0 redefined to be s. Second, suppose that s = 0 but u0 /∈ Eδ
for any δ > 0. Since |Dδ,T | → 0, it follows that τ 0 → 0 as δ → 0, and the result still
holds.

7.2 Auxiliary Lemmas

Lemma 7.8. Suppose that u ∈ EM
δ . Then for all α ∈ [Γ(u)−δ,Γ(u)+δ], α 6= Γ(u),

‖u− ϕα‖ −
∥∥u− ϕΓ(u)

∥∥ > δ(α− Γ(u))2

δ ‖ϕ′0‖+ 2M
.

Proof. By Taylor’s theorem, for all α ∈ [Γ(u) − δ,Γ(u) + δ], α 6= Γ(u), for some ᾱ
between α and Γ(u)

‖u− ϕα‖2 =
∥∥u− ϕΓ(u)

∥∥2
+ γ(ᾱ, u)(α− Γ(u))2 >

∥∥u− ϕΓ(u)

∥∥2
+ δ(α− Γ(u))2,

the last inequality following from the definition of EM
δ . Hence

(‖u− ϕα‖ −
∥∥u− ϕΓ(u)

∥∥)(‖u− ϕα‖+
∥∥u− ϕΓ(u)

∥∥) > δ(α− Γ(u))2,

so that

‖u− ϕα‖ −
∥∥u− ϕΓ(u)

∥∥ > δ(α− Γ(u))2

‖u− ϕα‖+
∥∥u− ϕΓ(u)

∥∥ ≥ δ(α− Γ(u))2∥∥ϕΓ(u) − ϕα
∥∥+ 2

∥∥u− ϕΓ(u)

∥∥ .
Now again by Taylor’s theorem, for some λ ∈ [0, 1], it holds that ϕα − ϕΓ(u) =
((1− λ)ϕ′α + λϕ′Γ(u))(α− Γ(u)). Thus∥∥ϕα − ϕΓ(u)

∥∥ ≤ |α− Γ(u)| ‖ϕ′0‖ .

Therefore, making use of the definition of EM
δ ,

‖u− ϕα‖ −
∥∥u− ϕΓ(u)

∥∥ > δ(α− Γ(u))2

|α− Γ(u)| ‖ϕ′0‖+ 2
∥∥u− ϕΓ(u)

∥∥
≥ δ(α− Γ(u))2

|α− Γ(u)| ‖ϕ′0‖+ 2M
≥ δ(α− Γ(u))2

δ ‖ϕ′0‖+ 2M
.

Lemma 7.9. If δ1 < δ2, then EM
δ2
⊂ EM

δ1
.
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Proof. For u ∈ EM
δ2
, to show that u ∈ EM

δ1
the only thing that is slightly difficult

to check is that for all α ∈ R\[Γ(u) − δ1,Γ(u) + δ1], ‖u− ϕα‖ >
∥∥u− φΓ(u)

∥∥ +
δ3

1(δ1 ‖ϕ′0‖+ 2M)−1. For α ∈ R\[Γ(u)− δ2,Γ(u) + δ2] this follows from the fact that
u ∈ EM

δ2
and δ1 < δ2. If α ∈ [Γ(u)− δ2,Γ(u) + δ2] but α 6∈ [Γ(u)− δ1,Γ(u) + δ1] then

by Lemma 7.8

‖u− ϕα‖ −
∥∥u− φΓ(u)

∥∥ > δ2δ
2
1(δ2 ‖ϕ′0‖+ 2M)−1 > δ3

1(δ1 ‖ϕ′0‖+ 2M)−1.

Lemma 7.10. For all θ ∈ (0, δ), there exists ζ > 0 such that for all u,w ∈ EM
δ , if

‖u− w‖ ≤ ζ then |Γ(u)− Γ(w)| ≤ θ.

Proof. Let θ ∈ (0, δ) and define ζ = 1
2
θ2δ(δ ‖ϕ′0‖+2M)−1. Assume that ‖u− w‖ ≤ ζ.

Now ∥∥w − ϕΓ(u)

∥∥ ≤ ∥∥u− ϕΓ(u)

∥∥+ ‖w − u‖ ≤
∥∥u− ϕΓ(u)

∥∥+ ζ.

Thus the Lemma will follow if we can establish the following claim.

Claim: infα/∈[Γ(u)−θ,Γ(u)+θ] ‖w − ϕα‖ >
∥∥u− ϕΓ(u)

∥∥+ ζ.

Indeed, if this claim is true we then have that∥∥w − ϕΓ(u)

∥∥ < inf
α/∈[Γ(u)−θ,Γ(u)+θ]

‖w − ϕα‖

so that Γ(w) is certainly within a distance θ of Γ(u). To prove the claim, from the
reverse triangle inequality,

inf
α/∈[Γ(u)−θ,Γ(u)+θ]

‖w − ϕα‖ ≥ inf
α/∈[Γ(u)−θ,Γ(u)+θ]

‖u− ϕα‖ − ‖w − u‖ .

Suppose that infα/∈[Γ(u)−θ,Γ(u)+θ] ‖u− ϕα‖ = ‖u− ϕα̃‖. Then α̃ ∈ R\(Γ(u)−θ,Γ(u)+
θ). We claim that ‖u− ϕα̃‖ >

∥∥u− ϕΓ(u)

∥∥ + θ2δ(δ ‖ϕ′0‖ + 2M)−1. To see this, if
α̃ 6∈ [Γ(u)− δ,Γ(u) + δ], then by the definition of EM

δ ,

‖u− ϕα̃‖ >
∥∥u− ϕΓ(u)

∥∥+ δ3(δ ‖ϕ′0‖+ 2M)−1 >
∥∥u− ϕΓ(u)

∥∥+ θ2δ(δ ‖ϕ′0‖+ 2M)−1.

On the other hand if α̃ ∈ [Γ(u)−δ,Γ(u)+δ] (recall that α̃ ∈ R\(Γ(u)−θ,Γ(u)+θ)),
by Lemma 7.8 we have that

‖u− ϕα̃‖ >
∥∥u− ϕΓ(u)

∥∥+ θ2δ(δ ‖ϕ′0‖+ 2M)−1.

Lemma 7.11. Let Ē :=
⋃
δ∈(0,1) E

δ−1

δ . Then Ē is the set of all u ∈ E such that
α 7→ ‖u− ϕα‖ has a unique global minimum Γ(u) such that γ(Γ(u), u) > 0.
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Proof. Suppose that u ∈ E is such that α 7→ ‖u− ϕα‖ has a unique global minimum
Γ(u) and γ(Γ(u), u) > 0. We prove that there exists a δ̄ such that u ∈ E δ̄−1

δ̄
. It

follows from the continuity of γ that if γ(Γ(u), u) > 0, then there exists some δ > 0
such that γ(α, u) > δ for all α in some neighborhood [Γ(u)− δ,Γ(u) + δ] of Γ(u).

Suppose for a contradiction that there is a sequence of points αj /∈ [Γ(u) −
δ,Γ(u) + δ] such that

∥∥u− ϕαj∥∥ → ∥∥u− ϕΓ(u)

∥∥ as j → ∞. By Lemma 5.1,
there must exist a compact set K such that αj ∈ K for all j. Therefore there
must exist a ξ ∈ K such that for a subsequence pj, αpj → ξ. By continuity,
‖u− ϕξ‖ =

∥∥u− ϕΓ(u)

∥∥. This contradicts the uniqueness of the global minimum
of u. Therefore there must exist a κ such that for all α /∈ [Γ(u) − δ,Γ(u) + δ],
‖u− ϕα‖ >

∥∥u− ϕΓ(u)

∥∥+ κ. Let δ∗ be such (δ∗)3/(‖ϕ′0‖ δ∗ + 2M) < κ.
Let δ̄ ≤ min (δ, δ∗). It may be seen that u ∈ E δ̄−1

δ̄
, if δ̄−1 ≥ ‖u− ϕ0‖.

Lemma 7.12. Under Assumptions 7.1 and 7.2, |Dδ,T | tends to 0 as δ → 0 almost
surely.

Proof. It suffices for us to prove that
∫

Ω

∫
[0,T ]

1(ut /∈ Eδ−1

δ )dtdP → 0 as δ → 0. By
Fubini’s theorem,∫

Ω

∫
[0,T ]

1(ut /∈ Eδ−1

δ )dtdP =

∫
[0,T ]

∫
Ω

1(ut /∈ Eδ−1

δ )dPdt.

It thus suffices for us to show that for Lebesgue almost every t ∈ [0, T ], P(ut /∈
Eδ−1

δ ) → 0, as δ → 0. Thanks to the inclusion relation of Lemma 7.9, this will
follow if we can show that P(ut /∈ Ē) = 0 for almost every t ∈ [0, T ], where Ē :=⋃
δ∈(0,1)E

δ−1

δ is as in Lemma 7.11. Since ut = v0
t + ϕ0, this is equivalent to showing

that, for almost all t ∈ [0, T ],

P(v0
t /∈ Ē − ϕ0) = 0. (7.9)

We establish (7.9) using the Girsanov theorem. We recall the definition of the process
v0 = (v0

t )t≥0 as the solution to dv0
t = (Av0

t + f(ϕ0 + v0
t )− f(ϕ0)) dt+B(t)dWt, and

introduce the process X = (Xt)t≥0 ⊂ H as the solution to

dXt :=AXtdt+B(t)dWt,

with v0
0 = X0. Note that by the Lipschitz assumption on f

sup
t∈[0,T ]

E
[
exp

(∥∥∥Q 1
2B(t)−1(f(ϕ0 +Xt)− f(ϕ0))

∥∥∥)] ≤ sup
t∈[0,T ]

E [exp (C ‖Xt‖)] ,

for some constant C, using also Assumption 4.1 (ii). Since (Xt)t≥0 is a Gaussian pro-
cess the right-hand side is finite. Thus the Girsanov theorem [8, Theorem 10.18] ap-
plies. This means that the law of v0 (which is a probability measure on C([0, T ], H))
is absolutely continuous with respect to the law of X. Thus (7.9) will be satisfied if

P(Xt + ϕ0 /∈ Ē) = 0. (7.10)
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To show (7.10), by Lemma 7.11 it suffices to show that i) α 7→ ‖Xt + ϕ0 − ϕα‖2

has a unique global minimum ᾱ almost surely, and ii) γ(ᾱ, Xt + ϕ0) > 0.
To show i), let

Yα,t := 2 〈Xt, ϕα − ϕ0〉 , and Zα,t := Yα,t − ‖ϕα − ϕ0‖2 . (7.11)

Observe that infα∈R ‖Xt + ϕ0 − ϕα‖2 = infα∈R
(
‖Xt‖2 − Zα,t

)
= ‖Xt‖2−supα∈R Zα,t.

It may thus be seen that ᾱ is the unique global minimum of α 7→ ‖Xt + ϕ0 − ϕα‖2

if and only Zᾱ,t > Zα,t for all α 6= ᾱ.
Since Xt is Gaussian, (Zα,t)α∈R is a continuous R-indexed Gaussian process, for

fixed t ∈ [0, T ]. We have that

E
[
(Zα,t − Zβ,t − E[Zα,t − Zβ,t])2

]
= 4〈ϕα − ϕβ, Qt(ϕα − ϕβ)〉, ∀α, β ∈ R,

where Qt is defined as in Assumption 7.1. By this assumption, the above variance
is nonzero for all α 6= β and t > 0. Then by [22, Lemma 2.6], α 7→ Zα,t has a unique
supremum almost surely.

It remains for us to show ii). It can be seen that this will hold if Z ′′ᾱ,t 6= 0 (the
derivative with respect to α), almost surely. Since ᾱ is the unique maximum and by
assumption (Z ′α,t, Z

′′
α,t, Z

′′′
α,t, Z

′′′′
α,t) all exist, if Z ′′ᾱ,t = 0 then it must also be the case

that Z ′ᾱ,t = Z ′′′ᾱ,t = 0 (this may be seen by Taylor expanding Zα,t about ᾱ). The
result thus follows from Lemma 7.13 below.

Lemma 7.13. Under Assumption 7.2, for any t ≥ 0, the probability that there exists
an α ∈ R such that

Z ′α,t = Z ′′α,t = Z ′′′α,t = 0 (7.12)

is zero, where Zα,t is defined in (7.11).

Proof. Fix M > 0. We will show that the probability that (7.12) holds for any
α ∈ [−M,M ] is zero. The lemma then follows directly from a covering argument.

For n > 0 and j ∈ {1, . . . , n}, let αnj = −M + 2M(j − 1/2)/n. Let Bn
j be the

interval [αnj −M/n, αnj +M/n]. Fix m > 0. Using the result Lemma 7.14 below, we
find that

P
(
Z ′α,t = Z ′′α,t = Z ′′′α,t = 0, for some α ∈ [−M,M ]

)
≤ P(‖X‖t > m) +

n∑
j=1

P
(
Z ′α,t = Z ′′α,t = Z ′′′α,t = 0 for some α ∈ Bn

j , and ‖Xt‖ ≤ m
)

≤ P(‖X‖t > m) + CM(m+ 1)2n−1.

We obtain the result by taking m,n → ∞, such that P(‖X‖t > m) → 0 and
CM(m+ 1)2n−1 → 0.

The following lemma uses variables defined in the proof of Lemma 7.13.
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Lemma 7.14. Under Assumption 7.2, for each t > 0 there exists a positive constant
CM independent of m and n such that

P
(
Z ′α,t = Z ′′α,t = Z ′′′α,t = 0 for some α ∈ Bn

j , and ‖Xt‖ ≤ m
)
≤ CM(m+ 1)2n−2.

Proof. Let G(α) := −‖ϕ0 − ϕα‖2 for α ∈ R. Let α ∈ Bn
j . By Taylor’s theorem, for

some α̃ ∈ Bn
j ,

Z ′′′α,t = Z ′′′αnj ,t + (α− αnj )Z ′′′′α̃,t = Y ′′′αnj ,t + G ′′′(αnj ) + (α− αnj )
(
Y ′′′′α̃,t + G ′′′′(α̃)

)
,

where Yα,t is defined in (7.11). Now by the Cauchy-Schwarz inequality,
∥∥Y ′′′′α̃,t

∥∥ ≤
2 ‖ϕ′′′′α̃ ‖ ‖Xt‖. By assumption,

∣∣G ′′′′(αnj )
∣∣ possesses a uniform upper bound. We thus

find that if Z ′′′α,t = 0 for some α ∈ Bn
j and ‖Xt‖ ≤ m, then since |α− αnj | ≤ n−1,∣∣∣Y ′′′αnj ,t + G ′′′(αnj )

∣∣∣ ≤ K(m+ 1)n−1, (7.13)

for some constant K which is independent of n, j and m. We find similarly (read-
justing the constant K) that if Z ′α,t = Z ′′α,t = 0, then∣∣∣Y ′αnj ,t + G ′(αnj )

∣∣∣ ≤ K(m+ 1)n−1, (7.14)∣∣∣Y ′′αnj ,t + G ′′(αnj )
∣∣∣ ≤ K(m+ 1)n−1. (7.15)

By construction, we can see that 4Kϕ(αnj , t) (as defined in Assumption 7.2) is the
covariance matrix of the R3-valued Gaussian random variable (Y ′αnj ,t, Y

′′
αnj ,t

, Y ′′′αnj ,t).
Moreover, recall the definition of Oϕ(α, t) in (7.2) and define R3 3 Y := Oϕ(αnj , t) ·
(Y ′αnj ,t, Y

′′
αnj ,t

, Y ′′′αnj ,t) and R3 3 G := Oϕ(αnj , t) · (G ′(αnj ),G ′′(αnj ),G ′′′(αnj )) (these are
matrix-vector multiplications). It may be observed from (7.13)-(7.15) that there
exists a constant K0 (independent of n, j and m) such that if Z ′α,t = Z ′′α,t = Z ′′′α,t = 0
for some α ∈ Bn

j , then

‖Y + G‖∞ ≤ K0(m+ 1)n−1.

Here ‖·‖∞ is the supremum norm over R3. It thus suffices for us to show that there
exists a constant CM such that

P
(
‖Y + G‖∞ ≤ K0(m+ 1)n−1

)
≤ CM(m+ 1)2n−2. (7.16)

Now the covariance matrix of Y is 4Λϕ(αnj , t) (defined in Assumption 7.2), which
means that the three elements of Y are mutually independent Gaussian variables,
with variances (4λϕi (αnj , t))i∈{1,2,3}.

We claim that there must exist a constant κ > 0 such that for all α ∈ [−M,M ],
no more than one of (λϕi (α, t))i∈{1,2,3} are less than κ. To see this, assume for a
contradiction that there exists a sequence (αr)r∈N ⊂ [−M,M ] such that at least
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two of (λϕi (αr, t))i∈{1,2,3} are less than r−1. From this we must be able to obtain a
subsequence (α̃p)p∈N such that for some (k, l) ∈ {1, 2, 3}, λϕk (α̃p, t), λϕl (α̃p, t) ≤ p−1.
By the compactness of [−M,M ], there must exist a point ᾱ such that a subsequence
of (α̃p)p∈N converges to ᾱ. By continuity, λϕk (ᾱ, t) = λϕl (ᾱ, t) = 0. This contradicts
Assumption 7.2.

Now the probability of a 1-dimensional Gaussian variable of variance Σ being in
some interval of width δ is upper-bounded by δ(2πΣ)−1/2. Since the variances of at
least two of the (λϕi (αnj , t))i∈{1,2,3} are lower-bounded by 4κ, we have that

P
(
‖Y + G‖∞ ≤ K0(m+ 1)n−1

)
≤
(

2K0
m+ 1

n

)2

(8πκ)−1.

This gives us (7.16).
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