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Abstract

We consider the wave equation with highly oscillatory initial data, where there is
uncertainty in the wave speed, initial phase and/or initial amplitude. To estimate quan-
tities of interest related to the solution and their statistics, we combine a high-frequency
method based on Gaussian beams with sparse stochastic collocation. Although the
wave solution, uε, is highly oscillatory in both physical and stochastic spaces, we pro-
vide theoretical arguments and numerical evidence that quantities of interest based on
local averages of |uε|2 are smooth, with derivatives in the stochastic space uniformly
bounded in ε, where ε denotes the short wavelength. This observable related regular-
ity makes the sparse stochastic collocation approach more efficient than Monte Carlo
methods. We present numerical tests that demonstrate this advantage.

1 Introduction

The propagation of high-frequency waves is modeled by hyperbolic partial differential equa-
tions (PDEs) with highly oscillatory solutions. In these models, the wavelength ε is very short
compared to variations in the structure of the medium and the wave propagation distance,
resulting in multiscale problems. In addition, these models are often subject to uncertainty
due to both incomplete knowledge of the model’s parameters (such as wave speed) and the
intrinsic variability of the physical system (such as the location of an earthquake’s hypocen-
ter or the time frequency of volcanic forces). The problem therefore has two components:
multiple scales and uncertainty. High levels of confidence in the predictions require under-
standing of the uncertainties in the model. This understanding can be obtained by a process
∗malenova@kth.se
†motamed@math.unm.edu
‡olofr@nada.kth.se
§raul.tempone@kaust.edu.sa

1

ar
X

iv
:1

50
7.

05
50

8v
2 

 [
m

at
h.

N
A

] 
 1

0 
Se

p 
20

15



called uncertainty quantification (UQ). Furthermore, the systematic coupling and interaction
of multiple scales and uncertainty must be considered.

Despite recent advances in the uncertainty quantification of a wide range of mathematical
models, see, e.g., [11, 16, 23, 24, 39], viable UQ methodologies for high-frequency waves are
not well developed. Current methods are based on Monte Carlo sampling techniques [38],
which feature slow convergence rates. The main reason that more efficient methods with
fast spectral convergence rates are not developed for high-frequency waves is that the wave
solution is highly oscillatory and consequently its derivatives in the stochastic space are not
bounded uniformly with respect to ε. Spectral techniques in the stochastic space have to
resolve these oscillations and will thus require very many sample points to be accurate. Here,
we aim at developing efficient computational techniques that feature fast convergence rates
independent of the oscillations.

In this work, we are concerned mainly with the forward propagation of uncertainty in
high-frequency waves, where the uncertainty in the input parameters, such as wave speed
and initial data, propagates through the multiscale hyperbolic model to give information
about uncertain output quantities of interest (QoIs). As the prototype model equation for
high-frequency waves, we consider the scalar wave equation with highly oscillatory initial
data. The main sources of uncertainty are the wave speed and/or the initial data, which are
here described by a finite number of independent random variables with known probability
distributions. We propose a novel stochastic spectral asymptotic method, which combines
two techniques: (1) a Gaussian beam summation method for propagating high frequency
waves; and (2) a sparse stochastic collocation method for propagating uncertainty and ap-
proximating the statistics of QoIs. An important property is the stochastic regularity of the
QoIs. By this, we mean the regularity of output QoIs with respect to input random pa-
rameters. The fast spectral convergence of the proposed method depends crucially on the
presence of high stochastic regularity, independent of the wave frequency ε. In particular,
through both theoretical arguments for simplified problems and numerical experiments for
more complicated problems, we show that although the derivatives of highly oscillatory wave
solution uε with respect to the random parameters are not bounded independently of ε, phys-
ically motivated QoIs based on local averages of |uε|2 are smooth with uniformly bounded
derivatives in the stochastic space. Consequently, despite the slow algebraic convergence of
the wave solution, the proposed method gives fast spectral convergence for those QoIs.

We note that the two methods composing the proposed method have already been em-
ployed and are not new. The stochastic collocation method has been widely used in forward
propagation of uncertainty in many PDE models, see, e.g., [40, 2, 31, 30, 4, 24, 8, 12, 1].
The Gaussian beam summation method has also been successfully applied to deterministic
high-frequency wave propagation problems, see, e.g., [33, 35, 25, 26, 15, 18, 27]. However,
combining the two methods is not straightforward since the convergence rate of the resulting
method strongly depends on the stochastic regularity of the QoI, which in general depends
on ε and in principle may be as bad as the regularity of uε. The main contributions of this
work include: (1) constructing a novel algorithm for the uncertainty propagation of high-
frequency waves by systematic coupling of sparse stochastic collocation and Gaussian beam
approximation; and (2) verifying the fast spectral convergence of the proposed algorithm for
particular types of quadratic quantities, independent of frequency.
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The rest of the work is organized as follows. In Section 2, we formulate the high-frequency
wave propagation problem with stochastic parameters. The stochastic spectral asymptotic
method for the forward propagation of uncertainty in the problem is presented in Section
3. In Section 4, we discuss the stochastic regularity of the highly oscillatory solution and
a particular quantity of interest, through theoretical arguments and numerical experiments.
In Section 5, we provide numerical examples and demonstrate the spectral convergence of
the proposed method for the quantity of interest. Finally, we summarize our conclusions in
Section 6.

2 Problem Statement

Consider the Cauchy problem for the stochastic wave equation

uεtt(t,x,y)− c(x,y)2 ∆uε(t,x,y) = 0, in [0, T ]× Rn × Γ, (1a)
uε(0,x,y) = gε1(x,y), uεt(0,x,y) = gε2(x,y), on {t = 0} × Rn × Γ, (1b)

where uε ∈ C is the stochastic wave function, t ∈ [0, T ] is the time, x = (x1, . . . , xn) ∈ Rn

is the spatial variable, y = (y1, . . . , yN) ∈ Γ ⊂ RN is a random vector, and ε � 1 is a
small positive number, representing a typical short wavelength defined below. We use the
convention that ∇ represents the gradient with respect to the spatial variables x.
Sources of uncertainty. The uncertainty in model (1) is described by a random vector,
y, consisting of N ∈ N+ independent random variables, y1, . . . , yN , with a bounded joint
probability density, ρ(y) = ∏N

n=1 ρn(yn) : Γ→ R+. There may be two sources of uncertainty:
uncertainty in the local wave speed, c = c(x,y), and uncertainty in the initial data, gε1 =
gε1(x,y) and gε2 = gε2(x,y). We make the following smoothness, uniform coercivity and
boundedness assumptions on the wave speed:

c( · ,y) ∈ C∞(Rn), ∀y ∈ Γ, (2)
0 < cmin ≤ c(x,y) ≤ cmax <∞, ∀x ∈ Rn, ∀y ∈ Γ. (3)

In the case when Γ is not compact (for example when random variables are Gaussian), in
addition to (2), we assume the spatial derivatives of the wave speed are uniformly bounded in
Γ. If Γ is compact (for example when random variables are uniform), this extra assumption is
automatically satisfied. We further assume that the random wave speed has bounded mixed
y-derivatives of any order, i.e., for a multi-index k= (k1, . . . , kN) ∈ ZN+ with |k| ≥ 0, we
define ∂k

y := ∂|k|

∂
k1
y1 ... ∂

kN
yN

and assume

∥∥∥∂k
yc( · ,y)

∥∥∥
L∞(Rn)

<∞, ∀y ∈ Γ. (4)

High-frequency waves. We consider highly oscillatory initial data of the form

gε1(x,y) = A0(x,y) eiΦ0(x,y)/ε , gε2(x,y) = 1
ε
B0(x,y) eiΦ0(x,y)/ε , (5)
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where the short wavelength, ε, is assumed to be much smaller than the typical scale of the
structure of the medium (variations in the wave speed) and the wave propagation distance
(the size of the computational domain). Such initial data generate high-frequency waves prop-
agating in low-frequency media. The functions A0, B0 and Φ0 are assumed to be real-valued
and smooth, with |∇Φ| bounded away from zero, ∀y ∈ Γ. Consequently, we consistently
assume

gε1( · ,y), gε2( · ,y) ∈ C∞c (Rn), ∀y ∈ Γ, ∀ ε > 0. (6)

Well-posedness of the problem. By formally partial-differentiating problem (1) with
respect to t and x and a simple extension of the proof for deterministic problems [17, 14, 9],
we can show that problem (1) is well-posed. In other words, with the random wave speed
satisfying (2)-(3) and the initial data satisfying (6), there exists a unique solution uε( · ,y) ∈
C∞([0, T ] × Rn) for every y ∈ Γ to problem (1), which depends continuously on the data.
Moreover, at a fixed (t,x), the solution belongs to the Hilbert space of stochastic functions
with bounded second moments, i.e.

uε(t,x, .) ∈ L2
ρ(Γ) :=

{
v : Γ→ R,

∫
Γ
|v(y)|2 ρ(y) dy <∞

}
,

where the space L2
ρ is endowed with its standard inner product. We also note that by

partial-differentiating the problem (1) with respect to y and employing assumption (4), we
can further show uε ∈ C∞([0, T ]×Rn×Γ). We refer to [24, 23] for a more detailed discussion
on the well-posedness of stochastic wave propagation problems.

The ultimate goal is the prediction of statistical moments of the high oscillatory solution,
uε, or the statistics of some given physically motivated QoIs. In particular, we consider the
following QoI

Qε(y) =
∫
Rn
|uε(T,x,y)|2 ψ(x) dx, (7)

where ψ is a given real-valued function, referred to as the QoI test function. Throughout this
paper, the QoI test functions we consider will always be smooth and compactly supported,
ψ ∈ C∞c (Rn), unless otherwise stated.

Remark 1. In the present work, we concentrate only on the quadratic QoI (7), which rep-
resents the average strength of the wave inside the support of ψ. Other types of QoIs will
be considered and studied in future works. We note in particular that the linear quantity
Q̃ε(y) =

∫
Rn u

ε(T,x,y)ψ(x) dx typically vanishes as ε→ 0 and is therefore not of interest.

3 A Stochastic Spectral Asymptotic Method

In this section, we present an efficient numerical method for solving the stochastic wave equa-
tion (1) with highly oscillatory initial functions (5). The method combines two techniques:
a Gaussian beam summation method for propagating high-frequency waves; and a sparse
stochastic collocation method for approximating the statistics of QoIs.
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3.1 Gaussian beam approximation

The Gaussian beam method describes high-frequency waves in a way closely related to geo-
metrical optics and ray tracing. Geometrical optics formally assumes the solution of (1) to
be of the form

uε(t,x,y) = a(t,x,y)eiφ(t,x,y)/ε. (8)
As the phase φ and amplitude a are independent of frequency and vary on a much coarser
scale than does the solution, they might be resolved with a computational cost independent
of ε. In the limit ε→∞, we arrive at the eikonal and transport equations [33]:

φt + c(x,y)|∇φ| = 0, (9)

at + c2(x,y)∆φ− φtt
2c(x,y)|∇φ| a+ c(x,y)∇a · ∇φ

|∇φ|
= 0, (10)

where (t,x,y) ∈ (0, T ]× Rn × Γ. Initial data is given as

a(0,x,y) = A0(x,y), φ(0,x,y) = Φ0(x,y),

with A0 and Ψ0 as in (5).
The bicharacteristics (q(t,y),p(t,y)) of the eikonal equation (9) satisfy

dq
dt

= c(q,y) p
|p|

,
dp
dt

= −∇c(q,y)|p|, t > 0. (11)

Here the vector q is usually called the ray and the vector p is called the slowness. For
initial values q(0,y) = z0(y), p(0,y) = ∇Φ0(z0(y),y) we have that d

dt
φ(t,q(t,y),y) =

0 and thus the phase φ is given by the simple expression φ(t,q(t,y),y) = Φ0(z0(y),y).
Moreover, the slowness vector always points in the direction of the phase gradient, p(t,y) =
∇φ(t,q(t,y),y). In this way, the eikonal equation always admits a smooth solution locally
in time, more precisely up to the point where two rays cross. If we denote the ray starting
at z by q(t,y; z), then caustic points are those where this ray function degenerates in z, i.e.,
where det ∂q(t,y; z)/∂z = 0. At these points, the initial ray position fails to be a well-defined
function of the current ray position. A global smooth solution of (9) is in general not feasible
as caustics develop when rays cross. The form of the solution in (8) is thus not correct. The
solution becomes multi-phased and geometrical optics predicts an unbounded amplitude [33],
cf. the discussion in Section 4.

Gaussian beams present another type of high frequency approximation closely related
to geometrical optics evaluated along rays. However, unlike geometrical optics, a Gaussian
beam is well-defined for every t and their superposition performs well even at caustics.

A Gaussian beam, vε(t,x,y), has the same form as (8):

vε(t,x,y) = A(t,x,y)eiΦ(t,x,y)/ε, (12)

where the phase, Φ, and amplitude, A, are centered around the geometrical optics ray, q(t,y):

A(t,x,y) = a(t,x− q(t,y),y),
Φ(t,x,y) = φ(t,x− q(t,y),y).
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The two methods differ in their assumption on the phase, φ. Geometrical optics assumes
φ is real whereas the Gaussian beam method sets the phase to be complex away from the
ray. The imaginary part is chosen such that the Gaussian beam (12) decreases exponentially
away from the central ray.

For the simplest (first order) Gaussian beams, a and φ read

a(t,x,y) = a0(t,y), (13)

φ(t,x,y) = φ0(t,y) + x · p(t,y) + 1
2x ·M(t,y)x, (14)

where M is a symmetric matrix with a positive imaginary part. Note that these expressions
can be interpreted as a zeroth and a second order Taylor expansion in x of the amplitude and
the phase respectively; the slowness p is then the phase gradient, as in geometrical optics,
while the M matrix is the Hessian of the phase. By choosing q,p, φ0,M and a0 in the right
way, the phase will satisfy the eikonal equation (9) up to O(|x− q(t,y)|3) and the amplitude
will satisfy the transport equation (10) up to O(|x− q(t,y)|). The coefficients φ0,M, a0 then
obey the following ordinary differential equations (ODE) (see [32]):

φ̇0 = 0, (15a)
Ṁ = D +BTM +MB +MCM, (15b)

ȧ0 = 1
2|p|

(
c(q,y) Tr(M)−∇c(q,y) · p− c(q,y) p ·Mp

|p|2

)
a0, (15c)

with

D = |p|∇2c(q,y), B = p⊗∇c(q,y)
|p|

, C = c(q,y)
|p|

I− c(q,y)
|p|3

p⊗ p,

We will always assume that the solution to these ODEs exists for the time intervals considered.
A sufficient condition is, for instance, that c(x,y) and all its x-derivatives up to order three
are uniformly bounded for all x ∈ Rn and y ∈ Γ.

Remark 2. Geometrical optics also allows for an alternative to the eikonal and transport
equation pair (9) and (10), namely:

φt − c(x,y)|∇φ| = 0, at −
c2(x,y)∆φ− φtt

2c(x,y)|∇φ| a− c(x,y)∇a · ∇φ
|∇φ|

= 0.

This alternative corresponds to waves moving in the opposite direction and leads to opposite
signs in the ODEs (11) and (15).

The name of the Gaussian beam is substantiated by its Gaussian shape. The imaginary
part of φ is determined by x · Im(M) x; thus

|vε(t,x,y)| = a0 exp
(
− 1

2ε(x− q(t,y)) · Im(M)(x− q(t,y))
)
.
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SinceM has a positive imaginary part, |v(t,x,y)| is Gaussian with a width |x−q(t,y)| ∼
√
ε.

The positivity of Im(M) is key to the Gaussian beam approximation. Indeed, [32] states that
M = MT and Im(M) > 0 hold true at any time, provided they are valid for the initial data.

In general, to construct higher order Gaussian beams, higher order terms in the Taylor
expansion of φ and a in (13), and (14) respectively, must be employed. Analogously to the
above derivation, Φ(t,x) is required to solve the eikonal equation (9) to O(|x − q(t,y)|k+2)
for the k-th order beams and the amplitude terms aj to solve the transport equations to
O(|x−q(t,y)|k−2j), respectively. This again translates to a system of ODEs for the coefficients
in the Taylor expansions.

To approximate more general solutions, we use a superposition of Gaussian beams

uεGB(t,x,y) = 1
(2πε)n/2

∫
K0
vε(t,x,y; z) dz, (16)

over a compact domain, K0 ⊂ Rn, where the initial data is supported, and vε(t,x,y; z) is a
Gaussian beam that starts in the point z ∈ K0.

Due to linearity of the wave equation the superposition in (16) is also an asymptotic
solution, since each individual beam is such a solution. The pre-factor (2πε)−n/2 normalizes
the superposition such that uεGB = O(1) away from caustics. The coefficients of the beams
are similarly parameterized by z and denoted q(t,y; z), p(t,y; z), etc. Following [35], we
choose the initial values to be

q(0,y; z) = z, (17a)
p(0,y; z) = ∇Φ0(z,y), (17b)
M(0,y; z) = ∇2Φ0(z,y) + iI, (17c)
φ(0,y; z) = Φ0(z,y), (17d)
a0(0,y; z) = A0(z,y). (17e)

It has been shown in [18] that the initial data for k-th order beams can be chosen such that
the error in an ε-scaled energy norm satisfies the estimate

sup
t∈[0,T ]

‖uεGB(t, ·)− uε(t, ·)‖E ≤ C(T )ε k2 ,

for some constant C(T ) independent of ε. Note that this holds regardless of the presence of
caustics in the solution. Numerically, integral (16) is approximated by the trapezoidal rule:

uεGB(t,x,y) ≈ 1
(2πε)n/2

∑
{j: zj∈K0}

vε(t,x,y; zj) ∆zn, (18)

where ∆z ∼
√
ε, and the ODEs (11) and (15) are solved with a numerical ODE method.

The computational cost of the Gaussian beam method is then much smaller than that of a
direct solver.
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3.2 Sparse Stochastic Collocation

For stochastic PDE models, such as the wave model (1) with stochastic inputs, there are
in general two types of methods for propagating uncertainty: intrusive and non-intrusive.
Intrusive methods, such as perturbation expansion and stochastic Galerkin [11, 41, 22, 3,
36], require extensive modifications of existing deterministic solvers. On the contrary, non-
intrusive methods, such as Monte Carlo [10] and stochastic collocation [40, 2, 24], are sample-
based approaches. They rely on a set of deterministic models corresponding to a set of
realizations and hence require no modifications of existing deterministic solvers. In this
work, we consider the stochastic collocation method on sparse grids and briefly review the
method for the uncertainty propagation of high-frequency waves.

The stochastic collocation method consists of three main steps. First, the problem (1)
is discretized in the physical space, i.e., in space and time, using a deterministic asymptotic
solver such as the Gaussian beam method described in Section 3.1. We therefore obtain a
semi-discrete solution uεGB(t,x,y), keeping the variable y in the stochastic space continu-
ous. The semi-discrete problem is then collocated on a set of η ∈ N+ collocation points,
{y(k)}ηk=1 ∈ Γ, to compute η approximate solutions, uεGB(t,x,y(k)). Finally, a global polyno-
mial approximation, uεGB,η, is built upon those evaluations,

uεGB,η(t,x,y) =
η∑
k=1

uεGB(t,x,y(k))Lk(y), (19)

for suitable multivariate polynomials, {Lk(y)}ηk=1, such as Lagrange polynomials, in the
stochastic space.

A key point in the stochastic collocation method is the choice of the set of collocation
points, {y(k)}ηk=1, i.e., the type of computational grid in the N -dimensional stochastic space.
A full tensor grid, based on the Cartesian product of mono-dimensional grids, can only be
used when the dimension of the stochastic space, N , is small, since the computational cost
grows exponentially fast with N (the curse of dimensionality). To clarify this, let ` ∈ Z+ be
a non-negative integer, called the level. Moreover, for a given index, j ∈ Z+, let p(j) be an
increasing function, which relates index j to the polynomial degree and hence to the number
of interpolation nodes. Typical functions for the polynomial degree are given by the linear
rule

p(j) = j, (20)
and the nested rule

p(j) = 2j for j > 0, p(0) = 0. (21)
In the full tensor grid, we take all polynomials of degree at most p(`) in each direction, and
η = (p(`) + 1)N grid points (nodes or knots) are therefore needed.

Alternatively, sparse grids can reduce the curse of dimensionality. They were originally
introduced by Smolyak for high-dimensional quadrature and interpolation computations [34].
To understand the general sparse grid construction, let j = (j1, . . . , jN) ∈ ZN+ be a multi-
index containing non-negative integers. In each direction, Γn, with n = 1, . . . , N and for a
non-negative index jn in j, we introduce the univariate polynomial interpolation operator

U jn : C0(Γn)→ Pp(jn)(Γn),
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on p(jn) + 1 suitable knots. Here, Pp is the space of univariate polynomials of degree p.
The univariate interpolation operator applied to a stochastic function of only one random
variable, say v(yn), reads

U jn [v(yn)] :=
p(jn)+1∑
k=1

v(y(k)
n )Lk(yn).

Here, Lk(yn) is the univariate Lagrange polynomial of degree k − 1. With U−1 = 0, we then
define the detail operator as

∆jn := U jn − U jn−1.

After the introduction of a sequence of index sets, I(`) ⊂ ZN+ , the sparse grid approximation
of the solution to (1) at level ` reads

uε( · ,y) ≈ SI(`)[uεGB( · ,y)] =
∑

j∈I(`)

N⊗
n=1

∆jn [uεGB( · ,y)]. (22)

Equivalently, we can rewrite the sparse approximation (22) as

SI(`)[uεGB( · ,y)] =
∑

j∈I(`)
C(j)

N⊗
n=1
U jn [uεGB( · ,y)], C(j) =

∑
i={0,1}N
i+j∈I(`)

(−1)|i|, (23)

where the multivariate interpolation operator reads

N⊗
n=1
U jn [uεGB( · ,y)] :=

p(j1)+1∑
k1=1

. . .
p(jN )+1∑
kN=1

uεGB( · , (y(k1)
1 , . . . , y

(kN )
N )) L̃k(y), (24)

and L̃k(y) = ∏N
n=1 Lkn(yn). This operator is given by the tensor product of N univariate

interpolation operators, constructed on a full tensor grid corresponding to the multi-index j.
The second formulation (23) shows that a sparse grid is a linear combination of a few tensor
product grids, each with a relatively small number of grid points.

To characterize the sparse approximation operator in (22) and (23) fully, we need to
provide the following:

(1) A level ` ∈ Z+ and a function p(j) given by either (20) or (21).

(2) A sequence of sets I(`). Typical examples of index sets include:

◦ Total degree index set: ITD(`) = {j : ∑N
n=1 jn ≤ `}.

◦ Hyperbolic cross index set: IHC(`) = {j : ∏N
n=1(jn + 1) ≤ `+ 1}.

(3) The family of grid points to be used. Typical choices include:

◦ Gauss abscissas, that are the zeros of ρ-orthogonal polynomials; see e.g. [37].
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◦ Clenshaw-Curtis abscissas, that are the extrema of Chebyshev polynomials; see
e.g. [37].
◦ Leja abscissas; see e.g. [28].

Remark 3. (Full tensor and Smolyak grids) The full tensor grid corresponds to the full
tensor index set, IFT(`) = {j : maxn jn ≤ `}. The Smolyak sparse grid is a particular type of
sparse grid, where we use the nested rule (21) and the total degree index set, based on either
Gauss or Clenshaw-Curtis abscissas. In the latter case, we obtain a nested grid, in which
grids in different levels are embedded.

In many practical applications, the main goal is the computation of the statistical mo-
ments of the solution or some QoIs. In such cases, we can directly compute the statistical
moments using Gauss or Clenshaw-Curtis quadrature formulas, without explicitly construct-
ing the solution or other quantities by sparse approximation formulas such as (23). Suppose
we want to compute the statistics of an operator applied to the solution, say F (uε). This can
for instance be the solution itself, the QoI (7), or different powers of these quantities when
computing higher moments. We write

E[F (uε( · ,y))] ≈ E[SI(`)[F (uεGB( · ,y))]] =
∫

Γ
SI(`)[F (uεGB( · ,y))] ρ(y) dy ≈

η∑
k=1

θk F (uεGB( · ,y(k))),

where, by (23)-(24), the quadrature weights read

θk = ck

∫
Γ
L̃k(y) ρ(y) dy.

Here, each global index, k = 1, . . . , η, corresponds to a local multi-index [k1, . . . , kN ] in the
formulas (23)-(24). Moreover, the coefficients ck correspond to the coefficients C in (23).
Convergence of stochastic collocation. It is well known that the rate of convergence of
stochastic collocation for a stochastic function, say v(y), in general depends on the stochastic
regularity of the function, i.e., the regularity of the mapping v : Γ → R. Fast convergence
is attained in the presence of high stochastic regularity. For instance, suppose that v(y) is
continuous and admits an analytic extension in the complex region

Γ̃τ =
{
z = (z1, . . . , zN) ∈ CN | for some j: dist(zj,Γj) ≤ τ and zk ∈ Γk for k 6= j

}
,

whose size is characterized by the radius of analyticity, τ > 0. Then, the maximum error,
εmax, in the sparse approximation, SI(`)[v(y)], in (23) on the Smolyak grid based on Clenshaw-
Curtis abcissas satisfies (see Theorem 3.10 in [31])

εmax ≤ C(τ,N,Γ)M(v, τ,Γ) η−σ/(1+log(2N)), M(v, τ,Γ) = max
z∈Γ̃τ
|v(z)|,

where σ > 0 is directly proportional to the radius of analyticity, τ , and C,M are independent
of η. Therefore, the larger the radius of analyticity of the map, the faster the convergence rate
in η; see also [29, 5, 6]. In the case of high-frequency waves with highly oscillatory solutions,
τ , σ and M in general all depend on the wavelength ε. To maintain fast convergence, it
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is therefore important that M and 1/τ remain bounded as ε → 0. Since the size of M
depends on the size of the y-derivatives of v on Γ, we need uniform bounds for y-derivatives
independent of ε to obtain fast convergence for all ε. In other words, we require high regularity
of the mapping Qε : Γ → R, uniformly in ε. This poses extra challenges in employing
stochastic spectral techniques for high-frequency waves. The stochastic regularity and the
convergence of stochastic collocation for high frequency waves is discussed in more detail in
Section 4.

4 Stochastic Regularity of High-Frequency Waves

For fast convergence, regular dependence of the quantity of interest on the input random
variables is required, as discussed in Section 3.2, and, ideally, Qε(y) ∈ C∞(Γ). For high-
frequency problems, we would like to have an even stronger bound, namely

sup
y∈Γ

∣∣∣∣∣∂kQε(y)
∂yk

∣∣∣∣∣ ≤ Ck, ∀k ∈ ZN+ , (25)

where the constants Ck can be taken independent of the wavelength, ε. If this is not true,
the spectral convergence rate of a stochastic collocation method could deteriorate for small
wavelengths, ε; with the bound (25), we expect that there is a rate that is uniform in ε.

We note that in general uε(t,x,y) will be oscillating with period ∼ ε in both x and y.
If the corresponding quantity of interest would inherit this property, a bound like (25) could
not hold. Nevertheless, in this section, we conjecture that for a Gaussian beam superposition
approximation of uε with the initial data given by (5) and (15) respectively, the estimate
(25) holds.

Conjecture 1. Bound (25) holds for the following quantity of interest computed with the
Gaussian beam approximation (16)

Qε(y) =
∫
Rn
|uεGB(T,x,y)|2ψ(x)dx,

if ψ ∈ C∞c (Rn).

This is based on formal theoretical arguments and several numerical experiments, which
are presented in the subsections below. The conjecture will be proved in an upcoming work.

4.1 Motivation away from caustics

In this section, we give a non-rigorous argument for why (25) should hold, at least in the
case when there are no caustics in the support of the quantity of interest. We thus consider
a high-frequency solution for (1) and we assume (t0,x0,y0) ∈ [0, T ]×Rn×Γ is a non-caustic
point. By the theory of Maslov [20, 21] and Fourier Integral Operators [13, 14, 7] there is
then at least a neighborhood, U , of (t0,x0,y0) in which the solution has the form

uε(t,x,y) =
K∑
j=1

Aj(t,x,y)eiφj(t,x,y)/ε+imjπ/4 +O(ε), ∀(t,x,y) ∈ U, (26)

11



for some integers K, which represents the number of waves passing through (t0,x0), and mj,
which is the Keller–Maslov index of wave j, i.e., the number of times it has passed through a
caustic. Note that in general K > 1 when t0 > 0, even if the initial data is of the single wave
form (5) since new terms appear when caustics develop; see [19] for further explanations.
The amplitudes Aj(t,x,y) and phases φj(t,x,y) satisfy the geometrical optics equations,
i.e., the transport and eikonal equations (9), and (10) respectively. They are independent
of ε and smooth in all variables, given the assumptions of a smooth wave speed and initial
data. Moreover, the phases, φj, are related to the initial phase, Φ0, and to p(t,y; z) via the
ray function, q(t,y; z), as follows. For each (t,x,y) ∈ U and each 1 ≤ j ≤ K, there is a
zj ∈ Zj(t,y) such that

x = q(t,y; zj), φj(t,x,y) = Φ0(zj,y), ∇φj(t,x,y) = p(t,y; zj), (27)

where Zj(t,y) are disjoint open subsets of supp(A0( · ,y)).
Based on this, let us assume that in the support of the QoI test function, ψ, there are

no caustic points at t = T , and that the solution satisfies (26) and (27). The quantity of
interest (7) can then be written

Qε(y) =
∫
Rn
|uε(T,x,y)|2ψ(x)dx

≈
∫
Rn

∣∣∣∣∣∣
K∑
j=1

Aj(T,x,y)eiφj(T,x,y)/ε+imjπ/4

∣∣∣∣∣∣
2

ψ(x)dx

= <
K∑
i=1

K∑
j=1

Q̃ε
ij(y)ei(mi−mj)π/4,

where < denotes the real part and

Q̃ε
ij(y) =

∫
Rn
Ai(T,x,y)Aj(T,x,y)ei(φi(T,x,y)−φj(T,x,y))/εψ(x)dx. (28)

We note that (25) holds if the same estimate holds for each Q̃ε
ij(y). Clearly the diagonal

terms,
Q̃ε
jj(y) =

∫
Rn
Aj(T,x,y)2ψ(x)dx,

are smooth and independent of ε, hence satisfying (25). For the off-diagonal entries, i 6= j,
however, we have for a multi-index, k ∈ ZN+ ,

∂kQ̃ε
ij(y)

∂yk =
|k|∑
`=1

1
ε`

∫
Rn
r`,k(x,y)ψ(x) exp

(
i
φi(T,x,y)− φj(T,x,y)

ε

)
dx, i 6= j,

where r`,k are smooth, ε-independent functions built from sums and products of y-derivatives
of Ai, Aj, φi and φj evaluated at t = T . Because of the pre-factors, ε−`, it follows that we
cannot bound Q̃ε

ij as in (25) unless
∫
Rn
r`,k(x,y)ψ(x) exp

(
i
φi(T,x,y)− φj(T,x,y)

ε

)
dx = O(εm), ∀m ∈ Z+. (29)

12



To verify this, we use stationary phase arguments. More specifically, the following theorem
formalizes the dependence of oscillatory integrals on critical points of the phase; see [13].

Theorem 1 (Principle of (non)-stationary phase). Let ψ ∈ C∞c (Rn) and ϕ ∈ C∞(Rn;R)
such that ∇ϕ 6= 0 on supp(ψ). Then, for all m ∈ Z+, there exist constants, Cm, independent
of ε, such that ∣∣∣∣∫

Rn
eiϕ(x)/ε ψ(x)dx

∣∣∣∣ ≤ CMε
m.

When applying this theorem to the integral in (29), we thus obtain the required estimate
provided two conditions are fulfilled. First, the QoI test function should be smooth with
compact support, i.e., ψ ∈ C∞c (Rn). Since the functions, r`,k, are smooth, the theorem
applies. However, we can, for instance, not expect (25) to hold if we define the QoI just as
an integral over a domain, D ⊂ Rn,

Qε(y) =
∫
D
|uε(T,x,y)|2dx, (30)

which corresponds to choosing ψ as the (non-smooth) characteristic function of D. Second,
there should be no stationary points in the support of ψ. However, under our assumptions,
this is not possible. Indeed, suppose there is a stationary point, i.e.,

∇φi(T,x,y) = ∇φj(T,x,y)

for some x ∈ supp(ψ). Then, by (27), there are two geometrical optics rays starting at
zi ∈ Zi(T,y) and zj ∈ Zj(T,y), respectively, such that

q(T,y; zi) = q(T,y; zj) = x,
p(T,y; zi) = ∇φi(T,x,y) = ∇φj(T,x,y) = p(T,y; zj).

But, by uniqueness of the solution to the Hamiltonian system (11), we must therefore have
zi = zj. Hence, the two rays are the same and since the sets {Zj(t,y)} are disjoint, we get
i = j, a contradiction.

In conclusion, the formal arguments above suggest that if the QoI test function is smooth,
then, at least away from caustics, the bound (25) holds.

4.2 Numerical justification and preliminaries

In this section, we consider a number of problems with high-frequency solutions to (1), to
justify the bound (25). We recognize that the theoretical arguments for (25) in the previous
section were only formal. In general high-frequency solutions, there are caustics, which we
did not account for. Furthermore, we did not consider the regularity of the approximation
error, O(ε), in (26).

Here we will show three numerical examples to demonstrate that the quantity of interest,
Qε, can also be smooth in more general cases. First, we show a simple one-dimensional ex-
ample with constant coefficients, where the arguments in Section 4.1 are essentially rigorous;
in one dimension, there are no caustics, and for constant coefficients, geometrical optics is
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exact. Our second example is still one-dimensional with no caustics, but the speed of prop-
agation varies in space. Geometrical optics is therefore accurate only up to O(ε). The last
example is a two-dimensional problem where there are caustics in the solution. As we will
see, for all these cases, the QoI and its derivatives remain non-oscillatory when the QoI test
function is smooth.

All three examples use an initial condition of the single wave type,

uε(0,x,y) = A0(x,y)eiΦ0(x,y)/ε, (31)

where the amplitude, A0, is a sum of two pulses moving towards each other. The integration
via the trapezoidal rule (18) is carried out to obtain the approximated Gaussian beam solu-
tion, uεGB. The spacing between the starting points is set to ∆z =

√
ε in all examples. The

QoI test function in (7) is based on the smooth function

ψ̃(x) =

 e
− |x|2

1−|x|2 , |x| < 1,
0, otherwise.

(32)

To show the regularity of Qε at high frequencies, it is computed for a sequence of small
wavelengths, ε = (1/40, 1/80, 1/160). The final time in (7) is fixed at T = 1 for all three
examples below.

The integration over variable x in (7) is again carried out by the trapezoidal rule with
a spatial step that is uniform in all dimensions, ∆x = 2πε

10 , unless stated otherwise. This
corresponds to ten points per wavelength, which gives a very high accuracy when ψ ∈ C∞c (Rn)
due to the spectral convergence of the trapezoidal rule for such functions.

4.2.1 Example 1: Constant speed of propagation in 1D

We start with the simple case of the one-dimensional wave equation (1) with constant speed
of propagation, where we have an explicit expression for the solution u(t, x, y). We investigate
a case when two high-frequency pulses are moving towards each other,

A0(x) = g(x− s1) + g(x− s2), g(x) = e−5x2
, Φ0(x) = x2,

where s1 = −s2 = 1.5. The initial data has no uncertainty, i.e., it does not depend on y.
However, the constant (in x) speed is uncertain, c = c(y). The initial time-derivative of u is
taken such that the pulses propagate towards each other,

uεt(0, x, y) = −c(y)
(
g′(x− s1) + iΦ′0(x)

ε
g(x− s1)

)
eiΦ0(x)/ε+

+ c(y)
(
g′(x− s2) + iΦ′0(x)

ε
g(x− s2)

)
eiΦ0(x)/ε.

Moreover, we let c(y) = y > 0. The solution is then given by d’Alembert as

uε(t, x, y) = g(x− s1 − yt)eiΦ0(x−yt)/ε + g(x− s2 + yt)eiΦ0(x+yt)/ε. (33)
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Figure 1: Example 1. Absolute value of solution for various times, t, when y = 2 and
ε = 1/40. The two QoI functions, ψ0 and ψ1, are overlaid.
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Figure 2: Example 1: QoIs, Qε0 (top row) and Qε1 (bottom row), and their first and second
derivatives, for different wavelengths, ε. For Qε1 the curves are almost independent of ε while
the non-smooth Qε0 exhibits a clear loss of regularity for decreasing ε.

The absolute value of a particular solution with ε = 1/40 and y = 2 is shown at various times
in Figure 1.

We consider two different quantities of interest,

Qεj(y) =
∫
|uε(T, x, y)|2ψj(x)dx, T = 1, j = 0, 1,

where ψ1(x) = ψ̃(2x) is smooth, based on (32), and ψ0(x) is the (non-smooth) characteristic
function for the interval [−1/2, 1/2], which reduces the form of Qε0 to (30). The QoI test
functions, ψj(x), are plotted together with the solution in Figure 1.

By using the explicit solution (33), we can write Qεj(y) as a sum in the same way as in
Section 4.1,

Qεj(y) = <
(
Q̃ε

11(y) + Q̃ε
12(y) + Q̃ε

21(y) + Q̃ε
22(y)

)
,

where Q̃ε
11(y) and Q̃ε

22(y) are independent of ε and

Q̃ε
12(y) = Q̃ε

21(y) =
∫
g(x− s1 − y) g(x− s2 + y)ei

Φ0(x−y)−Φ0(x+y)
ε ψj(x)dx

=
∫
g(x− s1 − y) g(x− s2 + y) exp

(−4xyi
ε

)
ψj(x)dx.
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From this expression, one can derive that for ψ0, the derivatives behave as ∂kQε0
∂yk

∼ 1
εk−1 .

Hence, condition (29) is not fulfilled and we should observe oscillatory behavior. On the
other hand, the function ψ1 ∈ C∞c suppresses the oscillations when y > 0 according to
Theorem 4.1 and we should expect smooth higher derivatives of Qε1.

To demonstrate this numerically, we plot in Figure 2 the quantities of interest, Qε0 and
Qε1, with their first and second derivatives. Indeed, the derivatives of Qε1 are smooth, while
those of Qε0 oscillate; in particular, the second derivative of Qε0 grows as 1

ε
when ε → 0,

which means that (25) is violated. For accurate approximation of Qε0, we use 50 points per
wavelength to discretize the spatial grid x which makes the quadrature error negligible.

4.2.2 Example 2: Variable speed of propagation in 1D

Problem (1) is only analytically solvable in the d’Alembert form (33) if the speed of prop-
agation c is constant. In more general cases, the Gaussian beam approximation has to be
implemented. Analogously to the previous example, we choose the initial data as

A0(x,y) = g(x− s1(y)) + g(x− s2(y)), g(x) = e−10x2
, Φ0(x) = |x|,

which represents two high-frequency pulses moving towards each other. We set the Gaussian
beam initial data as in (17). The initial position of the pulses and the non-constant speed of
propagation depend on two stochastic variables, y = (y1, y2). More precisely,

s1(y) = −s2(y) = y1, c(x,y) = 1 + 1
2
(
e−(x−1)2 + y2e

(x+1)2)
.

The absolute value of the solution with ε = 1/80 for y = (1, 0) at different times is plotted
in Figure 3. Figure 4 shows four different realizations of the absolute value of the solution
with ε = 1/80 at time T = 1. In all realizations, we keep y1 = 1 fixed and vary y2. This
corresponds to different realizations of the wave speed. The QoI test function, ψ(x) = ψ̃(2x),
and the wave speed, c(x,y), corresponding to different realizations are also shown in the
figure.

In Figure 5, we plot the quantity of interest (7) and its first and second derivatives along
the line y(r) = (1 + r, 1 − 2r). We observe that Qε and its derivatives are smooth and do
not oscillate with ε. Hence, the estimate (25) is fulfilled.

4.2.3 Example 3: Caustics in 2D

In our final example, we consider a two-dimensional case with two initial wave pulses,

A0(x,y) = g(x− s1(y)) + g(x− s2(y)), g(x) = e−5|x|2 .

The deterministic initial phase

Φ0(x) = |x1|+ x2
2, x = (x1, x2),

is chosen such that a cusp caustic develops at t = 0.5, and two fold caustics form at t > 0.5.
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Figure 3: Example 2. Absolute value of solution for t = 0.25, 0.5, 0, 75, 1 when ε = 1/80
and y = (1, 0). The QoI test function, ψ, and speed, c, are overlaid.
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Figure 4: Example 2: Four realizations of the absolute value of the solution at time T = 1
with ε = 1/80. The QoI test function, ψ, and speed, c, are overlaid.
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Figure 5: Example 2: QoI Qε and its first and second derivatives along the line y(r) =
(1 + r, 1− 2r) for r ∈ [0, 0.5] and different wavelengths ε.
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 6: Example 3: Absolute value of solution for various times, t, when y = (1, 1).
Caustics appear for t ≥ 0.5. Circle indicates the support of the QoI test function.

Both the initial location of the pulses and the constant speed of propagation are random,
depending on two stochastic variables, y = (y1, y2), as

s1(y) = −s2(y) = (y1, 0), c(y) = y2.

We consider the QoI (7) with ψ(x) = ψ̃(2x).
In Figure 6 the absolute value of the solution at various times is shown. In this simulation,

the wavelength is ε = 1/40, the pulse centers are s1 = −s2 = (1, 0), and the speed of
propagation c ≡ 1. The bold line represents the support of the QoI test function, ψ. Figure
7 shows the QoI and its derivatives along the line y(r) = (1 + r, 1 + 2r). Note that for most
of these y-values, the two pulses overlap at the final time, T = 1.

5 Numerical Examples

In this section, we present two numerical examples to demonstrate the efficiency and appli-
cability of the method proposed in Section 3.

We consider the Cauchy problem (1) in a two-dimensional spatial space and let x =
(x1, x2) ∈ R2. We employ the proposed stochastic spectral asymptotic method to approxi-
mate the solution, uε, and the expected value of the QoI in (7). The QoI test functions are
given in terms of the smooth function, ψ̃ ∈ C∞c (R2), in (32) as ψ(x1, x2) = ψ̃(2x1, 2x2) and
ψ(x1, x2) = ψ̃(x1 − 1, x2) for the first and second numerical examples, respectively. In both
examples, we use the Smolyak sparse grid based on Clenshaw-Curtis abscissas and the nested
rule (21). We show that fast convergence rates are obtained as predicted in Section 4. For
each example, we also compare the convergence rate with the average rate obtained from ten
independent Monte Carlo simulations.

As in Section 4.2, the step size used in the quadrature approximation of (7) is chosen as
∆x = 2πε

10 and the space between the Gaussian beams in (18) as ∆z =
√
ε.
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Figure 7: Example 3: QoI Qε, and its first and second derivatives along the line y(r) =
(1 + r, 1 + 2r) where r ∈ [0, 0.5], for different wavelengths, ε.

5.1 Numerical test 1: Two pulses

In this example, both wave speed and initial data are uncertain and described by a ran-
dom vector, y = (y1, . . . , y5), containing N = 5 independent uniformly distributed random
variables. The constant random wave speed is given by

c(y) = y1 ∼ U(0.8, 1),

and the random initial data are given by (5) with

Φ0(x) = |x1|, A0(x,y) = g
(

x− s1,d1(y)
)

+ g
(

x− s2(y),d2(y)
)
,

where
g(x,d) = e−(d1 x2

1+d2 x2
2),

and
s1 = (−1, 0), s2(y) = (y2, y3), d1(y) = (y4, 5), d2(y) = (y5, y5),

and
y2 ∼ U(1, 1.5), y3 ∼ U(0, 0.5), y4 ∼ U(5, 10), y5 ∼ U(5, 10).

Hence, the initial solution consists of two Gaussian wave pulses, and the vectors sj and dj,
with j = 1, 2, represent the position and shape of the pulses, respectively.

Figure 8 shows six realizations of the magnitude of the approximate solution |uεGB(T,x,y)|
with wavelength ε = 1/40 at the time T = 1. In each realization, the central circle indicates
the support of the QoI test function and the other two circles/ellipses indicate the supports
of the initial solution that consists of two Gaussian pulses.

We make a convergence study for a set of wavelengths, ε = 1/40, 1/80, 1/160. For each
wavelength, we consider different levels, ` ≥ 1, and compute the relative error in the expected
value of the QoI in (7):

E(η(`)) :=

∣∣∣∣E[SI(`ref)[Qε]]− E[SI(`)[Qε]]
∣∣∣∣∣∣∣∣E[SI(`ref)[Qε]]

∣∣∣∣ . (34)

21



(a) y = (0.8, 1, 0.5, 5, 5) (b) y = (0.8, 1, 0.5, 10, 10) (c) y = (1, 1.5, 0, 5, 5)

(d) y = (0.8, 1.5, 0, 10, 10) (e) y = (1, 1, 0.5, 5, 5) (f) y = (0.8, 1, 0, 5, 10)

Figure 8: Numerical test 1: Six realizations of the magnitude of approximate solution
|uεGB(T,x,y)| at the fixed time T = 1 with wavelength ε = 1/40. In each realization, the
central circle indicates the support of the QoI test function and the other two circles/ellipses
indicate the supports of the initial solution.

Here, for each wavelength, the reference solution is computed with a high level, `ref, and with
the same Gaussian beam parameters used in all levels, ` ≥ 1. The error (34) therefore reflects
only the stochastic collocation error, not the error in the deterministic asymptotic solver.

Figure 9 shows the relative error, E(η), in (34) at time T = 1, computed by the proposed
method, versus the number of collocation points, η, for various wavelengths. It also shows the
convergence of the relative error in ten Monte Carlo runs, computed using the same reference
solution as above, with η representing the number of samples.

We observe a fast spectral convergence rate of the stochastic collocation error in the
proposed method, due to the high stochastic regularity of the QoI. A simple linear regression
through the data points shows that the rate of convergence of Monte Carlo is 0.45, which
is very slow. Consequently, the decay in the stochastic collocation error is much faster than
the decay in Monte Carlo error. We also note that as ε decreases, the decay rate does not
deteriorate. This points to the existence of uniform bounds (25).

5.2 Numerical test 2: A Lens

In this example, the uncertain wave speed is described by a random vector y = (y1, y2, y3)
containing N = 3 independent uniformly distributed random variables, given by

c(x,y) = 1− y1 e
−(y2 x2

1−y3 x2
2),

where
y1 ∼ U(0, 0.4), y2 ∼ U(0.65, 0.85), y3 ∼ U(0, 1).
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Figure 9: Numerical test 1: Relative error E(η) at time T = 1 versus the number of collo-
cation points η (or the number of samples in the case of Monte Carlo sampling), for various
wavelengths. The proposed method performs a fast spectral convergence, while Monte Carlo
sampling has a slow algebraic convergence. The rate of convergence of Monte Carlo sampling,
obtained by linear regression through the data points, is 0.45.
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(a) y = (0.2, 0.75, 0.5) (b) y = (0.4, 0.75, 0.5)

(c) y = (0.2, 0.75, 1.0) (d) y = (0.4, 0.75, 1.0)

Figure 10: Numerical test 2: Ray tracing solution for four realizations of y. A cusp caustic
and two fold caustics are formed in all realizations. Contour lines of c(x,y) overlaid in red.
The left transparent band shows where the initial amplitude is above 1/2; the right band
shows how this band has been transported by the rays at time t = 2.5. Circle indicates the
support of QoI test function.

The initial data are assumed to be deterministic and given by (5) with

Φ0(x) = −x1, A0(x) = e−5 (x1+1)2
.

The problem models a plane wave that is refracted by a lens of uncertain shape and strength.
The wave speed varies in the spatial domain and caustics may consequently form. Figure

10 shows the ray tracing solution for four different realizations of the random vector y. A
cusp caustic and two fold caustics are formed inside the support of the QoI test function for
the last three realizations, but not in the first one.

Figure 11 shows the magnitude of the approximate solution |uεGB(t,x,y)| with wavelength
ε = 1/20 at various time instances and a fixed random vector, y = (0.4, 0.75, 1), which
corresponds to the realization in Figure 10d. The central circles indicate the support of the
QoI test function.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 2.5

Figure 11: Numerical test 2: Magnitude of approximate solution |uεGB(t,x,y)| with wave-
length ε = 1/20 at various time instances and a fixed random vector y = (0.4, 0.75, 1), which
corresponds to the realization in Figure 10d. Circle indicates the support of QoI test function.
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Figure 12: Numerical test 2: Relative error E(η) at time T = 2.5 versus the number of
collocation points, η (or the number of samples in the case of Monte Carlo sampling), for
various wavelengths. The proposed method performs a fast spectral convergence, while Monte
Carlo sampling has a slow algebraic convergence. The rate of convergence of Monte Carlo
sampling, obtained by linear regression through the data points, is 0.62.

Figure 12 shows the relative error, E(η), in (34) at time T = 2.5, computed by the
proposed method, versus the number of collocation points, η (or the number of samples in
the case of Monte Carlo sampling), for various wavelengths.

Similar to the first numerical test, we observe a fast spectral convergence rate of the
stochastic collocation error in the proposed method. The convergence rate of Monte Carlo,
given by linear regression, is in this case 0.62, and the error again decays much more slowly.
Furthermore, the error curves of the proposed method have a rather unform shape for all the
ε used, suggesting that (25) holds.

6 Conclusion

We have proposed a novel stochastic spectral asymptotic method for the forward propagation
of uncertainty in high-frequency waves generated by highly oscillatory initial data. The source
of uncertainty is the wave speed and/or the initial data, characterized by a finite number of
independent random variables with known probability distributions. The proposed method
combines a sparse stochastic collocation method for propagating uncertainty and a Gaussian
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beam summation method for propagating high-frequency waves. Fast error convergence
is attained only in the presence of QoIs which are smooth with respect to input random
parameters independent of the wave frequency.

The wave solution is highly oscillatory in both physical and stochastic spaces, and its
derivatives clearly cannot be bounded independently of the frequency. A priori, QoIs based on
the solution would have the same behavior. However, our main result is that there are in fact
quadratic QoIs that are smooth with uniformly bounded derivatives in the stochastic space.
Through both theoretical arguments for simplified problems and numerical experiments for
more complicated problems, we have verified the spectral convergence of the proposed method
for such a quadratic QoI, which represents the local wave strength. This shows that the
proposed method may be a valid alternative to the traditional Monte Carlo method.

Future directions include a rigorous proof of the uniform bounds in Conjecture 1 for
the quadratic quantity considered in this work and a regularity analysis of other types of
nonlinear QoIs.
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