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Abstract

Stochastic reaction networks are dynamical models of biochemical reaction systems and form a
particular class of continuous-time Markov chains on Nn. Here we provide a fundamental character-
isation that connects structural properties of a network to its dynamical features. Specifically, we
define the notion of ‘stochastically complex balanced systems’ in terms of the network’s stationary
distribution and provide a characterisation of stochastically complex balanced systems, parallel to
that established in the 70-80ies for deterministic reaction networks. Additionally, we establish that
a network is stochastically complex balanced if and only if an associated deterministic network is
complex balanced (in the deterministic sense), thereby proving a strong link between the theory of
stochastic and deterministic networks. Further, we prove a stochastic version of the ‘deficiency zero
theorem’ and show that any (not only complex balanced) deficiency zero reaction network has a
product-form Poisson-like stationary distribution on all irreducible components. Finally, we provide
sufficient conditions for when a product-form Poisson-like distribution on a single (or all) compo-
nent(s) implies the network is complex balanced, and explore the possibility to characterise complex
balanced systems in terms of product-form Poisson-like stationary distributions.

1 Introduction

Improved experimental techniques have made it possible to measure molecular fluctuations at a small
scale, creating a need for a stochastic description of molecular data [24, 12]. Typically, biochemical
reaction networks are modelled as deterministic systems of ordinary differential equations (ODEs), but
these models assume the individual species are in high concentrations and do not allow for stochastic
fluctuation. An alternative is stochastic models based on continuous-time Markov chains [18, 19, 14, 4,
5, 12]. As an example of a stochastic reaction system, consider

A+B
κ1−−⇀↽−−
κ2

2C, (1.1)

where κ1, κ2 are positive reaction constants. The network consists of three chemical species A, B and
C and two reactions. Each occurrence of a reaction modifies the species counts, for example, when the
reaction A + B → 2C takes places, the amount of A and B molecules are each decreased by one, while
two molecules of C are created. The species counts are modelled as a continuous-time Markov chain,
where the transitions are single occurrences of reactions with transition rates

λ1(x) = κ1xAxB , λ2(x) = κ2xC(xC − 1),

and x = (xA, xB , xC) are the species counts [4]. When modelled deterministically, the concentrations
(rather than the counts) of the species change according to an ODE system.

In a classical paper [18], Kurtz explored the relationship between deterministic and stochastic reaction
systems, using a scaling argument – large volume limit – to link the dynamical behaviour of the two
types of systems to each other. Other, mainly recent work, also points to close connections between the
two types of systems [23, 2, 3, 1, 6, 16]. In this paper we explore this relationship further.
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A fundamental link between structural network properties and dynamical features of deterministic
reaction networks has been known since the 1970s and 1980s with the work of Horn, Jackson and
Feinberg [13, 10]. Specifically, their theory concerns the existence and uniqueness of equilibria in complex
balanced systems, with the ‘deficiency zero theorem’ playing a central role in this context. Complex
balanced systems were called cyclic balanced systems by Boltzmann. They have attractive analytical
and physical properties; for example a (pseudo-)entropy might be defined which increases along all
trajectories (Boltzmann’s H-theorem) [7, 13].

A parallel theory for the stochastic regime is not available, and the very concept of “complex balanced”
does not currently have a stochastic counterpart. In this paper we develop a theory to fill this gap. We
define stochastically complex balanced systems through properties of the stationary distribution, and
we prove results for stochastic reaction networks that are in direct correspondence with the results for
deterministic models. In particular, we prove a parallel statement of the deficiency zero theorem and
show that all deficiency zero reaction networks have product-form Poisson-like stationary distributions,
irrespectively whether they are complexed balanced or not. In fact, in the non-complexed balanced case,
the network is complex balanced on the boundary of the state space.

A second target of our study concerns product-form stationary distributions. Such distributions
are computationally and analytically tractable and appear in many areas of applied probability, such
as, queueing theory [15, 17], Petri Net theory [21], and stochastic reaction network theory [23, 20,
2]. Specifically, a complex balanced mass-action network has a product-form Poisson-like stationary
distribution on every irreducible component [20, 2]. As an example, the stationary distribution of the
complex balanced reaction system (1.1) is

πΓ(x) = MΓ
κxA1 κxB2 κxC1

xA!xB !xC !
for x ∈ Γ,

where Γ = {x ∈ N3 : xA + xB + 2xC = θ} is an irreducible component of the state space N3 and MΓ is a
normalising constant.

We expand the above result on mass-action systems and give general conditions under which the
converse statement is true. In particular, we are interested in providing a structural characterisation of
the networks with product-form Poisson-like stationary distributions. However, this class of networks is
strictly larger than that of complex balanced networks, and a full characterisation seems hard to achieve.
We illustrate this with examples.

2 Background

We first introduce the necessary notation and background material; see [4, 10, 9] for general references.
We assume standard knowledge about continuous-time Markov chains.

2.1 Notation

We let R, R0 and R+ be the real, the non-negative real and the positive real numbers, respectively. Also
let N be the natural numbers including 0.

For any real number a ∈ R, |a| denotes the absolute value of a. Moreover, for any vector v ∈ Rp,
we let vi be the ith component of v, ‖v‖ the Euclidean norm, and ‖v‖∞ the infinity norm, that is,
‖v‖∞ = maxi |vi|. For two vectors v, w ∈ Rp, we write v < w (resp. v > w) and v ≤ w (resp. v ≥ w), if
the inequality holds component-wise. Further, we define 1{v≤w} to be one if v ≤ w, and zero otherwise,
and similarly for the other inequalities. If v > 0 then v is said to be positive. Finally, supp v denotes the
index set of the non-zero components. For example, if v = (0, 1, 1) then supp v = {2, 3}.

If x ∈ Rq0 and v ∈ Nq, we define

xv =

q∏
i=1

xvii , and v! =

q∏
i=1

vi!,

with the conventions that 0! = 1 and 00 = 1.
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2.2 Reaction networks

A reaction network is a triple G = (X , C,R), where X = {S1, S2, . . . , Sn} is a set of n species, C is a set
of m complexes, and R ⊆ C ×C is a set of k reactions, such that (y, y) /∈ R for all y ∈ C. The complexes
are linear combinations of species on N, identified as vectors in Rn. A reaction (y, y′) ∈ R is denoted by
y → y′. We require that every species is part of at least one complex, and that every complex is part of
at least one reaction. In this way, there are no “superfluous” species or complexes and G is completely
determined by the set of reactions R, which we allow to be empty. In (1.1), there are n = 3 species
(A,B,C), m = 2 complexes (A+B, 2C), and k = 2 reactions.

Given a reaction network G, the reaction graph of G is the directed graph with node set C and edge set
R. We let ` be the number of linkage classes (connected components) of the reaction graph. A reaction
y → y′ ∈ R is terminal if any directed path that starts with y → y′ is contained in a closed directed
path. We let R∗ be the set of terminal reactions.

A reaction network G is weakly reversible, if every reaction is terminal. The network in (1.1) is weakly
reversible, since both reactions are terminal.

The stoichiometric subspace of G is the linear subspace of Rn given by

S = span(y′ − y|y → y′ ∈ R).

For v ∈ Rn, the sets (v + S) ∩ Rn0 are called the stoichiometric compatibility classes of G (Fig. 1A). For
the network in (1.1), S = span((−1, 1, 0), (0, 1,−1)) ⊂ R3, which is 2-dimensional.

2.3 Dynamical systems

We will consider a reaction network G either as a deterministic dynamical system on the continuous
space Rn0 , or as a stochastic dynamical system on the discrete space Nn.

In the deterministic case, the evolution of the species concentrations z = z(t) ∈ Rn0 at time t is
modelled as the solution to the ODE

dz

dt
=

∑
y→y′∈R

(y′ − y)λy→y′(z), (2.1)

for some functions λy→y′ : Rn0 → R0 and an initial condition z(0) ∈ Rn0 . We require that the functions
λy→y′ are continuously differentiable, and that λy→y′(z) > 0 if and only if supp y ⊆ supp z. Such
functions are called rate functions, they constitute a deterministic kinetics K for G, and the pair (G,K)
is called a deterministic reaction system. If λy→y′(z) = κy→y′z

y for all reactions, then the constants
κy→y′ are referred to as rate constants and the modelling regime is referred to as deterministic mass-
action kinetics. In this case, the pair (G, κ) is called a deterministic mass-action system, where κ ∈ Rk+
is the vector of rate constants.

In the stochastic setting, the evolution of the species counts X(t) ∈ Nn at time t is modelled as a
continuous-time Markov chain with state space Nn. At any state x ∈ Nn, the states that can be reached
in one step are x+y′−y for y → y′ ∈ R, with transition rates λy→y′(x). The functions λy→y′ : Nn → R0

are called rate functions, and we require that λy→y′(x) > 0 if and only if x ≥ y. A choice of these
functions constitute a stochastic kinetics K for G and the pair (G,K) is called a stochastic reaction
system. If the reaction y → y′ occurs at time t, then the new state is

X(t) = X(t−) + y′ − y,

where X(t−) denotes the previous state. If for any reaction y → y′ ∈ R

λy→y′(x) = κy→y′
x!

(x− y)!
1{x≥y}.

then the constants κy→y′ are known as rate constants, as in the deterministic case, and the modelling
regime is referred to as stochastic mass-action kinetics. The pair (G, κ) is, in this case, called a stochastic
mass-action system.

The evolution of the stochastic as well as the deterministic reaction system is confined to the stoi-
chiometric compatibility classes,

z(t) ∈ (z(0) + S) ∩ Rn0 and X(t) ∈ (X(0) + S) ∩ Rn0 .
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In fact, X(t) ∈ (X(0) + S) ∩ Nn, as X(t) takes values in Nn.

Definition 1. Let G = (X , C,R) be a reaction network.

a) A reaction network G′ = (X ′, C′,R′) is a subnetwork of G if R′ ⊆ R. In this case, it follows that
X ′ ⊆ X and C′ ⊆ C.

b) A system (G′,K ′), deterministic or stochastic, is a subsystem of a system (G,K) if G′ is a subnetwork
of G and the rate functions agree on the reactions in R′.

c) The subnetwork G∗ given by the set of terminal reactions R∗ is the terminal network of G. We denote
G∗ = (X ∗, C∗,R∗). Furthermore, the subsystem (G∗,K∗) of (G,K) is called the terminal system of
(G,K).

Definition 2. The connected components of the reaction graph of the terminal network of G are called
terminal strongly connected component of G. For any complex y in C∗, we denote by (Gy,Ky) the
subsystem of G whose reaction graph is the terminal strongly connected component containing y as node.

As an example, consider the mass-action system

2A
κ1−−⇀↽−−
κ2

2B
κ3←− A κ4−→ 0

κ5−−⇀↽−−
κ6

C.

Here, there are two terminal strongly connected components, which are 2A 
 2B and 0 
 C. In
particular, (G2A,K2A) is equal to (G2B ,K2B) and is given by

2A
κ1−−⇀↽−−
κ2

2B.

Finally, if (G, κ) is a mass-action system, any subsystems (G′,K ′) is a mass-action systems as well and
can be denoted by (G′, κ′).

3 Deterministic reaction systems

In this section we will recapitulate the known characterisation of existence and uniqueness of positive
equilibria in complex balanced systems and the connection between complex balanced systems and
deficiency zero reaction networks. As we will show in the subsequent section, this characterisation can
be fully translated into a similar characterisation for stochastic reaction networks.

3.1 Complex balanced systems

We start with a definition.

Definition 3. A deterministic reaction system (G,K) is said to be complex balanced if there exists a
positive complex balanced equilibrium, that is, a positive equilibrium point c ∈ Rn+ for the system (2.1),
such that ∑

y′∈C
λy→y′(c) =

∑
y′∈C

λy′→y(c) for all y ∈ C. (3.1)

The name ‘complex balanced’ refers to the fact that the flow, at equilibrium, entering into the complex
y equals the flow exiting from the complex. As an example, the mass-action system in (1.1) is complex
balanced for any choice of (κ1, κ2) and c = (κ2, κ1, κ1) is a complex balanced equilibrium. The class of
complex balanced systems is an extension of the class of detailed balanced mass-action systems [13, 10].

For mass-action systems, (3.1) becomes∑
y′∈C

κy→y′c
y =

∑
y′∈C

κy′→yc
y′ for all y ∈ C, (3.2)

with the convention that ky→y′ = 0 if y → y′ 6∈ R.
In the case of mass-action kinetics, we extend Definition 3 to the stochastic case, by saying that a

stochastic mass-action system (G, κ) is complex balanced if the deterministic mass-action system (G, κ) is
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complex balanced. We might therefore refer to complex balanced mass-action systems without specifying
whether they are stochastically or deterministically modelled.

The next theorem is a slight generalization of a classical result [13], which provides the backbone for
the further characterisation. The generalization includes a property of non-negative equilibria

Theorem 3.1. If a deterministic reaction system (G,K) is complex balanced, then G is weakly reversible.
Moreover, if K is mass-action kinetics, then all equilibria are complex balanced, that is, they fulfil (3.2).
Moreover, there exists exactly one positive equilibrium in each stoichiometric compatibility class, which
is locally asymptotically stable.

As we are not aware of a proof of this more general formulation, we provide one in Appendix B.

3.2 Deficiency zero statements

The deficiency plays an important role in the study of complex balanced systems. The deficiency of G
is defined as

δ = m− `− s,
where m is the cardinality of C, ` is the number of linkage classes of the reaction graph of G and s is the
dimension of the stoichiometric subspace S [13]. The definition hides the geometrical interpretation of
the deficiency, which we now will explore.

Let {ey}y∈C be a basis of Rm. Further, define

dy→y′ = ey′ − ey and ξy→y′ = y′ − y

for y → y′ ∈ R. Let D = span(dy→y′ |y → y′ ∈ R). Then dimD = m− ` [13].
The space D is linearly isomorphic to the stoichiometric subspace S if and only if δ = 0. Specifically,

consider the homomorphism
ϕ : Rm → Rn

ey 7→ y.
(3.3)

For y → y′ ∈ R, we have ϕ(dy→y′) = ξy→y′ and ϕ|D : D → S is thus a surjective homomorphism.
Therefore,

dim Kerϕ|D = dimD − s = m− `− s = δ, (3.4)

which implies that ϕ|D is an isomorphism if and only if δ = 0. It further follows that the deficiency is a
non-negative number.

We state here a useful Lemma on the deficiency of subnetworks.

Lemma 3.2. Let G be a reaction network with deficiency δ. Then, the deficiency of any subnetwork of
G is smaller than or equal to δ.

Proof. Let R′ ⊆ R and let G′ be the corresponding subnetwork with deficiency δ′. Further, let D′ and
S′ be the equivalent of D and S for G′, respectively. By (3.4) and since D′ is a subspace of D, we have
δ′ = dim Kerϕ|D′ ≤ dim Kerϕ|D = δ, which concludes the proof.

We next state two classical results which elucidate the connection between complex balanced systems
and deficiency zero systems. A proof of the first and of the second result can be found in [13] and in [10],
respectively. The results draw a connection between graphical and dynamical properties of a network.
Theorem 3.4 is given here in a wider formulation than in [10] (see Appendix B for a proof).

Theorem 3.3. The mass-action system (G, κ) is complex balanced for any choice of κ if and only if G
is weakly reversible and its deficiency is zero.

Theorem 3.4. Consider a deterministic reaction system (G,K), and assume that the deficiency of G is
zero. If x ∈ Rn0 is an equilibrium point and y → y′ ∈ R, then supp y ⊆ suppx only if y → y′ is terminal.
Moreover, if K is mass-action kinetics with rate constants κ and supp y ⊆ suppx, then the projection of
x onto the species space of Gy is a complex balanced equilibrium of (Gy, κy).

It follows from Theorem 3.4 that an equilibrium point satisfies (3.2) for the terminal system, though
it is not necessarily a positive equilibrium of (G∗, κ∗).The deficiency zero theorem, in the following
formulation, is a consequence of the three previous theorems:
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Figure 1: The figure shows some features of the reaction network 2A → 2B, and A + 3B → 3A + B.
(A) The stoichiometric compatibility classes are of the form {(zA, zB) : zA + zB = const.}. (B) The
two irreducible components on {(xA, xB) : xA + xB = 6} are shown (black circles and square), together
with the possible transitions between the states. All states within a component are accessible from each
other. The “square” component has no active reactions, both reactions are active on the “black circles”
component. The grey states are transient states which are not in any irreducible component.

Theorem 3.5 (Deficiency zero theorem). Consider a deterministic reaction system (G,K) for which the
deficiency is zero. Then the following statements hold:

i) if G is not weakly reversible, then there exists no positive equilibria;

ii) if G is weakly reversible and K is mass-action kinetics, then there exists within each stoichiometric
compatibility class a unique positive equilibrium, which is asymptotically stable.

The original formulation is richer than the one presented here [10].

4 Stochastic reaction systems

4.1 Classification of states and sets

To characterise the stochastic dynamics we introduce the following terminology.

Definition 4. Let G = (X , C,R) be a reaction network.

a) A reaction y → y′ ∈ R is active on x ∈ Nn if x ≥ y.

b) A state u ∈ Nn is accessible from a state x ∈ Nn if there is a sequence of q ≥ 0 reactions (yj →
y′j)j=1,...,q such that

(i) u = x+
∑q
j=1(y′j − yj),

(ii) yh → y′h is active on x+
∑h−1
j=1 (y′j − yj) for all 1 < h ≤ q.

Definition 5. Let G be a reaction network. A non-empty set Γ ⊆ Nn is an irreducible component of G
if for all x ∈ Γ and all u ∈ Nn, u is accessible from x if and only if u ∈ Γ.

Definition 6. A reaction network G is essential if the state space is a union of irreducible components.
A reaction network G is almost essential if the state space is a union of irreducible components except
for a finite number of states.
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An essential network is also almost essential. A weakly reversible reaction network is essential [22].
Conditions for being essential can be found in [22, 11]. Any irreducible component is contained in
some stoichiometric compatibility class, and a stoichiometric compatibility class may contain several
irreducible components (Fig. 1B).

4.2 Stationary distribution

The stationary distribution πΓ on an irreducible component Γ is unique, if it exists. It is characterised
by the master equation [4]:∑

y→y′∈R
πΓ(x+ y − y′)λy→y′(x+ y − y′) = πΓ(x)

∑
y→y′∈R

λy→y′(x), (4.1)

for all x ∈ Γ. Let X(t) denote the stochastic process associated with the system. If X(t0) follows the
law of πΓ at time t0, then the distribution of X(t) is πΓ for all future times t ≥ t0. In this sense, the
stationary distribution describes a state of equilibrium of the system. Moreover, if πΓ exists, then

lim
t→∞

P (X(t) ∈ A) = πΓ(A) for any A ⊆ Γ, (4.2)

provided that X(0) ∈ Γ with probability one. As discussed in Section 1, a connection between mass-
action complex balanced systems and their stationary distribution has been made in [2]:

Theorem 4.1. Let (G, κ) be a complex balanced mass-action system. Then, there exists a unique sta-
tionary distribution on every irreducible component Γ, and it is of the form

πΓ(x) = M c
Γ

n∏
i=1

cxii
xi!

for x ∈ Γ, (4.3)

where c is a positive complex balanced equilibrium of (G, κ) and M c
Γ is a normalising constant.

4.3 Parallel theorems for stochastic mass-action systems

In this section we derive stochastic statements corresponding to Theorem 3.1-3.5. Some of the proofs
are deferred to Appendix B. We begin with a definition.

Definition 7. For an irreducible component Γ, the set RΓ of active reactions on Γ consists of the
reactions y → y′ ∈ R that are active on some x ∈ Γ. The subnetwork GΓ = (XΓ, CΓ,RΓ) is called the
Γ-network of G and the subsystem (GΓ,KΓ) of (G,K) is called the Γ-system of (G,K).

The reactions that are active on Γ determine the dynamics of the stochastic system on Γ. To study
the stationary distributions, it is therefore convenient to analyse the Γ-systems. Note that RΓ is empty
if and only if Γ consists of a single state.

As an example, consider the deficiency zero network,

C 
 D, 2A
 2B, A→ 0.

All molecules of A and B are irreversibly consumed through A→ 0 and 2B → 2A, thus the only active
reactions on an irreducible component Γ 6= {0} are C 
 D. The Γ-network is therefore C 
 D, which
differs from the terminal system C 
 D, 2A 
 2B. The next proposition states that for a deficiency
zero reaction network RΓ ⊆ R∗ for any irreducible component Γ. Note that Proposition 4.2 does not
hold in general, for example,

A→ B, 2B → 2A

has RΓ = R for any Γ 6= {0}, {(0, 1)}, while R∗ = ∅.

Proposition 4.2. Let G be a reaction network and Γ an irreducible component such that GΓ has deficiency
zero. Then, GΓ is a subnetwork of G∗. In particular, this is true if the deficiency of G is zero.

See Appendix B for a proof. Proposition 4.2 can be useful because RΓ might be difficult to find,
especially if there are many complexes. On the other hand, terminal reactions are easily identified by
means of the reaction graph. The next definitions are inspired by Definition 3.
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Definition 8. Let (G,K) be a stochastic reaction system. A stationary distribution πΓ on an irreducible
component Γ is said to be complex balanced if∑

y∈CΓ

πΓ(x− y′ + y)λy→y′(x− y′ + y) =
∑
y∈CΓ

πΓ(x)λy′→y(x) ∀y′ ∈ CΓ, x ∈ Γ. (4.4)

For a mass-action system, (4.4) becomes∑
y∈CΓ

πΓ(x− y′ + y)κy→y′
(x− y′ + y)!

(x− y′)!
1{x≥y′} =

∑
y∈CΓ

πΓ(x)κy′→y
x!

(x− y′)!
1{x≥y′}

for any y′ ∈ CΓ and x ∈ Γ, with the convention that ky→y′ = 0 if y → y′ 6∈ RΓ. In developing
the theory for complex balanced equilibria in the deterministic setting, an important role is played by
requiring positivity of the complex balanced equilibrium. Our aim is to introduce a similar concept for
the stochastic systems. In the deterministic setting, if a state z ∈ Rn is positive then every rate function
calculated on z is positive. We find inspiration from this to give the next definition:

Definition 9. An irreducible component Γ is positive if GΓ = G.

Equivalently, an irreducible component Γ is positive if all reactions are active on Γ. The next definition
follows naturally by analogy with the deterministic setting.

Definition 10. A stochastic reaction system (G,K) is said to be stochastically complex balanced if there
exists a complex balanced stationary distribution on a positive irreducible component.

If Γ is positive, then CΓ = C and a complex balanced stationary distribution on Γ satisfies (4.4) with
CΓ replaced by C. Note the similarity between Definition 10 and the definition of a complex balance
equilibrium (Definition 3): the positivity of Γ plays the role of the positivity in Definition 3. Also note
the close similarity between (3.1) and (4.4).

Theorem 4.3. Let (G,K) be a stochastic reaction system, and let Γ be an irreducible component. If
there exists a complex balanced stationary distribution πΓ on Γ then GΓ is weakly reversible. Moreover, if
K is mass-action kinetics with rate constants κ, there exists a complex balanced stationary distribution
πΓ on Γ if and only if the Γ-system of (G, κ) is complex balanced. If this is the case, then πΓ has the
form

πΓ(x) = M c
Γ

∏
i : Si∈XΓ

cxii
xi!

for x ∈ Γ, (4.5)

where c is a positive complex balanced equilibrium of (GΓ, κΓ) and M c
Γ is a normalising constant.

The proof is in Appendix B. It is shown in [2] that the stationary distribution πΓ(x) is independent
of the choice of complex balanced equilibrium c of the Γ-system, provided that it is positive. We are now
ready to derive stochastic versions of Theorem 3.1-3.5. In addition, we will show that a stochastically
complexed balanced mass-action system is complex balanced and vice versa. Hence, we will show that
the deterministic and stochastic systems are intimately connected. The next corollary is an analogue of
Theorem 3.1.

Corollary 4.4. If a stochastic reaction system (G,K) is stochastically complex balanced then G is weakly
reversible. Moreover, a mass-action system (G, κ) is stochastically complex balanced if and only if it is
complex balanced. If this is case, then on every irreducible component Γ there exists a unique stationary
distribution πΓ. Such πΓ is a complex balanced stationary distribution and it has the form (4.3), where
c is a positive complex balanced equilibrium of (G, κ).

Proof. If Γ is positive, then (GΓ,KΓ) = (G,K). Therefore, by Theorem 4.3 if (G,K) is stochastically
complex balanced then G is weakly reversible. Moreover, if K is mass-action kinetics with rate constants
κ, it follows from Theorem 4.3 that there exists a complex balanced stationary distribution on Γ if and
only if (G, κ) is complex balanced. In this case, by Theorem 4.1, a stationary distribution exists on every
irreducible component and it is of the form (4.3). By Theorem 4.3, it is a complex balanced stationary
distribution.
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Corollary 4.4 might be considered a stochastic version of Theorem 3.1, especially if (4.2) is taken to
be equivalent to “asymptotic stability” for a deterministic equilibrium. Part of the corollary is known
[2] (see also Theorem 4.1), and the whole corollary might therefore be considered as an extension of the
result in [2] on mass-action systems. In this sense, Theorem 4.3 provides an even more general version,
which deals with complex balanced subsystems of (G, κ).

We now state the parallel versions of Theorem 3.3-3.5 for the stochastic setting.

Corollary 4.5. The mass-action system (G, κ) is stochastically complex balanced for any choice of κ if
and only if G is weakly reversible and its deficiency is zero.

Proof. The result is an immediate consequence of Corollary 4.4 and Theorem 3.3.

Theorem 4.6. Consider a stochastic reaction system (G,K), and assume the deficiency of G is zero.
Let x be a state in an irreducible component Γ and let y → y′ in R. Then, y ≤ x only if y → y′ is
terminal. Moreover, if K is mass-action kinetics, then on Γ the stationary distribution has the form

πΓ(x) = M c
Γ

∏
i : Si∈X∗

cxii
xi!

for x ∈ Γ, (4.6)

where c is a positive complex balanced equilibrium for the terminal system, and M c
Γ is a normalising

constant.

The proof is in Appendix B.

Theorem 4.7. Consider a stochastic reaction system (G,K), and assume that the deficiency of G is
zero. Then the following statements hold:

i) if G is not weakly reversible, then there exist no positive irreducible components;

ii) if G is weakly reversible, then G is essential, and if K is mass-action kinetics then there exists a
unique stationary distribution on every irreducible component.

The proof of the theorem is in Appendix B. In case (i), Theorem 4.6 provides the form of the stationary
distribution. Hence we have characterised the stationary distribution for any deficiency zero reaction
system, irrespectively whether it is complex balanced or not.

Example 1. Consider the two stochastic mass-action systems

A
κ1−−⇀↽−−
κ2

B, 10A
κ3−−⇀↽−−
κ4

10B and A
κ1−−⇀↽−−
κ2

B, 10A
κ3−→ 0.

The behaviours of the two corresponding deterministic systems differ substantially, while the behaviours
of the stochastic systems are equivalent on the irreducible components Γθ = {x ∈ N2 : x1 + x2 = θ} with
0 ≤ θ < 10 an integer. Indeed, in both cases the Γθ-system is

A
κ1−−⇀↽−−
κ2

B,

which is complex balanced (Theorem 3.3). It follows from Theorem 4.3 that the stationary distribution
on Γθ is

πθ(x1, x2) = Mθ
κx1

2

x1!

κx2
1

x2!
for (x1, x2) ∈ Γθ,

for a suitable normalizing constant Mθ. The stationary distributions are complex balanced, but since
Γθ is not positive in either of the two networks, we cannot conclude that the systems are stochastically
complex balanced. Indeed, they are not for some choice of rate constants (Corollary 4.5).

Incidentally, note that the second network is not almost essential.
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5 Product-form Poisson-like stationary distributions

The above results draw parallels between stochastic and deterministic reaction networks. If a mass-
action system is (stochastically) complex balanced, then the stationary distribution on every irreducible
component is a product-form Poisson-like distribution. Does the reverse statement hold true too? If the
stationary distribution is a product-form Poisson-like distribution on some, or all irreducible components,
does it follow that the system is complex balanced? In the spirit of the first part of the paper we would
like to achieve a full characterisation of stochastic systems with product-form Poisson-like stationary
distributions. However, even though the hypothesis of Theorem 5.1 below is rather general, a full
characterisation seems hard to achieve.

Theorem 5.1. Let G be an almost essential reaction network, κ ∈ Rk+ a vector of rate constants and
c ∈ Rn+ a vector with positive entries. The probability distribution πΓ : Γ → (0, 1], defined by (4.3) is a
stationary distribution for the stochastic mass-action system (G, κ) for all irreducible components Γ ⊆ Nn
of G if and only if c is a complex balanced equilibrium for (G, κ).

Proof. By Theorem 4.1, if c > 0 is a complex balanced equilibrium for (G, κ), then the stationary
distribution on all irreducible components Γ ⊆ Nn is of the form (4.3).

Oppositely, assume that (4.3) is the stationary distribution on Γ for the stochastic mass-action system
(G, κ), for all irreducible components Γ. Since G is almost essential, there exists a constant K such that
any states x with ‖x‖ > K belongs to an irreducible component Γ. For any x ∈ Nn, such that

min
Si∈X

xi > max
y→y′∈R

(‖y‖∞ + ‖y′‖∞) +K, (5.1)

we have that x ≥ y and x− y′ + y ≥ y for all y → y′ ∈ R. Then, since (4.3) is a stationary distribution
and since x and x+ y− y′ are in the same irreducible component for all y → y′ ∈ R, we have from (4.1)∑

y→y′∈R
πΓ(x+ y − y′)κy→y′

(x+ y − y′)!
(x− y′)!

= πΓ(x)
∑

y→y′∈R
κy→y′

x!

(x− y)!
, (5.2)

for all x ∈ Γ satisfying (5.1). Further, using (4.3), equation (5.2) becomes∑
y→y′∈R

x!

(x− y′)!
κy→y′c

y−y′ =
∑

y→y′∈R
κy→y′

x!

(x− y)!
,

which, by rearranging terms, leads to∑
y′∈C

x!

(x− y′)!
∑

y→y′∈R
κy→y′c

y−y′ =
∑
y′∈C

x!

(x− y′)!
∑

y′→y∈R
κy′→y. (5.3)

The equality holds for all x ∈ Nn satisfying (5.1), therefore the polynomials on the two sides of (5.3) are
equal.

For any y′ ∈ C, let py′(x) be the polynomial

py′(x) =
x!

(x− y′)!
.

The monomial with maximal degree in py′ is xy
′
, and these differ for all complexes y′ ∈ C. This implies

that py′ , y
′ ∈ C, are linearly independent on R, and thus, the polynomials on the two sides of (5.3) are

equal if and only if ∑
y∈C

κy→y′c
y−y′ =

∑
y∈C

κy′→y for all y′ ∈ C.

Hence, c is a complex balanced equilibrium for (G, κ) and the proof is completed.
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5.1 Relaxation of Assumptions in Theorem 5.1

To infer the existence of positive complex balanced equilibria in Theorem 5.1, the assumptions of the
theorem could be weakened. Specifically, it is only required that (5.3) holds for a set of states whose
geometry and cardinality allow us to conclude that the polynomials on the two sides of (5.3) are the same.
For (5.3) to hold, we need x to be in a irreducible component and we require x ≥ y and x− y′ + y ≥ y
for all reactions y → y′ ∈ R, as well as the stationary distribution evaluated in x and x− y′ + y to be of
the form (4.3). If a state x satisfies this, we call it a good state.

A more general condition than being almost essential could be chosen case by case and depends on
the monomials appearing in (5.3). For example, if the set of complexes coincides with the set of species,
then the polynomials in (5.3) are linear and the existence of n+ 1 good states in general position implies
the existence of a positive complex balanced equilibrium. In general, let d be the total degree of the
polynomials in (5.3). Then it is sufficient to have n lines in general position with more than d+ 1 good
states on each of them. Therefore, to conclude that a system is complex balanced it is sufficient to check
the behaviour of a finite number of states, lying on a finite number of irreducible components. However,
it follows from Examples 2 and 4 that the existence of arbitrarily many good states on a few irreducible
components does not imply the existence of a positive complex balanced equilibrium in general. Finally,
in order to postulate that the mass-action system is complex balanced, it is necessary that the vector c
appearing in Theorem 5.1 is the same for every irreducible component, as shown in Example 5.

The following examples are also meant to give an idea of why it is hard to obtain a full characteriza-
tion of stochastic mass-action systems with a product-form Poisson-like stationary distribution on some
irreducible component.

Example 2. Let ρ ∈ R+ and let θ ≥ 2 be an integer. Consider the stochastic mass-action system

A
ρ(θ−1)−−−−→ B 2B

ρ−−−−→ 2A, (5.4)

where κ1 = ρ(θ − 1) and κ2 = ρ are the rate constants. The reaction network is almost essential.
It is shown in Appendix C that the stationary distribution on the irreducible component Γθ = {x ∈
N2 : x1 + x2 = θ} has the form (4.3) with c = (1, 1), namely

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ, (5.5)

where Mθ is a normalising constant. However, the mass-action system is not complex balanced as the
reaction network is not weakly reversible (Theorem 3.1). In particular, by Theorem 5.1, not all irreducible
components can have a stationary distribution of the form (4.3) with c = (1, 1). Trivially, the absorbing
states (0, 0) and (0, 1) have it.

Additionally, we should point out that there is not an equivalent system on Γ (that is, a stochastic
mass-action system with the same transition rate matrix on the states of Γ as (5.4)) which is complex
balanced. Consider the case θ = 1. Since the transition from (0, 2) to (2, 0) is possible according to (5.4),
any equivalent mass-action system must contain the reaction 2B → 2A, with rate constant ρ. It can
be further shown that any equivalent weakly reversible mass-action system must contain the connected
component

A+B

2B

2A .

ρ

ρ
2

ρ

This prevents the system from being complex balanced, since there is not a c ∈ R2
+ fulfilling (3.2) for

the three complexes 2B, 2A and A+B.

Example 3. Let ρ1, ρ2, ρ3 ∈ R+ and let θ ≥ 2 be an integer. Consider the modification of Example 2
given by

A
ρ1(θ−1)+ρ2−−−−−−−−⇀↽−−−−−−−−

ρ2

B 2B
ρ1+ρ3−−−−−−−−⇀↽−−−−−−−−
ρ3

2A,

which is weakly reversible. If we let ρ2 = 0 and ρ3 = 0, then the system reduces to that of Example 2
by removing the two reversible reactions. It can be shown that for any parameter choice, (5.5) is still

11



a stationary distribution on the irreducible component Γθ = {x ∈ N2 : x1 + x2 = θ}. However, for
some choice of parameters the mass-action system is not complex balanced. This can be seen either by
direct computation on the system of complex balance equations (3.2) or by noting that the deficiency
of the network is 1, so there must be a choice of parameters which prevents positive complex balanced
equilibria by Theorem 3.3. It can be further shown that irreducible components different from Γ do not
possess a product-form Poisson-like stationary distribution.

Example 4. Consider the stochastic mass-action system with ρ ∈ R+ and θ1, θ2 two positive integers,

A
ρθ1θ2−−−−−−−→ B 2B

ρ(θ1+θ2−1)−−−−−−−→ 2A

3A
ρ−−−−−−−→ A+ 2B 2A+B

ρ−−−−−−−→ 3B.

The reaction network is almost essential. For any θ ∈ N, consider the irreducible component Γθ = {x ∈
N2 : x1 + x2 = θ + 1}. Then πθ1 and πθ2 , defined as in (5.5), are the (unique) stationary distributions
on the irreducible components Γθ1 and Γθ2 , respectively. For the relevant calculations see Appendix
C. However, the mass-action system is not complex balanced, since the reaction network is not weakly
reversible (Theorem 3.1).

Example 5. Theorem 5.1 can be also used to compute the stationary distribution of a stochastic mass-
action system which behaves as a complex balanced system on the irreducible components. Consider the
weakly reversible (and therefore essential) stochastic mass-action system

A
κ1−−⇀↽−−
κ2

2A A+B
κ3−−⇀↽−−
κ4

2A+B.

On every irreducible component Γθ = {x ∈ N2 : x2 = θ}, θ ∈ N, the associated continuous time
Markov chain, which describes the evolution of the counts of A, has the same distribution as the process
associated with

A
κ1+κ3θ−−−−−⇀↽−−−−−
κ2+κ4θ

2A,

because the transition rates coincide. The latter system is complex balanced for any choice of rate
constants. The stationary distribution has the form (Theorem 5.1)

πθ(x) = Mθ
1

x!

(
κ2 + κ4θ

κ1 + κ3θ

)x
for some positive constant Mθ. The latter gives the stationary distribution of the original system as well.
However, the rate of the Poisson distribution does depend on θ, in which case the original system cannot
be complex balanced (Corollary 4.4). For the same reason the example does not contradict Theorem 5.1.

6 Applications

There are not many means to explicitly calculate the stationary distribution of a stochastic mass-action
system. As an example, Theorem 4.3 can be used to determine the stationary distributions of mass-action
systems like

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B, A
κ5−→ 0.

Indeed, for any irreducible component Γ different from {0}, the Γ-system is given by

C
κ1−−⇀↽−−
κ2

D,

which is weakly reversible and has deficiency zero, therefore it is complex balanced. Hence, the stationary
distribution on Γ has the form

πΓ(x) = MΓ
κx3

2

x3!

κx4
1

x4!
for x ∈ Γ,
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where x3 and x4 denote the entries relative to C and D, respectively. Alternatively, since the terminal
system is given by

C
κ1−−⇀↽−−
κ2

D, 2A
κ3−−⇀↽−−
κ4

2B,

Theorem 4.6 can be used to compute the stationary distribution. On every irreducible component Γ, it
is given by

πΓ(x) = M̃Γ
(
√
κ4)x1

x1!

(
√
κ3)x2

x2!

κx3
2

x3!

κx4
1

x4!
for x ∈ Γ,

which is equivalent to the previous formula since x1 and x2 are constantly 0 on all irreducible components.
If the system does not fulfil the conditions of Theorem 4.3 and neither can be cast as a birth-death

process, Theorem 5.1 might be useful. The following mass-action system is considered in [1]:

A
κ1−→ 0 0

κ2−→ 2A.

By Theorem 5.1, the stationary distribution cannot be Poisson. Indeed, it is given by the distribution
of Y = Y1 + 2Y2, where Y1 and Y2 are two independent Poisson random variables with rates κ2

κ1
and κ2

2κ1
,

respectively. Hence,

π(x) = e−
3κ2
2κ1

∑
i,j∈N
x=i+2j

1

i!j!

(
κ2

κ1

)i(
κ2

2κ1

)j
.

In [1], the following system is also considered:

0
κ1−−⇀↽−−
κ2

A 2A
κ3−−⇀↽−−
κ4

3A.

It has the stationary distribution

π(x) = M

x∏
i=1

θ1[(i− 1)(i− 2) + θ2]

i(i− 1)(i− 2) + θ3i
for x ∈ N,

where θ1 = κ3/κ4, θ2 = κ1/κ3, θ3 = κ2/κ4 and M = π(0) is a normalising constant. It is interesting
that π(x) is a Poisson distribution if and only if θ2 = θ3. In fact, and in accordance with our results, the
mass-action system is complex balanced if and only if θ2 = θ3.

7 Discussion

Corollary 4.5 provides a characterisation of reaction networks that are stochastically complex balanced
for any choice of rate constants. It is natural to wonder whether a stationary distribution of the form
(4.3) on some irreducible component Γ for all choices of rate constants implies something specific about
the Γ-system. If for specific form we intend deficiency zero and weakly reversible, this is not the case,
as this is violated in Example 5. However, in Example 5 the system might be described equivalently
by means of a weakly reversible deficiency zero system for any irreducible component. The question of
whether this is always true remains open. We provide here two more examples.

Example 6. Consider the stochastic mass-action system

2A
κ1−→ 2B A+ 3B

κ2−→ 3A+B.

The underlying reaction network is considered in Figure 1. On the irreducible component Γ = {(1, 5), (3, 3), (5, 1)},
the Markov chain associated with the system has the same distribution as the Markov chain associated
with

2A
κ1−−⇀↽−−
3κ2

2B,

since the transition rates coincide. It is interesting to note that the dynamics of the two systems are
different when they are deterministically modelled [8]. Due to Theorem 3.3, the latter system is complex
balanced for any choice of rate constants. Therefore, by Theorem 5.1, the stationary distribution on Γ
has the form (4.3) on both systems for any choice of rate constants. The same argument does not hold,
in this case, for the other irreducible components.
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Example 7. The same phenomenon as in Example 6 is observed in the stochastic mass-action system

2A
κ1−→ 3A+B A+ 3B

κ2−→ 2B.

On the irreducible component Γ = {(x1, x2) ∈ N2 : x1 ≥ 2, x1 = x2}, the Markov chain associated with
the system has the same distribution as the Markov chain associated with

2A
κ1−−⇀↽−−
κ2

3A+B,

since the transition rates coincide, and the latter network is weakly reversible and has deficiency zero.

A Preliminary results

Here we state some preliminary results that will be needed in Appendix B.

Lemma A.1. Let G be a reaction network. If y1 → y2 → · · · → yq is a directed path in the reaction
graph of G, and x ≥ y1, then x+ yq − y1 is accessible from x.

Proof. First, note that

x+

q−1∑
i=1

(yi+1 − yi) = x+ yq − y1.

It is sufficient to note that if x ≥ y1, then for any 1 ≤ j ≤ q − 1, we have

x+

j−1∑
i=1

(yi+1 − yi) = x+ yj − y1 ≥ yj .

This concludes the proof.

Lemma A.2. Let Γ be an irreducible component such that GΓ has deficiency zero. Then, GΓ is weakly
reversible. In particular, if G has deficiency zero, GΓ has deficiency zero and is weakly reversible for
every irreducible component Γ.

Proof. If RΓ is empty then GΓ is weakly reversible and there is nothing to prove. Otherwise, if RΓ is
non-empty, let y1 → y′1 ∈ RΓ. By hypothesis, there exists a state x in Γ with x ≥ y1. This means that
x+ ξy1→y′1 is accessible from x. Moreover, since x belongs to an irreducible component Γ, we have that
x is accessible from x+ ξy1→y′1 as well, which implies that

x = x+

q∑
j=1

ξyj→y′j ,

for a certain choice of ξyj→y′j . In particular,
∑q
j=1 ξyj→y′j = 0. By the hypothesis of deficiency zero, it

follows that
∑q
j=1 dyj→y′j = 0, because ϕ, defined in (3.3), is an isomorphism between the spaces D and

S associated with GΓ. Therefore,

q∑
j=1

(ey′j − eyj ) =
∑
y∈CΓ

αyey = 0,

for some integers αy. Since the vectors ey are linearly independent, αy = 0 for all y ∈ CΓ. Hence, each ey
that appears in the sum, must appear at least twice, once with coefficient 1, once with −1. Consequently,
by iteratively reordering the terms dyj→y′j , the reactions (yj → y′j)

q
j=1 form a union of directed closed

paths in the reaction graph of G. In particular, the reaction y1 → y′1 is contained in a closed directed
path of the reaction graph of GΓ, and since this is true for every reaction in RΓ, GΓ is weakly reversible.
We conclude the proof by Lemma 3.2, since if G has deficiency zero, so does every subnetwork of G.
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Lemma A.3. Let G be a weakly reversible reaction network, and let Γ be an irreducible component.
Then, for any complex y′ ∈ CΓ we have

{y ∈ C : y → y′ ∈ R} = {y ∈ CΓ : y → y′ ∈ RΓ},
{y ∈ C : y′ → y ∈ R} = {y ∈ CΓ : y′ → y ∈ RΓ}.

Proof. One inclusion is trivial, since RΓ ⊆ R. For the other inclusion, fix y′ ∈ CΓ. Suppose that there
exists x ∈ Γ with x ≥ y′. It follows that any reaction y′ → y ∈ R is active on Γ, and therefore is
contained in RΓ. Moreover, since G is weakly reversible, for any reaction in R of the form y → y′, there
exists a directed path in the reaction graph of G from y′ to y. Hence, by Lemma A.1, x + y − y′ is
accessible from x, which implies that x + y − y′ is in Γ and that y → y′ is in RΓ, since x + y − y′ ≥ y.
Therefore, to conclude the proof it suffices to prove that there exists x ∈ Γ with x ≥ y′.

If it were no x ∈ Γ with x ≥ y′, then no reaction of the form y′ → y would be in RΓ. Since y′ ∈ CΓ,
there exists a reaction of the form y → y′. This means that there is x̃ ∈ Γ, such that x̃ ≥ y. Hence,
x̃+ y′ − y is in Γ with x̃+ y′ − y ≥ y′, which concludes the proof.

B Proofs

B.1 Proof of Theorem 3.1

It is proven in [13] that if a deterministic reaction system (G,K) is complex balanced, then G is weakly
reversible. By [13], we also know that if K is mass-action kinetics, then all positive equilibria are
complex balanced, and there exists exactly one positive equilibrium in each stoichiometric compatibility
class, which is locally asymptotically stable. Therefore, to conclude the proof we only need to prove that
in a complex balanced mass-action system (G, κ), the eventual equilibria on the boundary of Rn are also
complex balanced.

First of all note that any subsystem (GL, κL) of (G, κ) corresponding to a linkage classes L of G is
complex balanced. Indeed, the projection of a positive complex balanced equilibrium of (G, κ) onto the
space of the species of L satisfies (3.2) for any complex of GL, hence it is a positive complex balanced
equilibrium of (GL, κL).

Let c be an equilibrium point on the boundary. Consider a linkage class L of G, and assume that
cS > 0 for any species S appearing in the linkage class. Then, the projection of c onto the species of L
is a positive equilibrium of (GL, κL), and therefore complex balanced. It follows that c satisfies (3.2) for
any complex of L. Oppositely, assume that there exists a species appearing in the linkage class L, such
that cS = 0 (this can only happen on a boundary state). Remember that by mass-action kinetics, all
the rates of reactions whose source complex contains S are zero. In particular, all the rates of reactions
degrading S are zero. Consider a complex y in L that contains S. By weakly reversibility, there exists
a reaction y′ → y in L. If y′ contains S, then λy′→y(c) = 0. If y′ does not contain S, then the reaction
y′ → y produces S. Since the rate of all reactions degrading S is zero at c and c is an equilibrium, then
λy′→y(c) must be zero as well. By mass-action kinetics, this means that there exists a species S′ 6= S
such that S′ appears in y′ and cS′ = 0. By iteratively applying the same argument with the new species
S′ and by weakly reversibility, we obtain that λy→y′(c) = 0 for any reaction y → y′ in L. It follows that
c satisfies (3.2) for any complex in L, since the equation reduces to 0 = 0. Equation (3.2) is therefore
satisfied for any complex of G and c is a complex balanced equilibrium. This concludes the proof.

B.2 Proof of Theorem 3.4

By [10, Theorem 6.1.2], if x ∈ Rn0 is an equilibrium point and y → y′ ∈ R, then supp y ⊆ suppx
only if y → y′ is terminal. Moreover, if supp y ⊆ suppx, then supp ỹ ⊆ suppx for every complex ỹ of
Gy = (Xy, Cy,Ry).

Now, suppose that K is mass-action kinetics with rate constants κ, and that supp y ⊆ suppx with
y → y′ ∈ R (and therefore y → y′ ∈ R∗). Consider

R̃ = {ỹ → ỹ′ ∈ R : supp ỹ ⊆ suppx}.

By the first part of the statement, the reaction graph of the subnetwork G̃ = (X̃ , C̃, R̃) is a union of

terminal strongly connected components of G, and therefore G̃ is weakly reversible. Moreover, by Lemma
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3.2, the deficiency of G̃ is 0. It is not hard to see that the canonical projection of x onto the space of
the species X̃ is a positive equilibrium point of (G̃, κ̃), and therefore complex balanced by Theorem 3.3.
The proof is concluded by (3.2) and by noting that, for any complex ỹ ∈ Cy,

{ỹ′ ∈ C̃ : ỹ → ỹ′ ∈ R̃} = {ỹ′ ∈ Cy : ỹ → ỹ′ ∈ Ry},

{ỹ′ ∈ C̃ : ỹ′ → ỹ ∈ R̃} = {ỹ′ ∈ Cy : ỹ′ → ỹ ∈ Ry}.

B.3 Proof of Proposition 4.2

If RΓ is empty there is nothing to prove. Suppose that this is not the case. Since GΓ has deficiency zero,
by Lemma A.2, it is weakly reversible. For any y → y′ ∈ RΓ, by definition there exists x ∈ Γ such that
x ≥ y, which in turn implies x+ y′ − y ≥ y′. Therefore, for any directed path in the reaction graph of G
that starts with y → y′ ∈ RΓ, all the reactions in the path belong to RΓ, by definition of RΓ. Since GΓ

is weakly reversible, this can only happen if RΓ ⊆ R∗, and this proves the first part of the statement.
To conclude the proof, note that if the deficiency of G is zero, then by Lemma 3.2 the deficiency of GΓ

is zero as well.

B.4 Proof of Theorem 4.3

For the first part of the statement, consider a continuous-time Markov chain CΓ(t) with state space Γ×C
and transition rate from (x, y) to (x+ y′ − y, y′) given by λy→y′(x) if y → y′ ∈ RΓ, and zero otherwise.
The master equation for CΓ(t) is∑

y∈CΓ

π̃(x− y′ + y, y)λy→y′(x− y′ + y) =
∑
y∈CΓ

π̃(x, y′)λy′→y(x) ∀y′ ∈ C, x ∈ Γ,

with the convention that λy→y′(x) = 0 if y → y′ /∈ RΓ. By Definition 8, a stationary distribution for
CΓ(t) exists and it is of the form π̃(x, y) = Mπ(x), for a suitable normalising constant M . Since π(x)
is positive for any x ∈ Γ (because it is a stationary distribution on an irreducible component), then by
standard Markov chain theory, we have that for any two states (x1, y1), (x2, y2) ∈ Γ × C, if (x2, y2) is
accessible from (x1, y1), then (x1, y1) is accessible from (x2, y2). Fix y → y′ ∈ RΓ and x ∈ Γ with x ≥ y.
Then, a directed path from (x+y′−y, y′) to (x, y) exists in the graph associated with CΓ(t). The second
components of the form y of the states in the path, by construction, determine a directed path in the
reaction graph of GΓ from y′ to y. Hence, any reaction y → y′ ∈ RΓ is contained in a closed directed
path, which means that GΓ is weakly reversible.

Assume now that K is mass-action kinetics with rate constants κ and that c is a positive complex
balanced equilibrium of (G, κ). Then, by Theorem 4.1, there exists a (unique) stationary distribution on
Γ of the form (4.3). If a species Sj is not in XΓ, then the value of xj is constant for any x ∈ Γ, and (4.5)
can be obtained from (4.3) by modifying the normalising constant.

By Theorem 3.1 and Lemma A.3, we have that∑
y∈CΓ

cy−y
′
κy→y′ =

∑
y∈CΓ

κy′→y ∀y′ ∈ CΓ,

with κy→y′ = 0 if y → y′ /∈ RΓ. Therefore, for any y′ ∈ CΓ and x ∈ Γ,

1

(x− y′)!
∑
y∈CΓ

cx+y−y′κy→y′1{x≥y′} =
1

(x− y′)!
∑
y∈CΓ

cxκy′→y1{x≥y′},

which leads to (4.4), since π is of the form (4.3).
To prove the converse we first introduce a new stochastic mass-action system (ĜΓ, κ̂Γ), which is given

by the reactions of the form

y + Sy → y′ + Sy′ with y → y′ ∈ RΓ,
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where Sy are fictitious species in one to one correspondence with the complexes CΓ. The rate constant
of the reaction y+Sy → y′+Sy′ is given by κy→y′ . It is not difficult to see that the sum of the fictitious
species is conserved for any possible trajectory. Moreover, since any directed path y1 → y2 → . . . yq in
the reaction graph of G corresponds to a directed path y1 +Sy1

→ y2 +Sy2
→ . . . yq +Syq in the reaction

graph of ĜΓ, we have that ĜΓ is weakly reversible by the first part of the proof.
Consider the set

Υ = {(x, x̂) ∈ Nn × Nm : x ∈ Γ, ‖x̂‖1 = 1}.

Every state in Υ is of the form (x, Sy) ∈ Nn+m, where x ∈ Γ and Sy is considered as the vector in Nm
with entry 1 in the position corresponding to the species Sy and 0 otherwise. Since Γ is an irreducible
component of G and the sum of the fictitious species is conserved, no state outside Υ is accessible from
any state in Υ, according to ĜΓ. Moreover, the master equation on Υ can be written as

∑
y∈CΓ

π̂(x− y′ + y, Sy)κy→y′
(x− y′ + y)!

(x− y′)!
1{x≥y′}

=
∑
y∈CΓ

π̂(x, Sy′)κy′→y
x!

(x− y′)!
1{x≥y′} ∀y′ ∈ C, x ∈ Γ. (B.1)

If we choose π̂(x, x̂) = Mπ(x) for some positive constant M , then the master equation (B.1) is satisfied
due to Definition 8. Therefore, if M is chosen as a suitable normalising constant, π̂(x, z) = Mπ(x) is a
stationary distribution on Υ.

Consider the linear homomorphism ϕ as defined in (3.3), for the reaction network ĜΓ. Let | · | denote
the cardinality of a set, and note that |ĈΓ| = |CΓ| = mΓ. For any vector ey of the basis of RmΓ , we have
ϕ(ey) = (y, Sy). Since the vectors (y, Sy) with y ∈ CΓ are linear independent, ϕ is an isomorphism and

the deficiency of ĜΓ is 0.
Since ĜΓ is a deficiency zero weakly reversible reaction network, it follows from Theorem 3.3 that

the mass-action system (ĜΓ, κ) is complex balanced. Therefore, by Theorem 4.1, we have that π̂ has the
form

π̂(x, x̂) = M
(c,ĉ)

Γ̂

cx

x!

ĉx̂

x̂!
,

for a positive complex balanced equilibrium (c, ĉ), on any irreducible component Γ̂ contained in Υ. Since
π̂(x, x̂) = Mπ(x) does not depend on x̂, we have

π̂(x, x̂) = M c
Γ

cx

x!
,

for any (x, x̂) ∈ Υ.
Fix a complex y′ ∈ CΓ. Since GΓ is weakly reversible, there exists a reaction y′ → y that is active on

Γ. Fix x ∈ Γ such that x ≥ y′. Then for any y → y′ ∈ RΓ we have x− y′+ y ≥ y. If we plug the formula
for π̂(x, x̂) in (B.1) for our choice of x and y′, we obtain

∑
y∈CΓ

M c
Γ

cx−y
′+y

(x− y′ + y)!
κy→y′

(x− y′ + y)!

(x− y′)!
=
∑
y∈CΓ

M c
Γ

cx

x!
κy′→y

x!

(x− y′)!
,

which leads to ∑
y∈CΓ

cy−y
′
κy→y′ =

∑
y∈CΓ

κy′→y.

The proof is concluded by the fact that the above holds for any fixed y′ ∈ CΓ, which means that c is a
positive complex balanced equilibrium of (GΓ, κΓ).

B.5 Proof of Theorem 4.6

By Lemma A.2, GΓ is weakly reversible. Moreover, for y → y′ ∈ RΓ, if x ≥ y then x + y′ − y ≥ y′.
This implies that for any directed path in the reaction graph of G that starts with y → y′ ∈ RΓ, all the
reactions in the path belong to RΓ, by definition of RΓ. Since GΓ is weakly reversible, every directed
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path in the reaction graph of G that starts with y → y′ ∈ RΓ is contained in a closed directed path. This
implies that RΓ ⊆ R∗, and proves the first part of the statement.

Now assume that K is mass-action kinetics with rate constants κ. If the deficiency of G is zero, then
by Lemma 3.2 the deficiency of the terminal network is zero as well. Moreover, G∗ is weakly reversible
by definition, thus by Theorem 3.3 (G∗, κ∗) is complex balanced for any choice of rate constants κ∗.

Let X(t) be the stochastic process associated with (G, κ). By the first part of the statement, on Γ only
terminal reactions take place and these involve a subset of the species only. Without loss of generality, we
can assume that X ∗ is constituted by the first n∗ species of X . Therefore, Γ is of the form Γ∗×{v}, with
Γ∗ ⊆ Rn∗ and v ∈ Rn−n∗ . Moreover, we have that on Γ∗, the projection X∗(t) = (X1(t), . . . , Xn∗(t))
is distributed as the process associated with (G∗, κ∗), for which Γ∗ is an irreducible component. Let c
be a positive complex balanced equilibrium for (G∗, κ∗). Hence, by Theorem 4.1 or Corollary 4.4, the
stationary distribution of the process X(t) = (X∗(t), v) on Γ is of the form (4.6).

B.6 Proof of Theorem 4.7

For the first part, we prove that if an irreducible component Γ is positive, then G is weakly reversible.
This simply follows from Lemma A.2: indeed, by the lemma, GΓ is weakly reversible and since Γ is
positive, GΓ = G.

To prove the second part, we have to show that a weakly reversible reaction network is essential,
and this is done in [22]. Moreover, a deficiency zero weakly reversible mass-action system is complex
balanced, and the proof is concluded by Theorem 4.1 or Corollary 4.4.

C Calculations for Examples 2 and 4

In Example 2, we claim that the stationary distribution on the irreducible component Γθ = {x ∈
N2 : x1 + x2 = θ} has the form

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ.

To prove this, it is sufficient to show that πθ satisfies the master equation for every point (x1, x2) of Γθ.
The master equation on (x1, x2) is given by

ρπθ(x1 + 1, x2 − 1)(θ − 1)(x1 + 1)1{x2≥1} + ρπθ(x1 − 2, x2 + 2)
(x2 + 2)!

x2!
1{x1≥2}

= ρπθ(x1, x2)

(
(θ − 1)x11{x1≥1} +

(x2)!

(x2 − 2)!
1{x2≥2}

)
.

By plugging in the formula for πθ and after dividing by ρ and Mθ we obtain

1

x1!x2!
[x2(θ − 1) + x1(x1 − 1)] =

1

x1!x2!
[x1(θ − 1) + x2(x2 − 1)].

If we multiply by x1!x2! and substitute θ = x1 + x2, it follows that

x2(x1 + x2 − 1) + x1(x1 − 1) = x1(x1 + x2 − 1) + x2(x2 − 1),

that is
x1x2 + x2

2 − x2 + x2
1 − x1 = x2

1 + x1x2 − x1 + x2
2 − x2,

which always holds true because the terms cancel each other.
In Example 4, we change the notation to Γθ = {x ∈ N2 : x1 + x2 = θ + 1}. Then we claim that the

stationary distributions on the irreducible components Γθ1 and Γθ2 are πθ1 and πθ2 , respectively, where
as before

πθ(x1, x2) = Mθ
1

x1!x2!
for (x1, x2) ∈ Γθ.
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We prove that πθ1 is the stationary distribution on Γθ1 . The case with θ2 is analogue. We prove the
result by consider the master equation for πθ1 on a point (x1, x2) ∈ Γθ1 , which is as following:

ρπθ1(x1 + 1, x2 − 1)θ1θ2(x1 + 1)1{x2≥1}

+ ρπθ1(x1 − 2, x2 + 2)(θ1 + θ2 − 1)
(x2 + 2)!

x2!
1{x1≥2}

+ ρπθ1(x1 + 2, x2 − 2)
(x1 + 2)!

(x1 − 1)!
1{x1≥1,x2≥2}

+ ρπθ1(x1 + 2, x2 − 2)
(x1 + 2)!(x2 − 2)!

x1!(x2 − 3)!
1{x1≥0,x2≥3}

= ρπθ1(x1, x2)θ1θ2x11{x1≥1} + ρπθ1(x1, x2)(θ1 + θ2 − 1)
x2!

(x2 − 2)!
1{x2≥2}

+ ρπθ1(x1, x2)
x1!

(x1 − 3)!
1{x1≥3} + ρπθ1(x1, x2)

x1!x2!

(x1 − 2)!(x2 − 1)!
1{x1≥2,x2≥1}.

As we did for the previous calculations, we plug in the expression for πθ1 , then divide by Mθ1 , ρ and
multiply by x1!x2!. We obtain

θ1θ2x2 + (θ1 + θ2 − 1)x1(x1 − 1) + x1x2(x2 − 1) + x2(x2 − 1)(x2 − 2)

= θ1θ2x1 + (θ1 + θ2 − 1)x2(x2 − 1) + x1(x1 − 1)(x1 − 2) + x1(x1 − 1)x2.

Finally, by substituting θ1 with x1 + x2 − 1 and by performing the calculations, we obtain 0 = 0, which
means that the above equation is satisfied.
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