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Abstract

We study a constrained optimal control problem with possibly degenerate coefficients arising in

models of optimal portfolio liquidation under market impact. The coefficients can be random in

which case the value function is described by a degenerate backward stochastic partial differential

equation (BSPDE) with singular terminal condition. For this degenerate BSPDE, we prove existence

and uniqueness of a nonnegative solution. Our existence result requires a novel gradient estimate for

degenerate BSPDEs.
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1 Introduction

Let T ∈ (0,∞) and (Ω, F̄ ,P) be a probability space equipped with a filtration {F̄t}0≤t≤T which satisfies

the usual conditions. The probability space carries an m-dimensional Brownian motion W and an inde-

pendent point process J̃ on a non-empty Borel set Z ⊂ R
l with characteristic measure µ(dz). We endow

the set Z with its Borel σ-algebra Z and denote by π(dt, dz) the associated Poisson random measure.

The filtration generated by W , together with all P null sets, is denoted by {Ft}t≥0. The predictable

σ-algebra on Ω× [0,+∞) corresponding to {Ft}t≥0 and {F̄t}t≥0 is denoted P, respectively, P̄.

In this paper we address the following stochastic optimal control problem with constraints:

min
ξ,ρ

E

[∫ T

0

(
ηs(ys)|ξs|

2 + λs(ys)|xs|
2
)
ds+

∫ T

0

∫

Z

γs(ys, z)|ρs(z)|
2 µ(dz)ds

]
(1.1)
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subject to 



xt = x−

∫ t

0

ξs ds−

∫ t

0

∫

Z

ρs(z)π(dz, ds), t ∈ [0, T ]

xT = 0

yt = y +

∫ t

0

bs(ys) ds+

∫ t

0

σs(ys) dWs.

(1.2)

The real-valued process (xt)t∈[0,T ] is the state process. It is governed by a pair of controls (ξ, ρ). The

d-dimensional process (yt)t∈[0,T ] is uncontrolled. We sometimes write xs,x,ξ,ρt for 0 ≤ s ≤ t ≤ T to

indicate the dependence of the state process on the control (ξ, ρ), the initial time s and initial state

x ∈ R. Likewise, we sometimes write ys,yt to indicate the dependence on the initial time and state.

The set of admissible controls consists of all pairs (ξ, ρ) ∈ L2
F̄
(0, T )× L2

F̄
(0, T ;L2(Z)) s.t. xT = 0 a.s.

The cost functional is assumed to be of the quadratic form:

Jt(xt, yt; ξ, ρ) = E

[∫ T

t

(
ηs(ys)|ξs|

2 + λs(ys)|xs|
2
)
ds+

∫ T

t

∫

Z

γs(ys, z)|ρs(z)|
2 µ(dz)ds

∣∣∣Ft

]
. (1.3)

The value function is given by:

Vt(x, y), ess inf
ξ,ρ

Jt(xt, yt; ξ, ρ)
∣∣
xt=x,yt=y

. (1.4)

Control problems of the above form arise in models of optimal portfolio liquidation. In such models xt
denotes the portfolio an investor holds at time t ∈ [0, T ], ξt is the rate at which the stock is purchased

or sold in a regular exchange at that time, xT = 0 is the liquidation constraint, ρt describes the number

of stocks placed in a crossing network, π governs the order execution in the crossing network and yt is a

stochastic factor that drives the cost of liquidation. We refer to [1, 2, 11, 13] and references therein for a

detailed discussion of portfolio liquidation problems and an interpretation of the coefficients η, λ and γ.

In a Markovian framework where all coefficients are deterministic functions of the control and state vari-

ables, the Hamilton-Jacobi-Bellman (HJB) equation turns out to be a deterministic nonlinear parabolic

partial differential equation (PDE) with a singularity at the terminal time; see [9] for details. Non-

Markovian control problems with pre-specified terminal values have been studied in recent papers by

Ankirchner, Jeanblanc and Kruse [2], and Graewe, Horst and Qiu [8]. Ankirchner et al. represented the

value function in terms of a nonlinear backward stochastic differential equation (BSDE). The BSPDE-

approach in [8] is more general. There, the authors construct the optimal control in feedback form

assuming that there exists another independent n-dimensional Brownian motion B s.t.

yt = y +

∫ t

0

bs(ys) ds+

∫ t

0

σs(ys) dWs +

∫ t

0

σ̄s(ys) dBs, (1.5)

where the coefficients b, σ, σ̄, λ, γ and η are measurable with respect to the filtration F generated by

W , and σ̄ satisfies the super-parabolicity condition:

m∑

k=1

d∑

i,j=1

σ̄ikσ̄jk(t, x)ξiξj ≥ δ|ξ|2 a.s., ∀ (t, x, ξ) ∈ [0, T ]× R
d × R

d.

We do not require the super-parabolicity condition. In a portfolio liquidation framework this condition

is in fact not always natural; it is neither satisfied for many diffusion models of asset prices, nor for

important absolutely continuous factors driving liquidation costs such as volume weighted average prices.

For a given stock price process (St) and a given model of aggregate intraday trading activities (qt), often

a deterministic convex function, VWAP is defined as vt ,
∫

t

0
Suqudu∫
t

0
qudu

. This calls for an extension of the

existing literature beyond the super-parabolic framework.
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The constrained optimal control problem (1.1) can be formally written as an unconstrained one:

min
ξ,ρ

E

[∫ T

0

(
ηs(ys)|ξs|

2 + λs(ys)|xs|
2
)
ds+

∫ T

0

∫

Z

γs(ys, z)|ρs(z)|
2 µ(dz)ds+ (+∞)|xT |

21{xT 6=0}

]
(1.6)

subject to 




xt = x−

∫ t

0

ξs ds−

∫ t

0

∫

Z

ρs(z)π(dz, ds), t ∈ [0, T ];

yt = y +

∫ t

0

bs(ys) ds+

∫ t

0

σs(ys) dWs.

In view of Peng’s seminal work [15] on non-Markovian stochastic optimal control and the linear-quadratic

structure of the cost functional, the dynamic programming principle suggests that the value function is

of the form

Vt(x, y) = ut(y)x
2,

where u is the first component of the pair (u, ψ) satisfying formally the following backward stochastic

partial differential equation (BSPDE) with singular terminal condition:





−dut(y) =

[
tr

(
1

2
σt(y)σ

∗
t (y)D

2ut(y) +Dψt(y)σ
∗
t (y)

)
+ b∗t (y)Dut(y) + F (s, y, ut(y))

]
dt

− ψt(y) dWt, (t, y) ∈ [0, T ]× R
d;

uT (y) = +∞, y ∈ R
d.

(1.7)

Here

F (t, y, r),−

∫

Z

r2

γ(t, y, z) + r
µ(dz)−

r2

ηt(y)
+ λt(y), (t, y, r) ∈ R+ × R

d × R. (1.8)

BSPDEs were first introduced by Bensoussan [3] as the adjoint equations of forward SPDEs and have

since been extensively used in the stochastic control literature including [5, 6, 7, 10, 18]. BSDEs with

singular terminal conditions were first studied by Popier [16]. To the best of our knowledge, degenerate

BSPDEs with singular terminal conditions have never been studied before.

As in PDE theory, degenerate BSPDEs are fundamentally different from super-parabolic ones (see [4,

5, 12]). Using recent results on degenerate BSPDEs [5, 6, 12, 14], standard arguments show that the

BSPDE (1.7) has a unique solution and satisfies a comparison principle if the terminal value is finite.

To show that a solution (u, ψ) to the BSPDE with singular terminal value can be obtained as the limit

of a sequence of solutions to with finite terminal values requires a gradient estimate for u, besides a

growth condition of the limit near the terminal time. In the non-degenerate case analyzed in [8] such

gradient estimate is not needed. The non-degenerate case only requires the growth condition on ut near

the terminal time in which case the super-parabolicity guarantees sufficient regularity of u.

The gradient estimate for a solution to a degenerate BSPDE generally depends on its gradient at terminal

time. In our case, the terminal value of the BSPDE is singular and hence it does in no obvious way

characterize the gradient. Instead, we derive our gradient estimate from the gradient estimates of the

approximating sequence. Our estimate seems new even in the Markovian case. Along with the gradient

estimate, an explicit asymptotic estimate for the solution of our BSPDE near the terminal time is given.

Due to the degeneracy of the diffusion coefficient, no generalized Itô-Kunita formula (like the one used

in [8]) for the random filed u satisfying the BSPDE (1.7) in the distributional sense is available. To

prove the verification theorem we appeal instead to the link between degenerate BSPDEs and forward-

backward stochastic differential equations (FBSDEs), which requires certain regularity of the random

field u including the gradient estimate mentioned above. Finally, using the Itô formula for the square

norm of the positive part of the solutions for BSPDEs, we prove that the obtained solution is the unique

nonnegative one.
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The remainder of this paper is organized as follows. In Section 2, we introduce auxiliary notation and state

our main result. In Section 3, we show that BSPDE (1.7) has a non-negative solution. The verification

theorem and the uniqueness of solution are proved in Section 4. Selected results on semi-linear degenerate

BSPDEs are recalled in an appendix where we also show the well-posedness of the truncated version of

BSPDE (1.7) and establish a comparison principle for degenerate BSPDEs allowing for singular terminal

values.

2 Preliminaries and Main Result

2.1 Notation

Throughout this paper, we use the following notation. D and D2 denote the first order and second order

derivative operators, respectively; partial derivatives are denoted by ∂. For a Banach space U and real

number p ∈ [1,∞), we denote by L∞
F̄
(0, T ;U) and Lp

F̄
(0, T ;U) the Banach spaces of all P̄-progressively

measurable U -valued processes which are essentially bounded and p-th integrable, respectively. The

spaces Lp
F
(0, T ;U), p ∈ [1,∞], are defined analogously with P̄ replaced by P. For k ∈ N

+ and

p ∈ [1,∞), Hk,p is the Sobolev space of all real-valued functions φ whose up-to kth order derivatives

belong to Lp(Rd), equipped with the usual Sobolev norm ‖φ‖Hk,p . For k = 0, H0,p , Lp(Rd). Moreover,

Hk,p
loc , {u; uψ ∈ Hk,p, ∀ψ ∈ C∞

c (Rd)}

with C∞
c (Rd) being the set of all the infinitely differentiable functions with compact support in R

d,

and Lp(0, T ;Hk,p
loc ) is defined as usual. For simplicity, by u = (u1, . . . , ul) ∈ Hk,p, l ∈ N

+, we mean

u1, . . . , ul ∈ Hk,p and ‖u‖p
Hk,p,

∑l
j=1 ‖uj‖

p

Hk,p . We use 〈·, ·〉 and ‖ · ‖ to denote the inner product and

the norm in the usual Hilbert space L2(Rd) (L2 for short), respectively. We denote by Cw
F
([0, T ];Hk,p) the

space of all Hk,p-valued and jointly measurable processes (Xt)t∈[0,T ] which are F -adapted, a.s. weakly

continuous with respect to t on [0, T ]1 and

E

[
sup

t∈[0,T ]

‖Xt‖
p

Hk,p

]
<∞.

In the sequel, we write for any positive integer k

Sw
F ([0, T ];Hk,p),Cw

F ([0, T ];Hk,p) ∩ L2(Ω,F ;C([0, T ];Hk−1,p)), p ∈ [1,∞].

2.2 Assumptions and main result

We now define what we mean by a solution to a BSPDE whose terminal value may be infinite.

Definition 2.1. Let G : Ω → R̄ := [−∞,+∞] be FT /B(R̄)-measurable. A pair of processes (u, ψ) is a

solution to the BSPDE
{

−dut(y) = f(t, y, u,Du,D2u, ψ,Dψ) dt− ψt(y) dWt, (t, y) ∈ [0, T ]× R
d;

uT (y) =G(y), y ∈ R
d

if (u, ψ) ∈ L2
F
(0, τ ;H1,2

loc ) × L2
F
(0, τ ;H0,2

loc ) for any τ ∈ (0, T ), limτ→T− uτ (y) = G(y) a.e. in R
d a.s. and

for any ϕ ∈ C∞
c (Rd),

〈
ϕ, f(·, ·, u,Du,D2u, ψ,Dψ)

〉
∈ L2(0, τ ;R) and

〈ϕ, ut〉 = 〈ϕ, uτ 〉+

∫ τ

t

〈ϕ, f(s, y, u,Du,D2u, ψ,Dψ)〉 ds−

∫ τ

t

〈ϕ, ψsdWs〉 a.s., ∀ 0 ≤ t ≤ τ < T.

1This means that for any f ∈ (Hk,p)∗, the dual space of Hk,p, the mapping t 7→ f(Xt) is a.s. continuous on [0, T ].
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We establish existence of a solution to BSPDE (1.7) under the following regularity conditions on the

random coefficients.

Assumption 2.1. (H.1) The functions b, σ, η, λ : Ω×[0, T ]×R
d −→ R

d×R
d×m×R+×R+ are P×B(Rd)-

measurable and essentially bounded by Λ > 0, γ : Ω×[0, T ]×R
d×Z −→ [0,+∞] is P×B(Rd)×Z -

measurable. Moreover, there exists a positive constant κ s.t. a.s.

ηs(y) ≥ κ, ∀ (y, s) ∈ R
d × [0, T ].

(H.2) The first-order derivatives of b, η, λ and the up to second-order derivatives of σ exist and are

bounded by some L > 0 uniformly for any (ω, t) ∈ Ω× [0, T ].

(H.3) There exists (T0, p0) ∈ [0, T )× (2,∞) s.t.

ess inf
(ω,t,y)∈Ω×[T0,T ]×Rd

ηt(y) ≥

(
1−

1

2p0

)
ess sup

(ω,t,y)∈Ω×[T0,T ]×Rd

ηt(y).

The first two conditions above are standard and adopted throughout. The third is particular to the

degenerate case. It guarantees sufficient integrability of the derivative of the value function and is satisfied

if, for instance, η ∈ C([t0, T ];L
∞(Ω× R

d)) with ηT (·) being a positive constant for some t0 ∈ [0, T ).

In view of (H.1) the random variable F (·, ·, 0) belongs to L∞
F
(0, T ;L∞(Rd)) where F is defined in (1.8).

Since it is more convenient to work with a BSPDE whose driver belongs to Lp [4, 5, 6] we use the weight

function

θ(y) = (1 + |y|2)−q for y ∈ R
d, with q > d (2.1)

so that θF (·, ·, 0) ∈ Lp(0, T ;H1,p) for any p ∈ [1,∞). As in [8] a direct computation shows that (u, ψ)

solves (1.7) if and only if (v, ζ),(θu, θψ) solves the BSPDE (A.6) given in the appendix. We are now

ready to state our main results. The following is a summary of Theorems 3.1, 4.2 and 4.3.

Theorem 2.1. Under Conditions (H.1)–(H.3) the BSPDE (1.7) admits a unique nonnegative solution

(u, ψ), i.e., for any solution (ū, ψ̄) to BSPDE (1.7) satisfying

(θū, θψ̄ + σ∗D(θψ̄)) ∈ Sw
F ([0, t];H1,2)× L2

F (0, t;H1,2), ∀ t ∈ (0, T )

and ūt(y) ≥ 0 a.e. in Ω × [0, T )× R
d, we have a.s. for all t ∈ [0, T ), ūt ≥ ut a.e. in R

d. If we further

have p0 > 2d+ 2 and θū ∈ Cw
F
([0, t];H1,p) for some p ∈ (2d+ 2, p0), then a.s. for all t ∈ [0, T ), ūt = ut

a.e. in R
d. For this solution, given any p ∈ (2, p0) there exists α ∈ (1, 2), s.t. {(T − t)α(θut, θψt +

σ∗D(θut))(y); (t, y) ∈ [0, T ]×R
d} belongs to

(
Sw

F
([0, T ];H1,2) ∩ Cw

F
([0, T ];H1,p)

)
×L2

F
(0, T ;H1,2), and

there exist two constants c0 > 0 and c1 > 0 s.t. a.s.

c0
T − t

≤ ut ≤
c1

T − t
a.e. inRd, ∀ t ∈ [0, T ).

Moreover, if the constant p0 introduced in (H.3) satisfies p0 > 2d+ 2, then:

V (t, y, x),ut(y)x
2, (t, x, y) ∈ [0, T ]× R× R

d,

coincides with the value function in (1.4), and the optimal (feedback) control is given by

(ξ∗t , ρ
∗
t (z)) =

(
ut(yt)xt
ηt(yt)

,
ut(yt)xt−

γt(z, yt) + ut(yt)

)
. (2.2)

Remark 2.1. Our main result holds for other nonlinear dependencies of F on ut under more or less

standard assumptions. However, as indicated in [6] (see also Theorem A.1), due to the lack of the regular

estimate on the second unknown variable ψ, the nonlinear term F needs to be independent of ψ, though

a linear dependence on ψ + σ∗Du is allowed.
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Remark 2.2. If all the coefficients b, σ, λ, η, γ are deterministic, then the optimal control problem is

Markovian and the BSPDE (1.7) reduces to the following parabolic PDE:






−∂tut(y) = tr

(
1

2
σtσ

∗
t (y)D

2ut(y)

)
+ b∗t (y)Dut(y)−

|ut(y)|
2

ηt(y)
+ λt(y)

−

∫

Z

|ut(y)|
2

γ(t, y, z) + ut(y)
µ(dz), (t, y) ∈ [0, T ]× R

d;

uT (y) = +∞, y ∈ R
d,

(2.3)

where σtσ
∗
t could be degenerate. Under Conditions (H.1)–(H.3), this PDE holds in the distributional (or

weak) sense. As such, our results are new even in the Markovian case.

Remark 2.3. The main novelty of Theorem 2.1 is the gradient estimate for the solution of BSPDE (1.7).

Gradient estimates for solutions to degenerate BSPDEs or even deterministic PDEs generally depend on

both its gradient at terminal time and the gradients of the coefficients. For instance, let us consider a

trivial version of degenerate PDE (2.3)

−∂tvt(y) = λt(y), (t, y) ∈ [0, T ]× R
d; vT (y) = G(y), y ∈ R

d,

for some G ∈ H1,2(Rd). Then we have

Dvt(y) = DG(y) +

∫ T

t

Dλt(y) dt, (t, y) ∈ [0, T ]× R
d,

and thus for any (t, y) ∈ [0, T ]× R
d,

(T − t)αD(θvt)(y) = (T − t)αvt(y)Dθ(y) + (T − t)αθ(y)

(
DG(y) +

∫ T

t

Dλt(y) dt

)
.

However, in our case, the terminal value of the BSPDE is singular which does in no obvious way charac-

terize the gradient. For instance, for any given positive Schwartz function g and positive real numbers r

and q, the function ϕ defined by

ϕt(y) ,
r g ((T − t)qy)

(T − t)q
, (t, y) ∈ [0, T ]× R

d

shares the singular terminal condition ϕT (y) = +∞, y ∈ R
d, but its gradient DϕT (y) = rDg(0) changes

according to the specific choice of the pair (r, g). Hence, in this sense, our gradient estimate is nontrivial,

and seems to be new even for the deterministic case.

3 Existence of a nonnegative solution to BSPDE (1.7)

In this section we establish the following existence of solutions result for our BSPDE (1.7).

Theorem 3.1. Under Conditions (H.1)-(H.3), for any p ∈ [2, p0) BSPDE (1.7) has a solution (u, ψ)

s.t. for some α ∈ (1, 2), {(T − t)α(θut, θψt + σ∗D(θut))(y); (t, y) ∈ [0, T ]× R
d} belongs to

(
Sw

F ([0, T ];H1,2) ∩Cw
F ([0, T ];H1,p)

)
× L2

F (0, T ;H1,2),

and a.s.

c0
T − t

≤ ut(y) ≤
c1

T − t
a.e. in R

d, ∀t ∈ [0, T ), (3.1)

with two constants c0 > 0 and c1 > 0.

6



To prove the above theorem we shall identify a solution as an accumulation point of a convex combination

subsequence of the sequence of solutions to BSPDE (A.7). For p1 ∈ [2, p0) this BSPDE has a unique

solution (vN , ζN ), due to Proposition A.3. The sequence {vN} increases in N , due to Corollary A.4

and hence converges to some limit v. To see that v satisfies the growth condition (3.1) we replace the

coefficients (λ, γ, η) by their lower bound (0, 0, κ) and upper bound (Λ,+∞,Λ), respectively, deduce from

Proposition A.3 that the resulting BSPDEs have unique solutions given by

ûNt (y),
κµ(Z)θ(y)(

1 + κµ(Z)
N

)
eµ(Z)(T−t) − 1

and ũNt (y),
2Λθ(y)

1− N−Λ
N+Λ · e−2(T−t)

− Λθ(y),

and then apply the comparison principle to conclude that a.s.:

ûNt (y) ≤ vNt (y) ≤ ũNt (y) a.e. in R
d, ∀t ∈ [0, T ).

Since

ũNt ≤
2Λθ(y)

1− N−Λ
N+Λ · e−2(T−t)

=
2Λθ(y)e2(T−t)

e2(T−t) − N−Λ
N+Λ

≤
2Λθ(y)e2(T−t)

1 + 2(T − t)− N−Λ
N+Λ

≤
θ(y)e2T

1
N+Λ + T−t

Λ

we see that

κµ(Z)θ(y)(
1 + κµ(Z)

N

)
eµ(Z)(T−t) − 1

≤ vNt (y) ≤
θ(y)e2T

1
N+Λ + T−t

Λ

a.e. in R
d (3.2)

and hence that v satisfies the desired growth condition. The slightly sharper upper bound O
(

1
N−1+T−t

)

for vNt will be important for the proof of Lemma 3.3 below and hence for the gradient estimate.

Our next goal is to prove a uniform bound for the sequence {DvN} in H0,p. As a byproduct we obtain a

bound for the sequence {ζN + σ∗DvN} in L2(0, T ;H1,2). The bound given in Theorem A.1 (ii) depends

on the Lipschitz constant of the driver of the BSPDE. In our case, this means that it depends on the

function vN , due to the quadratic dependence of the driver on vN . The following corollary provides a

better estimate. The estimates in Theorem A.1 are obtained by applying Itô formulas directly (see [5, 6]);

hence we can derive the estimates as well from the monotonicity of the drift for BSPDE (A.1) instead of

the Lipschitz condition. The detailed proof is omitted; it is standard but cumbersome.

Corollary 3.2. Assume the same hypothesis of Theorem A.1 with

f(·, ·, 0) ∈ Lp
F
(0, T ;H1,p) ∩ L2

F (0, T ;H1,2) and G ∈ Lp(Ω,FT ;H
1,p) ∩ L2(Ω,FT ;H

1,2)

for some p ∈ [2,∞). Let (u, φ) be the solution of BSPDE (A.1) in Theorem A.1. If there exist constant

L1 and function g ∈ Lp
F
(0, T ;H0,p) ∩ L2

F
(0, T ;L2) s.t. a.e. in Ω× [0, T ]× R

d,

us(y)f(s, y, us(y)) +

d∑

i=1

∂yius(y)
(
∂yi + ∂yius(y)∂u

)
f(s, y, us(y))

≤ |gs(y)|
2 + L1

(
|us(y)|

2 +

d∑

i=1

|∂yius(y)|
2
)
, (3.3)

then we have

E sup
t∈[0,T ]

‖ut‖
p

H1,p ≤ C′
pE

[
‖G‖p

H1,p +

∫ T

0

‖gt‖
p

H0,pdt

]
,

and

E sup
t∈[0,T ]

‖ut‖
2
H1,2 + E

∫ T

0

‖φt + σ∗
tDut‖

2
H1,2 dt ≤ C′

2E

[
‖G‖2H1,2 +

∫ T

0

‖gt‖
2dt

]

with the constants C′
2 = C′

2(d,m,Λ, L, T, L1) and C
′
p = C′

p(d,m,Λ, L, T, L1, p) independent of the Lipchitz

constant L0.
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We proceed with the gradient estimate. Since we are mainly interested in the behavior of the gradient

near the terminal time, we put

κ1, ess inf
(ω,t,y)∈Ω×[T0,T ]×Rd

ηt(y)

and notice that (3.2) holds with κ replaced by κ1 on [T0, T ]. The following lemma is key to the gradient

estimate.

Lemma 3.3. Recall the constant p0 introduced in (H.3), let α0 , 1 − 1
2p0

, and choose α1, α2 ∈ (1,∞)

and p1 ∈ [2, p0) s.t.

2α0 = α1α2 and (2− α2)p1 < 1.

Let T1 ∈ [T0, T ) and N0 > 2Λ + κµ(Z) s.t.

(
1 +

κ1µ(Z)

N0

)
eµ(Z)(T−T1) < α1,

and for each N > N0, set

δN,

(
1 +

κ1µ(Z)

N

)
eµ(Z)(T−T1).

Then the sequence

(QN
t , ξ

N
t ),

(
κ1
N

+ δN (T − t)

)α2

(vNt , ζ
N
t ), t ∈ [0, T ],

satisfies

sup
N>N0

{
E
[

sup
t∈[T1,T ]

(
‖QN

t ‖2H1,2 + ‖QN
t ‖p1

H1,p1

) ]
+ ‖σ∗DQN + ξN‖2L2(T1,T ;H1,2)

}
<∞.

Proof. A direct computation shows that the sequence {(QN , ξN )} is a solution to the BSPDE:





−dQN
t (y) =

[
tr

(
1

2
σtσ

∗
tD

2QN
t (y) +DξNt σ

∗
t (y)

)
+ b̃∗tDQ

N
t (y) + β∗

t ξ
N
t (y) + ctQ

N
t (y)

+

(
κ1
N

+ δN (T − t)

)α2
(
θλt(y)−

∫

Z

θ−1|vNt (y)|2

γt(y, z) + θ−1|vNt (y)|
µ(dz)−

θ−1
∣∣vNt (y)

∣∣2

ηt(y)

)

+α2δ
N

(
κ1
N

+ δN (T − t)

)α2−1

vNt (y)

]
dt− ξNt (y) dWt, (t, y) ∈ [0, T ]× R

d;

QN
T (y) =κα1

2 N1−α2θ(y) for y ∈ R
d.

(3.4)

The assertion follows if we can show that this BSPDE satisfies the the conditions of Corollary 3.2 on

[T1, T ] with some constant L1 <∞ independent of N and a function gN ∈ Lp(T1, T ;H
0,p) which satisfies

sup
N>N0

‖gN‖Lp

F
(T1,T ;H0,p) <∞ for p ∈ {2, p1}.

To obtain the desired result it suffices to estimate ∂yiQN
t (y)∂yi(f2

N − f1
N )(s, y) where

f1
N (t, y),

(
κ1
N

+ δN (T − t)

)α2 θ−1
∣∣vNt (y)

∣∣2

ηt(y)
and f2

N(t, y),α2δ
N

(
κ1
N

+ δN (T − t)

)α2−1

vNt (y).

To this end, notice that δN < α1 and that ex ≤ 1 + xex for any x ≥ 0. Hence, for each N > N0, each

t ∈ [T1, T ) and almost every y ∈ R
d one has:

0 ≥ α2δ
N

(
κ1
N

+ δN (T − t)

)−1

−
2θ−1vN (y)

ηt(y)
, (3.5)
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because

α2δ
N

(
κ1
N

+ δN (T − t)

)−1

−
2θ−1vN (y)

ηt(y)

≤α1α2

(
κ1
N

+ δN (T − t)

)−1

−
2κ1µ(Z)/ηt(y)(

1 + κ1µ(Z)
N

)
eµ(Z)(T−t) − 1

≤α1α2

(
κ1
N

+ δN (T − t)

)−1

− 2α0µ(Z)

((
1 +

κ1µ(Z)

N

)
eµ(Z)(T−t) − 1

)−1

≤ 0. (3.6)

Thus, for any t ∈ [T1, T ], we have

∂yiQN
t (y)∂yi(f2

N − f1
N)(s, y)

= ∂yiQN
t (y)α2δ

N

(
κ1
N

+ δN (T − t)

)−1

∂yiQN
t (y)− ∂yiQN

t (y)
2θ−1vNt (y)∂yiQN

t

ηt(y)
+ ∂yiQN

t (y)f3
N (t, y)

=
∣∣∂yiQN

t (y)
∣∣2
(
α2δ

N

(
κ1
N

+ δN (T − t)

)−1

−
2θ−1vNt (y)

ηt(y)

)
+ ∂yiQN

t (y)f3
N (t, y)

≤
∣∣∂yiQN

t (y)
∣∣2 +

∣∣f3
N (t, y)

∣∣2 a.e. in R
d a.s.,

where

f3
N (t, y) ,

(
κ1
N

+ δN (T − t)

)α2 θ−1
∣∣vNt (y)

∣∣2

ηt(y)

(
∂yiηt(y)

ηt(y)
− ∂yiθ−1(y)θ(y)

)
.

In view of the upper bound in (3.2) there exists a constant C <∞ s.t.

θ−1|vNt (y)|2 ≤ C

(
1

1
N

+ T − t

)2

θ(y).

Since (2 − α2)p1 < 1, one therefore has for p ∈ {2, p1} that

sup
N>N0

‖f3
N‖Lp

F
(T1,T ;H0,p) <∞.

This proves the assertion.

Corollary 3.4. The previous lemma, along with an application of Theorem A.1 to the time interval

[0, T1], leads to the desired gradient estimate:

sup
N>N0

{
E
[

sup
t∈[0,T ]

(
‖QN

t ‖2H1,2 + ‖QN
t ‖p1

H1,p1

) ]
+ ‖σ∗DQN + ξN‖2L2(0,T ;H1,2)

}
<∞. (3.7)

We are now ready to prove existence of a solution to our BSPDE (1.7). Estimate (3.7) allows us to

extract a subsequence (QNk , ξNk) s.t. QNk converges to Q weakly in Lp(0, T ;H1,p) as well as weak-star

in L∞(0, T ;H1,p) for any p ∈ {2, p1}, and (ξNk , ξNk + σ∗DQNk) converges weakly to (ξ, ξ + σ∗DQ) in

L2(0, T ;L2) × L2(0, T ;H1,2). Since {vN} increases to v a.e. in R
d for all t ∈ [0, T ], passing to the limit

we get

Qt(y) = eα2µ(Z)(T−T1)(T − t)α2vt(y).

Mazur’s Lemma allows us to choose a sequence of convex combinations of (QNk , ξNk , ξNk + σ∗DQNk)

which converges strongly in corresponding spaces. Therefore, it is easy to check that (Q, ξ) solves:





−dQt(y) =

[
tr

(
1

2
σtσ

∗
tD

2Qt(y) +Dξtσ
∗
t (y)

)
+ b̃∗tDQt(y) + β∗

t ξt(y) + ctQt(y)

+eα2µ(Z)(T−T1)(T − t)α2

(
θλt(y)−

∫

Z

θ−1|vt(y)|
2

γt(y, z) + θ−1|vt(y)|
µ(dz)−

θ−1 |vt(y)|
2

ηt(y)

)

+ α2e
α2µ(Z)(T−T1)(T − t)α2−1vt(y)

]
dt− ξt(y) dWt, (t, y) ∈ [T1, T ]× R

d;

QT (y) = 0, y ∈ R
d.

(3.8)
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By Theorem A.1 and Proposition A.2, (Q, ξ) admits a version, still denoted by (Q, ξ), s.t.

(Q, ξ + σ∗DQ) ∈
(
Sw

F ([0, T ];H1,2) ∩ Cw
F ([0, T ];H1,p1)

)
× L2

F (0, T ;H1,2).

Recovering (v, ζ) from (Q, ξ) and setting (u, ψ), θ−1(v, ζ) we see that (u, ψ) solves BSPDE (1.7) and that

{(T−t)α2(θut, θψt+σ
∗D(θut))(y); (t, y) ∈ [0, T ]×R

d} belongs to
(
Sw

F
([0, T ];H1,2) ∩ Cw

F
([0, T ];H1,p1)

)
×

L2
F
(0, T ;H1,2). Moreover, relation (3.1) holds with c0 = κe−µ(Z)T and c1 = Λe2T . Since p1 ∈ [2, p0) is

arbitrary, this completes the proof of Theorem 3.1.

4 Verification Theorem and uniqueness of solution to BSPDE

(1.7)

In this section, we prove a verification theorem which not only solves our control problem with constraint

but also allows us to derive uniqueness of the solution to our BSPDE (1.7). As no generalized Itô-Kunita

formula is available for the random filed u satisfying BSPDE (1.7) in the distributional sense due to the

degeneracy, the proof is instead based on the link between FBSDEs and BSPDEs given in Theorem A.1.

This link will allow us to compute the dynamics of the process ut(yt)|xt|
2.

First, we recall a result from [8]. It states that the optimal control lies in the set of controls A for which

the corresponding state process is monotone.

Lemma 4.1. For each admissible control pair (ξ, ρ) ∈ L2
F̄
(0, T ) × L2

F̄
(0, T ;L2(Z)), there exists a cor-

responding admissible control pair (ξ̂, ρ̂) ∈ L2
F̄
(0, T )× L2

F̄
(0, T ;L2(Z)) whose cost is no more than that

of (ξ, ρ) and for which the corresponding state process x0,x;ξ̂,ρ̂ is a.s. monotone. Moreover, there exists a

constant C > 0 which is independent of the initial data (0, x), terminal time T and the control pair (ρ̂, ξ̂),

s.t.

E

[
sup

s∈[t,T ]

|x0,x;ξ̂,ρ̂s |2

∣∣∣∣∣ F̄t

]
= |x0,x;ξ̂,ρ̂t |2 ≤ C(T − t)E

[∫ T

t

|ξ̂s|
2 ds

∣∣∣∣∣ F̄t

]
for each t ∈ [0, T ]. (4.1)

The key to the verification theorem is existence of a solution (u, ψ) to BSPDE (1.7) such that u satisfies

a growth condition near the terminal time and that its gradient is sufficiently regular (both guaranteed

by Theorem 3.1) so that Theorem (A.1)(iii) can be applied and u can be represented as an FBSDE.

Theorem 4.2. Assume (H.1)–(H.2). If (u, ψ) is a solution to the BSPDE (1.7) s.t. θu ∈ Cw(0, t;H1,p)∩

Sw(0, t;H1,2), ∀ t ∈ (0, T ), for some p > 2d+ 2, and a.s.

c0
T − t

≤ ut(y) ≤
c1

T − t
, ∀ (t, y) ∈ [0, T )× R

d (4.2)

with two constants c0 > 0 and c1 > 0, then

V (t, y, x),ut(y)x
2, ∀ (t, x, y) ∈ [0, T ]× R× R

d, (4.3)

coincides with the value function (1.4). Moreover, the optimal feedback control is given by (2.2).

Proof. We first note that ut(y) is a.s. continuous with respect to (t, y) ∈ [0, T ) × R
d, due to Sobolev’s

embedding theorem. Second, BSPDE (1.7) is equivalent to BSPDE (A.6). Thus, if we take τ ∈ (0, T )

as the terminal time and θuτ (y) as the terminal condition, then this BSPDE satisfies the assumptions of

Theorem A.1 on [0, τ ], due to (4.2) (and the presence of the weight function θ). As a result, there exists

a unique random field ψ s.t. θψ + σ∗D(θu) ∈ L2
F
(0, τ ;H1,2) for any τ ∈ (0, T ) and s.t. (θu, θψ) is a
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solution to:





−dvt(y) =

[
tr

(
1

2
σtσ

∗
tD

2vt(y) +Dζtσ
∗
t (y)

)
+ b∗tDvt(y) + θ

∑

ijr

σjr
t ∂yjθ−1

(
ζrt + ∂yivσir

t

)
(y)

+ θ

(
1

2

∑

ijr

∂yiyjθ−1σir
t σ

jr
t + b∗tDθ

−1

)
vt(y) + θ(y)F (t, y, θ−1(y)vt(y))

]
dt

− ζt(y) dWt, (t, y) ∈ [0, τ)× R
d;

vτ (y) = θuτ (y), y ∈ R
d.

Noticing the assumption p > 2d+2, by Theorem A.1 (iii) we also have the following BSDE representation

of θu:

−d(θut)(y
0,y
t ) =

[
θ

(
1

2

∑

ijr

∂yiyjθ−1σir
t σ

jr
t + b∗tDθ

−1

)
(θut)(y

0,y
t ) + θ

∑

jr

∂yjθ−1σjr
t (y0,yt )

(
Z0,y
t

)r

+ θ(y0,yt )F (t, y0,yt , ut(y
0,y
t ))

]
dt− Z0,y

t dWt, t ∈ [0, T )

for some adapted process Z0,y lying in suitable space. Applying the standard Itô formula, we obtain

dθ−1(y0,yt ) =

[
1

2
tr
(
σtσ

∗
tD

2θ−1(y0,yt )
)
+ b∗tDθ

−1(y0,yt )

]
dt+ (Dθ−1)∗σt(y

0,y
t ) dWt,

and further,

−dut(y
0,y
t ) =F (t, y0,yt , ut(y

0,y
t )) dt−

[
θ−1(y0,yt )Z0,y

t + θut(Dθ
−1)∗σt(y

0,y
t )
]
dWt, t ∈ [0, T ).

Then the stochastic differential equation for ut(y
0,y
t )|x0,x;ξ,ρt |2 follows immediately from an application of

the standard Itô formula again. Using Lemma 4.1 one can now apply the exact same arguments as in

the proof of [8, Theorem 3.1] to deduce that:

ut(y
0,y
t )|x0,x;ξ,ρt |2 ≤ J(t, x0,x;ξ,ρt , y0,yt ; ξ, ρ) for any pair (ξ, ρ) ∈ A

and that the control (ξ∗, ρ∗) is admissible and satisfies the above inequality with equality.

We close our analysis with the following theorem. It states that the solution constructed in Section 3

is the minimal solution to our BSPDE (1.7). The proof mainly relies on the comparison principle in

Proposition A.2 for degenerate BSPDEs allowing for singular terminal values.

Theorem 4.3. Under Conditions (H.1)–(H.3), for the solution (u, ψ) to BSPDE (1.7) constructed in

the proof of Theorem 3.1, if (ũ, ψ̃) is another solution of (1.7) satisfying

(θũ, θψ̃ + σ∗D(θψ̃)) ∈ Sw
F ([0, t];H1,2)× L2

F (0, t;H1,2), ∀ t ∈ (0, T )

and if ũt(y) ≥ 0 a.e. in Ω× [0, T )× R
d, then a.s. for every t ∈ [0, T ), ũt ≥ ut a.e. in R

d. Moreover, if

we further have p0 > 2d+ 2 and θũ ∈ ∩t∈(0,T )C
w
F
([0, t];H1,p) for some p ∈ (2d+ 2, p0), then a.s. for all

t ∈ [0, T ), ũt = ut a.e. in R
d.

Proof. Let (vN , ζN ) be the unique solution to BSPDE (A.7) and (ṽ, ζ̃) , θ (ũ, ψ̃). By Proposition A.2,

ṽt ≥ vNt a.e. in R
d, ∀t ∈ [0, T ], (4.4)

which yields the minimality as vN increases to v as N → ∞. In view of Theorem 4.2, to establish

the uniqueness statement it is sufficient to verify that ũ satisfies the growth condition (4.2). The above
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minimality arguments have given the lower bound. To establish the upper bound in (4.2), we consider

the deterministic function:

ût ,Λ coth(T − t) =
2Λ

1− e−2(T−t)
− Λ ≤

Λe2T

T − t
.

Then, (û, 0) is a solution to (1.7) with the triple (λ, γ, η) being replaced by (Λ,+∞,Λ). Moreover, (û, 0)

remains a solution when shifted in time, i.e., for δ ∈ [0, T ) the pair (û ·+δ, 0) is the solution to (1.7)

associated with (Λ,+∞,Λ), but with a singularity at t = T − δ. Proposition A.2 yields that, a.s. for all

t ∈ [0, T − δ]

ũt ≤
Λe2T

T − δ − t
a.e. in R

d.

Letting δ → 0 we obtain the desired upper bound as well as the uniqueness.

A Selected results on semi-linear degenerate BSPDEs

This appendix recalls the selected results on degenerate semi-linear BSPDEs and their connections to

FBSDEs, establishes a comparison principle for degenerate BSPDEs allowing for singular terminal values

and discusses a truncated version of our singular BSPDE.

A.1 On a class of degenerate BSPDEs and the link to FBSDEs

The following link between FBSDEs and BSPDEs, due to [6] is key to our analysis.

Theorem A.1. Assume that the coefficients b and σ satisfy (H.1) and (H.2) and that ̺ : Ω×[0, T ]×R
d →

R
m satisfies the same conditions as b. Let f : Ω× [0, T ]× R → R satisfy:

• the partial derivatives ∂yf and ∂vf exist for any quadruple (ω, t, y, v)

• f(·, ·, 0) ∈ L2
F
(0, T ;H1,2)

• there exists a constant L0 > 0 s.t. for each (ω, t, y),

|f(t, y, v1)− f(t, y, v2)|+ |∂yf(t, y, v1)− ∂yf(t, y, v2)| ≤ L0|v1 − v2|, ∀ v1, v2 ∈ R.

Then the following holds:

i) For any G ∈ L2(Ω,FT ;H
1,2), the BSPDE





−dut(y) =

[
tr

(
1

2
σtσ

∗
tD

2ut +Dψtσ
∗
t

)
(y) + b∗tDut(y) + ̺∗t (ψt + σ∗

tDut) (y) + f(t, y, ut)

]
dt

− ψt(y) dWt, (t, y) ∈ [0, T ]× R
d;

uT (y) =G(y), y ∈ R
d

(A.1)

admits a unique solution (u, ψ) s.t.

u ∈ Sw
F ([0, T ];H1,2) and ψ + σ∗Du ∈ L2

F (0, T ;H1,2).

Moreover, there exists a constant C2 = C2(d,m,Λ, L, T, L0) s.t.

E sup
t∈[0,T ]

‖ut‖
2
H1,2 + E

∫ T

0

‖ψt + σ∗
tDut‖

2
H1,2 dt ≤ C2 E

[
‖G‖2H1,2 +

∫ T

0

‖f(t, ·, 0)‖2H1,2 dt

]
. (A.2)
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ii) If we further assume that f(·, ·, 0) ∈ Lp
F
(0, T ;H1,p) and G ∈ Lp(Ω,FT ;H

1,p) for some p ∈ [2,∞),

then u ∈ Cw
F
([0, T ];H1,p) and there exists a constant Cp = Cp(d,m,Λ, L, T, L0, p) s.t.

E sup
t∈[0,T ]

‖ut‖
p

H1,p ≤ CpE

[
‖G‖p

H1,p +

∫ T

0

‖f(t, ·, 0)‖p
H1,pdt

]
. (A.3)

iii) If p > 2d+ 2, then u(t, y) is a.s. continuous with respect to (t, y) and it holds a.s. that

u(t, ys,yt ) = Y s,y
t , ∀ (t, y) ∈ [s, T ]× R

d, (A.4)

where (ys,y· , Y s,y
· , Zs,y

· ) is the solution of FBSDE:

{
dys,yt =bt(y

s,y
t ) dt+ σt(y

s,y
t ) dWt, ys,xs = y; 0 ≤ s ≤ t ≤ T ;

−dY s,y
t = [̺∗t (y

s,y
t )Zs,y

t + f(t, ys,yt , Y s,y
t )] dt− Zs,y

t dWt, Y s,y
T = G(ys,yT ).

Remark A.1. It is worth noting that assertion (i) of the above theorem extends [6, Theorem 3.1] by

replacing Cw
F
([0, T ];H1,2) therein by Sw

F
([0, T ];H1,2) = Cw

F
([0, T ];H1,2) ∩ L2(Ω,F ;C([0, T ];L2)). This

follows by applying [17, Theorem 3.2] with the Gelfand triple being realized as (H−1,2, L2, H1,2) therein2.

In particular, we obtain strong continuity of u in L2. This allows us to apply the existing Itô formula for

BSPDEs (see for instance [18, Corollary 3.11]).

A.2 A comparison principle for degenerate BSPDEs allowing for singular

terminal values

The following comparison principle follows from the Itô formula for the square norm of the positive part

of solution to a BSPDE (see [8, Lemma A.3], [17, Theorem 3.2], [18, Corollary 3.11]). Since it allows the

associated BSPDEs to have singular terminal values, we provide a short proof.

Proposition A.2. Assume that the coefficients b, σ and ̺ satisfy the conditions of Theorem A.1. Let

(u, ψ) and (u′, ψ′) be solutions to BSPDE (A.1) associated with (G, f) and (G′, f ′), respectively, such

that (u, ψ+σ∗Du, f(u)) ∈ L2
F
(0, T ;H1,2)×L2

F
(0, T ;H1,2)×L1

F
(0, T ;L1), and (u′, ψ′+σ∗Du′, f ′(u′)) ∈

L2
F
(0, t;H1,2)×L2

F
(0, t;H1,2)×L1

F
(0, t;L1) for any t ∈ (0, T ). If there exist L̃ > 0 and g ∈ L2(0, T ;L2)

such that a.e. in Ω× [0, T ], u′(ω, t) ≥ g(ω, t) a.e. in R
d,

〈
f(ω, t, ut)− f ′(ω, t, u′t), (ut − u′t)

+
〉
≤ L̃

∥∥(ut − u′t)
+
∥∥2 and G(ω, y) ≤ G′(ω, y),

then we have a.s.

u ≤ u′ a.e. in R
d, ∀t ∈ [0, T ]. (A.5)

Proof. We put (ū, ψ̄) = (u − u′, ψ − ψ′). Since b, σ and ̺ as well as their first-order derivatives are

bounded and ū ∈ H1,2, the integration by parts yields a constant L2 <∞ s.t.

|〈ū+t , (b
∗
t + ̺∗σ∗)Dūt〉| ≤ L2〈ū

+
t , ū

+
t 〉, ∀t ∈ [0, T ].

Let us denote the entries of the diffusion matrix σs by σjr
s and the entries of the vector ψ̄s by ψ̄r

s . Then

integration by parts gives:

σjr
s ∂yj

ψ̄r
s = ∂yj

(
σjr
s ψ̄

r
s

)
− ∂yj

σjr
s ψ̄

r
s and σir

s σ
jr
s ∂yiyj

ūs = ∂yi

(
σir
s σ

jr
s ∂yj

ūs
)
− ∂yi

(
σir
s σ

jr
s

)
∂yj

ūs.

Hence, Itô’s formula yields a constant L3 <∞ s.t. (applying the summation convention):

E‖ū+t ‖
2 − E‖ū+τ ‖

2

2 H−1,2 is the dual space of H1,2.
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≤E

[ ∫ τ

t

2

〈
ū+s , −

1

2
∂yi

(
σir
s σ

jr
s

)
∂yj

ū+s − ∂yj
σjr
s ψ̄

r
s + ̺rsψ̄

r
s + L3ū

+
s

〉
ds

+

∫ τ

t

〈
∂yj

ū+s , σ
ir
s σ

jr
s ∂yi

ū+s − 2σjr
s

(
ψ̄r
s + σir

s ∂yi
ū+s
)〉
ds−

∫ τ

t

‖ψ̄s1{u>u′}‖
2 ds

]

=E

[ ∫ τ

t

2
〈
ū+s ,

1

4
∂yiyj

(
σir
s σ

jr
s

)
ū+s +

(
̺rs − ∂yj

σjr
s

) (
ψ̄r
s + σir

s ∂yi
ū+s
)
+

1

2
∂yi

(
̺rsσ

ir
s − σir

s ∂yj
σjr
s

)
ū+s

+ L3ū
+
s

〉
ds−

∫ τ

t

∥∥ψ̄s1{u>u′} + σ∗
sDū

+
s

∥∥2 ds
]

≤E

[
C

∫ τ

t

〈
ū+s , ū

+
s +

∣∣ψ̄s1{u>u′} + σ∗
sDū

+
s

∣∣〉 ds−
∫ τ

t

∥∥ψ̄s1{u>u′} + σ∗
sDū

+
s

∥∥2 ds
]

(by (H.1), (H.2))

≤E

[
C

∫ τ

t

∥∥ū+s
∥∥2 ds− 1

2

∫ τ

t

∥∥ψ̄s1{u>u′} + σ∗
sDū

+
s

∥∥2 ds
]
, 0 ≤ t < τ < T.

Thus, an application of Gronwall’s inequality leads to:

E‖ū+t ‖
2 ≤ CE‖ū+τ ‖

2,

with the constant C independent of t and τ . Since ū ≤ |u|+ |g|, an application of Fatou’s lemma yields

(A.5) because

E

∫ T

0

∥∥ū+t
∥∥2 dt ≤ CT lim sup

τ↑T
E
∥∥ū+τ

∥∥2 ≤ CTE

∫

Rd

[
lim sup

τ↑T

∣∣ū+τ (y)
∣∣2
]
dy = 0.

Remark A.2. In Proposition A.2, we see that the random field u′t is allowed to take an infinite and thus

singular terminal value. This property is essentially used in the proof of Theorem 4.3 for the uniqueness

of solution to BSPDE (1.7).

A.3 Truncated BSPDEs

A direct computation shows that (u, ψ) solves (1.7) if and only if (v, ζ),(θu, θψ) solves the BSPDE





−dvt(y) =

[
tr

(
1

2
σtσ

∗
tD

2vt(y) +Dζtσ
∗
t (y)

)
+ b̃∗tDvt(y) + β∗

t ζt(y) + ctvt(y)

+ θ(y)F (t, y, θ−1(y)vt(y))

]
dt− ζt(y) dWt, (t, y) ∈ [0, T )× R

d;

vT (y) = +∞, y ∈ R
d

(A.6)

with

b̃it(y), bit(y) + 2q(1 + |y|2)−1
d∑

j=1

(σtσ
∗
t )

ij
(y)yj, i = 1, . . . , d,

βr
t (y), 2q(1 + |y|2)−1

d∑

j=1

σjr
t (y)yj , r = 1, . . . ,m,

ct(y), q(1 + |y|2)−1

(
tr(σtσ

∗
t (y)) +

d∑

i=1

2yibit(y) + 2(q − 1)(1 + |y|2)−1
d∑

i,j=1

(σtσ
∗
t )

ij
(y)yiyj

)
.

This BSPDE (A.6) has a unique solution if the terminal value is finite. More precisely, for N ∈ N
+ we

put

F̂ (t, y, φ(y)),F (t, y, |φ(y)|), (t, y, φ) ∈ R+ × R
d × L0(Rd)
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and consider then the family of BSPDEs:





−dvNt (y) =

[
tr

(
1

2
σtσ

∗
tD

2vNt (y) +DζNt σ
∗
t (y)

)
+ b̃∗tDv

N
t (y) + β∗

t ζ
N
t (y) + ctv

N
t (y)

+ θ(y)F̂ (t, y, θ−1(y)vNt (y))

]
dt− ζNt (y) dWt, (t, y) ∈ [0, T ]× R

d;

vNT (y) =Nθ(y), y ∈ R
d.

(A.7)

Proposition A.3. Assume (H.1) and (H.2). For each N ∈ N
+ and p ∈ [2,∞), BSPDE (A.7) has a

unique solution (vN , ζN ) with

(vN , ζN + σ∗DvN ) ∈
(
Sw

F ([0, T ];H1,2) ∩ Cw
F ([0, T ];H1,p)

)
× L2

F (0, T ;H1,2),

s.t. θ−1vN ∈ L∞
F
(0, T ;L∞(Rd)) and for arbitrary ϕ ∈ C∞

c (Rd):

〈ϕ, vNt 〉 = 〈ϕ, Nθ〉+

∫ T

t

〈
ϕ, tr

(
1

2
σsσ

∗
sD

2vNs +DζNs σ
∗
s

)
+ b̃∗sDv

N
s + csv

N
s + β∗

s ζ
N
s + θF̂ (s, θ−1vNs )

〉
ds

−

∫ T

t

〈
ϕ, ζNs

〉
dWs a.s., ∀ 0 ≤ t ≤ T.

Proof. To prove existence of a solution, one truncates the quadratic term in F̂ at some level M using a

smooth truncation function as in the proof of Proposition 4.1 in [8]. For each M ∈ N0, we know from

Theorem A.1 that the resulting BSPDE has a unique solution (vN,M , ζN,M ) with

(vN,M , ζN,M + σ∗DvN,M ) ∈
(
Sw

F ([0, T ];H1,2) ∩ Cw
F ([0, T ];H1,p)

)
× L2

F (0, T ;H1,2).

Changing the coefficients (λ, γ,M) in the above BSPDE to (Λ,+∞, 0) we get a new equation. For this

equation, one readily checks that

(v̂t(y), 0) , (θ(y) (N + Λ(T − t)) , 0)

is a solution, and the comparison principle stated in Proposition A.2 yields:

0 ≤ vN,M
t ≤ v̂t a.e. in R

d, ∀ t ∈ [0, T ], a.s.

ChoosingM ∈ N
+ large enough, we see that (vN,M , ζN,M ) is a solution to (A.7). Uniqueness of solutions

follows from a similar arguments.

Corollary A.4. Assume that the coefficients of the BSPDE (A.7) satisfy Conditions (H.1)-(H.2) and

denote the solution by (vN , ζN ). Let (λ̃, γ̃, η̃) be another set of coefficients which satisfies the same

conditions as (λ, γ, η). Let G ∈ L2(Ω,FT ;H
1,2) and

(ṽ, ζ̃) ∈ Sw
F ([0, T ];H1,2)× L2

F (0, T ;L2)

with θ−1ṽ ∈ L∞
F
(0, T ;L∞(Rd)) being a solution to the BSPDE:





−dṽt(y) =

[
tr
(1
2
σtσ

∗
tD

2ṽt(y) +Dζ̃tσ
∗
t (y)

)
+ b̃∗tDṽt(y) + β∗

t ζ̃t(y) + ctṽt(y) + θλ̃t(y)

−

∫

Z

θ−1(y)|ṽt(y)|
2

γ̃t(y, z) + θ−1|ṽt(y)|
µ(dz)−

θ−1(y) |ṽt(y)|
2

η̃t(y)

]
dt− ζ̃t(y) dWt;

ṽT (y) =G(y), y ∈ R
d.

(A.8)

If G ≥ Nθ, λ̃ ≥ λ, γ̃ ≥ γ and η̃ ≥ η, then a.s.

ṽt(y) ≥ vNt (y) a.e. in R
d, ∀t ∈ [0, T ].

Moreover, the inequality also holds with all “≥” replaced by “≤” in above statement.
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