
GENERAL SMILE ASYMPTOTICS WITH BOUNDED MATURITY
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Abstract. We provide explicit conditions on the distribution of risk-neutral log-returns
which yield sharp asymptotic estimates on the implied volatility smile. We allow for a
variety of asymptotic regimes, including both small maturity (with arbitrary strike) and
extreme strike (with arbitrary bounded maturity), extending previous work of Benaim
and Friz [BF09]. We present applications to popular models, including Carr-Wu finite
moment logstable model, Merton’s jump diffusion model and Heston’s model.

1. Introduction

The price of a European option is typically expressed in terms of the Black&Scholes
implied volatility σimp(κ, t) (where κ denotes the log-strike and t the maturity), cf. [G11].
Since exact formulas for a given model are typically out of reach, an active line or research
is devoted to finding asymptotic expansions for σimp(κ, t), which can be useful in many
respects, e.g. for a fast calibration of some parameters of the model. Explicit asymptotic
formulas for σimp(κ, t) also allow to understand how the parameters affect key features of
the volatility surface, such as its slope, and what are the possible shapes that can actually
be obtained for a given model. Let us mention the celebrated Lee moment’s formula [L04]
and more recent results [BF08, BF09, T09, G10, FF12, MT12, GL14, FJ09, RR09, GMZ14].

A key problem is to link the implied volatility explicitly to the distribution of the risk-
neutral log-return Xt, because the latter can be computed or estimated for many models.
The results of Benaim and Friz [BF09] are particularly appealing, because they connect
directly the asymptotic behavior of σimp(κ, t) to the tail probabilities

F t(κ) := P(Xt > κ) , Ft(−κ) := P(Xt ≤ −κ) . (1.1)

Their results, which are limited to the special regime of extreme strike κ→ ±∞ with fixed
maturity t > 0, are based on the key notion of regular variation, which is appropriate when
one considers a single random variable Xt (since t is fixed). This leaves out many interesting
regimes, notably the much studied case of small maturity t→ 0 with fixed strike κ.

In this paper we provide a substantial extension of [BF09]: we formulate a suitable gen-
eralization of the regular variation assumption on F t(κ), Ft(κ) which, coupled to suitable
moment conditions, yields the asymptotic behavior of σimp(κ, t) in essentially any regime of
small maturity and/or extreme strike (with bounded maturity). We thus provide a unified
approach, which includes as special cases both the regime of extreme strike κ→ ±∞ with
fixed maturity t > 0, and that of small maturity t→ 0 with fixed strike κ. Mixed regimes,
where κ and t vary simultaneously, are also allowed. This flexibility yields asymptotic for-
mulas for the volatility surface σimp(κ, t) in open regions of the plane.
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In Section 3 we illustrate our results through applications to popular models, such as
Carr-Wu finite moment logstable model and Merton’s jump diffusion model. We also discuss
Heston’s model, cf. §3.3. In a separate paper [CC15] we consider a stochastic volatility model
which exhibits multiscaling of moments, introduced in [ACDP12].

The key point in our analysis is to connect explicitly the asymptotic behavior of the
tail probabilities F t(κ), Ft(κ) to call and put option prices c(κ, t), p(κ, t) (cf. Theorems 2.3,
2.4 and 2.7). In fact, once the asymptotics of c(κ, t), p(κ, t) are known, the behavior of the
implied volatility σimp(κ, t) can be deduced in a model independent way, as recently shown
Gao and Lee [GL14]. We summarize their results in §2.4 (see Theorem 2.9), where we also
give an extension to a special regime, that was left out from their analysis (cf. also [MT12]).

The paper is structured as follows.

• In Section 2 we set some notation and we state our main results.

• In Section 3 we apply our results to some popular models.

• In Section 4 we prove Theorem 2.9, linking option price and implied volatility.

• In Section 5 we prove our main results (Theorems 2.3, 2.4 and 2.7).

• Finally, a few technical points have been deferred to the Appendix A.

2. Main results

2.1. The setting. We consider a generic stochastic process (Xt)t≥0 representing the log-
price of an asset, normalized by X0 := 0. We work under the risk-neutral measure, that
is (assuming zero interest rate) the price process (St := eXt)t≥0 is a martingale. European
call and put options, with maturity t > 0 and a log-strike κ ∈ R, are priced respectively

c(κ, t) = E[(eXt − eκ)+] , p(κ, t) = E[(eκ − eXt)+] , (2.1)

and are linked by the call-put parity relation:

c(κ, t)− p(κ, t) = 1− eκ . (2.2)

As in [GL14], in our results we take limits along an arbitrary family (or “path”) of values of
(κ, t). This includes both sequences ((κn, tn))n∈N and curves ((κs, ts))s∈[0,∞), hence we omit
subscripts. Without loss of generality, we assume that all the κ’s have the same sign (just
consider separately the subfamilies with positive and negative κ’s). To simplify notation,
we only consider positive families κ ≥ 0 and give results for both κ and −κ.

Our main interest is for families of values of (κ, t) such that

either κ→∞ with bounded t , or t→ 0 with arbitrary κ ≥ 0 . (2.3)

Whenever this holds, one has (see §A.1)

c(κ, t)→ 0 , p(−κ, t)→ 0 . (2.4)

We stress that (2.3) gathers many interesting regimes, namely:

(a) κ→∞ and t→ t̄ ∈ (0,∞) (in particular, the case of fixed t = t̄ > 0);

(b) κ→∞ and t→ 0;

(c) t→ 0 and κ→ κ̄ ∈ (0,∞) (in particular, the case of fixed κ = κ̄ > 0);

(d) t→ 0 and κ→ 0.

Remarkably, while regime (d) needs to be handled separately, regimes (a)-(b)-(c) will be
analyzed at once, as special instances of the case “κ is bounded away from zero”.
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Remark 2.1. We stress the requirement of bounded maturity t in (2.3). Some of our
arguments can be adapted to deal with cases when t → ∞, but additional work is needed
(for instance, we assume the boundedness of some exponential moments E[e(1+η)Xt ], cf.
(2.9)-(2.10) below, which is satisfied by most models if t is bounded, but not if t→∞). We
refer to [T09, JKM13] for results in the regime t→∞.

Given a model (Xt)t∈[0,∞), the implied volatility σimp(κ, t) is defined as the value of
the volatility parameter σ ∈ [0,∞) that plugged into the Black&Scholes formula yields
the given call and put prices c(κ, t) and p(κ, t) in (2.1) (see §4.2-§4.3 below). To avoid
trivialities, we focus on families of (κ, t) such that c(κ, t) > 0 and p(−κ, t) > 0 (in fact, note
that σimp(κ, t) = 0 if c(κ, t) = 0 and, likewise, σimp(−κ, t) = 0 if p(−κ, t) = 0).

Notation. Throughout the paper, we write f(κ, t) ∼ g(κ, t) to mean f(κ, t)/g(κ, t)→ 1. Let
us recall a useful standard device (subsequence argument): to prove an asymptotic relation,
such as e.g. f(κ, t) ∼ g(κ, t), it suffices to show that from every subsequence one can extract
a further sub-subsequence along which the given relation holds. As a consequence, in the
proofs we may always assume that all quantities of interest have a (possibly infinite) limit,
e.g. κ→ κ̄ ∈ [0,∞] and t→ t̄ ∈ [0,∞), because this is true along a suitable subsequence.

2.2. Main results: atypical deviations. We first focus on families of (κ, t) such that

F t(κ)→ 0 , resp. Ft(−κ)→ 0 , (2.5)

a regime that we call atypical deviations. This is the most interesting case, much studied
in the literature, since it includes regimes (a), (b) and (c) described on page 2, and also
regime (d) provided κ→ 0 sufficiently slow.

When κ→∞ with fixed t > 0, Benaim and Friz [BF09] require the regular variation of
the tail probabilities, i.e. there exist α > 0 and a slowly varying function† Lt(·) such that

logF t(κ) ∼ −Lt(κ)κα , resp. logFt(−κ) ∼ −Lt(κ)κα . (2.6)

It is not obvious how to generalize (2.6) when t is allowed to vary, i.e. which conditions to
impose on Lt(κ). However, one can reformulate the first relation in (2.6) simply requiring the
existence of limκ→∞ logF t(%κ)/ logF t(κ) for any fixed % > 0, by [BGT89, Theorem 1.4.1],
and analogously for the second relation in (2.6). This reformulation (in which Lt(κ) is not
even mentioned!) turns out to be the right condition to impose in the general context that
we consider, when t is allowed to vary. We are thus led to the following:

Hypothesis 2.2 (Regular decay of tail probability). The family of values of (κ, t) with
κ > 0, t > 0 satisfies (2.5), and for every % ∈ [1,∞) the following limit exists in [0,+∞]:

I+(%) := lim
logF t(%κ)

logF t(κ)
, resp. I−(%) := lim

logFt(−%κ)

logFt(−κ)
, (2.7)

where limits are taken along the given family of values of (κ, t). Moreover

lim
%↓1

I+(%) = 1 , resp. lim
%↓1

I−(%) = 1 . (2.8)

Depending on the regime of κ, we will also need one of the following moment conditions.

• Given η ∈ (0,∞), the first moment condition is

lim sup E[e(1+η)Xt ] <∞ , (2.9)

†A positive function L(·) is slowly varying if limx→∞ L(%x)/L(x) = 1 for all % > 0.
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along the given family of values of (κ, t). When t ≤ T , it is enough to require that

E[e(1+η)XT ] <∞ , (2.10)

because (e(1+η)Xt)t≥0 is a submartingale and hence E[e(1+η)Xt ] ≤ E[e(1+η)XT ].

• Given η ∈ (0,∞), the second moment condition is

lim sup E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
<∞ , (2.11)

along the given family of values of (κ, t). Note that for η = 1 this simplifies to

∃C ∈ (0,∞) : E[e2Xt ] ≤ 1 + Cκ2 . (2.12)

We are ready to state our main results, which express the asymptotic behavior of option
prices and implied volatility explicitly in terms of the tail probabilities. Due to different
assumptions, we first consider right-tail asymptotics.

Theorem 2.3 (Right-tail atypical deviations). Consider a family of values of (κ, t) with
κ > 0, t > 0 such that Hypothesis 2.2 is satisfied by the right tail probability F t(κ).

(i) [κ bounded away from zero, t bounded away from infinity (lim inf κ > 0, lim sup t <∞)]
Let the moment condition (2.9) hold for every η > 0, or alternatively let it hold only
for some η > 0 but in addition assume that

I+(%) ≥ % , ∀% ≥ 1 . (2.13)

Then

log c(κ, t) ∼ logF t(κ) + κ , (2.14)

σimp(κ, t) ∼

√− logF t(κ)

κ
−

√
− logF t(κ)

κ
− 1

√2κ

t
. (2.15)

Special case: if − logF t(κ)/κ→∞, assumption (2.13) can be relaxed to

lim
%→∞

I+(%) =∞ , (2.16)

and relations (2.14)-(2.15) simplify to

log c(κ, t) ∼ logF t(κ) , (2.17)

σimp(κ, t) ∼ κ√
2t (− logF t(κ))

. (2.18)

(ii) [κ and t vanish (κ→ 0, t→ 0)] Let the moment condition (2.11) hold for every η > 0,
or alternatively let it hold only for some η > 0 but in addition assume (2.16). Then

log
(
c(κ, t)/κ

)
∼ logF t(κ) , (2.19)

σimp(κ, t) ∼ κ√
2t (− logF t(κ))

. (2.20)

Next we turn to left-tail asymptotics. The assumptions in this case turn out to be sensibly
weaker than those for right-tail. For instance, the left-tail condition E[e−ηXT ] <∞ required
in [BF09, Theorem 1.2] is not needed, which allows to treat the case of a polynomially
decaying left tail, like in the Carr-Wu model described in Section 3.
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Theorem 2.4 (Left-tail atypical deviations). Consider a family of values of (κ, t) with
κ > 0, t > 0 such that Hypothesis 2.2 is satisfied by the left tail probability Ft(−κ).

• [κ bounded away from zero, t bounded away from infinity (lim inf κ > 0, lim sup t <∞)]
With no moment condition and no extra assumption on I−(·), one has

log p(−κ, t) ∼ logFt(−κ)− κ , (2.21)

σimp(−κ, t) ∼

(√
− logFt(−κ)

κ
+ 1−

√
− logFt(−κ)

κ

)√
2κ

t
. (2.22)

Special case: if − logFt(−κ)/κ→∞, relations (2.21)-(2.22) simplify to

log p(−κ, t) ∼ logFt(−κ) , (2.23)

σimp(−κ, t) ∼ κ√
2t (− logFt(−κ))

. (2.24)

• [κ and t vanish (κ→ 0, t→ 0)] Let the moment condition (2.11) hold for every η > 0,
or alternatively let it hold only for some η > 0 but in addition assume that

lim
%↑∞

I−(%) =∞ . (2.25)

Then

log
(
p(−κ, t)/κ

)
∼ logFt(−κ) , (2.26)

σimp(−κ, t) ∼ κ√
2t (− logFt(−κ))

. (2.27)

We prove Theorems 2.3 and 2.4 in §5.1 below. The key step is to link the option prices
c(κ, t), p(κ, t) to the tail probabilities F t(κ), Ft(−κ), exploiting Hypothesis 2.2. Once this
is done, the asymptotic behavior of the implied volatility σimp(κ, t) can be deduced using
the model independent results of [GL14], that we summarize in §2.4.

Remark 2.5. The “special case” conditions

− logF t(κ)

κ
→∞ , resp. − logFt(−κ)

κ
→∞ , (2.28)

are automatically fulfilled in the small maturity regime t→ 0 with fixed strike κ = κ̄ > 0.
In this case, one can use the simplified formulas (2.17)-(2.18) and (2.23)-(2.24).

2.3. Main results: typical deviations. Next we focus on the regime when t → 0 and
κ→ 0 sufficiently fast, so that the tail probability F t(κ), resp. Ft(−κ) has a strictly positive
limit and condition (2.5) is violated. We call this regime typical deviations. This includes the
basic regime of fixed κ = 0 and t ↓ 0. Mixed regimes, when κ→ 0 and t→ 0 simultaneously,
are also interesting, e.g. to interpolate between the at-the-money (κ = 0) and out-of-the-
money (κ 6= 0) cases, which can be strikingly different as t→ 0 (see [MT12]).

We make the following natural assumption.

Hypothesis 2.6 (Small time scaling). There is a positive function (γt)t>0 with limt↓0 γt = 0
such that Xt/γt converges in law as t ↓ 0 to some random variable Y :

Xt

γt

d−−→
t↓0

Y . (2.29)
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We refer to Remark 2.8 below for concrete ways to check Hypothesis 2.6. Let us stress
that (2.29) is a condition on the tail probabilities, since it can be reformulated as

F t(aγt)→ P(Y > a) and Ft(−aγt)→ P(Y ≤ −a) , (2.30)

for all a ≥ 0 with P(|Y | = a) = 0. If the support of the law of Y is unbounded from above
and below (as it is usually the case), the limits in (2.30) are strictly positive for every a ≥ 0.

The appropriate moment condition in this regime turns out to be (2.11) with κ = γt, i.e.

∃η > 0 : lim sup
t→0

E

[∣∣∣∣eXt − 1

γt

∣∣∣∣1+η]
<∞ . (2.31)

Lastly, we introduce some notation. Denote by φ(·) and Φ(·) respectively the density and
distribution function of a standard Gaussian (see (4.1) below), and define the function

D(z) :=
φ(z)

z
− Φ(−z), ∀z > 0 . (2.32)

As we show in §4.1 below, D is a smooth and strictly decreasing bijection from (0,∞) to
(0,∞). Its inverse D−1 : (0,∞)→ (0,∞) is also smooth, strictly decreasing and satisfies

D−1(y) ∼
√

2 (− log y) as y ↓ 0 , D−1(y) ∼ 1√
2π

1

y
as y ↑ ∞ . (2.33)

We can finally state the following result, linking option prices and implied volatility to
tail probabilities in the regime of typical deviations.

Theorem 2.7 (Typical deviations). Assume that Hypothesis 2.6 is satisfied, and moreover
the moment condition (2.31) holds. Then the random variable in (2.29) satisfies E[Y ] = 0.

Fix a ∈ [0,∞) with P(Y > a) > 0, resp. P(Y < −a) > 0. For any family of (κ, t) with

t→ 0 and
κ

γt
→ a ∈ [0,∞) ,

the asymptotic behavior of option prices is given by

c(κ, t) ∼ γt E[(Y − a)+] , resp. p(−κ, t) ∼ γt E[(Y + a)−] , (2.34)

and correspondingly the implied volatility is given by

σimp(±κ, t) ∼ C±(a)
γt√
t
, with C±(a) =


a

D−1
(E[(Y∓a)±]

a

) if a > 0 ,

√
2πE[Y ±] if a = 0 .

(2.35)

Remark 2.8. Hypothesis 2.6 can be easily checked when the characteristic function of Xt

is known, because, by Lévy continuity theorem, the convergence in distribution (2.29) is
equivalent to the pointwise convergence E[eiuXt/γt ]→ E[eiuY ] for every u ∈ R. We will see
concrete examples in Subsections 3.1 (Carr-Wu model) and 3.2 (Merton’s model).

Another interesting case is that of diffusions. Assume that Xt = logSt, where (St)t≥0

evolves according to the stochastic differential equation{
dSt =

√
Vt St dWt

S0 = 1
, (2.36)

where W = (Wt)t≥0 is a Brownian motion and V = (Vt)t≥0 is a positive adapted process,
representing the volatility, possibly correlated with W . Under the mild assumption that
limt→0 Vt = σ2

0 a.s., where σ0 ∈ (0,∞) is a constant, one can show that Hypothesis 2.6
holds with γt =

√
t and Y ∼ N(0, σ2

0), see Appendix A.2.
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Interestingly, plugging Y ∼ N(0, σ2
0) into (2.35) yields C±(a) ≡ σ0 (see Appendix A.2).

Consequently, if the moment condition (2.31) holds, we can apply Theorem 2.7, getting
σimp(±κ, t) ∼ σ0 along any parabolic curve κ ∼ a

√
t. This result is consistent with recent

results by Pagliarani and Pascucci [PP15], who go beyond first-order asymptotics.

The proof of Theorem 2.7 is given in §5.2 below. The asymptotic behavior (2.34) of
option prices follows easily from the convergence in distribution (2.29), because the needed
uniform integrability is ensured by the moment condition (2.31). The asymptotic behavior
(2.35) of implied volatility can again by deduced from the option prices asymptotics in a
model independent way, that we now describe.

2.4. From option price to implied volatility. Whenever the option prices c(κ, t) or
p(−κ, t) vanish, they determine the asymptotic behavior of the implied volatility through
explicit universal formulas. These are summarized in the following theorem (of which we
give in Section 4 a self-contained proof), which gathers results from the recent literature.

Theorem 2.9 (From option price to implied volatility). Consider an arbitrary family of
values of (κ, t) with κ ≥ 0 and t > 0, such that c(κ, t)→ 0, resp. p(−κ, t)→ 0.

• Case of κ bounded away from zero (i.e. lim inf κ > 0).

σimp(κ, t) ∼
(√
− log c(κ, t)

κ
+ 1−

√
− log c(κ, t)

κ

)√
2κ

t
, resp.

σimp(−κ, t) ∼
(√
− log p(−κ, t)

κ
−
√
− log p(−κ, t)

κ
− 1

)√
2κ

t
.

(2.37)

• Case of κ→ 0, with κ > 0.

σimp(κ, t) ∼ 1

D−1
(
c(κ,t)
κ

) κ√
t
, resp.

σimp(−κ, t) ∼ 1

D−1
(
p(−κ,t)

κ

) κ√
t
,

(2.38)

where the function D : (0,∞)→ (0,∞) is defined in (2.32)-(2.33).

• Case of κ = 0.

σimp(0, t) ∼
√

2π
c(0, t)√

t
=
√

2π
p(0, t)√

t
. (2.39)

We stress that Theorem 2.9 allows to derive immediately all the asymptotic relations
for the implied volatility σimp(±κ, t) appearing in Theorems 2.3, 2.4 and 2.7 from the
corresponding relations for the option prices c(κ, t) and p(−κ, t).

The main part of Theorem 2.9 is equation (2.37), which was recently proved by Gao and
Lee [GL14] extending previous results of Lee [L04], Roper and Rutkowski [RR09], Benaim
and Friz [BF09] and Gulisashvili [G10]. As a matter of fact, Gao and Lee prove much more
than (2.37), providing explicit estimates for the error beyond first order asymptotics.

Equation (2.38) is a new contribution of the present paper. In fact, [GL14] assume that
− log κ = o(− log c(κ, t)) (cf. equation (4.2) therein), which excludes the regimes with κ→ 0
“fast enough”. The relevance of such regimes has been recently shown in [MT12], where the
special case κ ∝

√
t log(1/t) is considered (see [MT12, Theorem 3.1]).
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Remark 2.10. Relation (2.38) provides an interpolation between the at-the-money and
out-of-the-money regimes, described by (2.39) and (2.37). Let us be more explicit.

Using (2.33), formula (2.38) can be rewritten as follows:

σimp(κ, t) ∼



κ√
2t (− log(c(κ, t)/κ))

if
c(κ, t)

κ
→ 0 ;

κ

D−1(a)
√
t

if
c(κ, t)

κ
→ a ∈ (0,∞) ;

√
2π

c(κ, t)√
t

if
c(κ, t)

κ
→∞, or if κ = 0 ,

(2.40)

and analogously for σimp(−κ, t), just replacing c(κ, t) by p(−κ, t).
Note that the last line in (2.40) matches with the at-the-money regime (2.39). In order

to see how (2.40) matches with the out-of-the-money regime (2.37), it suffices to note that
whenever − log c(κ,t)

κ →∞, resp. − log p(−κ,t)
κ →∞, formula (2.37) can be rewritten as

σimp(κ, t) ∼ κ√
2t (− log c(κ, t))

, resp. σimp(−κ, t) ∼ κ√
2t (− log p(−κ, t))

, (2.41)

and this coincides with the first line of (2.40) when κ→ 0 slowly enough, namely

− log κ = o
(
− log c(κ, t)

)
. (2.42)

2.5. Discussion. Theorems 2.3, 2.4 and 2.7 are useful because their assumptions, involving
asymptotics for the tail probabilities F t(κ) and Ft(−κ), can be directly verified for many
concrete models (see Section 3 for some examples). The difference between the regimes of
typical and atypical deviations can be described as follows:

• for typical deviations, the key assumption is Hypothesis 2.6, which concerns the weak
convergence of Xt, cf. (2.29)-(2.30);

• for atypical deviations, the key assumption is Hypothesis 2.2, which concerns the large
deviations properties of Xt, cf. (2.7)-(2.8).

In particular, it is worth stressing that Hypothesis 2.2 requires sharp asymptotics only
for the logarithm of the tail probabilities logF t(κ) and logFt(−κ), and not for the tail
probabilities themselves, which would be a considerably harder task (out of reach for many
models). As a consequence, Hypothesis 2.2 can often be checked through the celebrated
Gärtner-Ellis Theorem [DZ98, Theorem 2.3.6], which yields sharp asymptotics on logF t(κ)
and logFt(−κ) under suitable conditions on the moment generating function of Xt.

3. Applications

In this section we show the relevance of our main theoretical results, deriving asymptotic
expansions of the implied volatility for Carr-Wu finite moment logstable model (§3.1) and
Merton’s jump diffusion model (§3.2). The case of Heston’s model is briefly discussed in §3.3.

Our results can also be applied to a stochastic volatility model, recently introduced in
[ACDP12], which exhibits multiscaling of moments. Even though no closed expression is
available for the moment generating function of the log-price, the tail probabilities can be
estimated explicitly, as we show in a separate paper [CC15]. This leads to precise asymptotics
for the implied volatility, thanks to Theorems 2.3, 2.4 and 2.7.
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3.1. Carr-Wu Finite Moment Logstable Model. Carr and Wu [CW04] consider a
model where the log-strike Xt has characteristic function

E
[
eiuXt

]
= et[iuµ−|u|

ασα(1+i sign(u) tan(πα
2

))] , (3.1)

where σ ∈ (0,∞), α ∈ (1, 2] and we fix µ := σα/ cos(πα2 ) to work in the risk-neutral
measure, cf. [CW04, Proposition 1]. The moment generating function of Xt is

E
[
eλXt

]
=

e[λµ− (λσ)α

cos(πα2 )
] t

if λ ≥ 0 ,

+∞ if λ < 0 .
(3.2)

Note that as α→ 2 one recovers Black&Scholes model with volatility
√

2σ, cf. §4.2 below.
Applying Theorems 2.3, 2.4 and 2.7, we give a complete characterization of the volatil-

ity smile asymptotics with bounded maturity. This includes, in particular, the regimes of
extreme strike (κ→ ±∞ with fixed t > 0) and of small maturity (t→ 0 with fixed κ).

Theorem 3.1 (Smile asymptotics of Carr-Wu model). The following asymptotics hold.

• Atypical deviations. Consider any family of (κ, t) with κ ≥ 0, t > 0 such that

either t→ 0 and κ� t1/α , or t→ t̄ ∈ (0,∞) and κ→∞ . (3.3)

(This includes the regimes (a), (b), (c) on page 2, and part of regime (d).) Then one
has the right-tail asymptotics

σimp(κ, t) ∼ Bα
(
κ

t

)− 2−α
2(α−1)

, where Bα :=
(ασ)

α/2
α−1√

2(α− 1) | cos(πα2 )|
1/2
α−1

. (3.4)

The corresponding left-tail asymptotics are given by

σimp(−κ, t) ∼

√ log κα

t

κ
+ 1−

√
log κα

t

κ

√2κ

t
, (3.5)

which can be made more explicit distinguishing different regimes:

σimp(−κ, t) ∼



κ√
2t log κα

t

if t→ 0 and
κ

log 1
t

→ 0 ,

(√
1 + a− 1√

a

)√
2κ

t
if t→ 0 and

κ

log 1
t

→ a ∈ (0,∞) ,

√
2κ

t

if t→ 0 and
κ

log 1
t

→∞ ,

if t→ t̄ ∈ (0,∞) and κ→∞ .

.

(3.6)

• Typical deviations. For any family of (κ, t) with

t→ 0 ,
κ

t1/α
→ a ∈ [0,∞) , (3.7)

one has

σimp(±κ, t) ∼ C±(a) t
2−α
2α , with C±(a) :=


a

D−1
(E[(σY∓a)±]

a

) if a > 0 ,

√
2π σE[Y ±] if a = 0 .

(3.8)
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Remark 3.2 (Surface asymptotics for the Carr-Wu model). The fact that relations (3.4)
and (3.5) hold for any family of (κ, t) satisfying (3.3) yields interesting consequences. We
claim that, for any T ∈ (0,∞) and ε > 0, there exists M = M(ε, T ) ∈ (0,∞) such that the
following inequalities hold for all (κ, t) in the region AT,M := {0 < t ≤ T, κ > Mt1/α}:

(
1− ε

)
Bα

(
κ

t

)− 2−α
2(α−1)

≤ σimp(κ, t) ≤
(
1 + ε

)
Bα

(
κ

t

)− 2−α
2(α−1)

. (3.9)

Similar inequalities can be deduced from (3.5)-(3.6) and (3.8). Relation (3.9) gives a uniform
approximations of the volatility surface σimp(κ, t) in open regions of the plane (κ, t).

The proof of (3.9) is simple: assume by contradiction that there exist T, ε ∈ (0,∞) such
that for every M ∈ (0,∞) relation (3.9) fails for some (κM , tM ) ∈ AT,M . Extracting a
subsequence, the family (κM , tM ) satisfies (3.3) but not (3.4), contradicting Theorem 3.1.

Proof of Theorem 3.1. Let Y denote a random variable with characteristic function

E[eiuY ] = e−|u|
α(1+i sign(u) tan(πα

2
)) , (3.10)

i.e. Y has a strictly stable law with index α and skewness parameter β = −1, and E[Y ] = 0.
If we set

Yt :=
Xt − µt
σt1/α

, (3.11)

it follows by (3.1) that Yt has the same distribution as Y , because

E[eiuYt ] = E[eiuY ] = e−|u|
α(1+i sign(u) tan(πα

2
)) . (3.12)

It follows by (3.11) that
Xt

t1/α
d−−→
t↓0

σY , (3.13)

hence Hypothesis 2.6 is satisfied with γt := t1/α.
Note that P(Y > a) > 0 and P(Y < −a) > 0 for all a ∈ R, because the density of Y is

strictly positive everywhere. The right tail of Y has a super-exponential decay: as κ→∞

log P(Y > κ) ∼ −B̃α κα/(α−1) where B̃α :=
α− 1

α

( | cos(πα2 )|
α

)1/(α−1)

, (3.14)

cf. [CW04, Property 1 and references therein]. On the other hand the left tail is polynomial:
there exists c = cα ∈ (0,∞) such that

P(Y ≤ −κ) ∼ c

κα
, hence log P(Y ≤ −κ) ∼ −α log κ . (3.15)

Recalling that F t(κ) := P(Xt > κ) and Ft(−κ) := P(Xt ≤ κ), by (3.11) we can write

F t(κ) = P

(
Y >

κ− µt
σt1/α

)
, Ft(−κ) = P

(
Y ≤ −κ− µt

σt1/α

)
, (3.16)

hence we can transfer the estimates (3.14) and (3.15) to Xt.
Henceforth we consider separately the regimes of atypical deviations (3.3), and that of

typical deviations (3.7). Note that it is easy to check that (3.5) is equivalent to (3.6).



GENERAL SMILE ASYMPTOTICS WITH BOUNDED MATURITY 11

Atypical deviations. Let us fix an arbitrary family of values of (κ, t) satisfying (3.3). Then
κ/t→∞ (because α > 1), hence

κ− µt
σt1/α

∼ κ

σt1/α
→∞ ,

−κ− µt
σt1/α

∼ −κ
σt1/α

→ −∞ .

By (3.14), (3.15) and (3.16) we then obtain

logF t(κ) ∼ −B̃α
(

κ

σt1/α

)α/(α−1)

, logFt(−κ) ∼ − log
κα

t
. (3.17)

Let us now check the assumptions of Theorem 2.3.

• The first relation in (3.17) shows that Hypothesis 2.2 is satisfied by the right tail
F t(κ), with I+(%) = %α/(α−1). Note that I+(%) ≥ % for all % ≥ 1, since α > 1, hence
also condition (2.13) is satisfied.

• Condition (2.9) is satisfied because (2.10) holds for all T > 0 and η > 0, by (3.2).

• It remains to check condition (2.11). As we prove below, for all η ∈ (0, α − 1) and
T > 0 there are constants A,B,C ∈ (0,∞), depending on η, T and on the parameters
α, σ, such that for all 0 < t ≤ T and κ ≥ 0 the following inequality holds:

E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
≤ A

((
t1/α

κ

)B
+ C

)
. (3.18)

In particular, since κ/t1/α →∞ by assumption (3.3), condition (2.11) is satisfied.

Applying Theorem 2.3, since − logF t(κ)/κ→∞ by the first relation in (3.17), the asymp-
totic behavior of σimp(κ, t) is given by (2.18), which by (3.17) coincides with (3.4).

Next we want to apply Theorem 2.4. By the second relation in (3.17), Hypothesis 2.2
is satisfied by the left tail Ft(−κ), with I−(%) ≡ 1. If κ is bounded away from zero, the
asymptotic behavior of σimp(κ, t) is given by (2.22), which by (3.17) yields precisely (3.5).

If κ→ 0 we cannot apply directly Theorem 2.4, because the moment condition (2.11) is
satisfied only for some η > 0, and condition (2.25) is not satisfied, since I−(%) ≡ 1. However,
we can show that (2.26) still holds by direct estimates. By (2.1)

p(−κ, t) = E[(e−κ − eXt)1{Xt<−κ}] ≥ E[(e−κ − eXt)1{Xt<−2κ}] ≥ (e−κ − e−2κ)Ft(−2κ) ,

and since (e−κ − e−2κ) = e−2κ(eκ − 1) ≥ e−2κκ, we can write by (3.17) (recall that κ→ 0)

log
(
p(−κ, t)/κ

)
≥ −2κ− log

(2κ)α

t
∼ − log

κα

t
. (3.19)

Next we give a matching upper bond on p(−κ, t). Since µt ≤ κ eventually (recall that
κ/t1/α →∞, hence κ/t→∞), by (3.16) and (3.15) we obtain, for all y ≥ 1

Ft(−κy) ≤ P

(
Y ≤ − 2κy

σt1/α

)
≤ c′ t

καyα
,

for some c′ = c′α,σ,µ ∈ (0,∞). Then by Fubini’s theorem

p(−κ, t) = E[(e−κ − eXt)1{Xt<−κ}] = E

[ ∫ ∞
κ

e−x1{x<−Xt}dx
]

=

∫ ∞
κ

e−x Ft(−x) dx

= κ

∫ ∞
1

e−κy Ft(−κy) dy ≤ c′κ t

κα

∫ ∞
1

1

yα
dy =: c′′κ

t

κα
,
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hence
log
(
p(−κ, t)/κ

)
≤ log c′′ − log

κα

t
∼ − log

κα

t
.

This relation, together with (3.19), yields

log
(
p(−κ, t)/κ

)
∼ − log

κα

t
.

Since κ/t1/α →∞, this shows that we are in the regime when κ→ 0 and p(−κ, t)/κ→ 0.
We can thus apply equation (2.38) in Theorem 2.9, which recalling Remark 2.10 simplifies
as the first line in (2.40) (with p(−κ, t) instead of c(κ, t)), yielding

σimp(−κ, t) ∼ κ√
2t (− log(p(−κ, t)/κ))

∼ κ√
2t log κα

t

,

hence (3.5) is proved also when κ→ 0 (cf. (3.6)).

Typical deviations. Let us fix an arbitrary family of values of (κ, t) satisfying (3.7). Relation
(3.18) for κ = γt = t1/α shows that condition (2.31) is satisfied, and Hypothesis 2.6 holds
by (3.13). We can then apply Theorem 2.7, and relation (2.35) gives precisely (3.8). �

Proof of (3.18). Since | ex−1
x | ≤ 1 if x < 0 and | ex−1

x | ≤ e
x if x ≥ 0, we have | ex−1

x | ≤ 1 + ex

for all x ∈ R. If p, q > 1 are such that 1
p + 1

q = 1, Young’s inequality ab ≤ 1
pa

p + 1
q b
q yields∣∣∣∣eXt − 1

κ

∣∣∣∣ =

∣∣∣∣Xt

κ

∣∣∣∣ ∣∣∣∣eXt − 1

Xt

∣∣∣∣ ≤ 1

p

(
|Xt|
κ

)p
+

1

q

(
1 + eXt

)q
.

Noting that (a + b)r ≤ 2r−1(ar + br) for r ≥ 1, by Hölder’s inequality, and denoting by
c = cp,η a suitable constant depending only on p, η, we can write∣∣∣∣eXt − 1

κ

∣∣∣∣1+η

≤ c
(
|Xt|p(1+η)

κp(1+η)
+ 1 + eq(1+η)Xt

)
.

Given 0 < η < α − 1, we fix p = pη,α > 1 such that B := p(1 + η) < α. (Note that B
depends only on η, α.) Moreover, it follows by (3.11) that

E[|Xt|B] = (σt1/α)B E[|Y |B]
(
1 +O(tB(1−1/α))

)
,

and note that E[|Y |B] <∞, because Y has finite moments of all orders strictly less than α,
cf. [CW04, Property 1]. Since for t ≤ T one has E[eq(1+η)Xt ] ≤ E[eq(1+η)XT ] <∞, by (3.2),
relation (3.18) is proved. �

3.2. Merton’s Jump Diffusion Model. Consider a model [M76] where the log-return
Xt has an infinitely divisible distribution, whose moment generating function is given by

E [exp(zXt)] = exp

(
t

{
zµ+

1

2
z2σ2 + λ

(
ezα+z2 δ2

2 − 1

)})
, ∀z ∈ C , (3.20)

where µ, α ∈ R and σ, λ, δ ∈ (0,∞) are fixed parameters.
The asymptotic behavior of σimp(κ, t) has been studied by many authors. The case of

fixed t > 0 and κ→∞ was derived by Benaim and Friz [BF09] using saddle point methods
(for the detailed computation see [FGY14], [GMZ14]). The case of fixed κ > 0 and t → 0

follows by [FF12], while the mixed regime of t → 0, κ → 0 with κ ∝
√
t log(1/t) was

considered in [MT12]. Applying our results, we can complete the picture, providing general
formulas which interpolate between all these regimes, cf. Theorem 3.4.
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Figure 1. Implied volatility σimp(κ, t) for Merton’s model (with parameters
λ = 0.01, δ = 0.3, σ = 0.2, α = 0.1) in the regime κ = κ2(t) for t ∈ (0, 0.3).
The asymptotic volatility is given by our formula (3.26), while the simulated
volatility is obtained using standard computational packages.

Let us define two functions κ1(t)→ 0 and κ2(t)→∞ as t→ 0 as follows:

κ1(t) :=
√
t log 1

t , κ2(t) :=
√

log 1
t , (3.21)

which will separate different behaviors as t→ 0. We stress that κ1(t) is precisely the scaling
considered in [MT12]. Let us also define f : [0,∞)→ (0,∞) by

f(a) := min
n∈N

(
n+

a2

2nδ2

)
. (3.22)

Note that f is continuous and piecewise quadratic: more precisely, by explicit computation,
f(a) = n+ a2

2nδ2 for all a ∈ [
√

2(n− 1)n δ,
√

2n(n+ 1) δ), with n ∈ N. It follows that

f(0) = 1 , f(a) ∼
a→∞

√
2

δ
a . (3.23)

The role of the function f is explained by the following Lemma, proved in Appendix A.3.

Lemma 3.3. For every fixed a ∈ (0,∞), as t→ 0 one has

log P(Xt > aκ2(t)) ∼ −f(a) log
1

t
. (3.24)

Moreover, if either t→ 0 and κ� κ2(t), or if t→ t̄ ∈ (0,∞) and κ→∞, one has

log P(Xt > κ) ∼ −κ
δ

√
2 log

κ

t
. (3.25)

We are now ready to state our main result for Merton’s model (see Figure 1).

Theorem 3.4 (Smile Asymptotics of Merton’s model). Consider a family of values of (κ, t)
with κ ≥ 0 and t > 0.

(1) If t→ 0 and κ = O(κ2(t)), then

σimp(κ, t) ∼ max

σ , κ√
2t f

(
κ

κ2(t)

)
log κ

t

 , (3.26)
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which can be rewritten more explicitly as follows:

σimp(κ, t) ∼



σ if 0 ≤ κ ≤ σ κ1(t)

κ√
2t log κ

t

if σ κ1(t) ≤ κ� κ2(t)

κ√
2tf(a) log κ

t

if κ ∼ aκ2(t) with a ∈ (0,∞)

. (3.27)

(2) If t→ 0 and κ� κ2(t) , or if t→ t̄ ∈ (0,∞) and κ→∞ , then

σimp(κ, t) ∼
√

δ κ

2t
√

2 log κ
t

. (3.28)

Proof. We have to prove relation (3.27) (which is equivalent to (3.26), by extracting subse-
quences) and relation (3.28). We distinguish different subcases.

Assume first that t → 0 with κ = O(
√
t). By extracting sub-sequences, assume that

κ/
√
t → a ∈ [0,∞). Note that Xt/

√
t

d−→ N(0, σ2), because E[e
iu
Xt√
t ] → e−

u2

2σ2 for every
u ∈ R, as one checks by (3.20). We then apply Theorem 2.7 with γt =

√
t, because the

moment condition (2.31) for η = 1 follows by (3.20) (see also (2.12)). Relation (2.35) yields

σ(κ, t) ∼ C+(a)

√
t√
t

= σ ,

since C+(a) ≡ σ (see (A.4) in Appendix A.2). This matches with the first line of (3.27).

Next we assume that t → 0 with
√
t � κ � 1. Applying [MT12, Proposition 2.3], we

can write
c(κ, t) ∼ E[(eσWt−σ

2t
2 − eκ)+] + C t ,

with 0 < C :=
∫∞

0 (ex − 1)ν(dx) < ∞, where ν denotes the Lévy measure of X. The first
term is the usual Black&Scholes price of a call option with κ�

√
t: applying (4.12) below

with v = σ
√
t and d1 = −κ

v + v
2 ∼ −

κ
σ
√
t
, together with (4.1) and (4.3), we get

c(κ, t)

κ
∼ v

κ

φ(d1)

(d1)2
+ C

t

κ
=

e−
d21
2

√
2π ( κ

2

σ2t
)3/2

+ C
t

κ
∼ e−

d21
2

√
2π d3

1

+ C
t

κ
.

Writing e−
z2

2√
2πz3 = e−

z2

2
−log(

√
2πz3) = e−

z2

2
(1+o(1)) as z →∞, we get

c(κ, t)

κ
∼ e−

κ2

2σ2t
(1+o(1)) + C

t

κ
= a+ b (say) .

The inequalities max{a, b} ≤ a + b ≤ 2 max{a, b} yield log(a + b) ∼ max{log a, log b} (the
additive constant log 2 is irrelevant, since a, b→ 0) hence

− log
c(κ, t)

κ
∼ −max

{
− κ2

2σ2t
(1 + o(1)), log

(
C
t

κ

)}
∼ min

{
κ2

2σ2t
, log

κ

t

}
.

It is easy to check that the asymptotic equality κ2

2σ2t
∼ log κ

t holds when κ ∼ σκ1(t). It
follows that:

• in case κ ≤ σκ1(t) we have

− log
c(κ, t)

κ
∼ κ2

2σ2t
; (3.29)
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• in case κ ≥ σκ1(t) we have

− log
c(κ, t)

κ
∼ log

κ

t
. (3.30)

(Note that when κ ∼ σκ1(t) both relations (3.29) and (3.30) hold.)
We can deduce the asymptotic behavior of σimp(κ, t) applying relation (2.38) (note that

c(κ, t)/κ→ 0, since κ�
√
t) which, by Remark 2.10, reduces to the first line of (2.40), i.e.

σimp(κ, t) ∼ κ√
2t (− log(c(κ, t)/κ))

. (3.31)

Plugging (3.29)-(3.30) into this relation yields the first and second line of (3.27).

Next we assume that t→ 0 with η ≤ κ� κ2(t), for some fixed η > 0. We claim that

− log
c(κ, t)

κ
∼ log

1

t
, (3.32)

which plugged into (3.31) proves the second line of (3.27) (since log 1
t ∼ log κ

t in this regime).
When κ > 0 is fixed, (a stronger version of) relation (3.32) was proved by Figueroa–López
and Forde in [FF12]. For the general case, we fix a ∈ (0,∞) and we apply relation (3.24),
which yields the lower bound

c(κ, t) = E[(eXt − eκ)+] ≥ (eaκ2(t) − eκ) P(Xt > aκ2(t)) ∼ eaκ2(t)−f(a) log 1
t
(1+o(1))

∼ e−f(a) log 1
t
(1+o(1)) ,

(3.33)

because κ2(t) =
√

log 1
t � log 1

t . For an upper bound, we recall that κ ≥ η and [FH09]

log P(Xt > η) ∼ − log
1

t
as t→ 0 . (3.34)

Then, for every fixed b ∈ (0,∞), using (3.34), (3.24) and Caucy-Schwarz we can write

c(κ, t) ≤ ebκ2(t) P(η < Xt ≤ bκ2(t)) + E[eXt 1{Xt>bκ2(t)}]

≤ ebκ2(t)−log 1
t
(1+o(1)) + E[e2Xt ]

1
2 P(Xt > bκ2(t))

1
2

∼ e− log 1
t
(1+o(1)) + C1 e

− 1
2
f(b) log 1

t
(1+o(1)) ,

where in the last step we used E[e2Xt ]
1
2 ≤ C1 for some constant C1, since E[e2Xt ] → 1 as

t → 0 by (3.20). By (3.23), we can fix b large enough so that f(b) > 2, hence c(κ, t) ≤
e− log 1

t
(1+o(1)), and for every ε > 0 we can choose a > 0 small enough such that f(a) < 1+ε,

hence c(κ, t) ≥ e−(1+ε) log 1
t
(1+o(1)) by (3.33). Altogether, relation (3.32) is proved.

Let us proceed with the regime t → 0 and κ ∼ aκ2(t) for some a ∈ (0,∞). Relation
(3.24) shows that such a family of (κ, t) satisfies Hypothesis 2.2 with I+(%) = f(%a)/f(a)
(we stress that a ∈ (0,∞) is fixed throughout this argument, hence I+ can depend on a).
Since the moment condition (2.9) is clearly satisfied by (3.20), we can apply Theorem 2.3:
relation (2.18), coupled with (3.24), proves the third line of (3.27).

Finally, it remains to prove (3.28), hence we assume that either t→ 0 and κ� κ2(t), or
t→ t̄ ∈ (0,∞) and κ→∞. Relation (3.25) shows that Hypothesis 2.2 holds with I+(%) = %.
By Theorem 2.3, relation (2.18) yields (3.28), completing the proof of Theorem 3.4. �
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3.3. The Heston Model. Given the parameters λ, ϑ, η, σ0 ∈ (0,∞) and % ∈ [−1, 1], the
Heston model [H93] is a stochastic volatility model (St)t≥0 defined by the following SDEs

dSt = St
√
Vt dW 1

t ,

dVt = −λ(Vt − ϑ) dt + η
√
Vt dW 2

t ,

X0 = 0 , V0 = σ0 ,

where (W 1
t )t≥0 and (W 2

t )t≥0 are standard Brownian motions with 〈dW 1
t , dW 2

t 〉 = % dt.
Note that St displays explosion of moments, i.e. E[SpT ] = ∞ for p > 1 large enough. In

general, for any fixed t ≥ 0 one can define the explosion moment p∗(t) as

p∗(t) := sup{p > 0 : E[Spt ] <∞} ,
so that E[Spt ] < ∞ for p < p∗(t) while E[Spt ] = ∞ for p > p∗(t) (in the case of Heston’s
model, one has E[Spt ] =∞ also for p = p∗(t)). The behavior of the explosion moment p∗(t)
is described in the following Lemma, proved below.

Lemma 3.5. If % = −1, then p∗(t) = +∞ for every t ≥ 0.
If % > −1, then p∗(t) ∈ (1,+∞) for every t > 0. Moreover, as t ↓ 0

p∗(t) ∼ C

t
,

where

C = C(%, η) :=


2

η
√

1− %2

(
arctan

√
1− %2

%
+ π1%<0

)
if % < 1

2

η
if % = 1

. (3.35)

The asymptotic behavior of the implied volatility σimp(κ, t) is known in the regimes of
large strike (with fixed maturity) and small maturity (with fixed strike).

• In [BF08], Benaim and Friz show that for fixed t > 0, when κ→ +∞

σimp(κ, t) ∼
κ↑∞

√
2κ√
t

(√
p∗(t)−

√
p∗(t)− 1

)
, (3.36)

based on the estimate (cf. also [AP07])

− log P(Xt > κ) ∼
κ↑∞

p∗(t)κ . (3.37)

• In [FJ09], Forde and Jacquier have proved that for any fixed κ > 0, as t ↓ 0

σimp(κ, t) ∼
t↓0

κ√
2 Λ∗(κ)

, (3.38)

where Λ∗(·) is the Legendre transform of the function Λ : R+ → R+ ∪ {∞} given by

Λ(p) :=


σ0p

η
(√

1− %2 cot
(

1
2ηp
√

1− %2
)
− %
) if p < C ,

∞ if p ≥ C ,
(3.39)

where C is the constant in (3.35). Their analysis is based on the estimate

− log P(Xt ≥ κ) ∼
t↓0

1

t
Λ∗(κ) , (3.40)
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obtained by showing that the log-price (Xt)t≥0 in the Heston model satisfies a large
deviations principle as t ↓ 0, with rate 1/t and good rate function Λ∗(κ).

We first note that the asymptotics (3.36) and (3.38) follow easily from our Theorem 2.3,
plugging the estimates (3.37) and (3.40) into relations (2.15) and (2.18), respectively.

We also observe that the estimates (3.36) and (3.38) match, in the following sense: if we
take the limit t→ 0 of the right hand side of (3.36) (i.e. we first let κ ↑ +∞ and then t ↓ 0
in σimp(κ, t)), we obtain

(3.36) ∼
t↓0

√
2κ√
t

1

2
√
p∗(t)

∼
√

2κ√
t

1

2
√

C
t

=

√
κ√

2C
. (3.41)

If, on the other hand, we take the limit κ ↑ ∞ of the right hand side of (3.38) (i.e. we first
let t ↓ 0 and then κ ↑ +∞ in σimp(κ, t)), since Λ∗(κ) ∼ Cκ,† we obtain

(3.38) ∼
κ↑+∞

κ√
2Cκ

=

√
κ√

2C
, (3.42)

which coincides with (3.41). Analogously, also the estimates (3.37) and (3.40) match.
It is then natural to conjecture that, for any family of values of (κ, t) such that κ ↑ +∞

and t ↓ 0 jointly, one should have

log P(Xt ≥ κ) ∼ −C κ

t
, (3.43)

where C is the constant in (3.35). If this holds, applying Theorem 2.3, relation (2.18) yields

σimp(κ, t) ∼
√
κ√

2C
, (3.44)

providing a smooth interpolation between (3.36) and (3.38).

Remark 3.6 (Surface asymptotics for the Heston model). If (3.44) holds for any family
of values of (κ, t) with κ → ∞ and t → 0, it follows that for every ε > 0 there exists
M = M(ε) ∈ (0,∞) such that the following inequalities hold:(

1− ε
) √κ√

2C
≤ σimp(κ, t) ≤

(
1 + ε

) √κ√
2C

,

for all (κ, t) in the region AT,M := {0 < t ≤ 1
M , κ > M}, as it follows easily by contradiction

(cf. Remark 3.2 for a similar argument).

Proof of Lemma 3.5. Given any number p > 1 we define the explosion time T ∗(p) as

T ∗(p) := sup{t > 0 : E[Spt ] <∞} .
Note that if T ∗(p) = t ∈ (0,+∞) then p∗(t) = p. By [AP07] (see also [FK09])

T ∗(p) =



+∞ if ∆(p) ≥ 0, χ(p) < 0 ,

1√
∆(p)

log

(
χ(p)+

√
∆(p)

χ(p)−
√

∆(p)

)
if ∆(p) ≥ 0, χ(p) > 0 ,

2√
−∆(p)

(
arctan

√
−∆(p)

χ(p) + π1χ(p)<0

)
if ∆(p) < 0 ,

(3.45)

where
χ(p) := %ηp − λ , ∆(p) := χ2(p)− η2(p2 − p) ,

†This is because Λ(p) ↑ +∞ as p ↑ C, hence the slope of Λ∗(κ) converges to C as κ→∞.
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Observe that if % = −1, then χ(p) = −ηp−λ < 0 and ∆(p) = λ2 +p
(
2ηλ+ η2

)
≥ 0, which

implies T ∗(p) = +∞ for every p > 1, or equivalently p∗(t) = +∞ for every t > 0.
On the other hand, since

∆(p) = %2η2p2 + λ2 − 2η%λp− η2p2 + η2p = η2p2(%2 − 1) + p(η2 − 2η%λ) + λ2 ,

we observe that if % 6= 1, then ∆p < 0 as p→ +∞, which implies

T ∗(p) ∼
p↑∞

2

p(η
√

1− %2)

(
arctan

ηp
√

1− %2

%ηp
+ π1%<0

)

=
1

p

2

η
√

1− %2

(
arctan

√
1− %2

%
+ π1%<0

)
.

(3.46)

In particular this leads to the conclusion that, if |%| 6= 1, then

p∗(t) ∼
t↓0

C

t

where C was defined in (3.35).
It remains to study the case % = 1, in which χ(p) > 0 for every p. We have two possibil-

ities: if η > 2λ then ∆(p) > 0 when p→ +∞, and so by (3.45)

T ∗(p) ∼
p↑∞

1√
p(η2 + 2ηλ)

log

(
1 + 2

√
p(η2 + 2ηλ)

ηp−
√
p(η2 + 2ηλ)

)
∼ 2

η

1

p
.

On the other hand, if η < 2λ, then ∆(p) < 0 when p→∞ and so

T ∗(p) ∼
p↑∞

2√
p(2ηλ− η2)

(
arctan

√
p(2ηλ− η2)

pη

)
∼ 2

η

1

p
.

Finally if η = 2λ, ∆(p) = λ2, and so

T ∗(p) =
1

λ
log

(
1 +

2λ

ηp− 2λ

)
∼
p↑∞

2

η

1

p
.

In all the cases we obtain p∗(t) ∼
t↓0

2
η

1
t , in agreement with (3.35). �

4. From option price to implied volatility

In this section we prove Theorem 2.9. We start with some background on Black&Scholes
model and on related quantities. We let Z be a standard Gaussian random variable and
denote by φ and Φ its density and distribution functions:

φ(z) :=
P(Z ∈ dz)

dz
=
e−

1
2
z2

√
2π

, Φ(z) := P(Z ≤ z) =

∫ z

−∞
φ(t) dt . (4.1)

4.1. Mills ratio. The Mills ratio U : R→ (0,∞) is defined by

U(z) :=
1− Φ(z)

φ(z)
=

Φ(−z)
φ(z)

, ∀z ∈ R . (4.2)

The next lemma summarizes the main properties of U that will be used in the sequel.

Lemma 4.1. The function U is smooth, strictly decreasing, strictly convex and satisfies

U ′(z) ∼ − 1

z2
as z ↑ ∞ . (4.3)
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Proof. Since Φ′(z) = φ(z) and φ is an analytic function, U is also analytic. Since φ′(z) =
−zφ(z), one obtains

U ′(z) = zU(z)− 1 , U ′′(z) = U(z) + zU ′(z) = (1 + z2)U(z)− z . (4.4)

Recalling that U(z) > 0, these relations already show that U ′(z) < 0 and U ′′(z) > 0 for all
z ≤ 0. For z > 0, the following bounds hold [S54, eq. (19)], [P01, Th. 1.5]:

z

z2 + 1
=

1

z + 1
z

< U(z) <
1

z + 1
z+ 2

z

=
z2 + 2

z3 + 3z
, ∀z > 0 . (4.5)

Applying (4.4) yields U ′′(z) > 0 and − 1
1+z2 < U ′(z) < − 1

3+z2 for all z > 0, hence (4.3). �

We recall that the smooth function D : (0,∞)→ (0,∞) was introduced in (2.32). Since

D′(z) = − 1

z2
φ(z) < 0 , (4.6)

D(·) is a strictly decreasing bijection (note that limz↓0D(z) = ∞ and limz→∞D(z) = 0).
Its inverse D−1 : (0,∞) → (0,∞) is then smooth and strictly decreasing as well. Writing
D(z) = φ(z)(1

z − U(z)), it follows by (4.5) that 1
z − U(z) ∼ 1

z3 as z ↑ ∞, hence

D(z) ∼ 1

z3
φ(z) ∼ e−

1
2
z2

√
2π z3

as z ↑ ∞ , D(z) ∼ 1

z
φ(0) =

1√
2πz

as z ↓ 0 .

It follows easily that D−1(·) satisfies (2.33).

4.2. Black&Scholes. Let (Bt)t≥0 be a standard Brownian motion. The Black&Scholes
model is defined by a risk-neutral log-price (Xt := σBt − 1

2σ
2t)t≥0, where the parameter

σ ∈ (0,∞) represents the volatility. The Black&Scholes formula for the price of a normalized
European call is CBS(κ, σ

√
t), where κ is the log-strike, t is the maturity and we define

CBS(κ, v) := E[(evZ−
1
2
v2 − eκ)+] =

{
(1− eκ)+ if v = 0 ,

Φ(d1)− eκΦ(d2) if v > 0 ,
(4.7)

where Φ is defined in (4.1), and we set{
d1 = d1(κ, v) := −κ

v + v
2 ,

d2 = d2(κ, v) := −κ
v −

v
2 ,

so that

{
d2 = d1 − v ,
d2

2 = d2
1 + 2κ .

(4.8)

Note that CBS(κ, v) is a continuous function of (κ, v). Since eκφ(d2) = φ(d1), for all v > 0
one easily computes

∂CBS(κ, v)

∂v
= φ(d1) > 0 ,

∂CBS(κ, v)

∂κ
= −eκΦ(d2) < 0 ,

hence CBS(κ, v) is strictly increasing in v and strictly decreasing in κ (see Figure 2). It is
also directly checked that for all κ ∈ R and v ≥ 0 one has

CBS(κ, v) = 1− eκ + eκCBS(−κ, v) . (4.9)

In the following key proposition, proved in Appendix A.4, we show that when κ ≥ 0
the Black&Scholes call price CBS(κ, v) vanishes precisely when v → 0 or d1 → −∞ (or,
more generally, in a combination of these two regimes, when min{d1, log v} → −∞). We
also provide sharp estimates on CBS(κ, v) for each regime (weaker estimates on logCBS(κ, v)
could be deduced from Theorems 2.3 and 2.4).
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Figure 2. A plot of (κ, v) 7→ CBS(κ, v), for κ ∈ [−10, 10] and v ∈ [0, 4].

Proposition 4.2. For any family of values of (κ, v) with κ ≥ 0, v > 0, one has

CBS(κ, v)→ 0 if and only if min{d1, log v} → −∞ , (4.10)

that is, CBS(κ, v) → 0 if and only if from any subsequence of (κ, v) one can extract a
sub-subsequence along which either d1 → −∞ or v → 0. Moreover:

• if d1 := −κ
v + v

2 → −∞, then

CBS(κ, v) ∼ φ(d1)
v

−d1(−d1 + v)
; (4.11)

• if v → 0, then
CBS(κ, v) ∼ −U ′(−d1)φ(d1) v ; (4.12)

where φ(·) and U(·) are defined in (4.1) and (4.2).

4.3. Proof of Theorem 2.9. Since the function v 7→ CBS(κ, v) is a bijection from [0,∞)
to [(1− eκ)+, 1), it admits an inverse function c 7→ VBS(κ, c), defined by

CBS(κ,VBS(κ, c)) = c . (4.13)

By construction, VBS(κ, ·) is a strictly increasing bijection from [(1− eκ)+, 1) to [0,∞). We
will mainly focus on the case κ ≥ 0, for which VBS(κ, ·) : [0, 1)→ [0,∞).

Consider an arbitrary model, with a risk-neutral log-price (Xt)t≥0, and let c(κ, t) be the
corresponding price of a normalized European call option, cf. (2.1). Since z 7→ (z − eκ)+ is
a convex function, one has c(κ, t) ≥ (E[eXt ]−eκ)+ = (1−eκ)+ by Jensen’s inequality; since
(z−eκ)+ < z+, one has c(κ, t) < E[eXt ] = 1. Consequently, by (4.13), we have the following
relation between the implied volatility σimp(κ, t) (defined in §2.1) and VBS(κ, c(κ, t)):

σimp(κ, t) :=
VBS(κ, c(κ, t))√

t
. (4.14)

Relation (4.14) allows to reformulate Theorem 2.9 more transparently in terms of the
function VBS. Inspired by (2.2), we define p = p(κ, c) by

p := c− (1− eκ) . (4.15)
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Consider an arbitrary family of values of (κ, c), such that either κ ≥ 0, c ∈ (0, 1) and c→ 0,
or alternatively κ ≤ 0, p ∈ (0, 1) and p → 0 (with p as in (4.15)). Then, in light of (4.14),
we can write the following:

• If κ bounded away from zero (lim inf |κ| > 0), relation (2.37) is equivalent to

VBS(κ, c) ∼


√

2 (− log c+ κ)−
√

2 (− log c) if κ > 0 ,√
2 (− log p)−

√
2 (− log p+ κ) if κ < 0 .

(4.16)

• If κ is bounded away from infinity (lim sup |κ| < ∞), relations (2.38) and (2.39) are
equivalent to

VBS(κ, c) ∼



κ

D−1( cκ)
if κ > 0 ,

√
2π c =

√
2π p if κ = 0 ,

−κ
D−1( p

−κ)
if κ < 0 ,

(4.17)

where D−1(·) is the inverse of the function D(·) defined in (2.32), and satisfies (2.33).

The proof of Theorem 2.9 is now reduced to proving relations (4.16) and (4.17). We first
show that we can assume κ ≥ 0, by a symmetry argument.

Deducing the case κ ≤ 0 from the case κ ≥ 0. Recalling (4.9) and (4.13), for all κ ∈ R and
c ∈ [(1− eκ)+, 1) we have

VBS(κ, c) = VBS(−κ, 1− e−κ + e−κc) = VBS(−κ, e−κp) ,
where p is defined in (4.15). As a consequence, in the case κ ≤ 0, replacing κ by −κ and c
by e−κp in the first line of (4.16), one obtains the second line of (4.16).

Performing the same replacements in the first line of (4.17) yields

VBS(κ, c) ∼ −κ
D−1(e−κ p

−κ)
,

which is slightly different with respect to the third line of (4.17). However, the discrepancy
is only apparent, because we claim thatD−1(e−κ p

−κ) ∼ D−1( p
−κ). This is checked as follows:

if κ → 0, then e−κ p
−κ ∼

p
−κ ; if κ → κ̄ ∈ (−∞, 0), since p → 0 by assumption, the first

relation in (2.33) yields D−1(e−κ p
−κ) ∼

√
2(− log( p

−κ̄) + κ̄) ∼
√

2(− log( p
−κ̄)) ∼ D−1( p

−κ),
as required. (See the lines following (4.26) below for more details.) �

Proof of (4.16) for κ ≥ 0. We fix a family of values of (κ, c) with c → 0 and κ bounded
away from zero, say κ ≥ δ for some fixed δ > 0. Our goal is to prove that relation (4.16)
holds. If we set v := VBS(κ, c), by definition (4.13) we have CBS(κ, v) = c→ 0.

Let us first show that d1 := −κ
v + v

2 → −∞. By Proposition 4.2, CBS(κ, v) → 0 implies
min{d1, log v} → −∞, which means that every subsequence of values of (κ, c) admits a
further sub-subsequence along which either d1 →∞ or v → 0. The key point is that v → 0
implies d1 → −∞, because d1 ≤ − δ

v + v
2 (recall that κ ≥ δ). Thus d1 → −∞ along every

sub-subsequence, which means that d1 → −∞ along the whole family of values of (κ, c).
Since d1 → −∞, we can apply relation (4.11). Taking log of both sides of that relation,

recalling the definition (4.1) of φ and the fact that CBS(κ, v) = c, we can write

log c ∼ −1

2
d2

1 − log
√

2π + log
v

−d1(−d1 + v)
. (4.18)
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We now show that the last term in the right hand side is o(d2
1) and can therefore be

neglected. Note that −d1 ≥ 1 eventually, because d1 → −∞, hence

log
v

−d1(−d1 + v)
≤ log

v

1 + v
≤ 0 .

Since v 7→ −d1+v
v is decreasing for −d1 > 0, in case v ≥ −d1 one has∣∣∣∣ log

v

−d1(−d1 + v)

∣∣∣∣ = log
−d1(−d1 + v)

v
≤ log(−2d1) = o(d2

1) .

On the other hand, recalling that d1 ≤ − δ
v + v

2 , in case v < −d1 one has d1 ≤ − δ
v −

d1
2 ,

which can be rewritten as v ≥ 2δ
−3d1

and together with v < −d1 yields∣∣∣∣ log
v

−d1(−d1 + v)

∣∣∣∣ = log
−d1(−d1 + v)

v
≤ log

−d1(−d1 − d1)
2δ
−3d1

= log

(
3(−d1)3

2δ

)
= o(d2

1) .

In conclusion, (4.18) yields log c ∼ −1
2d

2
1, that is there exists γ = γ(κ, c) → 0 such that

(1 + γ) log c = −1
2d

2
1, and since log c ≤ 0 we can write

(1 + γ)| log c| = 1

2
d2

1 =
1

2

(
κ2

v2
+
v2

4
− κ
)
.

This is a second degree equation in v2, whose solutions (both positive) are

v2 = 2κ

[
1 + 2

(1 + γ)| log c|
κ

± 2

√(
(1 + γ)| log c|

κ

)2

+
(1 + γ)| log c|

κ

]
. (4.19)

Since d1 → −∞, eventually one has d1 < 0: since d1 = −κ
v + v

2 = − 1
2v (
√

2κ− v)(
√

2κ+ v),
it follows that v2 < 2κ, which selects the “−” solution in (4.19). Taking square roots of
both sides of (4.19) and recalling that v = VBS(κ, c) yields the equality

VBS(κ, c) =
√

2(1 + γ)| log c|+ 2κ−
√

2(1 + γ)| log c| , (4.20)

as one checks squaring both sides of (4.20).
Finally, since γ → 0, it is quite intuitive that relation (4.20) yields (4.16). To prove this

fact, we observe that by (4.20) we can write

VBS(κ, c)√
2| log c|+ 2κ−

√
2| log c|

= fγ

(
κ

| log c|

)
, (4.21)

where for fixed γ > −1 we define the function fγ : [0,∞)→ (0,∞) by

fγ(x) :=

√
1 + γ + x−

√
1 + γ√

1 + x− 1
for x > 0 , fγ(0) := lim

x↓0
fγ(x) =

1√
1 + γ

.

By direct computation, when γ > 0 (resp. γ < 0) one has d
dxfγ(x) > 0 (resp. < 0) for all

x > 0. Since limx→+∞ fγ(x) = 1, it follows that for every x ≥ 0 one has fγ(0) ≤ fγ(x) ≤ 1
if γ > 0, while 1 ≤ fγ(x) ≤ fγ(0) if γ < 0; consequently, for any γ,

1√
1 + |γ|

≤ fγ(x) ≤ 1√
1− |γ|

, ∀x ≥ 0 ,

which yields limγ→0 fγ(x) = 1 uniformly over x ≥ 0. By (4.21), relation (4.16) is proved. �
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Proof of (4.17) for κ ≥ 0. We now fix a family of values of (κ, c) with c→ 0 and κ bounded
away from infinity, say 0 ≤ κ ≤M for some fixedM ∈ (0,∞), and we prove relation (4.17).

We set v := VBS(κ, c) so that CBS(κ, v) = c → 0, cf. (4.13). (Note that v > 0, because
c > 0 by assumption.) Applying Proposition 4.2 we have min{d1, log v} → −∞, i.e. either
d1 → −∞ or v → 0 along sub-subsequences. However, this time d1 → −∞ implies v → 0,
because d1 ≥ −M

v + v
2 (recall that κ ≤M), which means that v → 0 along the whole given

family of values of (κ, c).
Since v → 0, relation (4.12) yields

c ∼ −U ′(−d1)φ(d1) v . (4.22)

Let us focus on U ′(−d1): recalling that d1 = −κ
v + v

2 and v → 0, we first show that

U ′(−d1) ∼ U ′
(
κ

v

)
. (4.23)

By a subsequence argument, we may assume that κ
v → % ∈ [0,∞], and we recall that v → 0:

• if % <∞, U ′(−d1) and U ′(κv ) converge to U ′(%) 6= 0, hence U ′(−d1)/U ′(κv )→ 1;

• if % =∞, −d1 and κ
v diverge to ∞ and (4.3) yields U ′(−d1)/U ′(κv ) ∼ (κv )/(−d1)→ 1.

The proof of (4.23) is completed. Next we observe that, again by v → 0,

φ(−d1) =
1√
2π
e−

1
2
d2

1 =
1√
2π
e−

1
2

(κ
2

v2 + v2

2
−κ) ∼ e

1
2
κ 1√

2π
e−

1
2
κ2

v2 = e
1
2
κφ

(
κ

v

)
.

We can thus rewrite (4.22) as

c ∼ −U ′
(
κ

v

)
φ

(
κ

v

)
e

1
2
κ v . (4.24)

If κ = 0, recalling (4.4) we obtain c ∼ φ(0)v = 1√
2π
v, which is the second line of (4.17).

Next we assume κ > 0. By (4.4), (4.2) and (2.32), for all z > 0 we can write

−U ′(z)φ(z) = −φ(z)
(
zU(z)− 1

)
= φ(z)− zΦ(−z) = zD(z) ,

hence (4.24) can be rewritten as

c ∼ κ e
1
2
κD

(
κ

v

)
, i.e. (1 + γ)c = κ e

1
2
κD

(
κ

v

)
,

for some γ = γ(κ, c)→ 0. Recalling that v = VBS(κ, c), we have shown that

VBS(κ, c) =
κ

D−1
(

(1+γ)c

κe
1
2κ

) . (4.25)

We now claim that

D−1

(
(1 + γ)c

κe
1
2
κ

)
∼ D−1

(
c

κ

)
. (4.26)

By a subsequence argument, we may assume that c
κ → η ∈ [0,∞] and κ→ κ̄ ∈ [0,M ].

• If η ∈ (0,∞), then κ̄ = 0 (recall that c → 0) hence (1 + γ)c/(κe
1
2
κ) → η; then both

sides of (4.26) converge to D−1(η) ∈ (0,∞), hence their ratio converges to 1.

• If η =∞, then again κ̄ = 0, hence (1 + γ)c/(κe
1
2
κ)→∞: since D−1(y) ∼ 1√

2π
y−1 as

y →∞, cf. (2.33), it follows immediately that (4.26) holds.
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• If η = 0, then (1 + γ)c/(κe
1
2
κ)→ 0: since D−1(y) ∼

√
2| log y| as y → 0, cf. (2.33),

D−1

(
(1 + γ)c

κe
1
2
κ

)
∼

√
2

∣∣∣∣( log
c

κ

)
+

(
log

1 + γ

e
1
2
κ

)∣∣∣∣ ∼
√

2

∣∣∣∣ log
c

κ

∣∣∣∣ ,
because | log c

κ | → ∞ while | log[(1 + γ)/e
1
2
κ]| → 1

2 κ̄ ∈ [0, M2 ], hence (4.26) holds.

Having proved (4.26), we can plug it into (4.25), obtaining precisely the first line of (4.17).
This completes the proof of Theorem 2.9. �

5. From tail probability to option price

In this section we prove Theorems 2.3, 2.4 and 2.7. We stress that it is enough to prove
the asymptotic relations for the option prices c(κ, t) and p(−κ, t), because the corresponding
relations for the implied volatility σimp(±κ, t) follow immediately applying Theorem 2.9.

5.1. Proof of Theorem 2.3 and 2.4. We prove Theorem 2.3 and 2.4 at the same time. We
recall that the tail probabilities F t(κ), Ft(−κ) are defined in (1.1). Throughout the proof,
we fix a family of values of (κ, t) with κ > 0 and 0 < t < T , for some fixed T ∈ (0,∞), such
that Hypothesis 2.2 is satisfied.

Extracting subsequences, we may distinguish three regimes for κ:

• if κ→∞ our goal is to prove (2.14), resp. (2.21);

• if κ→ κ̄ ∈ (0,∞) our goal is to prove (2.17), resp. (2.23), because in this case, plainly,
one has − logF t(κ)/κ→∞, resp. − logFt(−κ)/κ→∞, by (2.5);

• if κ→ 0, our goal is to prove (2.19), resp. (2.26).

Of course, each regime has different assumptions, as in Theorem 2.3 and 2.4.

Step 0. Preparation. It follows by conditions (2.7) and (2.8) that

∀ε > 0 ∃%ε ∈ (1,∞) : I±(%ε) < 1 + ε , (5.1)

therefore for every ε > 0 one has eventually

logF t(%εκ) ≥ (1 + ε) logF t(κ) , resp.
logFt(−%εκ) ≥ (1 + ε) logFt(−κ) ,

(5.2)

where the inequality is “≥” instead of “≤”, because both sides are negative quantities.
We stress that F t(κ)→ 0, resp. Ft(−κ)→ 0, by (2.5), hence

logF t(κ)→ −∞ , resp. logFt(−κ)→ −∞ . (5.3)

Moreover, we claim that in any of the regimes κ→∞, κ→ κ̄ ∈ (0,∞) and κ→ 0 one has

logF t(κ) + κ→ −∞ . (5.4)

This follows readily by (5.3) if κ→ 0 or κ→ κ̄ ∈ (0,∞). If κ→∞ we argue as follows: by
Markov’s inequality, for η > 0

F t(κ) ≤ E[e(1+η)Xt ]e−(1+η)κ , (5.5)

hence
logF t(κ) + κ ≤ −ηκ+ log E[e(1+η)Xt ] .
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Since in the regime κ → ∞ we assume that the moment condition (2.9) holds for some or
every η > 0, the term log E[e(1+η)Xt ] is bounded from above, hence eventually

logF t(κ) + κ ≤ −η
2
κ , (5.6)

which proves relation (5.4).
The rest of the proof is divided in four steps, in each of which we prove lower and upper

bounds on c(κ, t) and p(−κ, t), respectively.
Step 1. Lower bounds on c(κ, t). We are going to prove sharp lower bounds on c(κ, t), that
will lead to relations (2.14), (2.17) and (2.19).

By (2.1) and (5.1), for every ε > 0 we can write

c(κ, t) ≥ E[(eXt − eκ)1{Xt>%εκ}] ≥ (e%εκ − eκ)F t(%εκ) , (5.7)

and applying (5.2) we get

log c(κ, t) ≥ log
(
e%εκ − eκ

)
+ (1 + ε) logF t(κ) . (5.8)

If κ→∞, since log(e%εκ − eκ) = κ+ log(e(%ε−1)κ − 1) ≥ κ eventually, we obtain

log c(κ, t) ≥ κ+ (1 + ε) logF t(κ) = (1 + ε)
(

logF t(κ) + κ
)
− εκ

≥ (1 + ε+ 2
ηε)
(

logF t(κ) + κ
)
,

(5.9)

where in the last inequality we have applied (5.6). It follows that

lim sup
log c(κ, t)

logF t(κ) + κ
≤ 1 + ε+ 2

ηε , (5.10)

where the lim sup is taken along the given family of values of (κ, t) (note that log c(κ, t) and
logF t(κ) + κ are negative quantities, cf. (5.4), hence the reverse inequality with respect to
(5.9)). Since ε > 0 is arbitrary and η > 0 is fixed, we have shown that

lim sup
log c(κ, t)

logF t(κ) + κ
≤ 1 , (5.11)

that is we have obtained a sharp bound for (2.14).
If κ→ κ̄ ∈ (0,∞), since log(e%εκ−eκ)→ log(e%εκ̄−eκ̄) is bounded while logF t(κ)→ −∞,

relation (5.8) gives

lim sup
log c(κ, t)

logF t(κ)
≤ 1 + ε .

Since ε > 0 is arbitrary, we have shown that when κ→ κ̄ ∈ (0,∞)

lim sup
log c(κ, t)

logF t(κ)
≤ 1 , (5.12)

obtaining a sharp bound for (2.17).
Finally, if κ → 0, since for κ ≥ 0 by convexity log(e%εκ − eκ) = κ + log(e(%ε−1)κ − 1) ≥

κ+ log((%ε − 1)κ) = κ+ log(%ε − 1) + log κ, relation (5.8) yields

log
c(κ, t)

κ
= log c(κ, t)− log κ ≥ log(%ε − 1) + (1 + ε) logF t(κ) .

Again, since log(%ε − 1) is constant and logF t(κ)→ −∞, and ε > 0 is arbitrary, we get

lim sup
log
(
c(κ, t)/κ

)
logF t(κ)

≤ 1 , (5.13)
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proving a sharp bound for (2.19).

Step 2. Lower bounds on p(−κ, t). We are going to prove sharp lower bounds on p(−κ, t),
that will lead to relations (2.21), (2.23) and (2.26).

Recalling (2.1) and (5.1), for every ε > 0 we can write

p(−κ, t) ≥ E[(e−κ − eXt)1{Xt≤−%εκ}] ≥ (e−κ − e−%εκ)Ft(−%εκ) , (5.14)

and applying (5.2) we obtain

log p(−κ, t) ≥ log
(
e−κ − e−%εκ

)
+ (1 + ε) logFt(−κ) . (5.15)

If κ → ∞, since log(e−κ − e−%εκ) = −κ + log(1 − e−(%ε−1)κ) ∼ −κ, eventually one has
log(e−κ − e−%εκ) ≥ −(1 + ε)κ and we obtain

log p(−κ, t) ≥ (1 + ε)
(

logFt(−κ)− κ
)
.

Since ε > 0 is arbitrary, it follows that

lim sup
log p(−κ, t)

logFt(−κ)− κ
≤ 1 , (5.16)

which is a sharp bound for (2.21).
If κ→ κ̄ ∈ (0,∞), since log(e−κ−e−%εκ)→ log(e−κ̄−e−%εκ̄) is bounded while logFt(−κ)→

−∞, and ε > 0 is arbitrary, relation (5.15) gives

lim sup
log p(−κ, t)
logFt(−κ)

≤ 1 , (5.17)

which is a sharp bound for (2.23).
Finally, if κ→ 0, since e−κ − e−%εκ = e−%εκ(e(%ε−1)κ − 1) ≥ e−%εκ(%ε − 1)κ by convexity,

since κ ≥ 0, one has eventually

log
(
e−κ − e−%εκ

)
≥ log κ+ log

(
e−%εκ(%ε − 1)

)
≥ log κ+ ε logFt(−κ) ,

because log
(
e−%εκ(%ε − 1)

)
→ log(%ε − 1) > −∞ while logFt(−κ)→ −∞. Relation (5.15)

then yields, eventually,

log
p(−κ, t)

κ
= log p(−κ, t)− log κ ≥ (1 + 2ε) logFt(−κ) .

Since ε > 0 is arbitrary, we have shown that

lim sup
log
(
p(−κ, t)/κ

)
logFt(−κ)

≤ 1 , (5.18)

obtaining a sharp bound for (2.26).

Step 3. Upper bounds on c(κ, t). We are going to prove sharp upper bounds on c(κ, t), that
will complete the proof of relations (2.14), (2.17) and (2.19). We first consider the case
when the moment assumptions (2.9) and (2.11) hold for every η > 0.

Let us look at the regimes κ → ∞ and κ → κ̄ ∈ (0,∞) (i.e. κ is bounded away from
zero), assuming that condition (2.9) holds for every η > 0. By Hölder’s inequality,

c(κ, t) = E[(eXt − eκ)1{Xt>κ}] ≤ E[eXt1{Xt>κ}] ≤ E[e(1+η)Xt ]
1

1+η F t(κ)
η

1+η . (5.19)

Let us fix ε > 0 and choose η = ηε large enough, so that η
1+η > 1− ε. By assumption (2.9),

for some C ∈ (0,∞) one has
E[e(1+η)Xt ]

1
1+η ≤ C ,
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hence eventually, recalling that logF t(κ)→ −∞, by (5.3),

log c(κ, t) ≤ logC + (1− ε) logF t(κ) ≤ (1− 2ε) logF t(κ) . (5.20)

Since ε > 0 is arbitrary, this shows that

lim inf
log c(κ, t)

logF t(κ)
≥ 1 . (5.21)

which together with (5.12) completes the proof of (2.17), if κ → κ̄ ∈ (0,∞). If κ → ∞
and condition (2.9) holds for every η > 0, then logF t(κ)/κ → −∞ by (5.5), which yields
logF t(κ) ∼ logF t(κ) + κ, hence (5.21) together with (5.11) completes the proof of (2.14).

We then consider the regime κ→ 0, assuming that condition (2.11) holds for every η > 0.
We modify (5.19) as follows: since (eXt − eκ) ≤ (eXt − 1) ≤ |eXt − 1|,

c(κ, t) ≤ E[|eXt − 1|1{Xt>κ}] ≤ κE

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η] 1
1+η

F t(κ)
η

1+η . (5.22)

Let us fix ε > 0 and choose η = ηε large enough, so that η
1+η > 1−ε. By assumption (2.11),

for some C ∈ (0,∞) one has

E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η] 1
1+η

≤ C , (5.23)

hence relation (5.22) yields eventually

log
c(κ, t)

κ
≤ logC + (1− ε) logF t(κ) ≤ (1− 2ε) logF t(κ) . (5.24)

Since ε > 0 is arbitrary, we have proved that

lim inf
log
(
c(κ, t)/κ

)
logF t(κ)

≥ 1 , (5.25)

which together with (5.13) completes the proof of (2.19).
It remains to consider the case when the moment assumptions (2.9) and (2.11) holds for

some η > 0, but in addition conditions (2.13) (if κ → ∞ or κ → κ̄ ∈ (0,∞)) or (2.16) (if
κ→ 0) holds. We start with considerations that are valid in any regime of κ.

Defining the constant

A := lim sup

{
−κ

logF t(κ) + κ

}
+ 1 , (5.26)

where the lim sup is taken along the given family of values of (κ, t), we claim that A <∞.
This follows by (5.4) if κ→ 0 or if κ→ κ̄ ∈ (0,∞) (in which case, plainly, A = 1), while if
κ→ +∞ it suffices to apply (5.6) to get A ≤ 2/η + 1. It follows by (5.26) that eventually

κ ≤ −A(logF t(κ) + κ) . (5.27)

Next we show that, for all fixed ε > 0 and 1 < M <∞, eventually one has

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ (1− ε)

(
logF t(κ) + κ

)
, (5.28)
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which means that the sup is approximately attained for y = 1. This is easy if κ → 0 or if
κ→ κ̄ ∈ (0,∞): in fact, since κ→ F t(κ) is non-increasing, we can write

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ log

(
eκMF t(κ)

)
= κM + logF t(κ)

=
(

logF t(κ) + κ
)

+ (M − 1)κ ,

and since logF t(κ) + κ→ −∞ by (5.4), while (M − 1)κ is bounded, (5.28) follows.
To prove (5.28) in the regime κ → ∞, we are going to exploit the assumption (2.13).

First we fix δ > 0, to be defined later, and set n̄ := dM−1
δ e and an := 1+nδ for n = 0, . . . , n̄,

so that [1,M ] ⊆
⋃n̄
n=1[an−1, an]. For all y ∈ [an−1, an] one has, by (2.7),

logF t(κy) ≤ logF t(κan−1) ∼ I+(an−1) logF t(κ) ≤ an−1 logF t(κ) ,

having used that I+(%) ≥ %, by (2.13), hence eventually

logF t(κy) ≤ (1− δ)an−1 logF t(κ) , ∀y ∈ [an−1, an] .

Recalling that an = an−1 +δ, we can write an ≤ (1−δ)an−1 +δ(1+M), because an−1 ≤M
by construction, and since eκy ≤ eκan for y ∈ [an−1, an], it follows that

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ max

n=1,...,n̄

(
anκ+ (1− δ)an−1 logF t(κ)

)
= max

n=1,...,n̄

(
(1− δ)an−1

(
logF t(κ) + κ

)
+ δ(1 +M)κ

)
.

Plainly, the max is attained for n = 1, for which an−1 = a0 = 1. Recalling (5.27), we get

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ (1− δ(1 +A+AM))

(
logF t(κ) + κ

)
.

Choosing δ := ε/(1 +A+AM), the claim (5.28) is proved.
We are ready to give sharp upper bounds on c(κ, t), refining (5.19). For fixedM ∈ (0,∞),

we write
c(κ, t) = E[(eXt − eκ)1{κ<Xt≤κM}] + E[(eXt − eκ)1{Xt>κM}] , (5.29)

and we estimate the first term as follows: by Fubini-Tonelli’s theorem and (5.28),

E[(eXt − eκ)1{κ<Xt≤κM}] = E

[(∫ ∞
κ

ex 1{x<Xt} dx
)
1{κ<Xt≤κM}

]
=

∫ κM

κ
ex P(x < Xt ≤ κM) dx ≤

∫ κM

κ
ex F t(x) dx

= κ

∫ M

1
eκy F t(κy) dy ≤ κ (M − 1) e(1−ε)(logF t(κ)+κ) .

(5.30)

To estimate the second term in (5.29), we start with the cases κ→∞ and κ→ κ̄ ∈ (0,∞),
where we assume that (2.9) holds for some η > 0, as well as (2.16), hence we can fix M > 1

such that I+(M) > 1+η
η . Bounding (eXt − eκ) ≤ eXt , Hölder’s inequality yields

E[(eXt − eκ)1{Xt>κM}] ≤ E[e(1+η)Xt ]
1

1+η F t(κM)
η

1+η = C F t(κM)
η

1+η ,

where C ∈ (0,∞) is an absolute constant, by (2.9). Applying relation (2.7) together with
I+(M) > 1+η

η we obtain
η

1 + η
logF t(κM) ∼ η

1 + η
I+(M) logF t(κ) ≤ logF t(κ) , (5.31)
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hence eventually

log E[(eXt − eκ)1{Xt>κM}] ≤ (1− ε) logF t(κ) ≤ (1− ε)
(

logF t(κ) + κ
)
. (5.32)

Recalling (5.6) and (5.4), eventually κ(M − 1) ≤ e−ε(logF t(κ)+κ), hence by (5.30)

log E[(eXt − eκ)1{κ<Xt≤κM}] ≤ (1− 2ε)
(

logF t(κ) + κ
)
. (5.33)

Looking back at (5.29), since

log(a+ b) ≤ log 2 + max{log a, log b} , ∀a, b > 0 , (5.34)

by (5.32), (5.33) and again (5.4) one has eventually

log c(κ, t) ≤ log 2 + (1− 2ε)
(

logF t(κ) + κ
)
≤ (1− 3ε)

(
logF t(κ) + κ

)
.

Since ε > 0 is arbitrary, this shows that

lim inf
log c(κ, t)

logF t(κ) + κ
≥ 1 , (5.35)

which together with (5.11) completes the proof of (2.14), if κ→∞. Since logF t(κ) + κ ∼
logF t(κ) if κ→ κ̄ ∈ (0,∞), by (5.3), we can rewrite (5.35) in this case as

lim inf
log c(κ, t)

logF t(κ)
≥ 1 , (5.36)

which together with (5.12) completes the proof of (2.17).
It remains to consider the case when κ→ 0, where we assume that relation (2.11) holds

for some η ∈ (0,∞), together with (2.16). As before, we fix M > 1 such that I+(M) > 1+η
η .

Since

E

[(
eXt − eκ

κ

)1+η

1{Xt>κ}

]
≤ E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
≤ C , (5.37)

for some absolute constant C ∈ (0,∞), by (2.11), the second term in (5.29) is bounded by

E[(eXt − eκ)1{Xt>κM}] ≤ κE

[∣∣∣∣eXt − eκκ

∣∣∣∣1+η] 1
1+η

F t(κM)
η

1+η ≤ κC F t(κM)
η

1+η . (5.38)

In complete analogy with (5.31)-(5.32), we obtain that eventually

log
E[(eXt − eκ)1{Xt>κM}]

κ
≤ (1− ε) logF t(κ) . (5.39)

By (5.4), eventually (M − 1) ≤ e−ε(logF t(κ)+κ), hence by (5.30)

log
E[(eXt − eκ)1{κ<Xt≤κM}]

κ
≤ (1− 2ε)(logF t(κ) + κ) . (5.40)

Recalling (5.29) and (5.34), we can finally write

log
c(κ, t)

κ
≤ log 2 + (1− 2ε)

(
logF t(κ) + κ

)
≤ (1− 3ε) logF t(κ) ,

because κ→ 0 and logF t(κ)→ −∞. Since ε > 0 is arbitrary, we have proved that

lim inf
log
(
c(κ, t)/κ

)
logF t(κ)

≥ 1 , (5.41)

which together with (5.13) completes the proof of (2.19).
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Step 4. Upper bounds on p(−κ, t). We are going to prove sharp upper bounds on p(−κ, t),
that will complete the proof of relations (2.21), (2.23) and (2.26).

By (2.1) we can write

p(−κ, t) = E[(e−κ − eXt)1{Xt≤−κ}] ≤ e
−κ Ft(−κ) ,

therefore
log p(−κ, t)

logFt(−κ)− κ
≥ 1 , (5.42)

which together with (5.16) completes the proof of (2.26), if κ→∞. On the other hand, if
κ→ κ̄ ∈ (0,∞), since relation (5.42) implies (recall that κ ≥ 0)

log p(−κ, t)
logFt(−κ)

≥ 1 , (5.43)

in view of (5.17), the proof of (2.23) is completed.
It remains to consider the case κ → 0. If relation (2.11) holds for every η ∈ (0,∞), we

argue in complete analogy with (5.22)-(5.23)-(5.24), getting

lim inf
log
(
p(−κ, t)/κ

)
logFt(−κ)

≥ 1 , (5.44)

which together with (5.18) completes the proof of (2.26). If, on the other hand, relation
(2.11) holds only for some η ∈ (0,∞), we also assume that condition (2.25) holds, hence
we can fix M > 1 such that I−(M) > 1+η

η . Let us write

p(−κ, t) = E[(e−κ − eXt)1{−κM<Xt≤−κ}] + E[(e−κ − eXt)1{Xt≤−κM}] . (5.45)

In analogy with (5.30), for every fixed ε > 0, the first term in the right hand side can be
estimated as follows (note that y 7→ Ft(−κy) is decreasing):

E[(e−κ − eXt)1{−κM<Xt≤−κ}] ≤
∫ −κ
−κM

ex Ft(x) dx = κ

∫ M

1
e−κy Ft(−κy) dy

≤ κ(M − 1)Ft(−κ) ≤ κ e(1−ε) logFt(−κ) .

The second term in (5.45) is estimated in complete analogy with (5.37)-(5.38)-(5.39), yield-
ing

log
E[(e−κ − eXt)1{Xt≤−κM}]

κ
≤ (1− ε) logFt(−κ) .

Recalling (5.34), we obtain from (5.45)

log
p(−κ, t)

κ
≤ log 2 + (1− ε) logFt(−κ) ≤ (1− 2ε) logFt(−κ) ,

and since ε > 0 is arbitrary we have proved that relation (5.44) still holds, which together
with (5.18) completes the proof of (2.26), and of the whole Theorem 2.3. �

5.2. Proof of Theorem 2.7. By Skorokhod’s representation theorem, we can build a
coupling of the random variables (Xt)t≥0 and Y such that relation (2.29) holds a.s.. Since
the function z 7→ z+ is continuous, recalling that γt → 0, for κ ∼ aγt we have a.s.

(eXt − eκ)+

γt
=

(
eY γt(1+o(1)) − 1

γt
− eaγt(1+o(1)) − 1

γt

)+
a.s.−−→
t↓0

(Y − a)+ , (5.46)
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and analogously for κ ∼ −aγt
(eκ − eXt)+

γt

a.s.−−→
t↓0

(−a− Y )+ = (Y + a)− . (5.47)

Taking the expectation of both sides of these relations, one would obtain precisely (2.34).
To justify the interchanging of limit and expectation, we observe that the left hand sides
of (5.46) and (5.47) are uniformly integrable, being bounded in L1+η. In fact

|eXt − eκ|
γt

≤ |e
Xt − 1|
γt

+
|eκ − 1|
γt

,

and the second term in the right hand side is uniformly bounded (recall that κ ∼ aγt by
assumption), while the first term is bounded in L1+η, by (2.31). �

Appendix A. Miscellanea

A.1. About conditions (2.3) and (2.4). Recall from §2.1 that (Xt)t≥0 denotes the risk-
neutral log-price, and assume that Xt → X0 := 0 in distribution as t → 0 (which is
automatically satisfied if X has right-continuous paths). For an arbitrary family of values
of (κ, t), with t > 0 and κ ≥ 0, we show that condition (2.3) implies (2.4).

Assume first that t→ 0 (with no assumption on κ). Since κ ≥ 0, one has (eXt − eκ)+ →
(1−eκ)+ = 0 in distribution, hence c(κ, t)→ 0 by (2.1) and Fatou’s lemma. With analogous
arguments, one has p(−κ, t)→ 0, hence (2.4) is satisfied.

Next we assume that κ→∞ and t is bounded, say t ∈ (0, T ] for some fixed T > 0. Since
z 7→ (z− c)+ is a convex function and (eXt)t≥0 is a martingale, the process ((eXt−eκ)+)t≥0

is a submartingale and by (2.1) we can write

0 ≤ c(κ, t) ≤ E[(eXT − eκ)+] = E[(eXT − eκ)1{XT>κ}] ≤ E[eXT 1{XT>κ}] .

It follows that, if κ → +∞, then c(κ, t) → 0. With analogous arguments, one shows that
p(−κ, t)→ 0, hence condition (2.4) holds.

A.2. About Remark 2.8. Let (St)t≥0 be a positive process which solves (2.36). By Ito’s
formula, the process Xt := logSt solves{

dXt =
√
Vt dWt − 1

2Vt dt
X0 = 0

. (A.1)

Assuming Vt → σ2
0 a.s. as t→ 0, we want to show that

Xt√
t

d−−→
t→0

Y ∼ N(0, σ2
0) . (A.2)

Let us define

Jt :=
1

2
√
t

∫ t

0
Vs ds , It :=

Xt√
t

+ Jt − σ0
Wt√
t

=

∫ t

0

√
Vs − σ0√

t
dWs .

By Vt → σ2
0 a.s. it follows that Jt ∼

√
t

2 σ0 → 0 a.s., by the fundamental theorem of calculus.
Moreover, since

√
Vt → σ0 a.s.,

〈I〉t :=

∫ t

0

|
√
Vs − σ0|2

t
ds ≤ sup

0≤s≤t
|
√
Vs − σ0|2

a.s.−−−→
t→0

0 . (A.3)
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We now use the inequality P(|It| > ε) ≤ δ
ε2

+P(〈I〉t > δ), cf. [KS88, Problem 5.25]. Sending
first t → 0 for fixed δ > 0, and then δ → 0, we see by (A.3) that It → 0 in probability as
t→ 0. Since σ0Wt/

√
t→ Y ∼ N(0, σ2

0) in distribution as t→ 0,† by Slutsky’s theorem

Xt√
t

= It − Jt + σ0
Wt√
t

d−−→
t→0

0 + Y = Y ∼ N(0, σ2
0) ,

hence relation (A.2) holds.
Next we show that, plugging Y ∼ N(0, σ2

0) into (2.35), we obtain C±(a) = σ0 for any
a ≥ 0. Since Y has a symmetric law, it suffices to focus on C+(a). Then

E[(Y − a)+] = σ0 E

[(
N(0, 1)− a

σ0

)+
]

= σ0

[ ∫ ∞
a
σ0

x
e−

x2

2

√
2π

dx − a

σ0

∫ ∞
a
σ0

e−
x2

2

√
2π

dx
]

= σ0

(
φ

(
a

σ0

)
− a

σ0
Φ

(
− a

σ0

))
= aD

(
a

σ0

)
,

(A.4)

where we used the density φ and distribution function Φ of a N(0, 1) random variable, cf.
(4.1), and the definition (2.32) of D. Looking back at (2.35), we obtain C+(a) = σ0. �

A.3. Proof of Lemma 3.3. We start with some estimates. It follows by (3.20) that

Xt
d
= σWt + µt+

Nt∑
i=1

Yi

with Yi ∼ N(α, δ2) and Nt ∼ Pois(λt) (and we agree that the sum equals 0 in case Nt = 0).
By Chernoff’s bound‡ P(Nt > M) ≤ ( eλtM )M , hence

P(Xt > κ) = e−λt
M∑
n=0

P
(
N(µt+ nα, σ2t+ nδ2) > κ

) (λt)n

n!
+ O

((
eλt

M

)M)
, (A.5)

where N(a, b) denotes a Gaussian random variable with mean a and variance b. We recall
the standard estimate log P(N(0, 1) > x) ∼ −1

2x
2 as x→∞. Then we can write:

If t is bounded from above (e.g. t→ t̄ ∈ [0,∞)) and κ→∞,

log P
(
N(µt+ nα, σ2t+ nδ2) > κ

)
∼ − κ2

2(σ2t+ nδ2)
.

(A.6)

In particular, we get from (A.5) that, for fixed M ∈ N,

P(Xt > κ) ∼ e−
κ2

2σ2t
(1+o(1)) +

M∑
n=1

e
− κ2

2(σ2t+nδ2)
(1+o(1)) (λt)n

n!
+O

((
eλt

M

)M)

≤ e−
κ2

2σ2t
(1+o(1)) +M max

n=1,...,M
e−
(

κ2

2nδ2
+n log 1

λt
+logn!

)
(1+o(1)) +O

((
eλt

M

)M)
.

(A.7)

For a lower bound, restricting the sum in (A.5) to a single value n ∈ N, we get

P(Xt > κ) ≥ e−
(

κ2

2(σ2t+nδ2)
+n log 1

λt
+logn!

)
(1+o(1))

. (A.8)

†In fact, the distribution of σ0Wt/
√
t is N(0, σ2

0) for all t > 0.
‡Just apply Markov’s inequality P(Nt > M) ≤ e−MαE[eαNt ] = e−Mα+λt(eα−1) and optimize over α ≥ 0.
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We now prove relation (3.24). We fix a family of (κ, t) with t→ 0 and κ ∼ aκ2(t) for some
a ∈ (0,∞). To get an upper bound, we drop the term log n! in (A.7) (since e− logn! ≤ 1)

and plug κ ∼ a
√

log 1
t , getting

P(Xt > κ) ≤ t
a2

2σ2t
(1+o(1)) +M max

n=1,...,M
t

(
a2

2nδ2
+n
)

(1+o(1)) +O

((
eλt

M

)M)
. (A.9)

Let us denote by n̄a ∈ N the value of n ∈ N for which the minimum in the definition (3.22)
of f(a) is attained. Choosing M ∈ N large enough, so that M ≥ n̄a, the middle term in
(A.9) is tf(a)(1+o(1)) and is the dominating one, provided M > eλ and M > f(a), so that
the third term is� tf(a). For an analogous lower bound, we apply (A.8) with n = n̄a: since
σ2t+ nδ2 ∼ nδ2 (recall that t→ 0), we get

P(Xt > κ) ≥ e− log n̄a! tf(a)(1+o(1)) = (const.) tf(a)(1+o(1)) .

We have thus proved relation (3.24).
It remains to prove relation (3.25). We fix a family of (κ, t) such that either t → 0 and

κ� κ2(t), or t→ t̄ ∈ (0,∞) and κ→∞. Since n! ≥ (n/e)n,

κ2

2nδ2
+ n log

1

λt
+ log n! ≥ κ2

2nδ2
+ n log

n

eλt
≥ inf

x≥0

{
κ2

2δ2x
+ x log

x

eλt

}
.

By direct computation, the infimum is attained at

x̄ ∼ κ

δ
√

2 log κ
t

, (A.10)

which yields
κ2

2nδ2
+ n log

1

λt
+ log n! ≥ κ

δ

√
2 log

κ

t

(
1 + o(1)

)
.

We now choose M = b3x̄c in (A.7), so that

P(Xt > κ) ≤ e−
κ2

2σ2t
(1+o(1)) + 3x̄ e−

κ
δ

√
2 log κ

t
(1+o(1)) +O

((
λt

x̄

)3x̄
)

≤ e−
κ2

2σ2t
(1+o(1)) + e−

κ
δ

√
2 log κ

t
(1+o(1)) +O

(
e−3x̄ log x̄

λt

)
, (A.11)

where we have absorbed 3x̄ inside the o(1) term in the exponential, because log(3x̄) =
o(κ) = o(κ

√
log κ

t ) by (A.10) (recall that κ → ∞). The dominant contribution to (A.11)
is given by the middle term (note that 3x̄ log x̄

λt ∼
3
2
κ
δ

√
2 log κ

t , always by (A.10)). For a
corresponding lower bound, we apply (A.8) with n = bx̄c: since log n! ∼ n log(n/e) and
σ2t+ bx̄cδ2 ∼ bx̄cδ2 (because x̄→∞), we get

P(Xt > κ) ≥ e−
(

κ2

2δ2bx̄c
+bx̄c log 1

λt
+logbx̄c!

)
(1+o(1))

= e
−
(

κ2

2δ2bx̄c
+bx̄c log

bx̄c
eλt

)
(1+o(1))

= e−
κ
δ

√
2 log κ

t
(1+o(1)) .

We have thus shown that

log P(Xt > κ) ∼ −κ
δ

√
2 log

κ

t
,

completing the proof of relation (3.25) and of Lemma 3.3. �
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A.4. Proof of Proposition 4.2. Let us first prove (4.11) and (4.12). Since φ(d2)eκ =
φ(d1), cf. (4.1) and (4.8), recalling (4.2) we can rewrite the Black&Scholes formula (4.7) as
follows:

CBS(κ, v) = φ(d1)
(
U(−d1)− U(−d2)

)
= φ(d1)

(
U(−d1)− U(−d1 + v)

)
. (A.12)

If d1 → −∞, applying (4.3) we get

U(−d1)− U(−d1 + v) = −
∫ −d1+v

−d1

U ′(z) dz ∼
∫ −d1+v

−d1

1

z2
dz =

v

−d1(−d1 + v)
,

and (4.11) is proved. Next we assume that v → 0. By convexity of U(·) (cf. Lemma 4.1),

−U ′(−d1 + v) ≤ U(−d1)− U(−d1 + v)

v
≤ −U ′(−d1) ,

hence to prove (4.12) it suffices to show that U ′(−d1 + v) ∼ U ′(−d1). To this purpose,
by a subsequence argument, we may assume that d1 → d1 ∈ R ∪ {±∞}. Since d1 ≤ v

2

for κ ≥ 0, when v → 0 necessarily d1 ∈ [−∞, 0]. If d1 = −∞, i.e. −d1 → +∞, then
−d1 + v ∼ −d1 → +∞ and U ′(−d1 + v) ∼ U ′(−d1) follows by (4.3). On the other hand, if
d1 ∈ (−∞, 0] then both U ′(−d1) and U ′(−d1 + v) converge to U ′(−d1) 6= 0, by continuity
of U ′, hence U ′(−d1)/U ′(−d1 + v)→ 1, i.e. U ′(−d1 + v) ∼ U ′(−d1) as requested.

Let us now prove (4.10). Assume that min{d1, log v} → −∞, and note that for every
subsequence we can extract a sub-subsequence along which either d1 → −∞ or v → 0. We
can then apply (4.11) and (4.12) to show that CBS(κ, v)→ 0:

• if d1 → −∞, the right hand side of (4.11) is bounded from above by φ(d1)/(−d1)→ 0;

• If κ ≥ 0 and v → 0, then d1 ≤ v
2 → 0 and consequently φ(d1)U ′(−d1) is uniformly

bounded from above, hence the right hand side of (4.12) vanishes (since v → 0).

Finally, we assume that min{d1, log v} 6→ −∞ and show that CBS(κ, v) 6→ 0. Extracting
a subsequence, we have min{d1, log v} ≥ −M for some fixed M ∈ (0,∞), i.e. both v ≥
ε := e−M > 0 and d1 ≥ −M , and we may assume that v → v ∈ [ε,+∞] and d1 → d1 ∈
[−M,+∞]. Consider first the case v = +∞, i.e. v → +∞: by (4.8) one has −d1 + v =
−d2 ≥ v

2 → +∞, hence φ(d1)U(−d1 + v) → 0 (because φ is bounded), and recalling (4.2)
relation (A.12) yields

CBS(κ, v) = Φ(d1)− φ(d1)U(−d1 + v)→ Φ(d1) > 0 .

Next consider the case v < +∞: since d1 ≤ v
2 , we have d1 ≤ v

2 and again by (A.12) we
obtain CBS(κ, v)→ φ(d1)(U(−d1)− U(−d1 + v)) > 0. In both cases, CBS(κ, v) 6→ 0. �
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