
ar
X

iv
:1

50
7.

03
54

9v
2

 [
m

at
h.

O
C

]
 1

6
Ju

l 2
01

5

ON THE TURING MODEL COMPLEXITY OF INTERIOR

POINT METHODS FOR SEMIDEFINITE PROGRAMMING

ETIENNE DE KLERK AND FRANK VALLENTIN

Abstract. It is known that one can solve semidefinite programs to within
fixed accuracy in polynomial time using the ellipsoid method (under some
assumptions). In this paper it is shown that the same holds true when one uses
the short-step, primal interior point method. The main idea of the proof is to
employ Diophantine approximation at each iteration to bound the intermediate
bit-sizes of iterates.

1. Introduction

Semidefinite programming is used in several polynomial-time algorithms, like
the celebrated Goemans-Williamson [3] approximation algorithm for the maximum
cut problem, the algorithm for computing the stability number of a perfect graph
[4], and many others (see e.g. [2]). To give a rigorous proof of the polynomial-time
complexity of such algorithms, one requires a known theorem, due to Grötschel,
Lovász, and Schrijver [4], on the Turing model complexity of solving semidefinite
programs to fixed precision (under some assumptions). In [4], this theorem is
proved constructively by using the ellipsoid method of Yudin and Nemirovski [20]
(inspired by the earlier proof of Khachiyan [8] of the polynomial-time solvability of
linear programming), but our aim here is to do so by using the theory of interior
point methods. Perhaps surprisingly, such a proof has not yet been given to the
best of the authors’ knowledge.

For example, in Chapter 2 of the recent book [2] it is stated that:

[...] the ellipsoid method is the only known method that provably
yields polynomial runtime [for semidefinite programming] in the
Turing machine model [...]

The complexity theorem in question may be stated as follows.

Theorem 1.1 (Grötschel, Lovász, Schrijver [4]). Consider the semidefinite program

(1)
val = inf 〈C,X〉

X ∈ Sn is positive semidefinite,
〈Aj , X〉 = bj for j = 1, . . . ,m,

with rational input C, A1, . . . , Am, and b1, . . . , bm, and where Sn denotes the set of
n× n symmetric matrices. Denote by

F = {X ∈ Sn : X is positive semidefinite, 〈Aj , X〉 = bj for j = 1, . . . ,m}

Date: July 16, 2015.
Key words and phrases. Semidefinite programming, interior point method, Turing model com-

plexity, Ellipsoid method.
The second author was partially supported by VIDI grant 639.032.917 from the Netherlands

Organization for Scientific Research (NWO).

1

http://arxiv.org/abs/1507.03549v2

2 E. de Klerk, F. Vallentin

the set of feasible solutions. Suppose we know a rational point X0 ∈ F and positive
rational numbers r, R so that

X0 +B(X0, r) ⊆ F ⊆ X0 +B(X0, R),

where B(X0, r) is the ball of radius r, centered at X0, in the d-dimensional subspace

L = {X ∈ Sn : 〈Aj , X〉 = 0 for j = 1, . . . ,m}.
For every positive rational number ǫ > 0 one can find in polynomial time a rational
matrix X∗ ∈ F such that

〈C,X∗〉 − val ≤ ǫ,

where the polynomial is in n, m, log2
R
r , log2(1/ǫ), and the bit size of the data X0,

C, A1, . . . , Am, and b1, . . . , bm.

Here 〈X,Y 〉 = Trace(XY) denotes the trace inner product for symmetric ma-
trices, and hence, when we talk about the ball B(X0, r) or B(X0, R) we work with
the associated Frobenius norm

‖X‖F = 〈X,X〉1/2.
We will show that the analysis by Renegar [12] of the short step interior point al-

gorithm, together with applying Diophantine approximation at every step to ensure
that the bit size stays small, leads to a proof of Theorem 1.1.

There is also a practical aspect to the results in this paper. Semidefinite pro-
gramming is increasingly used in computer-assisted proofs. Thus new theoretical
results have been obtained in this way for binary code sizes [14], crossing numbers
of graphs [1], binary sphere packings [15], and other problems. To obtain rigorous
proofs, it is necessary to give a formal verification of the relevant semidefinite pro-
gramming bound. Usually this is done by computing dual bounds using floating
point arithmetic, and then showing rigorously that the corresponding dual solutions
are feasible. This type of “reverse engineering” can be quite cumbersome; see e.g.
the discussion in [15, Section 5.3]. Moreover, the semidefinite programs involved
are often numerically ill-conditioned, and it may be difficult or impossible to ob-
tain a near-optimal solution with off-the-shelf solvers; see e.g. [9]. It is therefore of
practical interest to understand what may be done in polynomial time when using
exact arithmetic. We note that there already exists an arbitrary precision solver,
SDPA-GMP (see [19] and the references therein) that uses the GNU multi-precision
linear algebra library. The algorithmic ideas presented here may potentially be used
to enhance such a solver to improve its performance, by ensuring that it runs in
polynomial time, i.e. that the intermediate bit-sizes do not become excessively large.

Finally, one should note that there have been several papers studying the com-
plexity of interior point methods using finite precision arithmetic (allowing only a
fixed number of bits for calculations); see e.g. [16, 18, 6]. For the Turing model
complexity though, the only results known to us concern interior point methods for
linear programming; see e.g. the original paper by Karmarkar [7], or the review in
the book of Wright [17].

2. Preliminaries

In this section we set up the notation for the paper. Since we follow Renegar’s
proof we mainly use his notation.

On the Turing model complexity of interior point methods for semidefinite programs 3

2.1. SDP problem structure and notation.

• We will denote matrices (and matrix variables) by capital letters, and gen-
eral vectors (or variables) by lower case letters.
• By Sn we denote the

(

n+1
2

)

-dimensional vector space of symmetric matrices
which is endowed with the trace inner product 〈X,Y 〉 = Trace(XY). The
corresponding norm is the Frobenius norm

‖X‖F = 〈X,X〉1/2 =

n
∑

i=1

λi(X)2,

where λi(X) is the i-th largest eigenvalue of the symmetric matrix X . By
Sn�0 we denote the closed convex cone of positive semidefinite matrices, and
Sn≻0 is the open cone of positive definite matrices. If the matrix size is clear
from the context, we will sometimes write X ≻ 0 (resp. X � 0) instead of
X ∈ Sn≻0 (resp. X ∈ Sn�0).

• The semidefinite program (1) defines the linear operator A : Sn → Rm

componentwise by

(AX)j = 〈Aj , X〉, with j = 1, . . . ,m.

Its adjoint operator A∗ : Rm → Sn is

A∗y =

m
∑

j=1

yjAj ,

where we take the adjoint with respect to the trace inner product. From
now on we assume that A is surjective. Hence, the adjoint A∗ is injective,
and the matrices A1, . . . , Am are linearly independent.

The kernel of A is the linear subspace

L = kerA = {X ∈ Sn : AX = 0}

and the matricesA1, . . . , Am form a basis of the orthogonal complement L⊥.
The orthogonal projection onto the subspace L is given by

πL = ISn −A∗(AA∗)−1A,

where ISn is the identity operator for Sn.
• We may (and will) assume that C ∈ L, without loss of generality. Indeed,
every feasible X ∈ F may be written as X = X0 +∆X for some ∆X ∈ L,
so that

〈C,X〉 = 〈C,X0〉+ 〈C,∆X〉
= 〈C − πL(C) + πL(C), X0〉+ 〈πL(C),∆X〉
= 〈C − πL(C), X0〉+ 〈πL(C), X〉.

Thus we may replace C by πL(C) if necessary. Moreover, the bit-size of
πL(C) is bounded by a polynomial in the bit-size of C and A, due to
Theorem 2.3 below.

4 E. de Klerk, F. Vallentin

2.2. Polynomial-time operations. For ease of reference, we will use the frame-
work in the book of Schrijver [13] when discussing complexity. In particular, we
use the same definition for the bit-size of rational numbers, vectors and matrices
as in [13, §2.1], and we will denote bit-size by size(·). In particular, for relatively
prime p, q ∈ Z, we define the bit-size of the rational number p/q as:

size(p/q) = 1 + ⌈log2 |p|+ 1⌉+ ⌈log2 |q|+ 1⌉.
The bit size of a rational vector (p1/q1, . . . , pn/qn) is defined as the sum of the bit
sizes of its components plus n. Similarly, the bit size of an m× n matrix is defined
as the sum of the bit sizes of its components plus m× n.

Diophantine approximation. We will perform a “rounding” procedure at the end
of each iteration to reduce the bit-size of the iterate, and will use Diophantine
approximation for this.

Theorem 2.1 (cf. Corollary 6.2a in [13]). Let α and 0 < ǫ ≤ 1 be given rational
numbers. Then one may find, in time polynomial in the bit size of α, integers p
and q such that

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
ǫ

q
and 1 ≤ q ≤ 1

ǫ
, |p| ≤ ⌈|α|⌉q.

The underlying algorithm is the continued fraction method; see page 64 in [13]
for a description of the algorithm.

As an immediate corollary, one may approximate a rational vector α ∈ Qn

componentwise by a rational vector (p1/q1, . . . , pn/qn) such that

(2)

∥

∥

∥

∥

(α1, . . . , αn)−
(

p1
q1

, . . . ,
pn
qn

)∥

∥

∥

∥

2

< ǫ

n
∑

i=1

1

qi
, ∀i : 1 ≤ qi ≤

1

ǫ
, |pi| ≤ ⌈|αi|⌉qi,

in time polynomial in the bit-size of the vector α.
We restate this result in a form that we will need later.

Corollary 2.2. Given a rational vector α ∈ Qn and rational ǫ > 0, one may
compute in time polynomial in size(α) integers p1, . . . , pn and q1, . . . , qn such that

(3)

∥

∥

∥

∥

(α1, . . . , αn)−
(

p1
q1

, . . . ,
pn
qn

)∥

∥

∥

∥

2

< ǫ,

such that

size(p1/q1, . . . , pn/qn) ≤ n

(

6 + log2

(

n2⌈‖α‖∞⌉
ǫ2

))

.

Proof. Assume the integers pi, qi (i ∈ {1, . . . , n}) satisfy (2). For each i one has

|pi| ≤ ⌈|αi|⌉qi ≤ ⌈‖α‖∞⌉qi ≤ ⌈‖α‖∞⌉
1

ǫ
.

Thus

size(pi/qi) = 1 + ⌈log2 |pi|+ 1⌉+ ⌈log2 |qi|+ 1⌉

≤ 1 +

⌈

log2
⌈‖α‖∞⌉

ǫ
+ 1

⌉

+

⌈

log2
1

ǫ
+ 1

⌉

≤ 5 + log2
⌈‖α‖∞⌉

ǫ2
.

On the Turing model complexity of interior point methods for semidefinite programs 5

As a consequence

size(p1/q1, . . . , pn/qn) = n+
n
∑

i=1

size(pi/qi) ≤ n

(

6 + log2

(⌈‖α‖∞⌉
ǫ2

))

.

Using (2),
∑n

i=1
1
qi
≤ n, and replacing ǫ by ǫ/n completes the proof. �

Linear algebra. Each iteration of the short-step interior point algorithm involves
some linear algebra operations, and we will use the following results to ensure that
this may be done in polynomial time.

Theorem 2.3. The following operations on matrices may be performed in polyno-
mial time (in the bit sizes of the matrices and vectors):

(1) Matrix addition and multiplication;
(2) Matrix inversion;
(3) Solving linear systems with Gaussian elimination;
(4) Computing an orthogonal basis (using Gaussian elimination and Gram-

Schmidt orthogonalization) of a nullspace {x : Ax = 0} where the rational
matrix A is given.

For a proof, see e.g. Theorem 3.3 and Corollary 3.3a in [13].
The last item implies that we may compute an orthogonal basis for L (the

nullspace of A), so that we may represent any feasible point X ∈ F as X =

X0 +
∑d

i=1 xiBi, say, where the xi are scalars and the Bi’s are suitable symmetric
matrices of size polynomial in the input size that form an orthogonal basis for L.
We may also assume without loss of generality that ‖Bi‖F ≤ 1 for each i. This is
important, since we will study perturbations (roundings) of the form X̄ = X+∆X ,

where X ∈ F and ∆X ∈ L. Writing ∆X =
∑d

i=1 ∆xiBi, one then has ‖∆X‖F ≤
‖∆x‖2. In other words, we may bound the size of the perturbation in Sn in terms
of the corresponding perturbation in Rd.

2.3. Self-concordant barrier functions. We will use the definition of self-con-
cordant functions due to Renegar [12], that is more suited to our purposes than the
original definition of Nesterov and Nemirovski [11]. In what follows, f is a convex
functional with open convex domain Df (contained in a finite-dimensional, real
affine space), and the gradient and Hessian of f at x ∈ Df will be denoted by g(x)
and H(x) respectively. Note that the gradient and Hessian depend on the inner
product we choose for the underlying vector space; see §1.2 and §1.3 in Renegar
[12] for more details.

Definition 2.4 (cf. §2.2.1 in [12]). Assume f : Df → R (with Df open and convex)
is such that H(x) ≻ 0 for all x ∈ Df . Then f is called self-concordant if:

(1) For all x ∈ Df one has Bx(x, 1) ⊆ Df ;
(2) For all y ∈ Bx(x, 1) one has

1− ‖y − x‖x ≤
‖v‖y
‖v‖x

≤ 1

1− ‖y − x‖x
for all v 6= 0,

where ‖v‖x := 〈v,H(x)v〉 12 is called the intrinsic (or local) norm of v, and Bx(x, 1)
is the unit ball, centered at x, with respect to the intrinsic norm.

6 E. de Klerk, F. Vallentin

A self-concordant functional f is called a self-concordant barrier if there is a
finite value ϑf so that

ϑf = sup
x∈Df

‖H−1g(x)‖x,

that is, the intrinsic norm (at x) of the Newton step n(x) := −H(x)−1g(x) is
always upper bounded by ϑf . The analytic center of Df is defined as the (unique)
minimizer of f . (The analytic center exists if and only if Df is bounded.)

The self-concordant barrier function of the semidefinite program (1) is

(4) f(X) = − ln detX with domain Df = Sn≻0 ∩ {X ∈ Sn : AX = b}.

For this barrier function one has ϑf ≤ n; see [12, §2.3.1]. Its gradient (with respect
to the trace inner product) is

g(X) = −πL(X
−1),

and its Hessian is

H(X)Y = πL(X
−1Y X−1) with Y ∈ L.

The local norm for Y ∈ L at X ∈ Df is defined as

‖Y ‖X = 〈Y,H(X)Y 〉1/2.

For easy reference, we note that the self-concordance of the function f in (4) implies
that for all X ∈ Df we have BX(X, 1) ⊆ Df and that for all Y ∈ BX(X, 1) we
have

(5) 1− ‖Y −X‖X ≤
‖V ‖Y
‖V ‖X

≤ 1

1− ‖Y −X‖X
for all V ∈ L \ {0},

where BX(Y, r) denotes the open ball of radius r centered at Y in the local norm
‖ · ‖X .

2.3.1. Properties of self-concordant functions. We will need the following three
technical results (and one corollary) on self-concordant functions.

Theorem 2.5 (Theorem 2.2.3 in [12]). Assume f self-concordant and x ∈ Df . If
z minimizes f and z ∈ Bx(x, 1) then

x+ := x−H(x)−1g(x)

satisfies

‖x+ − z‖x ≤
‖x− z‖2x

1− ‖x− z‖x
.

A useful, and immediate, corollary is the following.

Corollary 2.6. Under the assumptions of Theorem 2.5, one has

‖n(x)‖x := ‖H(x)−1g(x)‖x ≤
‖x− z‖x

1− ‖x− z‖x
.

On the Turing model complexity of interior point methods for semidefinite programs 7

Proof. By definition,

‖n(x)‖x = ‖x+ − x‖x
≤ ‖x+ − z‖x + ‖z − x‖x

≤ ‖x− z‖2x
1− ‖x− z‖x

+ ‖x− z‖x (by Theorem 2.5)

=
‖x− z‖x

1− ‖x− z‖x
,

as required. �

The other two technical results are the following.

Theorem 2.7 (Theorem 2.2.4 in [12]). Assume f self-concordant and x ∈ Df such
that ‖n(x)‖x ≤ 1. Then

‖n(x+)‖x+ ≤
(‖n(x)‖x
1− ‖n(x)‖x

)2

.

Theorem 2.8 (Theorem 2.2.5 in [12]). Assume f self-concordant and x ∈ Df such
that ‖n(x)‖x ≤ 1/4. Then f has a minimizer z and

‖z − x+‖x ≤
3‖n(x)‖2x

(1− ‖n(x)‖x)3
.

Thus (triangle inequality):

‖x− z‖x ≤ ‖n(x)‖x +
3‖n(x)‖2x

(1− ‖n(x)‖x)3
.

3. The short-step, logarithmic barrier algorithm

We consider a generalisation of our SDP problem, given by

val := min
x∈cl(Df)

〈c, x〉,

where c is a given vector, f is a self-concordant barrier with open domain Df , and
cl(Df) denotes the closure of Df . As before, the gradient and Hessian of f at
x ∈ Df are respectively denoted by g(x) and H(x).

For the SDP problem (1), f(X) = − ln det(X) with domain Df = {X ≻ 0 :
X ∈ F}, but Algorithm 1 below is valid for a general self-concordant barrier.

Define, for given η > 0,

fη(x) := η〈c, x〉+ f(x),

and denote by nη(x) = −H(x)−1(ηc+ g(x)) the (projected) Newton direction at x
for fη.

The analytic curve, parameterized by η > 0, where η is mapped to the unique
minimizer of fη, is called the central path.

The complexity of the short step algorithm is described in the following theorem,
that is originally due to Nesterov and Nemirovski [11].

Theorem 3.1 (cf. p. 47 in [12]). The short step algorithm terminates after at most

k =

⌈

10
√

ϑf ln

(

7ϑf

6η1ǫ

)⌉

8 E. de Klerk, F. Vallentin

Algorithm 1 Short step algorithm

Require: an x1 ∈ Df and η1 > 0 such that ‖nη1
(x1)‖x1

≤ 1
4 . An accuracy

parameter ǫ > 0.
k ← 1
while

ϑf

ηk
> ǫ do

Set xk+1 = xk + nηk
(xk)

Set ηk+1 =

(

1 + 1

8
√

ϑf

)

ηk

k ← k + 1.
end while

iterations. The output is a feasible point xk such that

〈c, xk〉 − val ≤ ǫ.

Some remarks on the steps in the algorithm.

• For the SDP problem (1), the projected Newton direction is obtained by
first solving the following linear system:

(6) My = v

where

Mij = Trace(XAiXAj), (i, j ∈ {1, . . . ,m})
and

vi = −bi + ηTrace(AiXCX), (i ∈ {1, . . . ,m}).
(We drop the subscript k that refers to the iteration number here for con-
venience.) Subsequently, the projected Newton direction is given by

(7) nη(X) = X(A∗y)X +X − ηXCX.

The matrix M is positive definite (and hence nonsingular) under the as-
sumption that {A1, . . . , Am} are linearly independent. One may bound the
sizes of M and v in (6) as follows:

size(Mij) ≤ size(XAi) + size(AjX)

≤ n(size(X) + size(Ai)) + n(size(X) + size(Aj)),

so that

size(M) ≤ m2(1 + 2n size(X)) + 2mn

m
∑

i=1

size(Ai).

Similarly,

size(v) ≤ m+ 2mn size(X) +mn size(C) + 2n
m
∑

i=1

size(Ai) + size(b) +m size(η).

As a consequence, the projected Newton direction may be computed in
time polynomial in the bit sizes of X , η and the data A, b and C. Thus one
may perform a constant number of iterations in polynomial time. We will
show how to truncate the current iterate X at the end of each iteration,
using Diophantine approximation, in order to guarantee that the bit-size of
the iterates remains suitably bounded throughout.

On the Turing model complexity of interior point methods for semidefinite programs 9

• The square root
√

ϑf that appears in the statement of the algorithm may

be replaced by any larger number, e.g. ⌈
√

ϑf⌉. The only change to the

complexity is that
√

ϑf should then be replaced by the corresponding larger
value in the statement of Theorem 3.1.
• By construction, each iterate xk satisfies ‖nηk

(xk)‖xk
≤ 1

4 , and after the
Newton step one therefore has

(8) ‖nηk
(xk+1)‖xk+1

≤ 1

9
,

by Theorem 2.7. As a result, after setting ηk+1 =

(

1 + 1

8
√

ϑf

)

ηk, one

again has ‖nηk+1
(xk+1)‖xk+1

≤ 1
4 ; see [12, p. 46] for details. Since we will

apply rounding (using Diophantine approximation) to the iterates later on,
we will need to ensure that (8) still holds after rounding xk+1.
• An issue that needs to be resolved is the initialization question, i.e. finding
x1 ∈ Df and η1 > 0 (of suitable bit size) such that ‖nη1

(x1)‖x1
≤ 1

4 . This
is addressed in the next section.

4. Initialization

Assume now — again in the setting of a general self-concordant barrier f — that
we only know a rational starting point x′ ∈ Df . We will use a two phase procedure,
where we first solve an auxiliary problem to obtain a suitable starting point for the
short step algorithm. The procedure here follows Renegar [12, §2.4].

Auxiliary problem. For a given parameter ν > 0, we consider the auxiliary
problem where we minimize:

f ′
ν(x) := −ν〈g(x′), x〉+ f(x).

Note that x′ is on the central path of the auxiliary problem and corresponds to
ν = 1.

Now use the short step algorithm, reducing ν at each iteration via

νk+1 =

(

1− 1

8
√

ϑf

)

νk.

Remarks:

• The central path of the auxiliary problem passes through x′ and converges
to the analytic center of Df as ν ↓ 0.
• Once ν is small enough, we may use the current value of x as a starting
point for the original short step algorithm.
• After

k ≥ 10
√

ϑf ln

(

7

6ǫ′

)

,

iterations, we have νk ≤ ǫ′, by Theorem 3.1.
• In the SDP case of problem (1), one has x′ = X0 and g(x′) = −πL(X

−1
0),

that has bit-size polynomial in the input size, by Theorem 2.3.
• A suitable choice for ǫ′ that provides a starting point for the second phase
depends on the (Minkowski) symmetry of Df around x′.

10 E. de Klerk, F. Vallentin

Definition 4.1 (Symmetry of D around x). Let D be a bounded open convex set
and x ∈ D. Let L(x,D) denote the set of lines that pass through x. For any
ℓ ∈ L(x,D), let r(ℓ) denote the ratio of the shorter to the longer line segments
ℓ ∩ (D \ {x}). Finally define the symmetry of D around x as

sym(x,D) := inf
ℓ∈L(x,D)

r(ℓ).

A suitable value for ǫ′ is now given by

(9) ǫ′ =
1

18ϑf(1 + 1/ sym(x′, Df))
.

At this point one may start the short step algorithm using x1 equal to the last
iterate produced by solving the auxiliary problem, and

(10) η1 =
1

12‖H(x1)−1c‖x1

≥ 1

12

(

sup
x∈Df

〈c, x〉 − val

)

.

See §2.4 in [12] for more details and proofs.
The combined complexity of this two-phase procedure is given by the following

theorem. The proof is easily extracted from the proof of Theorem 2.4.1 in [12].

Theorem 4.2 (cf. Theorem 2.4.1 in [12]). Assume f ∈ SCB and Df bounded.
Assume a starting point x′ ∈ Df . If 0 < ǫ < 1, then within

10
√

ϑf ln

(

294ϑ2
f

ǫ

(

1

1 + sym(x′, Df)

)

)

iterations, all points x computed thereafter satisfy

〈c, x〉 − val ≤ ǫ

(

sup
x∈Df

〈c, x〉 − val

)

.

For the SDP problem (1) we now assume, as in Theorem 1.1, that we have a
rational X0 ∈ F , and that we know rational r > 0 and R > 0 so that X0 +
B(X0, r) ⊂ F ⊂ X0 +B(X0, R). Note that this implies:

(11) sym(X0,F) ≥
r

R
.

5. An upper bound on the norm of the dual central path

In this section we give an upper bound on the norm of the dual central path.
Our analysis is based on a standard argument for the existence and uniqueness of
the central path; see e.g. [10, Proof of Theorem 10.2.1].

Recall that the (primal-dual) central path is the curve η 7→ (X(η), S(η), y(η)),
with η > 0, defined as the unique solution of

AX = b, A∗y + S = C, XS =
1

η
I, X ≻ 0, S ≻ 0,

where I denotes the identity matrix.

Lemma 5.1. Under the assumptions stated in Theorem 1.1 we have

(12) ‖S(η)‖F ≤
√
n

(1− 1/e)r

(

〈X0, C + 2‖C‖∞I〉+ n

rη2

)

,

On the Turing model complexity of interior point methods for semidefinite programs 11

where

‖C‖∞ = max
i=1,...,n

n
∑

j=1

|Cij |

is the maximum row sum norm of C.

Proof. By assumption X0 is a strictly feasible solution of the primal and without
loss of generality we may assume that S0 = C + 2‖C‖∞I is a strictly feasible
solution of the dual; otherwise we add the constraint

〈I,X〉 ≤ 〈I,X0〉+
√
nR

to the semidefinite program (1) which is redundant since

〈I,X −X0〉 ≤ (〈I, I〉〈X −X0, X −X0〉)1/2 ≤
√
nR.

Note that S0 is indeed positive definite, since it is strictly diagonally dominant.
We may characterize S(η) as the unique minimizer of the function

S 7→ 〈X0, S〉 −
1

η
ln detS

over the set {S : S = C −A∗y, S ≻ 0, y ∈ Rm}.
As in [10, Proof of Theorem 10.2.1], we define the set

U =
{

S : S = C −A∗y, S ≻ 0, y ∈ Rm,

〈X0, S〉 −
1

η
ln detS ≤ 〈X0, S0〉 −

1

η
ln detS0

}

.

Clearly, U contains S(η).
If σ > 0 denotes the smallest eigenvalue of X0, then, for all S ∈ U :

σ〈I, S〉 − 1

η
ln detS ≤ 〈X0, S0〉 −

1

η
ln detS0,

because σ〈I, S〉 ≤ 〈X0, S〉. Now we write the previous inequality in terms of the
eigenvalues λi(S) of S:

n
∑

i=1

(

σλi(S)−
1

η
lnλi(S)

)

≤ 〈X0, S0〉 −
1

η
ln detS0.

Defining the function

φ(λ) = σλ − 1

η
lnλ, for λ > 0,

which is convex and has minimizer λ∗ = 1
ση with minimum value φ(λ∗) = 1

η

(

1− ln 1
ση

)

,

one has

φ (λi(S)) ≤ 〈X0, S0〉 −
1

η
ln detS0 − (n− 1)φ(λ∗) for i = 1, . . . , n.

By the convexity of φ and by approximating φ about the point eλ∗ we have

φ(λ) ≥ φ(eλ∗) + φ′(eλ∗)(λ− eλ∗) = (1 − 1/e)σλ− 1

η
ln

1

ση
.

12 E. de Klerk, F. Vallentin

Hence,

λi(S) ≤
1

(1− 1/e)σ

(

〈X0, S0〉 −
1

η
ln detS0 − (n− 1)φ(λ∗) +

1

η
ln

1

ση

)

≤ 1

(1− 1/e)σ

(

〈X0, S0〉 −
2n− 1

η
+

n

ση2

)

≤ 1

(1− 1/e)r

(

〈X0, S0〉+
n

rη2

)

for i = 1, . . . , n,

where the first inequality follows from detS0 ≥ 1 and lnx ≤ x − 1, and where the
second inequality follows because σ ≥ r.

The last estimate now immediately implies the statement of the lemma:

‖S(η)‖F ≤
√
n

(1− 1/e)r

(

〈X0, S0〉+
n

rη2

)

.

�

Note that the bound on ‖S(η)‖F depends on the value of η. It is therefore
necessary to consider the range of values that η can take (and ν during the first
phase of the auxiliary problem). During the first phase (auxiliary problem), initially

ν1 = 1, which is subsequently decreased via νk+1 =

(

1− 1

8
√

ϑf

)

νk. It is simple to

show that during each iteration k of the first phase,

1 ≥ νk ≥ ǫ′,

where ǫ′ is defined in (9), which in turn implies

(13) 1 ≥ νk ≥
1

18n(1 +R/r)
,

where we have used (9) and (11).
Similarly, during each iteration k of the second phase

1

12

(

sup
X∈Df

〈C,X〉 − val

)

≤ ηk ≤
ϑf

ǫ
,

which implies

(14)
1

6
r‖C‖F ≤ ηk ≤

n

ǫ
,

since B(X0, r) ⊆ F and ϑf ≤ n.

6. Rounding the current iterate

We will round the current iterate X ∈ F (we again drop the subscript for con-
venience) at the end of each iteration to obtain a feasible X̄ = X + ∆X , say,
with suitably bounded bit-size, and where the ”rounding error” ∆X ∈ L satisfies
‖∆X‖X ≤ ǫ̃ for some suitable value ǫ̃ > 0.

After the Newton step, but before the update of η, we assume that

‖X −X(η)‖X ≤ c′

where c′ > 0 is a known constant.

On the Turing model complexity of interior point methods for semidefinite programs 13

By the definition of self-concordance:

‖X̄ −X(η)‖X̄ ≤ 1

1− ‖∆X‖X
‖X +∆X −X(η)‖X

≤ 1

1− ǫ̃
‖X +∆X −X(η)‖X

≤ 1

1− ǫ̃
‖X −X(η)‖X +

1

1− ǫ̃
‖∆X‖X

≤ c′ + ǫ̃

1− ǫ̃
.

Thus, if ǫ̃ = 1
16 , and c′ = 1

32 then ‖X̄ −X(η)‖X̄ ≤ 1
10 . Consequently, by Corollary

2.6, one has ‖nη(X̄)‖X̄ ≤ 1
9 , as required (recall (8)).

We may ensure that ‖X −X(η)‖X ≤ 1
32 during the course of the algorithm by

taking an extra centering step. Indeed, if we still denote the iterate by X after an
extra centering step, one has ‖nη(X)‖X ≤ 1/64 (by Theorem 2.7). Consequently,
by Theorem 2.8, one has

‖X −X(η)‖X ≤ ‖nη(X)‖X +
3‖nη(X)‖2X

(1− ‖nη(X)‖X)3
<

1

32
.

Note that X̄ ≻ 0 since ‖X − X̄‖X ≤ 1
16 < 1, and the definition of self-concordance

guarantees that the unit ball in the X-norm centered at X is contained in the
positive definite cone.

The task is therefore to find X̄ = X + ∆X with bounded bit-size and so that
‖∆X‖X ≤ 1

16 .
It will be more convenient to bound the X(η)-norm of ∆X than the X-norm.

As a first observation, using the definition of self-concordance,

‖X −X(η)‖X(η) ≤ ‖X −X(η)‖X
1− ‖X(η)−X‖X

≤ ‖X −X(η)‖X
1− 1

32

=
32

31
‖X −X(η)‖X .

Invoking the definition of self-concordancy once more, we obtain:

‖∆X‖X ≤ ‖∆X‖X(η)

1− ‖X(η)−X‖X(η)

≤ ‖∆X‖X(η)

1− 32
31‖X(η)−X‖X

≤ ‖∆X‖X(η)

1− 32
31 · 1

32

=
31

30
‖∆X‖X(η).

Thus if we show that ‖∆X‖X(η) ≤ 30
31×16 then we guarantee that ‖∆X‖X ≤ 1

16 .

14 E. de Klerk, F. Vallentin

Note that

‖∆X‖2X(η) ≤ 〈∆X,X(η)−1∆XX(η)−1〉
= η2〈∆X,S(η)∆XS(η)〉
≤ η2‖∆X‖2F‖S(η)‖2F ,

where the inner product is the Euclidean (trace) inner product, and we have used
the sub-multiplicativity of the Frobenius norm.

Recall that ‖S(η)‖F is bounded by (12) (Lemma 5.1).
We may now use Diophantine approximation so that

(15)

‖∆X‖F ≤
30

31× 16

(

ν

√
n

(1− 1/e)r

(

〈X0,−πL(X
−1
0) + 2‖πL(X

−1
0)‖∞I〉+ n

rν2

)

)−1

,

during the first phase of the algorithm, and

(16) ‖∆X‖F ≤
30

31× 16

(

η

√
n

(1 − 1/e)r

(

〈X ′, C + 2‖C‖∞I〉+ n

rη2

))−1

,

during the second phase, where X ′ is the last iterate produced by the first phase.
Due to the upper and lower bounds on ν in (13), (15) will hold if ‖∆X‖F ≤ ǫ1,

where

1

ǫ1
:=

17
√
n

(1 − 1/e)r

(

〈X0,−πL(X
−1
0) + 2‖πL(X

−1
0)‖∞I〉+ n(18n(1 +R/r))2

r

)

,

during the first phase, and (16) will hold if, during the second phase,

‖∆X‖F ≤
(

17(
√
n)3

(1 − 1/e)rǫ

(

〈X ′, C + 2‖C‖∞I〉+ 36n

r3‖C‖2F

))−1

.

To obtain a right-hand-side expression in terms of the input data only, we may use
‖X ′ −X0‖F ≤ R. Thus we find that the last inequality will hold if ‖∆X‖F ≤ ǫ2,
where

1

ǫ2
:=

17(
√
n)3

(1 − 1/e)rǫ

(

(R + ‖X0‖F)‖C + 2‖C‖∞I‖F +
36n

r3‖C‖2F

)

.

Setting ǭ = min{ǫ1, ǫ2}, implies that log2
(

1
ǭ

)

is bounded by a polynomial in the
input size.

Performing Diophantine approximation in the d-dimensional space L yields a
rational X̄ so that ‖∆X‖F ≤ ǭ and

(17) size(X̄) ≤ d

(

6 + log2

(

d2⌈R⌉
ǭ2

))

,

by Corollary 2.2.
Thus the size of X̄ is always bounded by a certain polynomial in the input size.

7. Summary and conclusion

To summarize, we list the complete procedure in Algorithm 3. The main subrou-
tine (used twice) is a short step algorithm with extra centering step and Diophantine
approximation, shown as Algorithm 2.

In particular, we have shown the following.

On the Turing model complexity of interior point methods for semidefinite programs 15

Algorithm 2 Short step algorithm with extra centering and Diophantine approx-
imation

Require:

• Problem data (A, b, c);
• an x1 ∈ Df and η1 > 0 such that ‖nη1

(x1)‖x1
≤ 1

4 ;
• an accuracy parameter ε > 0;
• an update parameter θ > 0;

k ← 1
while (1−θ)

ηk
> (1− θ)ε do

Set x+ = xk + nηk
(xk)

Set xk+1 = x+ + nηk
(x+)

Round xk+1 using Diophantine approximation, so that size(xk+1) is bounded
as in (17), and ‖nηk

(xk+1)‖xk+1
≤ 1

9
Set ηk+1 = θ · ηk
k ← k + 1

end while

Algorithm 3 Two-phase short step algorithm with Diophantine approximation

Require:

• SDP problem data (A, b, c) and X0 ∈ F ;
• an accuracy parameter ǫ > 0;
• rational R > r > 0 as in Theorem 1.1.

First phase (auxiliary problem):
Set c = −πL(X

−1
0), η1 = 1, x1 = X0, ε =

1
18ϑf (1+R/r) , θ = 1 + 1

8
√

ϑf

Call Algorithm 2 with input (A, b, c, x1, η1, ε, θ)
Second phase:
Set c = C, η1 as in (10), x1 equal to the last iterate of the first phase, ε = ǫ/ϑf ,
θ = 1− 1

8
√

ϑf

Call Algorithm 2 with input (A, b, c, x1, η1, ε, θ)

Theorem 7.1. Under the assumptions of Theorem 1.1, Algorithm 3 computes in
polynomial time a rational matrix X∗ ∈ F such that

〈C,X∗〉 − val ≤ ǫ

(

max
X∈F
〈C,X〉 − val

)

,

where the polynomial is in n, m, log2 r, log2 R, log2(1/ǫ), and the bit size of the
data X0, C, A1, . . . , Am, and b1, . . . , bm.

The analysis presented here may also be performed for more practical variants
of the interior point method, such as the long-step (large update) method; see e.g.
Chapter 2 in [12]. Moreover, since all computations in Algorithm 3 involve linear
algebra only (Diophantine approximation may also be implemented as such), there
are definite practical perspectives for implementing Algorithm 3 (or a more prac-
tical variant), using arbitrary precision packages, like the GNU Multiple Precision
Arithmetic Library (GMP) (https://gmplib.org/), that is already used in the
solver SDPA-GMP [19].

https://gmplib.org/

16 E. de Klerk, F. Vallentin

References

[1] E. de Klerk, D.V. Pasechnik, A. Schrijver. Reduction of symmetric semidefinite programs

using the regular *-representation. Math. Program., Ser. B, 109 (2007), 613–624.
[2] B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite Programming,

Springer, 2012.
[3] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995),
1115–1145.

[4] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981), 169–197.
[5] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-

mization, Springer, 1988.
[6] M. Gu, Primal-dual interior-point methods for semidefinite programming in finite precision,

SIAM J. Optim. 10 (2000) 462–502.
[7] N.K. Karmarkar, A new polynomial–time algorithm for linear programming, Combinatorica

4 (1984), 373–395.
[8] L. Khachiyan. A polynomial time algorithm in linear programming, Soviet Mathematics Dok-

lady 20 (1979), 191–194.
[9] H.D. Mittelmann and F. Vallentin, High accuracy semidefinite programming bounds for kiss-

ing numbers, Experiment. Math. 19 (2010), 174–178.
[10] R.D.C. Monteiro and M.J. Todd, Path-following methods, pages 268–306 in Handbook of

Semidefinite Programming: Theory, Algorithms, and Applications (H. Wolkowicz, R. Saigal,
L. Vandenberghe (eds.)), Kluwer, 2000.

[11] Yu. Nesterov and A.S. Nemirovski, Interior point polynomial algorithms in convex program-

ming. SIAM, 1994.
[12] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization, SIAM,

2001.

[13] A. Schrijver, Theory of Linear and Integer Programming, John Wiley 1998.
[14] A. Schrijver, New code upper bounds from the Terwilliger algebra, IEEE Trans. Inf. Th. 51

(2005), 2859–2866.
[15] D. de Laat, F.M. de Oliveira Filho, and F. Vallentin, Upper bounds for packings of spheres

of several radii, Forum Math. Sigma 2 (2014), e23 (42 pages).
[16] J.R. Vera, Ill-Posedness and Finite Precision Arithmetic: A Complexity Analysis for Interior

Point Methods, pages 424–433 in Foundations of Computational Mathematics (F. Cucker,
S. Smale (ed.)), Springer, 1997.

[17] S.J. Wright, Primal–dual interior point methods, SIAM, 1997.
[18] S.J. Wright, Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear

Programming, SIAM J. Optim. 12 (2001), 36–78.
[19] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata, and M. Nakata, Latest

developments in the SDPA family for solving large-scale SDPs, pp. 687–713 in Handbook on
Semidefinite, Conic and Polynomial Optimization (M.F. Anjos, J.B. Lasserre (ed.)), Springer,
2012.

[20] D. Yudin and A.S. Nemirovski, Informational complexity and effective methods of solution

of convex extremal problems, Economics and mathematical methods 12 (1976), 357–369.

E. de Klerk, Department of Econometrics and Operations Research, Faculty of

Economic Sciences, Tilburg University, 5000 LE Tilburg, The Netherlands

E-mail address: E.deKlerk@uvt.nl

F. Vallentin, Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931

Köln, Germany

E-mail address: frank.vallentin@uni-koeln.de

	1. Introduction
	2. Preliminaries
	2.1. SDP problem structure and notation
	2.2. Polynomial-time operations
	2.3. Self-concordant barrier functions

	3. The short-step, logarithmic barrier algorithm
	4. Initialization
	Auxiliary problem

	5. An upper bound on the norm of the dual central path
	6. Rounding the current iterate
	7. Summary and conclusion
	References

