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MEASURE-VALUED MASS EVOLUTION PROBLEMS WITH FLUX

BOUNDARY CONDITIONS AND SOLUTION-DEPENDENT VELOCITIES

JOEP H.M. EVERS∗, SANDER C. HILLE† , AND ADRIAN MUNTEAN‡

Abstract. In this paper we prove well-posedness for a measure-valued continuity equation with solution-
dependent velocity and flux boundary conditions, posed on a bounded one-dimensional domain. We generalize the
results of [EHM15a] to settings where the dynamics are driven by interactions. In a forward-Euler-like approach,
we construct a time-discretized version of the original problem and employ the results of [EHM15a] as a building
block within each subinterval. A limit solution is obtained as the mesh size of the time discretization goes to zero.
Moreover, the limit is independent of the specific way of partitioning the time interval [0, T ].
This paper is partially based on results presented in [Eve15, Chapter 5], while a number of issues that were still
open there, are now resolved.
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1. Introduction. A considerable amount of recent mathematical literature has been devoted
to evolution equations formulated in terms of measures. Such equations are used to describe sys-
tems that occur in e.g. biology (animal aggregations [CFRT10, CCR11], crowds of pedestrians
[CPT14], structured populations [DG05, GLMC10, CCGU12, AI05]) and material science (defects
in metallic crystals [vMM14]). Many interesting and relevant scenarios take place in bounded do-
mains. Apart from the examples mentioned above, these include intracellular transport processes,
cf. [EHM15b, Section 1], and also manufacturing chains [GHS+14]. However, most works that
deal with well-posedness of measure-valued equations and properties of their solutions treat these
equations in the full space, see for instance also [BGCG06, CDF+11, TF11, CLM13, CCS15]. The
present work explicitly focuses on bounded domains and the challenge of defining mathematically
and physically ‘correct’ boundary conditions.

In [EHM15a], we derived boundary conditions for a one-dimensional measure-valued transport
equation on the unit interval [0, 1] with prescribed velocity field v. A short-hand notation for this
equation is:

∂

∂t
µt +

∂

∂x
(v µt) = f · µt. (1.1)

We focused on the well-posedness of this equation, in the sense of mild solutions, and the con-
vergence of solutions corresponding to a sequence (fn)n∈N in the right-hand side. Some specific
choices for (fn)n∈N represent for instance effects in a boundary layer that approximate, as n→ ∞,
sink or source effects localized on the boundary. The boundary layer corresponds to the regions
in [0, 1] where the functions fn are nonzero.

There are several reasons why we consider mild solutions rather than weak solutions. First of
all, the mild formulation in terms of the variation of constants formula – see (2.19) – follows
directly from a probabilistic interpretation, as was shown in [EHM15a, Section 6]. Therefore the
choice for mild solutions is justified by a modelling argument. Secondly, usually uniqueness of
weak solutions cannot be expected to hold, while mild solutions are unique when the perturbation
(µ 7→ f · µ) is Lipschitz. In [EHM15a], where the perturbation even has discontinuities, we still
obtain uniqueness of the mild solution. This is one of the main results of [EHM15a]. In the works
[AI05, GLMC10, CCGU12, GJMC12] a specific weak solution is constructed that is precisely the
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mild solution that we obtain by different means. Finally, there is a technical advantage of using
mild solutions. Most of our estimates are in terms of the dual bounded Lipschitz norm ‖ · ‖∗BL,
that will be introduced in §2.1. Because test functions do not appear explicitly, our calculations
are often simpler than when weak solutions are considered. Moreover, our estimates are in fact
uniform over test functions in a bounded set.

In the present work, we propose and investigate a procedure to generalize the former results
to include velocity fields that depend on the solution itself. Such generalization makes it possible
to model in a bounded domain the dynamics governed by interactions between the ‘particles’; in
particular we will be concerned with interaction terms of convolution type that are given by a
weighted average over the whole population.

The results in this paper hold for a source-sink right-hand side that is based on a function f
that is an element of the space BL([0, 1]) of bounded Lipschitz functions on [0, 1]. In [EHM15a],
we worked with f : [0, 1] → R that is piecewise bounded Lipschitz, though. Hence, here we are
able to describe absorption in a boundary layer, but not yet absorption on the boundary alone.
In the discussion section of this paper, see §5.1, we comment on the possibilities to extend our
results to f that is piecewise bounded Lipschitz.

We consider (1.1) for velocity fields that are no longer fixed elements of BL([0, 1]). Instead of
v, we write v[µ] for the velocity field that depends functionally on the measure µ. The transport
equation on [0, 1] becomes

∂

∂t
µt +

∂

∂x
(v[µt]µt) = f · µt. (1.2)

The aim of this paper is to ensure the well-posedness of (1.2), in a suitable sense. Because (1.2) is a
nonlinear equation, establishing well-posedness is not straightforward. Here, we employ a forward-
Euler-like approach that builds on the fundamentals constructed in [EHM15a]. We partition the
time interval [0, T ] and fix the velocity on each subinterval. That is, restricted to a subinterval,
the velocity depends only on the spatial variable and not on the solution measure. Within each
subinterval the measure-valued solution evolves according to the fixed velocity and the evolution
fits in the framework set in [EHM15a]. A more detailed description of our approach is given in
§3. We decrease the mesh size in the partition of [0, T ] and estimate the difference between Euler
approximations. The main result of this paper is the fact that this procedure converges.

A forward-Euler scheme similar to ours is used in [PR13] for measures absolutely continuous
with respect to the Lebesgue measure. Their results are extended to general measures in [CPT14,
Chapter 7]. The difference between their work and ours is twofold: they use the Wasserstein
distance and they work in unbounded domains.
The references that directly inspired us are [CG09, Hoo13, GLMC10]. The approach presented
in this paper deviates from [Hoo13], since we restrict ourselves to evolution on the interval [0, 1],
while [Hoo13] considers [0,∞). Furthermore, our regularity conditions on the velocity – given in
Assumption 3.1 – are weaker than in [Hoo13]; cf. Remark 3.3. Moreover, [Hoo13] restricts to veloc-
ity fields that point inwards at 0. In this way, no mass is allowed to flow out of the domain [0,∞).
In our approach, the fact that the flow is stopped at the boundary is encoded in the semigroup
(Pt)t>0, irrespective of the sign of the velocity there; cf. §2.2. We consider it too restrictive to have
a condition on the sign of the velocity at 0 or 1; in practice it is very difficult to make sure that
such condition is satisfied when the velocity v[µ] depends on the solution (like in e.g. Example 3.2).

In this paper we limit our attention to a one-dimensional state space, [0, 1], because in this case
the (global) Lipschitz continuous dependence of the stopped flow on the time-invariant velocity
field v is a rather straightforward property (see Section 2.2, Lemma 2.2). In higher dimensional
(bounded) state spaces this seems much more delicate to establish. We comment on this in more
detail after the proof of Lemma 2.2. One should note however, that the results on convergence of
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the forward-Euler-like approach that we present do not depend on the dimensionality other than
through the mentioned Lipschitzian property as presented in Lemma 2.2.

This paper is organized as follows. Within each subinterval of the Euler approximation the
dynamics are given by a fixed velocity, like in [EHM15a]. Therefore, we start in §2 by collecting
the results of [EHM15a] that we require here: a number of properties of the semigroup (Pt)t>0

and of the solution operator, called (Qt)t>0. The forward-Euler-like approach to construct solu-
tions is introduced in §3, where we also state the main results of this paper: Theorems 3.10 and
3.12, and Corollary 3.11. In plain words and combined into one pseudo-theorem, these results read:

Theorem. The proposed forward-Euler-like approach converges as the mesh size of the time
discretization goes to zero. The limit is independent of the specific way in which the time domain
is partitioned. This approximation procedure yields existence and uniqueness of mild solutions to
the nonlinear problem, and solutions depend continuously on initial data.

A more precise formulation follows later. We prove these results in §4 using estimates between
two Euler approximations of (1.1). In §5 we reflect on the achievements of this paper, discuss
open issues and provide directions for further research.

2. Preliminaries. This section contains a summary of the results obtained in [EHM15a] on
which we shall build. Moreover, we mention the technical preliminaries needed for the arguments
in this paper.

2.1. Basics of measure theory. If S is a topological space, we denote by M(S) the space
of finite Borel measures on S and by M+(S) the convex cone of positive measures included in it.
For x ∈ S, δx denotes the Dirac measure at x. Let

〈µ, φ〉 :=

∫

S

φdµ (2.1)

denote the natural pairing between measures µ ∈ M(S) and bounded measurable functions φ.
The push-forward or image measure of µ under Borel measurable Φ : S → S is the measure Φ#µ
defined on Borel sets E ⊂ S by

(Φ#µ)(E) := µ
(
Φ−1(E)

)
. (2.2)

One easily verifies that 〈Φ#µ, φ〉 = 〈µ, φ ◦ Φ〉.

We denote by Cb(S) the Banach space of real-valued bounded continuous functions on S equipped
with the supremum norm ‖ · ‖∞. The total variation norm ‖ · ‖TV on M(S) is defined by

‖µ‖TV := sup
{

〈µ, φ〉
∣
∣
∣φ ∈ Cb(S), ‖φ‖∞ 6 1

}

.

It follows immediately that for Φ : S → S continuous, ‖Φ#µ‖TV 6 ‖µ‖TV. In our setting, S
is a Polish space (separable, completely metrizable topological space; cf. [Dud04, p. 344]). It is
well-established (cf. [Dud66, Dud74]) that in this case the weak topology on M(S) induced by
Cb(S) when restricted to the positive cone M+(S) is metrizable by a metric derived from a norm,
e.g. the Fortet-Mourier norm or the Dudley norm. The latter is also called the dual bounded
Lipschitz norm, that we shall introduce now. To that end, let d be a metric on S that metrizes the
topology, such that (S, d) is separable and complete. Let BL(S, d) = BL(S) be the vector space
of real-valued bounded Lipschitz functions on (S, d). For φ ∈ BL(S), let

|φ|L := sup

{
|φ(x) − φ(y)|

d(x, y)

∣
∣
∣ x, y ∈ S, x 6= y

}

be its Lipschitz constant. Now

‖φ‖BL := ‖φ‖∞ + |φ|L (2.3)
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defines a norm on BL(S) for which this space is a Banach space [FM53, Dud66]. In fact, with this
norm BL(S) is a Banach algebra for pointwise product of functions:

‖φ · ψ‖BL ≤ ‖φ‖BL ‖ψ‖BL. (2.4)

Alternatively, one may define on BL(S) the equivalent norm

‖φ‖FM := max
(
‖φ‖∞ , |φ|L

)
,

where ‘FM’ stands for ‘Fortet-Mourier’ (see below). Let ‖ · ‖∗BL be the dual norm of ‖ · ‖BL on the
dual space BL(S)∗, i.e. for any x∗ ∈ BL(S)∗ its norm is given by

‖x∗‖∗BL := sup {| 〈x∗, φ〉 | | φ ∈ BL(S), ‖φ‖BL 6 1} .

The map µ 7→ Iµ with Iµ(φ) := 〈µ, φ〉 defines a linear embedding of M(S) into BL(S)∗; see
[Dud66, Lemma 6]. Thus ‖ · ‖∗BL induces a norm on M(S), which is denoted by the same symbols.
It is called the dual bounded Lipschitz norm or Dudley norm. Generally, ‖µ‖∗BL 6 ‖µ‖TV for all
µ ∈ M(S). For positive measures the two norms coincide:

‖µ‖∗BL = µ(S) = ‖µ‖TV for all µ ∈ M+(S). (2.5)

One may also consider the restriction to M(S) of the dual norm ‖ · ‖∗FM of ‖ · ‖FM on BL(S)∗.
This yields an equivalent norm on M(S) that is called the Fortet-Mourier norm (see e.g. [LMS02,
Zah00]):

‖µ‖∗BL 6 ‖µ‖∗FM 6 2‖µ‖∗BL. (2.6)

This norm also satisfies ‖µ‖∗FM 6 ‖µ‖TV, so (2.5) holds for ‖ · ‖∗FM too. Moreover (cf. [HW09,
Lemma 3.5]), for any x, y ∈ S,

‖δx − δy‖
∗
BL =

2d(x, y)

2 + d(x, y)
6 min(2, d(x, y)) = ‖δx − δy‖

∗
FM. (2.7)

In general, the space M(S) is not complete for ‖ · ‖∗BL. We denote by M(S)BL its completion,
viewed as closure of M(S) within BL(S)∗. The space M+(S) is complete for ‖ · ‖∗BL, hence closed
in M(S) and M(S)BL.

The ‖ · ‖∗BL-norm is convenient also for integration. In Appendix C of [EHM15a] some techni-
cal results about integration of measure-valued maps were collected. These will also be used in
this paper. The continuity of the map x 7→ δx : S → M+(S)BL together with (C.2) in [EHM15a]
yields the identity

µ =

∫

S

δx dµ(x) (2.8)

as Bochner integral in M(S)BL; for basic results on Bochner integration, the reader is referred to
e.g. [DU77]. The observation (2.8) will essentially link ‘continuum’ (‘µ’) and particle description
(‘δx’) for our equation on [0, 1].

2.2. Properties of the stopped flow. Let v ∈ BL([0, 1]) be fixed. We assume that a single
particle (‘individual’) is moving in the domain [0, 1] deterministically, described by the differential
equation for its position x(t) at time t:

{
ẋ(t) = v(x(t)),
x(0) = x0.

(2.9)
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A solution to (2.9) is unique, it exists for time up to reaching the boundary 0 or 1 and depends
continuously on initial conditions. Let x( · ;x0) be this solution and Ix0 be its maximal interval of
existence. Define

τ∂(x0) := sup Ix0 ∈ [0,∞],

i.e. τ∂(x0) is the time at which the solution starting at x0 reaches the boundary (if it happens)
when x0 is an interior point. Note that τ∂(x0) = 0 when x0 is a boundary point where v points
outwards, while τ∂(x0) > 0 when x0 is a boundary point where v vanishes or points inwards.

The individualistic stopped flow on [0, 1] associated to v is the family of maps Φt : [0, 1] → [0, 1],
t > 0, defined by

Φt(x0) :=

{

x(t;x0), if t ∈ Ix0 ,

x(τ∂(x0);x0), otherwise.
(2.10)

To lift the dynamics to the space of measures, we define Pt : M([0, 1]) → M([0, 1]) by means
of the push-forward under Φt: for all µ ∈ M([0, 1]),

Ptµ := Φt#µ = µ ◦ Φ−1
t ; (2.11)

see (2.2). Clearly, Pt maps positive measures to positive measures and Pt is mass preserving on
positive measures. Since the family of maps (Φt)t>0 forms a semigroup, so do the maps Pt in
the space M([0, 1]). That is, (Pt)t>0 is a Markov semigroup on M[0, 1] (cf. [LMS02]). The basic
estimate

‖Ptµ‖TV 6 ‖µ‖TV (2.12)

holds for µ ∈ M([0, 1]).

In the rest of this section we summarize those properties of (Pt)t>0 that are needed in this paper.
We first recall Lemma 2.2 from [EHM15a]:

Lemma 2.1 (See [EHM15a, Lemma 2.2]). Let µ ∈ M([0, 1]) and t, s ∈ R
+. Then

(i) ‖Ptµ− Psµ‖
∗
BL 6 ‖v‖∞ ‖µ‖TV |t− s|.

(ii) ‖Ptµ‖
∗
BL 6 max(1, |Φt|L) ‖µ‖

∗
BL 6 e|v|Lt‖µ‖∗BL.

To distinguish between the semigroups on M([0, 1]) associated to v, v′ ∈ BL([0, 1]), we write
P v and P v′

, respectively. Analogously, we distinguish between the semigroups (Φv
t )t>0 and

(Φv′

t )t>0 on [0, 1] and between the intervals of existence Ivx0
and Iv

′

x0
associated to (2.9).

Lemma 2.2. For all µ ∈ M([0, 1]), v, v′ ∈ BL([0, 1]) and t ∈ R
+
0

‖P v
t µ− P v′

t µ‖
∗
BL 6 ‖v − v′‖∞ t ‖µ‖TV e

Lt,

where L := min(|v|L , |v
′|L).

Proof. For any φ ∈ BL([0, 1]), we have

|
〈

φ, P v
t µ− P v′

t µ
〉

| = |
〈

φ ◦ Φv
t − φ ◦ Φv′

t , µ
〉

| 6 |φ|L ‖Φ
v
t − Φv′

t ‖∞ ‖µ‖TV, (2.13)

hence

‖P v
t µ− P v′

t µ‖
∗
BL 6 ‖Φv

t − Φv′

t ‖∞ ‖µ‖TV. (2.14)

Let x ∈ [0, 1].
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Case 1: t ∈ Ivx ∩ Iv
′

x .

|Φv
t (x)− Φv′

t (x)| =

∣
∣
∣
∣
∣
∣

t∫

0

v(Φv
s(x)) − v′(Φv′

s (x)) ds

∣
∣
∣
∣
∣
∣

6 |v|L

t∫

0

|Φv
s(x)− Φv′

s (x)| ds+ ‖v − v′‖∞ t.

Gronwall’s Lemma yields

|Φv
t (x) − Φv′

t (x)| 6 ‖v − v′‖∞ t e|v|L t, (2.15)

for all x ∈ [0, 1]. Due to the symmetry of (2.15) in v and v′, the same estimate (2.15) can be
obtained with |v′|L instead of |v|L, and hence, we can write min(|v|L , |v

′|L) in the exponent. This
observation yields, together with (2.14), the statement of the lemma.

Case 2: t 6∈ Ivx . We extend v : [0, 1] → R to v̄ : R → R by defining v̄(x) := v(0) if x < 0 and
v̄(x) := v(1) if x > 1. Then v̄ is a bounded Lipschitz extension of v such that ‖v̄‖∞ = ‖v‖∞ and
|v̄|L = |v|L. Let Φv̄

t : R → R be the solution semigroup associated to the unique (global) solution
to (2.9) with v replaced by v̄ and with initial condition to be taken from the whole of R. We
extend v′ analogously to v̄′.
Irrespective of whether t ∈ Iv

′

x or t 6∈ Iv
′

x , and whether in the latter case Φv
t (x) = Φv′

t (x) or
Φv

t (x) 6= Φv′

t (x), the following estimate holds

|Φv
t (x)− Φv′

t (x)| 6 |Φv̄
t (x) − Φv̄′

t (x)| (2.16)

for all x ∈ [0, 1]. estimate |Φv̄
t (x)−Φv̄′

t (x)| using the same ideas as in (2.14) and (2.15) and obtain

‖P v̄
t µ− P v̄′

t µ‖
∗
BL 6 ‖v̄ − v̄′‖∞ t ‖µ‖TV exp(min(|v̄|L , |v̄

′|L) t).

The statement of the lemma follows from the equalities |v̄|L = |v|L, |v̄
′|L = |v′|L, ‖v̄ − v̄′‖∞ =

‖v − v′‖∞ and Equation (2.16). The case t 6∈ Iv
′

x is analogous.

Remark 2.3. The definition of stopped flow in state spaces of dimension two and higher and
establishing elementary properties of its lift to measures is more delicate than the one-dimensional
case presented above. Consider an open domain Ω ⊂ R

n, n ≥ 2 (with sufficiently smooth bound-
ary). Let Ω be its closure and let v ∈ BL(Ω,Rn) be a velocity field on Ω. Solutions to the initial
value problem (2.9) with x0 ∈ Ω still exist for some positive time, but in this higher dimensional
setting it may happen that trajectories of the flow in Ω defined by v are partially contained in the
boundary ∂Ω or even only ‘touch’ ∂Ω. So reaching the boundary in finite time is not equivalent to
‘leaving the domain’.

By means of the Metric Tietze Extension Theorem one can extend v to v̄ ∈ BL(Rn,Rn) with
preservation of Lipschitz constant and supremum norm, e.g. component-wise. Let xv̄(t;x0) be the
corresponding solution starting at x0 at t = 0. The exit time or stopping time of the solution
starting at x0 could then be defined as

τv∂ (x0) := inf{t > 0 |xv̄(t;x0) ∈ R
n \ Ω},

with the convention that the infimum of the empty set is set to +∞. One must show that this value
is independent of the particular extension v̄ that was chosen. τv∂ (x0) now replaces the similarly
denoted termination time of the solution that was used above for the one-dimensional case. The
stopped flow Φv

t can then be defined as in (2.10).
Then for t ≥ 0,

Φv
t (x) = x+

t∧τv
∂ (x)∫

0

v
(
Φv

s(x)
)
ds, (2.17)
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where t∧τv∂ (x) denotes the minimum of t and τv∂ (x). The equivalent of Lemma 2.2 can be obtained
from (2.17) by means of Gronwall’s Lemma essentially, once one knows that the stopping time
satisfies for fixed x ∈ Ω a Lipschitz estimate of the form

∣
∣t ∧ τv∂ (x)− t ∧ τv

′

∂ (x)
∣
∣ 6 C‖v − v′‖∞t. (2.18)

We are not aware of results in the literature that provide estimates like (2.18). Neither did we
succeed in establishing such an estimate ourselves. The rich possible dynamics of solutions of
higher dimensional systems of non-linear differential equations may even make such global Lips-
chitz dependence of the velocity field impossible in general. Thus, a generalization of this part of
the paper to two and higher dimensional state spaces seems not straightforward.

2.3. Properties of the solution for prescribed velocity. We consider mild solutions to
(1.1), that are defined in the following sense:

Definition 2.4 (See [EHM15a, Definition 2.4]). A measure-valued mild solution to the
Cauchy-problem associated to (1.1) on [0, T ] with initial value ν ∈ M([0, 1]) is a continuous map
µ : [0, T ] → M([0, 1])BL that is ‖·‖TV-bounded and that satisfies the variation of constants formula

µt = Pt ν +

t∫

0

Pt−sFf (µs) ds for all t ∈ [0, T ]. (2.19)

Here, the perturbation map Ff : M([0, 1]) → M([0, 1]) is given by Ff (µ) := f · µ.

We showed in [EHM15a] that mild solutions in the sense of Definition 2.4 exist, are unique and
depend continuously on the initial data. We repeat those results in the following theorem.

Theorem 2.5. Let f : [0, 1] → R be a piecewise bounded Lipschitz function such that v(x) 6= 0
at any point x of discontinuity of f . Then for each T > 0 and µ0 ∈ M([0, 1]) there exists a unique
continuous and locally ‖ · ‖TV-bounded solution to (2.19). Moreover, there exists CT > 0 such that
for all initial values µ0, µ

′
0 ∈ M([0, 1]) the corresponding mild solutions µ and µ′ satisfy

‖µt − µ′
t‖

∗
BL 6 CT ‖µ0 − µ′

0‖
∗
BL (2.20)

for all t ∈ [0, T ].

Proof. See [EHM15a, Propositions 3.1, 3.3 and 3.5] for details.

In this paper, we restrict ourselves to those functions f that are bounded Lipschitz on [0, 1];
see §5.1 for further discussion on the need of this restriction. Let v ∈ BL([0, 1]) and f ∈ BL([0, 1])
be arbitrary. For all t > 0, we define Qt : M([0, 1]) → M([0, 1]) to be the operator that maps
the initial condition to the solution in the sense of Definition 2.4. Theorem 2.5 guarantees that
this operator is well-defined and continuous for ‖ · ‖∗BL. Moreover, Q preserves positivity, due to
[EHM15a, Corollary 3.4].

In the rest of this section, we give an overview of the properties of the solution operator Q.

Lemma 2.6 (Semigroup property). The set of operators (Qt)t>0 satisfies the semigroup prop-
erty. That is,

QtQs µ = Qt+s µ

for all s, t > 0 and for all µ ∈ M([0, 1]).
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Proof. The proof follows the lines of argument of [Š94, p. 283]. We consider

Qt+sµ−QtQs µ =Pt+sµ+

t+s∫

0

Pt+s−σ Ff (Qσ µ) dσ

− PtQs µ−

t∫

0

Pt−σ Ff (QσQs µ) dσ, (2.21)

and observe that

PtQs µ =Pt Ps µ+ Pt

s∫

0

Ps−σ Ff (Qσ µ) dσ

=Pt+s µ+

s∫

0

Pt+s−σ Ff (Qσ µ) dσ. (2.22)

Because f ∈ BL([0, 1]), the map σ 7→ Ps−σ Ff (Qσ µ) is continuous and hence it is measurable.
Therefore, the second equality in (2.22) holds due to [EHM15a, Equation (C.3)]. A combination
of (2.21) and (2.22) yields that

Qt+sµ−QtQs µ =

t+s∫

s

Pt+s−σ Ff (Qσ µ) dσ −

t∫

0

Pt−σ Ff (Qσ Qs µ) dσ

=

t∫

0

Pt−σ (Ff (Qσ+s µ)− Ff (QσQs µ)) dσ. (2.23)

To obtain the last step in (2.23), we use the coordinate transformation τ := σ − s in the first
integral and subsequently renamed the new variable τ as σ. We estimate the total variation norm
of (2.23) in the following way:

‖Qt+sµ−QtQs µ‖TV 6

t∫

0

‖Pt−σ (Ff (Qσ+s µ)− Ff (QσQs µ)) ‖TV dσ

6

t∫

0

‖Ff (Qσ+s µ)− Ff (QσQs µ)‖TV dσ

6 ‖f‖∞

t∫

0

‖Qσ+s µ−QσQs µ‖TV dσ.

Here, we used [EHM15a, Proposition C.2(iii)] (noting that the integrands are continuous with
respect to σ) in the first line, (2.12) in the second line and the fact that f ∈ BL([0, 1]) ⊂ Cb([0, 1])
in the last line. Gronwall’s Lemma now implies that ‖Qt+sµ−QtQs µ‖TV = 0 for all s, t > 0.

Lemma 2.7. For all µ ∈ M([0, 1]) and s, t > 0, we have that

‖Qtµ−Qsµ‖
∗
BL 6 ‖µ‖TV ·

(
‖f‖∞ + ‖v‖∞

)
· e‖f‖∞ max(t,s) · |t− s|.

Proof. The statement of this lemma is part of the result of [EHM15a, Proposition 3.3].

Lemma 2.8. For all µ ∈ M([0, 1]) and t > 0, we have that
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(i) ‖Qtµ‖TV 6 ‖µ‖TV exp(‖f‖∞ t), and
(ii) ‖Qtµ‖

∗
BL 6 ‖µ‖∗BL exp(|v|L t+ ‖f‖BL t e

|v|L t).

Proof. (i): This estimate is given in [EHM15a, Proposition 3.3].
(ii): By applying [EHM15a, (C.1)] and Lemma 2.1(ii) we obtain from (2.19) the estimate

‖Qt µ‖
∗
BL 6 exp(|v|L t) ‖µ‖

∗
BL +

t∫

0

exp(|v|L (t− s))‖f‖BL ‖Qsµ‖
∗
BL ds.

Gronwall’s Lemma now yields the statement of Part (ii) of the lemma.

Corollary 2.9. For all µ, ν ∈ M([0, 1]) and t > 0, we have that

‖Qt µ−Qt ν‖
∗
BL 6 ‖µ− ν‖∗BL exp(|v|L t+ ‖f‖BL t e

|v|L t).

Proof. Apply Part (ii) of Lemma 2.8 to the measure µ− ν ∈ M([0, 1]).

We write Qv and Qv′

to distinguish between the semigroups Q on M([0, 1]) associated to v ∈
BL([0, 1]) and v′ ∈ BL([0, 1]), respectively.

Lemma 2.10. For all v, v′ ∈ BL([0, 1]), µ ∈ M([0, 1]) and t > 0, the following estimate holds:

‖Qv
tµ−Qv′

t µ‖
∗
BL 6 ‖v − v′‖∞ ‖µ‖TV exp(L t+ ‖f‖BL t e

Lt) · [t+ t2‖f‖∞ e‖f‖∞ t],

where L := min(|v|L , |v
′|L).

Proof. We have

‖Qv
tµ−Qv′

t µ‖
∗
BL 6 ‖P v

t µ− P v′

t µ‖
∗
BL +

t∫

0

‖P v
t−sFf (Q

v
sµ)− P v′

t−sFf (Q
v′

s µ)‖
∗
BL ds. (2.24)

Lemma 2.2 provides an appropriate estimate of the first term on the right-hand side. For the
integrand in the second term, we have

‖P v
t−sFf (Q

v
sµ)− P v′

t−sFf (Q
v′

s µ)‖
∗
BL 6 ‖P v

t−sFf (Q
v
sµ)− P v′

t−sFf (Q
v
sµ)‖

∗
BL

+ ‖P v′

t−sFf (Q
v
sµ)− P v′

t−sFf (Q
v′

s µ)‖
∗
BL

6 ‖v − v′‖∞ (t− s) ‖Ff (Q
v
sµ)‖TV e

L(t−s)

+ e|v
′|L (t−s) ‖Ff (Q

v
sµ)− Ff (Q

v′

s µ)‖
∗
BL, (2.25)

due to Lemma 2.2 and Lemma 2.1(ii). We proceed by estimating the right-hand side of (2.25)
and obtain

‖P v
t−sFf (Q

v
sµ)− P v′

t−sFf (Q
v′

s µ)‖
∗
BL 6 ‖v − v′‖∞ (t− s) ‖f‖∞ ‖µ‖TV e

‖f‖∞ s eL(t−s)

+ e|v
′|L (t−s) ‖f‖BL ‖Q

v
sµ−Qv′

s µ‖
∗
BL, (2.26)

where we use Part (i) of Lemma 2.8 in the first term on the right-hand side. Since the estimate
in (2.26) is symmetric in v and v′, we can replace |v′|L by L.
Substitution of the result of Lemma 2.2 and (2.26) in (2.24) yields

‖Qv
tµ−Qv′

t µ‖
∗
BL 6 ‖v − v′‖∞ t ‖µ‖TV e

Lt (1 + t ‖f‖∞ e‖f‖∞ t)

+ eLt ‖f‖BL

t∫

0

‖Qv
sµ−Qv′

s µ‖
∗
BL ds.

The statement of the lemma follows from Gronwall’s Lemma.
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3. Measure-dependent velocity fields: main results. This section contains the main
results of the present work. We generalize the assumptions on v from [EHM15a] in the following
way to measure-dependent velocity fields:

Assumption 3.1 (Assumptions on the measure-dependent velocity field). Assume that v :
M([0, 1])× [0, 1] → R is a mapping such that:

(i) v[µ] ∈ BL([0, 1]), for each µ ∈ M([0, 1]).
Furthermore, assume that for any R > 0 there are constants KR, LR, MR such that for all
µ, ν ∈ M([0, 1]) satisfying ‖µ‖TV 6 R and ‖ν‖TV 6 R, the following estimates hold:

(ii) ‖v[µ]‖∞ 6 KR,
(iii) | v[µ] |L 6 LR, and
(iv) ‖v[µ]− v[ν]‖∞ 6MR ‖µ− ν‖∗BL.

Example 3.2. An example of a function v satisfying Assumption 3.1 is:

v[µ](x) :=

∫

[0,1]

K(x− y) dµ(y) = (K ∗ µ)(x), (3.1)

for each µ ∈ M([0, 1]) and x ∈ [0, 1], with K ∈ BL([−1, 1]). This is a relevant choice, because it
models interactions among individuals.

Remark 3.3. Parts (ii) and (iii) of Assumption 3.1 are an improvement compared to [Hoo13].
There, the infinity norm and Lipschitz constant are assumed to hold uniformly for all µ ∈ M([0, 1]);
cf. Assumption (F1) on [Hoo13, p. 40]. We note that the convolution in Example 3.2 satisfies As-
sumption 3.1, but does not satisfy Assumption (F1) in [Hoo13]. They require a uniform Lipschitz
constant because their Lemma 4.3 is an estimate in the ‖ · ‖∗BL-norm for which Part (ii) of our
Lemma 2.1 is used. Our counterpart of Lemma 4.3 in [Hoo13] is Lemma 3.4. We give an estimate
in terms of the ‖ · ‖TV-norm using (2.12) which does not involve the Lipschitz constant.

Our aim is to prove well-posedness (in some sense yet to be defined) of (1.2). That is,

∂

∂t
µt +

∂

∂x
(v[µt]µt) = f · µt

on [0, 1]. As said in §2.3, we restrict ourselves to f that is bounded Lipschitz on [0, 1].

We now introduce the aforementioned forward-Euler-like approach to construct approximate so-
lutions. Let T > 0 be given. Let N > 1 be fixed and define a set α ⊂ [0, T ] as follows:

α :=
{
tj ∈ [0, T ] : 0 6 j 6 N, t0 = 0, tN = T, tj < tj+1

}
. (3.2)

A set α of this form is called a partition of the interval [0, T ] and N denotes the number of subin-
tervals in α.

Let µ0 ∈ M([0, 1]) be fixed. For a given partition α := {t0, . . . , tN} ⊂ [0, T ], define a measure-
valued trajectory µ ∈ C([0, T ];M([0, 1])) by







µt := Q
vj
t−tj

µtj , if t ∈ (tj , tj+1];

vj := v[µtj ];

µt=0 = µ0,

(3.3)

for all j ∈ {0, . . . , N − 1}. Here, (Qv
t )t>0 denotes the semigroup introduced in §2.3 associated to

an arbitrary v ∈ BL([0, 1]). Note that by Assumption 3.1, Part (i), vj = v[µtj ] ∈ BL([0, 1]) for
each j.



MEASURE-VALUED EQUATIONS WITH SOLUTION-DEPENDENT VELOCITY 11

We call this a forward-Euler-like approach, because it is the analogon of the forward Euler method
for ODEs (cf. e.g. [But03, Chapter 2]). Consider the ODE dx/dt = v(x) on R for some (Lipschitz
continuous) v : R → R. The forward Euler method approximates the solution on some interval
(tj , tj+1] by evolving the approximate solution at time tj , named xj , due to a constant velocity
v(xj). That is, x(t) ≈ xj + (t− tj) · v(xj) for all t ∈ (tj , tj+1].
In (3.3), we introduce the approximation µt, where µt results from µtj by the evolution due to the
constant velocity field v[µtj ]. The word constant here does not refer to v being the same for all
x ∈ [0, 1], but to the fact that v corresponding to the same µtj is used throughout (tj , tj+1].

The conditions in Parts (ii)–(iv) of Assumption 3.1 are only required to hold for measures in
a TV-norm bounded set, in view of the following lemma:

Lemma 3.4. Let µ0 ∈ M([0, 1]) be given and let v : M([0, 1])× [0, 1] → R satisfy Assumption
3.1(i). For a given partition α := {t0, . . . , tN} ⊂ [0, T ], let µ ∈ C([0, T ];M([0, 1])) be defined by
(3.3). Then the set of all timeslices of µ, that is

A := {µt : t ∈ [0, T ]},

is bounded in both ‖ · ‖TV and ‖ · ‖∗BL. The bounds are independent of the choice of α.

Proof. Fix j ∈ {0, . . . , N − 1} and let t ∈ (tj , tj+1]. By Part (i) of Lemma 2.8, we have that

‖µt‖TV = ‖Q
vj
t−tj

µtj‖TV 6 ‖µtj‖TV exp(‖f‖∞ (t− tj))

6 ‖µtj‖TV exp(‖f‖∞ (tj+1 − tj))

for all t ∈ (tj , tj+1]. Iteration of the right-hand side with respect to j yields

‖µt‖TV 6 ‖µ0‖TV

j
∏

i=0

exp(‖f‖∞ (ti+1 − ti)) = ‖µ0‖TV exp(‖f‖∞ (tj+1 − t0)).

Hence, for all t ∈ [0, T ]

‖µt‖TV 6 ‖µ0‖TV exp(‖f‖∞ (tN − t0)) = ‖µ0‖TV exp(‖f‖∞ T ).

This bound is in particular independent of t, N and the distribution of points within α. The
bound in ‖ · ‖∗BL follows from the inequality ‖ν‖∗BL 6 ‖ν‖TV that holds for all ν ∈ M([0, 1]).

In this paper we construct sequences of Euler approximations, each following from a sequence
of partitions (αk)k∈N that satisfies the following assumption:

Assumption 3.5 (Assumptions on the sequence of partitions). Let (αk)k∈N be a sequence of
partitions of [0, T ] and let (Nk)k∈N ⊂ N be the corresponding sequence such that each αk is of the
form

αk :=
{
tkj ∈ [0, T ] : 0 6 j 6 Nk, t

k
0 = 0, tkNk

= T, tkj < tkj+1

}
. (3.4)

Define

M (k) := max
j∈{0,...,Nk−1}

tkj+1 − tkj (3.5)

for all k ∈ N. Assume that the sequence (M (k))k∈N is nonincreasing and M (k) → 0 as k → ∞.

Example 3.6. The following sequences of partitions satisfy Assumption 3.5:
• For all k ∈ N, take Nk := 2k, and let tkj := jT/2k for all j ∈ {0, . . . , Nk}. This implies

that M (k) = T/2k for all k ∈ N. This specific sequence of partitions was used in [Eve15,
Chapter 5].



12 J.H.M. EVERS, S.C. HILLE AND A. MUNTEAN

• Fix q ∈ N
+. For all k ∈ N, take Nk := qk, and let tkj := jT/qk for all j ∈ {0, . . . , Nk}.

This implies that M (k) = T/qk for all k ∈ N. In the discussion section of [Eve15, Chapter
5], the results of the current paper were conjectured to hold for this case.

• For all k ∈ N, take Nk := k+1, and let tkj := jT/(k+1) for all j ∈ {0, . . . , Nk}. This im-

plies that M (k) = T/(k+1) for all k ∈ N. This is an elementary time discretization (with
uniform mesh size) used frequently when proving the convergence of numerical methods.

• Let α0 be a possibly non-uniform partition of [0, T ]. Construct the sequence (αk)k∈N in
such a way that any αk+1 is a refinement of αk. That is, αk+1 ⊂ αk for all k ∈ N.
Elements may be added in a non-uniform fashion to obtain αk+1 from αk, as long as
M (k) → 0 as k → ∞. In this case (Nk)k∈N is automatically nondecreasing.

Also, some less straightforward sequences of non-uniform partitions are admissible, in which subse-
quent partitions are not refinements. See for example Figure 3.1, in which two subsequent elements
from the sequence (αk)k∈N are given. These elements could indeed occur, since M (k+1) < M (k).
This example is rather counter-intuitive, as there is a local growth of the mesh size at the left-hand
side of the interval [0, T ] when we go from αk to αk+1. Note that even N (k+1) < N (k). However,
admissibility of a sequence of partitions is only determined by the local ordering of the maximum
mesh spacing (i.e. the condition M (k+1) 6 M (k)) and its long-time behaviour: M (k) → 0 as
k → ∞.

αk

0

tk0

T

tk3tk1 tk2

αk+1

0

tk+1
0

T

tk+1
2tk+1

1

Figure 3.1. Two possible subsequent partitions in a sequence (αk)k∈N satisfying Assumption 3.5.

Remark 3.7. Assumption 3.5 implies that Nk → ∞ as k → ∞.
If (M (k))k∈N is not nonincreasing, but still M (k) → 0, then it is possible to extract a subsequence
(αkℓ

)ℓ∈N such that (M (kℓ))ℓ∈N is nonincreasing.

We define a mild solution in this context as follows:

Definition 3.8 (Mild solution of (1.2)). Let the space of continuous maps from [0, T ] to
M([0, 1])BL be endowed with the metric defined for all µ, ν ∈ C([0, T ];M([0, 1])) by

sup
t∈[0,T ]

‖µt − νt‖
∗
BL. (3.6)

Let (αk)k∈N be a sequence of partitions satisfying Assumption 3.5. For each k ∈ N, let µk ∈
C([0, T ];M([0, 1])) be defined by (3.3) with partition αk. Then, for any such sequence of parti-
tions (αk)k∈N, any limit of a subsequence of (µk)k∈N is called a (measure-valued) mild solution of
(1.2).

The name mild solutions is appropriate, because they are constructed from piecewise mild so-
lutions in the sense of Definition 2.4.

Remark 3.9. Consider the solution of (3.3) for any partition α ⊂ [0, T ]. Mass that has
accumulated on the boundary can move back into the interior of the domain whenever the velocity
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changes direction from one time interval to the next. This is due to the definition of the maximal
interval of existence Ix0 and the hitting time τ∂(x0) in §2.2.

In the rest of this paper we focus on positive measure-valued solutions, because these are the
only physically relevant solutions in many applications. The main result of this paper is the fol-
lowing theorem.

Theorem 3.10. Let µ0 ∈ M+([0, 1]) be given and let v : M([0, 1]) × [0, 1] → R satisfy As-
sumption 3.1. Endow the space C([0, T ];M([0, 1])) with the metric defined by (3.6). Then, there
is a unique element of C([0, T ];M+([0, 1])) with initial condition µ0, that is a mild solution in the
sense of Definition 3.8. That is, for each sequence of partitions (αk)k∈N satisfying Assumption
3.5, the corresponding sequence (µk)k∈N defined by (3.3) is a sequence in C([0, T ];M+([0, 1])) and
has a unique limit as k → ∞.
Moreover, this limit is independent of the choice of (αk)k∈N.

Corollary 3.11 (Global existence and uniqueness). For each µ0 ∈ M+([0, 1]) and v :
M([0, 1])× [0, 1] → R satisfying Assumption 3.1, a unique mild solution exists for all time t > 0.

Theorem 3.12 (Continuous dependence on initial data). For all T > 0 and R̃ > 0 there is a
constant CR̃,T such that for all µ0, ν0 ∈ M+([0, 1]) satisfying ‖µ0‖TV 6 R̃ and ‖ν0‖TV 6 R̃, the

corresponding mild solutions µ, ν ∈ C([0, T ];M+([0, 1])) satisfy

sup
τ∈[0,T ]

‖µτ − ντ‖
∗
BL 6 CR̃,T ‖µ0 − ν0‖

∗
BL.

The proofs of these theorems and this corollary are given in the next section, §4. The key idea
of the proof of Theorem 3.10 is to show that the sequence (µk)k∈N is a Cauchy sequence in a
complete metric space, hence converges. We use estimates between approximations µk and µm,
m > k. Similar estimates are employed to obtain the result of Theorem 3.12. To prove Corollary
3.11, we show that a solution at time t > 0 is provided by Theorem 3.10, if T > 0 is chosen such
that t ∈ [0, T ]. Moreover, this solution at time t is independent of the exact choice of T .

4. Proofs of Theorems 3.10 and 3.12, and of Corollary 3.11. In this section we prove
the main results of this paper: Theorem 3.10, Corollary 3.11 and Theorem 3.12. The essential
part of the proof of Theorem 3.10 is provided by the following lemma:

Lemma 4.1. For fixed µ0 ∈ M+([0, 1]) and (αk)k∈N satisfying Assumption 3.5, the cor-
responding sequence (µk)k∈N defined by (3.3) is a Cauchy sequence in C([0, T ];M+([0, 1])). In
particular, there is a constant C such that

sup
τ∈[0,T ]

‖µk
τ − µm

τ ‖∗BL 6 C max
j∈{0,...,Nk−1}

(
tkj+1 − tkj

)
,

for all k,m ∈ N satisfying m > k.

Proof. Fix k,m ∈ N with m > k, let τ ∈ [0, T ] be arbitrary and let j ∈ {0, . . . , Nk − 1} be
such that τ ∈ (tkj , t

k
j+1]. Define, for appropriate N (j) > 1, the ordered set

{τℓ : 0 6 ℓ 6 N (j)} := {tkj } ∪

(

αm ∩ (tkj , t
k
j+1]

)

∪ {tkj+1}. (4.1)

The set αm ∩ (tkj , t
k
j+1] contains all t

m
ℓ , ℓ ∈ {1, . . . , Nm}, such that tkj < tmℓ 6 tkj+1. For the sake of

being complete, we emphasize that any duplicate elements that might occur on the right-hand side
of (4.1) are not ‘visible’ in the set on the left-hand side. Assume that i ∈ {0, . . . , N (j) − 1} is such
that τ ∈ (τi, τi+1]. To simplify notation, we write vκℓ := v[µκ

τℓ
] for all κ ∈ N and ℓ ∈ {0, . . . , N (j)}.

Define i0 ∈ {0, . . . , Nm} to be the smallest index such that tmi0 > tkj .
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Case 1: tmi0 = tkj . In this case, there is a q ∈ {0, . . . , Nm − 1} such that τi = tmq . Hence,

µk
τ = Q

vk
0

τ−τi
µk
τi
, and µm

τ = Q
vm
i

τ−τi
µm
τi
.

We estimate

‖µk
τ − µm

τ ‖∗BL 6 ‖Q
vk
0

τ−τi
(µk

τi
− µm

τi
)‖∗BL + ‖

(
Q

vk
0

τ−τi
−Q

vm
i

τ−τi

)
µm
τi
‖∗BL

6 ‖µk
τi
− µm

τi
‖∗BL exp

(

|vk0 |L (τ − τi) + ‖f‖BL (τ − τi) e
|vk

0 |L (τ−τi)

)

+ ‖vk0 − vmi ‖∞ ‖µm
τi
‖TV exp

(

L (τ − τi) + ‖f‖BL (τ − τi) e
L (τ−τi)

)

·

·
[

(τ − τi) + (τ − τi)
2‖f‖∞ e‖f‖∞ (τ−τi)

]

, (4.2)

using Corollary 2.9 and Lemma 2.10. Here, L denotes min(|vk0 |L , |v
m
i |L). In view of Lemma 3.4,

we define R := ‖µ0‖TV · exp(‖f‖∞ T ). From Lemma 2.7 (with s = 0), and Parts (ii) and (iv) of
Assumption 3.1 it follows that

‖vk0 − vmi ‖∞ 6MR

(

‖µk
τ0

− µm
τ0
‖∗BL +

i∑

ℓ=1

‖µm
τℓ
− µm

τℓ−1
‖∗BL

)

6MR ‖µk
τ0

− µm
τ0
‖∗BL +MR

i∑

ℓ=1

‖Q
vm
ℓ−1

τℓ−τℓ−1
µm
τℓ−1

− µm
τℓ−1

‖∗BL

6MR ‖µk
τ0

− µm
τ0
‖∗BL +MR

i∑

ℓ=1

R
(
‖f‖∞ +KR

)
e‖f‖∞ T (τℓ − τℓ−1)

6MR ‖µk
τ0

− µm
τ0
‖∗BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ0). (4.3)

We combine (4.2) and (4.3), and use Part (iii) of Assumption 3.1 and the basic estimates τ − τi 6
τi+1 − τi and τi+1 − τi 6 T (in suitable places) to obtain that

‖µk
τ − µm

τ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
‖µk

τi
− µm

τi
‖∗BL

+A2 (τi+1 − τi) ‖µ
k
τ0

− µm
τ0
‖∗BL

+A3 (τi+1 − τi)(τi − τ0) (4.4)

for some positive constants A1, A2 and A3 that depend on f , T and R, but not on i or j. This
upper bound holds for all τ ∈ (τi, τi+1].

Case 2: tkj < tmi0 and i = 0. Note that j 6= 0 and i0 6= 0 must hold. We recall the notation

vκℓ := v[µκ
τℓ
] for all κ ∈ N and ℓ ∈ {0, . . . , N (j)}. In this case,

µk
τ = Q

vk
0

τ−τ0
µk
τ0
, and µm

τ = Qv̄
τ−τ0

µm
τ0
,

where v̄ := v[µm
tmi0−1

]. Similar to (4.2), we have

‖µk
τ − µm

τ ‖∗BL 6 ‖Q
vk
0

τ−τ0
(µk

τ0
− µm

τ0
)‖∗BL + ‖

(
Q

vk
0

τ−τ0
−Qv̄

τ−τ0

)
µm
τ0
‖∗BL

6 ‖µk
τ0

− µm
τ0
‖∗BL exp

(

|vk0 |L (τ − τ0) + ‖f‖BL (τ − τ0) e
|vk

0 |L (τ−τ0)

)

+ ‖vk0 − v̄‖∞ ‖µm
τ0
‖TV exp

(

L (τ − τ0) + ‖f‖BL (τ − τ0) e
L (τ−τ0)

)

·

·
[

(τ − τ0) + (τ − τ0)
2‖f‖∞ e‖f‖∞ (τ−τ0)

]

, (4.5)
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where L = min(|vk0 |L , |v̄|L). We define R := ‖µ0‖TV · exp(‖f‖∞ T ); cf. Lemma 3.4. The analogon
of (4.3) is

‖vk0 − v̄‖∞ 6MR

(

‖µk
τ0

− µm
τ0
‖∗BL + ‖µm

τ0
− µm

τ̄ ‖∗BL

)

=MR ‖µk
τ0

− µm
τ0
‖∗BL +MR ‖Qv̄

τ0−τ̄ µ
m
τ̄ − µm

τ̄ ‖∗BL

6MR ‖µk
τ0

− µm
τ0
‖∗BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τ0 − τ̄ ), (4.6)

with τ̄ := tmi0−1. Together (4.5) and (4.6) yield

‖µk
τ − µm

τ ‖∗BL 6
[
exp

(
A1 (τ1 − τ0)

)
+A2 (τ1 − τ0)

]
‖µk

τ0
− µm

τ0
‖∗BL

+A3 (τ1 − τ0)(τ0 − τ̄) (4.7)

for the same positive constants A1, A2 and A3 as in (4.4). Here, we used Part (iii) of Assumption
3.1 and the estimates τ − τ0 6 τ1 − τ0 and τ1 − τ0 6 T . The upper bound (4.7) holds for all
τ ∈ (τ0, τ1].

Case 3: tkj < tmi0 and i > 1. In this case, tkj < τi < tkj+1 and hence there is a q ∈ {1, . . . , Nm−1}
such that τi = tmq . We have

µk
τ = Q

vk
0

τ−τi
µk
τi
, and µm

τ = Q
vm
i

τ−τi
µm
τi
.

Estimate (4.2) also holds in this case. Because tmi0 > tkj there is no q ∈ {0, . . . , Nm − 1} such that
τ0 = tmq , and therefore v[ · ] is not to be evaluated at µm

τ0
. Consequently, we have instead of (4.3),

‖vk0 − vmi ‖∞ 6‖vk0 − v̄‖∞ + ‖vm1 − v̄‖∞ +

i∑

ℓ=2

‖vmℓ − vmℓ−1‖
∗
BL

6‖vk0 − v̄‖∞ +MR ‖Qv̄
τ1−τ̄ µ

m
τ̄ − µm

τ̄ ‖∗BL +MR

i∑

ℓ=2

‖Q
vm
ℓ−1

τℓ−τℓ−1
µm
τℓ−1

− µm
τℓ−1

‖∗BL

with v̄ := v[µm
tmi0−1

] and τ̄ := tmi0−1. Note that the sum on the right-hand side might be empty.

Using the idea of (4.3) and the result of (4.6), we obtain

‖vk0 − vmi ‖∞ 6MR ‖µk
τ0

− µm
τ0
‖∗BL +MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τ0 − τ̄ )

+MRR
(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ̄ )

6MR ‖µk
τ0

− µm
τ0
‖∗BL + 2MRR

(
‖f‖∞ +KR

)
e‖f‖∞ T (τi − τ̄ ). (4.8)

Due to (4.2) and (4.8), we have

‖µk
τ − µm

τ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
‖µk

τi
− µm

τi
‖∗BL

+A2 (τi+1 − τi) ‖µ
k
τ0

− µm
τ0
‖∗BL

+ 2A3 (τi+1 − τi)(τi − τ̄) (4.9)

for all τ ∈ (τi, τi+1], where A1, A2 and A3 are the same constants as in (4.4) and (4.7).

We now combine the estimates obtained in Cases 1, 2 and 3: it follows from (4.4), (4.7) and
(4.9) that

sup
τ∈(τi,τi+1]

‖µk
τ − µm

τ ‖∗BL 6 exp
(
A1 (τi+1 − τi)

)
sup

τ∈(τi−1,τi]

‖µk
τ − µm

τ ‖∗BL

+A2 (τi+1 − τi) ‖µ
k
τ0

− µm
τ0
‖∗BL

+ 4A3M
(k) (τi+1 − τi),
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for all i ∈ {1, . . . , N (j) − 1}, while for i = 0

sup
τ∈(τ0,τ1]

‖µk
τ − µm

τ ‖∗BL 6
[
exp

(
A1 (τ1 − τ0)

)
+A2 (τ1 − τ0)

]
‖µk

τ0
− µm

τ0
‖∗BL

+A3M
(k) (τ1 − τ0).

We have used that τi − τ0 6M (k) in (4.4), τ0 − τ̄ 6 tmi0 − tmi0−1 6M (m) 6M (k) in (4.7) and

τi − τ̄ 6 τN(j) − τ0 + τ0 − τ̄ 6 M (k) + tmi0 − tmi0−1 6 M (k) +M (m)
6 2M (k)

in (4.9). This is the place where we use explicitly that partition αm is ‘finer’ (or: ‘not coarser’)
than αk in the sense that M (m) 6 M (k); cf. Assumption 3.5. By an induction argument one can
show that the upper bound

sup
τ∈(τi,τi+1]

‖µk
τ − µm

τ ‖∗BL 6

i∑

ℓ=0





i∏

q=ℓ+1

exp
(
A1 (τq+1 − τq)

)



 ·

·

[

A2 (τℓ+1 − τℓ) ‖µ
k
τ0

− µm
τ0
‖∗BL + 4A3M

(k) (τℓ+1 − τℓ)

]

+

(
i∏

q=0

exp
(
A1 (τq+1 − τq)

)

)

‖µk
τ0

− µm
τ0
‖∗BL (4.10)

holds for all i ∈ {0, . . . , N (j)−1}. The products in brackets are equal to exp
(
A1 (τi+1−τℓ+1)

)
and

exp
(
A1 (τi+1−τ0)

)
, respectively. By using these explicit expressions and by taking the supremum

over i on the left-hand and right-hand sides of (4.10), we obtain

sup
τ∈(τ0,τN(j) ]

‖µk
τ − µm

τ ‖∗BL 6

N(j)−1∑

ℓ=0

exp
(
A1 (τN(j) − τℓ+1)

)
·

·
[
A2 (τℓ+1 − τℓ) ‖µ

k
τ0

− µm
τ0
‖∗BL + 4A3M

(k) (τℓ+1 − τℓ)
]

+ exp
(
A1 (τN(j) − τ0)

)
‖µk

τ0
− µm

τ0
‖∗BL. (4.11)

Since τN(j) − τℓ+1 6 τN(j) − τ0 for all ℓ ∈ {0, . . . , N (j)− 1}, and τ0 = tkj and τN(j) = tkj+1, it follows
from (4.11) that

sup
τ∈(tkj ,t

k
j+1]

‖µk
τ − µm

τ ‖∗BL 6

[

1 +A2

N(j)−1∑

ℓ=0

(τℓ+1 − τℓ)

]

· exp
(
A1 (t

k
j+1 − tkj )

)
· ‖µk

tkj
− µm

tkj
‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (t

k
j+1 − tkj )

)
N(j)−1∑

ℓ=0

(τℓ+1 − τℓ)

=
[
1 +A2 (t

k
j+1 − tkj )

]
· exp

(
A1 (t

k
j+1 − tkj )

)
· ‖µk

tkj
− µm

tkj
‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (t

k
j+1 − tkj )

)
. (4.12)

Hence, we have that

sup
τ∈(tkj ,t

k
j+1]

‖µk
τ − µm

τ ‖∗BL 6
[
1 +A2 (t

k
j+1 − tkj )

]
· exp

(
A1 (t

k
j+1 − tkj )

)
· sup
τ∈(tkj−1,t

k
j ]

‖µk
τ − µm

τ ‖∗BL

+ 4A3M
(k) (tkj+1 − tkj ) exp

(
A1 (t

k
j+1 − tkj )

)
(4.13)

for all j ∈ {1, . . . , Nk − 1}, and for j = 0 we have

sup
τ∈(tk0 ,t

k
1 ]

‖µk
τ − µm

τ ‖∗BL 6 4A3M
(k) (tk1 − tk0) exp

(
A1 (t

k
1 − tk0)

)
, (4.14)
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because µk
tk0

= µ0 = µm
tk0
. By an induction argument similar to the one leading to (4.10), we obtain

that

sup
τ∈(tkj ,t

k
j+1]

‖µk
τ − µm

τ ‖∗BL 6

j
∑

ℓ=0





j
∏

q=ℓ+1

[
1 +A2 (t

k
q+1 − tkq )

]
· exp

(
A1 (t

k
q+1 − tkq )

)



 ·

· 4A3M
(k) (tkℓ+1 − tkℓ ) exp

(
A1 (t

k
ℓ+1 − tkℓ )

)
(4.15)

for all j ∈ {0, . . . , Nk − 1}. Note that
[
1 + A2 (t

k
q+1 − tkq )

]
6 exp

(
A2 (t

k
q+1 − tkq )

)
for all q ∈

{0, . . . , Nk − 1}. Define A4 := A1 +A2. It follows from (4.15) that

sup
τ∈(tkj ,t

k
j+1]

‖µk
τ − µm

τ ‖∗BL 6 4A3M
(k) exp(A1 T )

j
∑

ℓ=0





j
∏

q=ℓ+1

exp
(
A4 (t

k
q+1 − tkq )

)



 · (tkℓ+1 − tkℓ )

6 4A3M
(k) exp(A1 T )

j
∑

ℓ=0

exp
(
A4 (t

k
j+1 − tkℓ+1)

)
· (tkℓ+1 − tkℓ )

6 4A3M
(k) exp((A1 +A4)T ) (t

k
j+1 − tk0). (4.16)

We take the supremum over j on both sides of the inequality (4.16) and get

sup
τ∈[0,T ]

‖µk
τ − µm

τ ‖∗BL 6 4A3M
(k) T exp((A1 +A4)T ). (4.17)

Note that we extended the supremum from τ ∈ (0, T ] to τ ∈ [0, T ], but this does not change
the upper bound. Define C := 4A3 T exp((A1 + A4)T ) to get the result of the lemma. Because
M (k) → 0 as k → ∞, the estimate (4.17) implies that (µk)k∈N is a Cauchy sequence.

Remark 4.2. It is crucial that we use ‖ · ‖∗BL and not ‖ · ‖TV in Lemma 4.1. The factor
‖vk0 − vmi ‖∞ appears in (4.2) due to Lemma 2.10. Due to Assumption 3.1(iv) we subsequently
obtain an estimate in which ‖µk

τ0
− µm

τ0
‖∗BL appears. Analogous estimates apply to ‖vk0 − v̄‖∞ in

(4.5). Note that Lemma 2.10 builds on Lemma 2.2. In (2.13) the Lipschitz property of the test
functions is explicitly used and hence, there is no direct way to formulate the result of Lemma 2.2
in terms of ‖ ·‖TV. Consequently, we do not have an estimate of ‖µk

τ −µ
k+1
τ ‖TV against ‖v−v′‖∞

comparable to (4.2).

We are now ready to prove Theorem 3.10.
Proof. By definition, M([0, 1]) is complete in the metric induced by the norm ‖ · ‖∗BL. The

space M+([0, 1]) is a closed subspace of M([0, 1]), so M+([0, 1]) is complete. Hence, the space

{ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}

is complete for the metric defined for all µ, ν ∈ C([0, T ];M+([0, 1])) by (3.6).
For each initial measure µ0 ∈ M+([0, 1]) and for each k ∈ N, consider the Euler approxima-
tion µk defined by (3.3) corresponding to partition αk. This approximation µk is an element of
C([0, T ];M+([0, 1])), because the semigroup (Qv

t )t>0 preserves positivity for all v ∈ BL([0, 1]); see
[EHM15a, Corollary 3.4]. In Lemma 4.1, we showed that for given (αk)k∈N the sequence (µk)k∈N

is a Cauchy sequence in {ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}, which is a complete space, as was
argued above. Hence, the sequence (µk)k∈N converges in {ν ∈ C([0, T ];M+([0, 1])) : ν(0) = µ0}.

The limit is independent of the sequence of partitions chosen from the class characterized by
Assumption 3.5. If (αk)k∈N and (βk)k∈N are two such sequences, then it is possible to construct
a sequence (γk)k∈N that has a subsequence that is also a subsequence of (αk)k∈N, and that has
(another) subsequence that is a subsequence of (βk)k∈N. Moreover, (γk)k∈N can be constructed
such that the corresponding sequence of maximal interval lengths is nondecreasing.
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Let (µαk)k∈N, (µ
βk)k∈N and (µγk)k∈N be the corresponding sequences of Euler approximations.

The sequence (µγk)k∈N can be shown to converge to the same limit as (µαk)k∈N, and to the same
limit as (µβk)k∈N. Hence, (µαk)k∈N and (µβk)k∈N converge to the same limit. This finishes the
proof.

The proof of Corollary 3.11 builds on the result of Theorem 3.10.
Proof. Fix t > 0 and let T > 0 be such that t ∈ [0, T ]. For given µ0 ∈ M+([0, 1]) and v :

M([0, 1])× [0, 1] → R satisfying Assumption 3.1, a unique mild solution µ ∈ C([0, T ];M+([0, 1]))
exists, hence µt, the solution at time t, exists. We now show that this µt is independent of the
choice of T .
Let T1, T2 > 0 and assume without loss of generality that T1 < T2. For the given µ0 ∈ M+([0, 1])
and v : M([0, 1]) × [0, 1] → R, let µ denote the mild solution in C([0, T1];M

+([0, 1])) obtained
by partitioning [0, T1]. Take a sequence of partitions (αk)k∈N ⊂ [0, T1] satisfying Assumption
3.5, with corresponding Euler approximations (µk)k∈N. Next, construct a sequence of partitions
(βk)k∈N ⊂ [0, T2] satisfying Assumption 3.5, such that αk ⊂ βk for each k ∈ N. More specifically,
restricted to [0, T1] each partition βk coincides with αk. Note that such (βk)k∈N exists. Let (νk)k∈N

be the sequence of Euler approximations corresponding to (βk)k∈N.
For each k ∈ N, the restriction νk

∣
∣
[0,T1]

is defined by (3.3) with respect to the partition βk∩[0, T1] =

αk. Hence ν
k
∣
∣
[0,T1]

is defined in the same way as µk, and thus supτ∈[0,T1] ‖µ
k
τ−ν

k
τ ‖

∗
BL = 0 or simply

νk
∣
∣
[0,T1]

= µk. Consequently, the same must hold in the limit as k → ∞, because of the triangle

inequality:

sup
τ∈[0,T1]

‖µτ − ντ‖
∗
BL 6 sup

τ∈[0,T1]

‖µk
τ − νkτ ‖

∗
BL + sup

τ∈[0,T1]

‖µk
τ − µτ‖

∗
BL + sup

τ∈[0,T1]

‖νkτ − ντ‖
∗
BL

6 sup
τ∈[0,T1]

‖µk
τ − νkτ ‖

∗
BL

︸ ︷︷ ︸

=0

+ sup
τ∈[0,T1]

‖µk
τ − µτ‖

∗
BL

︸ ︷︷ ︸

→0

+ sup
τ∈[0,T2]

‖νkτ − ντ‖
∗
BL

︸ ︷︷ ︸

→0

.

So, supτ∈[0,T1] ‖µτ − ντ‖
∗
BL = 0. Hence, µτ = ντ for all τ ∈ [0, T1] and thus the solution at time τ

is independent of the final time chosen.

Finally, we prove Theorem 3.12:
Proof. Let the mild solutions µ and ν be given and let (αk)k∈N be an arbitrary sequence

of partitions of [0, T ] satisfying Assumption 3.5. Let (µk)k∈N and (νk)k∈N denote the sequences
of Euler approximations defined by (3.3), both for the sequence of partitions (αk)k∈N, and with
initial conditions µ0 and ν0, respectively.
Since µ and ν are mild solutions

µ = lim
k→∞

µk, and

ν = lim
k→∞

νk

hold, with convergence in the metric (3.6). It follows from Lemma 3.4 that all elements of

{µk
t : k ∈ N, t ∈ [0, T ]} ∪ {νkt : k ∈ N, t ∈ [0, T ]}

are bounded by R := R̃ exp(‖f‖∞ T ) in both ‖·‖TV and ‖·‖∗BL. Fix k ∈ N, let αk := {tk0 , . . . , t
k
Nk

}

and take j such that τ ∈ (tkj , t
k
j+1]. Consider the difference ‖µk

τ − νkτ ‖
∗
BL.

We use an estimate in the spirit of (4.2)–(4.3)–(4.4). Note that the proof of Lemma 4.1 also
holds if k = m, which implies N (j) = 1 and hence i = 0. It follows from (4.2)–(4.3), with i = 0
and with νk instead of µm, that

‖µk
τ − νkτ ‖

∗
BL 6

[
1 +B2 (t

k
j+1 − tkj )

]
exp

(

B1 (t
k
j+1 − tkj )

)

‖µk
tkj

− νk
tkj
‖∗BL (4.18)
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for some positive constants B1 and B2 that depend on f , T and R̃, but not on j or k. This
estimate holds for all τ ∈ (tkj , t

k
j+1] and resembles (4.4). We take the supremum over τ ∈ (tkj , t

k
j+1]

on the left-hand side of (4.18), apply this relation recursively and take the supremum over j to
obtain that

sup
τ∈[0,T ]

‖µk
τ − νkτ ‖

∗
BL 6

(
Nk−1∏

ℓ=0

[
1 +B2 (t

k
ℓ+1 − tkℓ )

]
exp

(
B1 (t

k
ℓ+1 − tkℓ )

)

)

‖µ0 − ν0‖
∗
BL

6

(
Nk−1∏

ℓ=0

exp
(
B2 (t

k
ℓ+1 − tkℓ )

)
exp

(
B1 (t

k
ℓ+1 − tkℓ )

)

)

‖µ0 − ν0‖
∗
BL

6 exp
(
(B1 +B2) (t

k
Nk

− tk0)
)
‖µ0 − ν0‖

∗
BL

= exp((B1 +B2)T ) ‖µ0 − ν0‖
∗
BL, (4.19)

for all k ∈ N. The triangle inequality yields

sup
τ∈[0,T ]

‖µτ − ντ‖
∗
BL 6 sup

τ∈[0,T ]

‖µk
τ − νkτ ‖

∗
BL + sup

τ∈[0,T ]

‖µk
τ − µτ‖

∗
BL

︸ ︷︷ ︸

→0

+ sup
τ∈[0,T ]

‖νkτ − ντ‖
∗
BL

︸ ︷︷ ︸

→0

,

whence the same estimate as in (4.19) holds for supτ∈[0,T ] ‖µτ − ντ‖
∗
BL.

Remark 4.3. We would have been inclined to use directly (2.20) on the interval (tkj , t
k
j+1],

instead of deriving (4.18). We need, however, the exact dependence on (tkj+1− t
k
j ) of the prefactor,

to make sure that – after iteration over j – the prefactor in (4.19) is bounded. This dependence is
not (directly) provided by (2.20), nor by the proof of [EHM15a, Proposition 3.5].

Remark 4.4. The result of Theorem 3.12 relies – via Corollary 2.9 and Lemma 2.10 – on
Gronwall’s Inequality. This is possible here because we restrict ourselves to Lipschitz perturbations.
In our previous work [EHM15a] we considered the more general class of piecewise bounded Lipschitz
perturbations. Hence, there we stated explicitly (see the paragraph before [EHM15a, Proposition
3.5]) that the standard approach did not work.

5. Discussion. In this paper we have generalized the results of [EHM15a] to measure-
dependent velocity fields via a forward-Euler-like approach. Our motivation was to derive flux
boundary conditions for situations in which the dynamics are driven by interactions. Such dy-
namics are in general more interesting than the dynamics that follow from prescribed velocity fields
as in [EHM15a]. We managed to obtain a converging procedure, but only for bounded Lipschitz
continuous right-hand sides. Hence, compared to [EHM15a], our results hold e.g. for boundary
layers in which mass decays, but not for the limit case of vanishing boundary layer. We start off
this discussion section (see §5.1) by commenting on the possibility to extend to piecewise bounded
Lipschitz right-hand sides and to obtain the limit of vanishing boundary layer. Secondly, we point
out (in §5.2) how this paper generalizes the results of [Eve15, Chapter 5] and how a number of
open problems mentioned in [Eve15, Section 5.5] are now resolved. Ultimately, we suggest possible
future research (§5.3).

5.1. Piecewise bounded Lipschitz perturbations. To obtain the technical results in
§2.3, we explicitly used the assumption that the perturbation f is bounded Lipschitz on [0, 1].
Theorem 3.10 and Theorem 3.12 rely on the results in §2.3. We would have liked to obtain these
results for piecewise bounded Lipschitz f , in particular to model decay of mass at one of the
boundaries only (cf. [EHM15a]). In [EHM15a] we circumvent the arising problems by providing
the solution explicitly in [EHM15a, Proposition 3.3]. In the setting of the present paper, this
explicit form would be given for each interval (tkj , t

k
j+1], k ∈ N, in (3.3) by

µk
t :=

∫

[0,1]

exp






t−tkj∫

0

f(Φ
vk
j

s (x)) ds




 · δ

Φ
vk
j

t−tk
j

(x)
dµk

tkj
(x), (5.1)
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where vkj := v[µk
tkj
]. In [EHM15a] we showed that it is possible to obtain the estimates needed

to establish continuous dependence on initial data, because this explicit form has a regularizing
effect on f and its discontinuities due to the integration in time. The key ingredient there, which
is absent in the approach of the present work, is the fact that the velocity field is the same for all
time. If one wants to prove Theorem 3.12 using (5.1) instead of the properties of the semigroup
Q, one encounters that at some point for any ∆t > 0 fixed a Lipschitz estimate of the form

‖

∆t∫

0

f(Φv
s(·)) ds−

∆t∫

0

f(Φu
s (·)) ds‖∞ 6 C ‖u− v‖∞ (5.2)

is required, for all u and v taken from a class of admissible velocity fields. One would then proceed
to estimate ‖u − v‖∞ against the BL-distance of the corresponding measures, using Part (iv) of
Assumption 3.1.

In view of [EHM15a], the restriction that the velocity should not be zero at discontinuities of
f is reasonable, but even if we are willing to obey that condition, an estimate like (5.2) cannot be
expected to hold. Let f(x) = 0 if x ∈ [0, 1) and f(1) = −1. Take ε > 0 and take v ≡ ε, u ≡ −ε.
Then (for ε < 1/∆t)

‖

∆t∫

0

f(Φv
s(·)) ds−

∆t∫

0

f(Φu
s (·)) ds‖∞ > |

∆t∫

0

f(Φv
s(1)) ds−

∆t∫

0

f(Φu
s (1)) ds|

= |

∆t∫

0

f(1) ds−

∆t∫

0

f(1− ε s) ds| = ∆t.

Since ∆t > 0 is fixed and ‖u− v‖∞ = 2ε can be made arbitrarily small, (5.2) cannot be satisfied.
An additional difficulty is that it remains to be seen how we can assure that a condition like
v(1) 6= 0 is satisfied by a velocity field that depends on the solution itself.

5.2. Uniqueness of mild solutions and generality of partitions. In [Eve15, Section 5.5]
we point out that there are two reasons why we obtained uniqueness of mild solutions there. On
the one hand, this is because the constructed approximating sequence converges, thus inevitably
each subsequence (cf. Definition 3.8) converges to the same limit. This statement still holds true
for the present work. On the other hand, uniqueness holds in [Eve15, Chapter 5] because there we
only constructed one approximating sequence, namely by partitioning the interval [0, T ] into 2k

subintervals. In this respect, the present paper is a considerable improvement. The class of admis-
sible partitions (see Assumption 3.5) includes partitions into qk equal subintervals for arbitrary
q ∈ N

+; see Example 3.6. We conjectured in [Eve15, Section 5.5] that the sequence of correspond-
ing Euler approximations converges, and the results of this paper confirm that conjecture. The
fact that, in this case, each interval (tkj , t

k
j+1] is split into q

m−k subintervals (tmℓ , t
m
ℓ+1] is generically

treated by introducing the number N (j) and using a recursion over index i ∈ {0, . . . , N (j) − 1} to
obtain (4.11). In [Eve15, Chapter 5], however, we performed explicit calculations, using that each
(tkj , t

k
j+1] is split into two subintervals.

In [Eve15, Section 5.5] anticipated that using a sequence of non-uniform partitions of [0, T ], would
imply the need for a condition regularizing the variation in subinterval lengths to make sure that
all subintervals become small sufficiently fast as k → ∞. In the present work we show that it
suffices to have for the maximum subinterval length M (k) → 0 as k → ∞.
The iterative argument in [Eve15, Chapter 5] requires that the partition for index k + 1 is a re-
finement of the partition for index k (more particularly: a division of each subinterval into two).
The complications expected to occur if subsequent partitions are not refinements are resolved in
the current work, by introduction of the index i0 in the proof of Lemma 4.1 and allowing for the
case tkj 6= tmi0 .
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The final contribution of the present work to be mentioned here is that in Theorem 3.10 we have
positively answered the question posed in [Eve15, Section 5.5] whether the mild solutions obtained
as limits of distinct sequences of partitions are actually identical.

5.3. Future directions. The extension of the results stated in §3 to functions f with dis-
continuities would clear the way for an approximation procedure like the one treated in [EHM15a].
That is, to have f nonzero only on the boundary of the domain and to approximate it with a se-
quence of bounded Lipschitz functions (fn)n∈N ⊂ BL([0, 1]). In [EHM15a] we showed convergence
of the corresponding solutions as n→ ∞ (for v ∈ BL([0, 1]) fixed). The challenge would be (i): to
establish the well-posedness of the problem for discontinuous f , and (ii): to show that the Euler
approximation limit and the boundary layer limit commute.

Let us focus on the vanishing boundary layer like in [EHM15a]. Assume there are regions around 0
and 1 in which mass decays, and that these regions shrink to zero width. That is, there is a sequence
(fn)n∈N ⊂ BL([0, 1]) and there is an f satisfying f(x) = 0 if x ∈ (0, 1) and e.g. f(0) = f(1) = −1,
such that fn → f pointwise, and the Lebesgue measure of the set {x ∈ [0, 1] : fn(x) 6= f(x)} tends
to zero as n→ ∞. If we assume that we can extend the results of this paper to piecewise bounded
Lipschitz f , then well-posedness for the limit case is guaranteed. It remains to be proven however
that the solution for finite boundary layer actually converges to the solution of the limit problem.
This is the same question as asking whether the two limits that we take, actually commute. The
first limit is in the forward-Euler-like approach to obtain a mild solution. We assigned an in-
dex k to the elements in the approximating sequence and proved in Theorem 3.10 that the limit
“limk→∞” exists (for f ∈ BL([0, 1])). The second limit “limn→∞” is the one involving the se-
quence (fn)n∈N ⊂ BL([0, 1]). Proving the well-posedness for f piecewise bounded Lipschitz, is the
same as proving that the limit “limk→∞ limn→∞” exists. Proving that the sequence of solutions
corresponding to each fn actually converges to some limit in C([0, T ];M+([0, 1])) is equivalent to
proving that “limn→∞ limk→∞” exists. To conclude that the two limits commute, an additional
argument is needed. It requires a characterization of “limn→∞ limk→∞” that can be compared
to “limk→∞ limn→∞”. Both proving that “limn→∞ limk→∞” exists and characterizing the limit
can be a difficult task, however, since our current results do not provide an explicit expression for
“limk→∞”. A possible way to characterize the limit “limk→∞” could be to show that the mild
solution obtained in this paper is actually a weak solution, and use the weak formulation of (1.2)
as a characterization. If the solutions obtained in this paper are weak solutions, this is also a
further justification of the terminology ‘mild solutions’.

An additional result to be derived concerns the stability with respect to parameters, in par-
ticular with respect to f and the specific form of v. Stability statements are essential in view of
parameter identification. It is important to know how measurement errors in the parameters affect
the solution of our model. In fact, Lemma 2.10 already provides stability in v for the solution of
[EHM15a], provided that f ∈ BL([0, 1]).
Moreover, we would like to study the long-term dynamics of the solutions t 7→ µt for various initial
conditions.
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