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Abstract. Model reduction for linear Volterra integro-diffferential equations is studied. Gener-
alized system Gramians are introduced and characterized as solutions to delay Lyapunov equations
similarly arising for finite delay systems. The usual energy interpretation of the Gramians is pro-
vided and a reduced-order model of Volterra integro-differential type is obtained by truncation of a
balanced system. An error bound for the H2-norm is derived. It is further shown that particular
choices for the Volterra kernel automatically yield approaches that have been studied in the litera-
ture. Additionally, the new approach allows us to also reduce time fractional systems. The method
is numerically investigated by means of two spatially discretized partial differential equations.
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1. Introduction. Consider a system of linear Volterra integro-differential equa-
tions of convolution type

(1.1)
ẋ(t) =

∫ t

0

µ(ds)x(t− s) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where B ∈ Rn×m,C ∈ Rp×n, and µ ∈ Mloc(0,∞;Rn×n) is a locally finite matrix
valued Borel measure. In particular, we focus on the setup used in [19, Chapter 3]
and assume that µ denotes a matrix in Rn×n consisting of scalar measures. For fixed
time t, we call x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp the state, input, and output of the
system at time t, respectively.

Note that instead of (1.1), one often has to consider an additional mass matrix
E ∈ Rn×n leading to systems of the form

Eẋ(t) =

∫ t

0

µ(ds)x(t− s) + Bu(t),

y(t) = Cx(t), x(0) = x0.

As long as the dynamics contain no (implicit) algebraic constraints such that E is
singular, all of the following concepts can be appropriately extended. Indeed, for the
theoretical results we might simply replace the previous system by the following one,

ẋ(t) =

∫ t

0

µ̃(ds)x(t− s) + B̃u(t),

y(t) = Cx(t), x(0) = x0,
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MODEL REDUCTION FOR INTEGRO-DIFFERENTIAL EQUATIONS 2993

where µ̃ = E−1µ and B̃ = E−1B. On the other hand, in case of E being singular,
we obtain an integro-differential algebraic system which requires many additional
concepts. We thus restrict ourselves to the case of (1.1).

The study of equations of the form (1.1) has a long history going back to Volterra
[45]. For a detailed introduction into the theory of integro-differential equations, we
also refer to, e.g., [9, 19]. While several works in the literature [9, 20, 31, 34, 43] are
concerned with the case µ(ds) = k(s)ds, where k(·) ∈ L1(0,∞;Rn×n), here we focus
on the more general formulation (1.1). Note in particular that by setting µ(ds) =
Aδ0(ds), where δ0 is a scalar unit point mass at 0, we obtain a linear time invariant
(LTI) control system of the form

(1.2)
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0.

In what follows, we subsequently comment on that as well as other relations which
allow for a comparison with existing results from the literature.

Often the need for an accurate model of the underlying physical process competes
with the desire for an efficient numerical treatment of the mathematical system. As a
remedy for this problem, the topic of model order reduction has gained much attention
in recent years; see, e.g., [1, 5]. Given a system of the form (1.1), structure-preserving
model reduction typically consists in constructing a reduced-order model of the same
form, i.e.,

(1.3)
ẋr(t) =

∫ t

0

µr(ds)xr(t− s) + Bru(t),

yr(t) = Crxr(t), xr(0) = x0,r,

where Br ∈ Rr×m,Cr ∈ Rp×r, and µr ∈ Mloc(0,∞;Rr×r) such that r � n. Note
that the term structure-preserving refers to the fact that the reduced-order model is
also of Volterra integro-differential type. We emphasize that there are alternative
ways of defining what constitutes a reduced-order model for (1.1). From a system
theoretic point of view, Volterra integro-differential systems are infinite dimensional;
see subsection 2.3. Hence, instead of (1.3) one might also think of a model reduction
problem where (1.1) is replaced by a standard LTI system of the form (1.2).

In order to ensure now that the reduced model reflects the original dynamics, one
also requires that yr(t) ≈ y(t) for a given set of admissible input signals u(t). Here,
we assume that u(·) ∈ L2(0,∞;Rm). As a measure for the deviation between original
and reduced output, one may consider the H∞-norm or the H2-norm of the systems;
cf. [15, Appendix A.6]. For systems of the form (1.2), many different methodologies
have been proposed and theoretically analyzed; among them the most popular ones
can be sorted into balancing based methods [1, 5, 21, 32, 33], Krylov subspace or
rational interpolation based methods [2, 17, 18, 22, 44], and methods based on proper
orthogonal decomposition (POD) [12, 24, 29, 40, 41].

In this paper, a generalization of the method of balanced truncation to integro-
differential equations of the form (1.1) is considered. The main results can also be seen
as an appropriate extension of the method of position balancing for time delay systems
[25] and position-velocity balancing for second order systems [11, 39]. In particular,
both techniques can be obtained as special cases from the general framework presented
below.

The precise structure of the paper is as follows. In section 2 we provide the
necessary background for integro-differential equations of convolution type. Stability
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2994 TOBIAS BREITEN

criteria and the corresponding fundamental solution of the system are introduced. A
generalized transfer function relating input and output signals in the frequency do-
main is studied. In section 3, we define two system Gramians that, in the case of (1.2),
coincide with the solutions of the controllability and observability Lyapunov equations
of the system. Moreover, they are shown to provide the usual energy interpretation
of the states of (1.1) and can be characterized as the solution to a delay Lyapunov
equation. The reduced model is obtained after a contragredient transformation and
a truncation of the resulting balanced model. For the reduced-order model, an error
bound for the H2-norm is derived. Section 4 contains a discussion of some special
measures µ. Besides the already mentioned second order and time delay systems, we
explain how the approach can be used to reduce time fractional as well as coupled
systems. The numerical realization of the method is studied in section 5. The re-
quired Gramians are computed by means of a low-rank version of the Gauss–Kronrod
quadrature formula. Reduced models are obtained for the linear heat equation with
memory and a time fractional wave equation. A conclusion is given in section 6.

In the remainder of the paper, we use the following notation. All matrices are
denoted in bold letters and I always denotes the identity matrix whose dimension
should be clear from the context. Given a matrix A ∈ Rm×n, we denote with A†

its Moore–Penrose pseudoinverse. For a matrix U ∈ Rn×m, by U(:,1:r) ∈ Rn×r we
denote the submatrix consisting of the first r columns of the matrix U. Similarly, we
use U(1:s,1:r) ∈ Rs×r for the submatrix consisting of the first s rows and the first r

columns of the matrix U. For p ≥ 1, k ∈ N0, by Lp(I) and W k,p(I) we denote the
usual Lebesgue and Sobolev spaces on the interval I ⊂ R. Given a Hilbert space X, we
denote by Lp(0,∞;X) (Bochner) p-integrable functions on (0,∞) with values in X.
The open left complex half-plane is denoted by C− := {s ∈ C|Re(s) < 0}. Similarly,
we use C−,C+, and C+.

2. Integro-differential equations.

2.1. Preliminaries. For the results in this section, we closely follow the pre-
sentation in [19, Chapter 3]. Let us emphasize that this particularly applies to the
solution concept of equations of the form (1.1). As pointed out in [19], even for con-
tinuous input signals u(t), we cannot expect x(t) to satisfy (1.1) everywhere. This is

due to the fact that µ may consist of point masses and
∫ t

0
µ(ds)x(t−s) will have jump

discontinuities for which ẋ(t) is not defined. Consequently, solutions are assumed to
be locally absolutely continuous functions x(t) with x(0) = x0 such that (1.1) holds
for almost all t. An important tool then is the so-called differential resolvent Φ(t).

Theorem 2.1 (see [19, Theorem 3.3.1]). Let µ ∈ Mloc(0,∞;Rn×n). Then there
is a unique locally absolutely continuous function Φ(·) on [0,∞) with Φ(0) = I that
satisfies

(2.1) Φ̇(t) =

∫ t

0

µ(ds)Φ(t− s) =

∫ t

0

Φ(t− s)µ(ds)

for almost all t ∈ [0,∞). Furthermore, the derivative Φ̇ is equal almost everywhere to
a function which is locally of bounded variation.

For later purposes, we assume that Φ is also defined on (−∞, 0) with Φ(t) = 0 for
t < 0. The solution x(t) of (1.1) is given by the variation of constants formula as

x(t) = Φ(t)x0 +

∫ t

0

Φ(t− s)Bu(s) ds.(2.2)
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Note that in the case of (1.2), the differential resolvent is the usual matrix exponential,
i.e., Φ(t) = eAt, which is also called a fundamental solution of the system.

For studying (1.1) in the frequency domain, we recapitulate the Laplace transform
of measures.

Definition 2.2 (see [19, Definition 3.2.2]). The Laplace transform µ̂(z) of a lo-
cally finite measure µ on R+ is the function

µ̂(z) =

∫ ∞
0

e−ztµ(dt),

defined for those z ∈ C for which this integral converges absolutely.

Since the Laplace transform of measures shares most of the properties of the
Laplace transform of L1-functions, we obtain a simple algebraic relation between
inputs and outputs. Assuming that x(0) = 0 and applying the Laplace transform to
(1.1) it holds that

(2.3) ŷ(z) = C(zI− µ̂(z))−1Bû(z).

As a consequence, we will call

G(z) := C(zI− µ̂(z))−1B

the transfer function of the system. Note that in contrast to systems of the form
(1.2), G(z) is not necessarily a rational function in z.

In case of an initial condition x(0) 6= 0, we rather have to consider

ŷ(z) = C(zI− µ̂(z))−1Bû(z) + C(zI− µ̂(z))−1x(0)

= C(zI− µ̂(z))−1
[
B x(0)

]︸ ︷︷ ︸
B̃

[
û(z)

1

]
︸ ︷︷ ︸
ũ(z)

.

In other words, we can interpret the transformed transfer function as the transfer
function of a system with zero initial condition and constant input term. Since
this general case leads to additional difficulties [23], here we only consider the case
x(0) = 0.

At this point, let us emphasize that instead of the balancing based model reduction
approach we consider here, a very general interpolatory projection framework has been
studied in [4]. In particular, it is shown how to construct a reduced-order model of
the form (1.3) whose transfer function Gr interpolates the original transfer function
G at a set of prescribed interpolation points.

2.2. Stability of Volterra equations and the H2-norm. For what follows,
we first need an appropriate notion of stability for (1.1). Among many works in the
literature [9, 20, 31, 34, 43], we give the following stability results from [19].

Theorem 2.3 (see [19, Theorem 3.3.5]). Let µ ∈M(0,∞;Rn×n). Then

Φ(·) ∈ L1(0,∞;Rn×n)⇔ det(zI− µ̂(z)) 6= 0, Re(z) ≥ 0.

Moreover, if Φ(·) ∈ L1(0,∞;Rn×n), then Φ̇ ∈ L1(0,∞;Rn×n) and Φ̇(·) is equal almost
everywhere to a function of bounded variation.
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2996 TOBIAS BREITEN

In particular, according to [19, Theorem 3.3.9], the previous result also implies
that Φ(·) ∈ Lp(0,∞;Rn×n) for all p ∈ [1,∞]. For unbounded measures, one still has
the following result.

Theorem 2.4 (see [19, Theorem 3.3.13]). Let µ ∈ Mloc(0,∞;Rn×n) satisfy∫∞
−∞ e−σt|µ|(dt) <∞ for all σ > 0. Then the following are equivalent:

(1) Φ(·) ∈ L2(0,∞;Rn×n),

(2) det(zI− µ̂(z)) 6= 0, Re(z) > 0, sup
σ>0

∫ ∞
−∞

∥∥∥((σ + ıω)I− µ̂(σ + ıω))
−1
∥∥∥2

dω <∞.

With this in mind, throughout the rest of the paper, we assume that system (1.1)
is stable in the sense that it at least satisfies the asymptotic properties stated in
Theorem 2.4. In case of (1.2), it is well known [1, 15] that the second characterization

in Theorem 2.4 is closely related to the Hardy space Hp×m2 defined as follows,

Hp×m
2 :=

{
f : C+

0 → Cp×m|f is holomorphic, and sup
σ>0

(
1

2π

∫ ∞
−∞

‖f(σ + ıω)‖2F dω

) 1
2

<∞

}
.

In particular, for a minimal standard LTI system (1.2), the associated rational transfer
function

G(·) = C(·I−A)−1B ∈ Hp×m2

if and only if the eigenvalues of the system matrix A are located in the open left
complex plane. In the context of model order reduction, the H2-norm is useful since
it allows us to measure the approximation quality of a reduced-order model. In-
deed, let us assume that y and yr are the outputs obtained for (1.1) and (1.3) with
zero initial condition. By (2.2), (2.3), Young’s inequality for convolutions, and the
Payley–Wiener theorem we then have

(2.4)
‖y − yr‖L∞ = ‖ (CΦB−CrΦrBr) ∗ u‖L∞ ≤ ‖CΦB−CrΦrBr‖L2‖u‖L2

= ‖G−Gr‖Hp×m2
‖u‖L2 ,

where ∗ denotes the convolution of two functions. As it turns out, the approach
discussed below provides an error bound for the reduced-order model with respect to
the H2-norm.

2.3. Volterra equations as infinite-dimensional systems. Instead of (1.1),
we may use a semigroup formulation and alternatively consider a Volterra integro-
differential equation as an infinite-dimensional system. We briefly want to review the
special case µ(ds) = Aδ0(ds) + K(s) ds, where δ0 is again a unit point mass at 0 and
K(·) ∈ L1(0,∞;Rn×n). Hence, the state equation then reads

ẋ(t) = Ax(t) +

∫ t

0

K(s)x(t− s) ds+ Bu(t)

= Ax(t) +

∫ t

0

K(t− s)x(s) ds+ Bu(t).(2.5)

For what follows, we refer to the original presentation in [8]. For having a well-posed
infinite-dimensional system, instead of (2.5) we rather consider the slightly modified
version

(2.6)
ẋ(t) = Ax(t) +

∫ t

−∞
K(t− s)x(s) ds+ Bu(t), t ≥ 0,

y(t) = Cx(t).
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We now have to provide initial data

x(0) = η, x(t) = ϕ(t), t < 0.

As state space for system (2.6) we choose the product space

M2 := Rn × L2(−∞, 0;Rn).

We further define an operator A on M2 by the domain

D(A) =

{(
η
ϕ

)
∈M2

∣∣ϕ ∈W 1,2(−∞, 0;Rn), η = ϕ(0)

}
and action

A
(
η
ϕ

)
=

(
Aη +

∫ 0

−∞K(−s)ϕ(s) ds

ϕ′(·)

)
.

In particular, A is the infinitesimal generator of a C0-semigroup S(t) on M2 [8,
Theorem 2.1]. While this formulation can be carried out analogously for systems
with finite delay, there occur some significant differences. For example, for systems
with infinite delay, the spectrum is never discrete. In particular, we have that C− ⊆
σ(A) [8].

Remark 2.5. If in (2.5) it holds that x(t) = 0 for t < 0, the system can be seen as
a special case of (2.6). However in the case of x(0) 6= 0 it follows that (η, φ) /∈ D(A).
In other words we cannot expect to have classical solutions. Since for model reduction
purposes one typically assumes that x(0) = 0, we will not tackle this situation in more
detail.

If we define the control and observation operators by

B : Rm →M2, Bu =

(
Bu
0

)
, C : M2 → Rp, C

(
η
ϕ

)
= Cη

we can rewrite system (2.6) in the following form,

(2.7)

d

dt
z(t) = Az(t) + Bu(t), z(0) =

(
η
ϕ

)
,

y(t) = Cz(t),

where z(t) =
(

x(t)
x(t−·)

)
denotes the state of the system at time t. From this point of

view, x(t) in (1.1) reflects only a part of the state and one might rather call it the
position at time t; see also the discussion in [25].

3. Gramians and balancing transformations. For systems of the form (1.2),
the method of balanced truncation constructs a reduced-order model by truncating
a system that is balanced with respect to both its controllability and observability
Gramians X and Y, respectively. For an asymptotically stable system, it is well known
[1] that X and Y are the unique positive-semidefinite solutions of the Lyapunov matrix
equations

(3.1) AX + XAT + BBT = 0, ATY + YA + CTC = 0.
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Moreover, alternative representations for X and Y are as follows:

X =

∫ ∞
0

eAtBBT eA
T t dt =

1

2π

∫ ∞
−∞

(ıωI−A)−1BBT (−ıωI−A)−∗dω,

Y =

∫ ∞
0

eA
T tCTCeAt dt =

1

2π

∫ ∞
−∞

(ıωI−A)−∗CTC(−ıωI−A)−1dω.

As a natural candidate for system (1.1), we now define the following Gramians

(3.2) P :=

∫ ∞
0

Φ(τ)BBTΦT (τ) dτ, Q :=

∫ ∞
0

ΦT (τ)CTCΦ(τ) dτ,

where Φ(·) denotes the differential resolvent. As we pointed out in section 2, if system
(1.1) is stable, we have that Φ(·) ∈ L2(0,∞;Rn×n). Consequently, the expressions in
(3.2) are indeed well defined since, e.g.,

‖P‖2 =

∥∥∥∥∫ ∞
0

Φ(τ)BBTΦT (τ) dτ

∥∥∥∥
2

≤ ‖B‖22
∫ ∞

0

‖Φ(τ)‖22 dτ <∞.

Note that the definitions of P and Q are straightforward extensions of the Gramians
defined for finite delay systems in [25]. We want to characterize P and Q in terms of
(generalized) matrix equations analogously to (3.1). Following similar works on finite
delay systems [26, 27, 28, 37], we therefore consider P and Q as special cases arising
from the delay Lyapunov matrices
(3.3)

P(t) :=

∫ ∞
0

Φ(τ)BBTΦT (τ + t) dτ, Q(t) :=

∫ ∞
0

ΦT (τ)CTCΦ(τ + t) dτ.

In [37, Proposition 6.28], for the finite delay case these matrices have been shown to
satisfy a matrix delay differential equation together with a symmetry and an algebraic
condition, respectively. As the next proposition shows, for our generalized Volterra
integro-differential setting, the above matrices still satisfy a matrix delay differential
equation which now is of Volterra type. Moreover, the symmetry condition as well
as the algebraic condition are retained; the latter, however, with a slight extension to
the integro-differential character considered here.

Proposition 3.1. Let µ ∈ M(0,∞;Rn×n). Assume that det(zI − µ̂(z)) 6= 0,
Re(z) ≥ 0. Then P(·),Q(·) almost everywhere satisfy the matrix delay differential
equations

(3.4)

Ṗ(t) =

∫ ∞
0

P(t− s)µT (ds), t ≥ 0,

Q̇(t) =

∫ ∞
0

Q(t− s)µ(ds), t ≥ 0,

(3.5) P(t) = PT (−t), Q(t) = QT (−t), t ≥ 0,

(3.6)

0 =

∫ ∞
0

PT (s)µT (ds) +

∫ ∞
0

µ(ds)P(s) + BBT ,

0 =

∫ ∞
0

QT (s)µ(ds) +

∫ ∞
0

µT (ds)Q(s) + CTC.
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Proof. We only show the assertion for P. Analogous reasoning can be used to
prove the equation for Q. We recall that Φ(t) = 0 for t < 0. A simple calculation then
leads to

d

dt
P(t) =

d

dt

∫ ∞
0

Φ(τ)BBTΦT (τ + t) dτ

=

∫ ∞
0

Φ(τ)BBT

(∫ τ+t

0

µ(ds)Φ(τ + t− s)
)T

dτ

=

∫ ∞
0

Φ(τ)BBT

(∫ τ+t

0

ΦT (τ + t− s)µT (ds)

)
dτ.

Changing the order of integration yields

d

dt
P(t) =

∫ t

0

∫ ∞
0

Φ(τ)BBTΦT (τ + t− s) dτ µT (ds)

+

∫ ∞
t

∫ ∞
s−t

Φ(τ)BBTΦT (τ + t− s) dτ µT (ds)

=

∫ t

0

P(t− s)µT (ds) +

∫ ∞
t

∫ ∞
s−t

Φ(τ)BBTΦT (τ + t− s) dτ µT (ds).

Since Φ(t) = 0, t < 0, this is the same as

d

dt
P(t) =

∫ t

0

P(t− s)µT (ds) +

∫ ∞
t

∫ ∞
0

Φ(τ)BBTΦT (τ + t− s) dτ µT (ds)

=

∫ ∞
0

P(t− s)µT (ds).

This shows (3.4). For (3.5), note that due to (3.3), we have that

P(−t) =

∫ ∞
0

Φ(τ)BBTΦT (τ − t) dτ =

∫ ∞
−t

Φ(s+ t)BBTΦT (s) ds

=

∫ ∞
0

Φ(s+ t)BBTΦT (s) ds = P(t)T .

Finally, we find that∫ ∞
0

PT (s)µT (ds) +

∫ ∞
0

µ(ds)P(s) =

∫ ∞
0

P(−s)µT (ds) +

∫ ∞
0

µ(ds)PT (−s)

=

∫ ∞
0

(∫ ∞
0

Φ(τ)BBTΦ(τ − s)T dτ

)
µT (ds)

+

∫ ∞
0

µ(ds)

(∫ ∞
0

ΦT (τ − s)BBTΦ(τ) dτ

)
=

∫ ∞
0

(∫ ∞
s

Φ(τ)BBTΦT (τ − s) dτ

)
µT (ds)

+

∫ ∞
0

µ(ds)

(∫ ∞
s

ΦT (τ − s)BBTΦ(τ) dτ

)D
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=

∫ ∞
0

(∫ τ

0

Φ(τ)BBTΦT (τ − s)µT (ds)

)
dτ

+

∫ ∞
0

(∫ τ

0

µ(ds)ΦT (τ − s)BBTΦ(τ)T
)

dτ

=

∫ ∞
0

d

dτ
(Φ(τ)BBTΦT (τ)) dτ = −BBT .

Remark 3.2. Note that the results from Proposition 3.1 are indeed consistent with
existing results from the literature. For example, in the case of a finite delay system,
we have that µ(ds) = δ0(ds)A + δτ (ds)A1. Hence, it follows that

Ṗ(t) =

∫ ∞
0

P(t− s)µT (ds) = P(t)AT + P(t− τ)AT
1 ,

0 =

∫ ∞
0

PT (s)µT (ds) +

∫ ∞
0

µ(ds)P(s) + BBT

= P(0)AT + P(−τ)AT
1 + AP(0) + A1P(τ) + BBT .

These delay Lyapunov equations are exactly those that have been discussed in, e.g.,
[25, 37]. Equation (3.4) has been studied even earlier in the context of stability theory
for difference-differential equations; see [10].

Remark 3.3. Let us point out that the differential equations (3.4) for P(t) and
Q(t) only depend on previous time instances. In fact, as in (2.6) consider again the
case where µ(ds) = Aδ0(ds) + K(s)ds. The differential equation for P(t) then reads

Ṗ(t) = P(t)AT +

∫ ∞
0

P(t− s)KT (s) ds.

A simple change of variables implies that

Ṗ(t) = P(t)AT +

∫ t

−∞
P(t)KT (t− s) ds

which shows the similarity to the underlying system (2.6).

We further have a characterization of P(·) and Q(·) in terms of an integral along
the imaginary axis. Again, the result can be found for finite delay systems in [37,
Proposition 6.29].

Proposition 3.4. Let µ ∈ M(0,∞;Rn×n). Assume that det(zI − µ̂(z)) 6= 0,
Re(z) ≥ 0. For z ∈ C+, define R(z) := (zI− µ̂(z))−1. Then

(3.7)

P(t) =
1

2π

∫ ∞
−∞

R(ıω)BBTR∗(ıω)eıωt dω,

Q(t) =
1

2π

∫ ∞
−∞

R∗(ıω)CTCR(ıω)eıωt dω

for all t ∈ R.
Proof. By Theorem 2.3 and [19, Theorem 3.3.9] we have Φ(·) ∈ L1(0,∞;Rn×n)

∩ L2(0,∞;Rn×n). Hence, the Fourier transform of the differential resolvent Φ̂(ω) =∫∞
0

Φ(t)e−ıωt dt exists. In fact, since µ ∈ M(0,∞;Rn×n), applying the Fourier

transformation to (1.1) shows that Φ̂(ω) = R(ıω). Consequently, the integrals in (3.7)
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are well defined. The assertion now follows by the arguments provided [37, Proposition
6.29] for the finite delay case. For arbitrary x, y ∈ Cn using Parseval’s identity (e.g.,
[19, Theorem 16.8.2]) we obtain that

y∗P(t)x = y∗
(∫ ∞

0

Φ(τ)BBTΦT (τ + t) dτ

)
x

=

∫ ∞
0

〈
BTΦT (τ + t)x,BTΦT (τ)y

〉
Cn dτ.

Using that Φ(−t) = 0, t > 0, we continue with

=

∫ ∞
−∞

〈
BTΦT (τ + t)x,BTΦT (τ)y

〉
Cn dτ

=
1

2π

∫ ∞
−∞

〈
BTR∗(ıω)x,BTR∗(ıω)y

〉
Cn e

ıωt dω

= y∗
(

1

2π

∫ ∞
−∞

R(ıω)BBTR(ıω)∗eıωt dω

)
x.

This shows the assertion for P(·). The same arguments can be used for Q(·).

Remark 3.5. Note that Proposition 3.4 assumes that µ ∈M(0,∞;Rn×n). As we
will see below, some applications involve an unbounded measure µloc(0,∞;Rn×n).
Under the assumptions in Theorem 2.4, we still have that Φ(·) ∈ L2(0,∞;Rn×n) such
that its Fourier transform can be defined. Unfortunately, the meaning of µ̂(ıω) is not
clear a priori. We however comment on that later on in more detail.

Since for typical balancing based model reduction methods we are interested in
an energy interpretation of the Gramians, it is useful to associate P and Q with their
finite horizon counterparts

(3.8) Ptf :=

∫ tf

0

Φ(τ)BBTΦT (τ) dτ, Qtf :=

∫ tf

0

Φ(τ)TCTCΦ(τ) dτ.

Moreover, given a system of the form (1.1) with initial data x(0) = x0 and input
function u we denote by x(t, x0, u) and y(t, x0, 0) the solution and the output of the
system at time t. Let x1 ∈ Rn denote a given state that should be reached. The
associated energies Ec and Eo are further defined as follows,

(3.9)

E
tf
c (x1) := min

u∈L2(0,tf ;Rm)
x(tf ,0,u)=x1

∫ tf

0

‖u(t)‖2 dt,

E
tf
o (x0) :=

∫ tf

0

‖y(t, x0, 0)‖2 dt.

A connection between the energies in (3.9) and the Gramians in (3.8) is as follows.

Theorem 3.6. Let x0 ∈ Rn and x1 ∈ Im(Ptf ) be given. Define uopt : [0, tf ] →
Rm by uopt(t) = BTΦ(tf − t)TP†tfx1. Let ũ ∈ L2(0, tf ;Rm) be an arbitrary control
steering the system from the zero state to x1 in time tf . Then

E
tf
c (x1) = ‖uopt‖2L2 = 〈x1,P

†
tf
x1〉 ≤ ‖ũ‖2L2 ,

E
tf
o (x0) = 〈x0,Qtfx0〉.
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Proof. Using the variation of constants formula (2.2), for x1 ∈ Im(Ptf ) it holds
that

x(tf , 0, uopt) =

∫ tf

0

Φ(tf − s)Buopt(s) ds

=

∫ tf

0

Φ(tf − s)BBTΦ(tf − s)TP†tfx1 ds

= PtfP
†
tf
x1 = x1.

We further observe that

‖uopt‖2L2 =

∫ tf

0

xT1 P†tfΦ(tf − t)BBTΦ(tf − t)TP†tfx1 dt

= xT1 P†tf

∫ tf

0

Φ(tf − t)BBTΦ(tf − t)T dt P†tfx1

= xT1 P†tfPtfP
†
tf
x1 = 〈x1,P

†
tf
x1〉.

Assume now that ũ is another control with x(tf , 0, ũ) = x1. We then have

0 = x(tf , 0, ũ)− x(tf , 0, uopt) =

∫ tf

0

Φ(tf − t)B(ũ(t)− uopt(t)) dt.

Multiplication with xT1 P†tf from the left yields 〈uopt, ũ − uopt〉L2 = 0. Hence, we
conclude that

〈ũ, ũ〉 = 〈(ũ− uopt) + uopt, (ũ− uopt) + uopt〉
= 〈ũ− uopt, ũ− uopt〉+ 〈uopt, uopt〉 ≥ 〈uopt, uopt〉.

This show the first assertion. The second statement also follows by (2.2). Let x0 ∈ Rn
be given. We then have

E
tf
o (x0) =

∫ tf

0

‖y(t, x0, 0)‖2 dt =

∫ tf

0

‖Cx(t, x0, 0)‖2 dt

=

∫ tf

0

‖CΦ(t)x0‖2 dt = 〈x0,Qtfx0〉.

As in [25, Theorem 1], we have the following asymptotic result.

Corollary 3.7. Consider a stable system of the form (1.1). For tf → ∞, the
energies in (3.9) are given by

E∞c (x1) =

{
〈x1,P

†x1〉 if x1 ∈ Im(P),

∞ if x1 /∈ Im(P),
E∞o (x0) = 〈x0,Qx0〉.

Remark 3.8. In analogy to [25, Remark 2], we mention that from an infinite-
dimensional point of view, the energy concepts (3.9) have to be slightly modified.

Since the state of the infinite-dimensional system is z(t) =
(

x(t)
x(t−·)

)
, we obtain the

free history optimization problem

(3.10) E
tf
c (x1) := inf

ϕ∈L2(−∞,0;Rn)
x(tf+τ)=ϕ(τ),τ∈(−∞,0)

inf
u∈L2(0,tf ;Rm)
x(tf ,0,u)=x1

∫ tf

0

‖u(t)‖2 dt.D
ow

nl
oa

de
d 

03
/2

6/
17

 to
 1

43
.5

0.
47

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODEL REDUCTION FOR INTEGRO-DIFFERENTIAL EQUATIONS 3003

Similarly, in addition to x(0) = x0, for the output energy we assume that
x(t) = 0, t < 0.

We can now apply the concept of balancing to equations of the form (1.1). As for
linear systems the idea is to find a state space transformation of (1.1) such that

P = Q = Σ = diag(σ1, . . . , σn).

In this way, we expect that states associated with “small” values σi can be neglected
without significantly changing the input-output behavior of the original system. In
other words, given a balanced system, a reduced-order model of the form (1.3) is
obtained by simple truncation. Assume that system (1.1) is subject to a state space
transformation

(µ,B,C)→ (TµT−1,TB,CT−1).

Using Proposition 3.4, for the Gramians P̃ and Q̃ of the transformed system it holds
that

P̃ =
1

2π

∫ ∞
−∞

TR(ıω)T−1TBBTTTT−TR∗(ıω)TTdω = TPTT ,

Q̃ =
1

2π

∫ ∞
−∞

T−TR∗(ıω)TTT−TCTCT−1TR(ıω)T−1dω = T−TQT−1.

In other words, the Gramians are subject to a contragredient transformation. In this
case, the well-known scheme for obtaining a balanced realization is as follows. Assume
that the Cholesky decompositions of P and Q are given:

P = LPLTP , Q = LQLTQ, LP ,LQ ∈ Rn×n.

Computing a singular value decomposition of LTPLQ yields

UΣVT = LTPLQ

with orthonormal matrices U,V ∈ Rn×n and diagonal matrix Σ ∈ Rn×n. Hence, if we
choose T = Σ−

1
2 VTLTQ and note that T−1 = LPUΣ−

1
2 for the transformed system,

we find that P̃ = Σ = Q̃. A reduced-order model then can be obtained by simple
truncation. We summarize the required steps in Algorithm 1.

Remark 3.9. In [25], the authors have provided a relation between P and Q and
the Gramians P and Q of the infinite-dimensional system (2.7). A generalization to
the setting considered here seems problematic due to the spectral properties of A in
(2.7). Without fading memory assumptions on the measure µ, system (2.7) is, in
general, not exponentially stable and the existence of P and Q is not guaranteed.

Algorithm 1. Balanced truncation for Volterra integro-differential equations.

Input: µ,B,C as in (1.1) such that Theorem 2.4 holds
Output: µr,Br,Cr

1: Compute P and Q
2: Compute Cholesky decompositions P = LPLTP , Q = LQLTQ
3: Compute singular value decomposition UΣVT = LTPLQ

4: Set Wr = LQV(:,1:r)Σ
− 1

2

(1:r,1:r)

5: Set Vr = LPU(:,1:r)Σ
− 1

2

(1:r,1:r)

6: Set µr = WT
r µVr, Br = WT

r B, Cr = CVr

D
ow

nl
oa

de
d 

03
/2

6/
17

 to
 1

43
.5

0.
47

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3004 TOBIAS BREITEN

An error bound for the H2-norm. With regard to (2.4), let us analyze the
properties of a reduced-order model resulting from Algorithm 1 in more detail. For
this, we follow the strategy used in [42]. While the latter work focuses on structured
systems of a certain type, e.g., weighted, second order, closed loop, we can extend the
idea to our setting as well. First, we note that the reduced-order model µr actually
is obtained by truncating the balanced system (µB,BB,CB). We thus consider the
following partitioning,

µB =

(
µr µ12

µ21 µ22

)
, BB =

(
Br

B2

)
, CB =

(
Cr C2

)
.(3.11)

Further let us denote the error system by

µE =

(
µB 0
0 µr

)
, BE =

(
BB
Br

)
, CE =

(
CB −Cr

)
.(3.12)

With this notation, we are interested in a bound for

‖G−Gr‖H2 = ‖GE‖H2
=
∥∥CE(·I− µ̂E(·))−1BE

∥∥
H2

= ‖CERE(·)BE‖H2
.

Let us set NB(ıω) = (
NB,1(ıω)
NB,2(ıω)

) := RB(ıω)BB and Nr(ıω) := Rr(ıω)Br. For the

balanced system, we now conclude that

Σ(1:r,1:r) =
1

2π

∫ ∞
−∞

NB,1(ıω)NB,1(ıω)∗ dω,

Σ(r+1:n,r+1:n) =
1

2π

∫ ∞
−∞

NB,2(ıω)NB,2(ıω)∗ dω,

0 =
1

2π

∫ ∞
−∞

NB,1(ıω)NB,2(ıω)∗ dω.

Moreover, we find R−1
B (ıω)NB(ıω) = BB which implies that

(ıωI− µ̂r(ıω))NB,1(ıω)− µ̂12(ıω)NB,2(ıω) = Br

and, consequently,

Nr(ıω) = (ıωI− µ̂r(ıω))−1Br = NB,1(ıω)− (ıωI− µ̂r(ıω))−1µ̂12(ıω)︸ ︷︷ ︸
:=H(ıω)

NB,2(ıω).

Due to the definition of the H2-norm, it then holds

‖GE‖2H2
=

1

2π
tr

(∫ ∞
−∞

CBNB(ıω)NB(ıω)∗CT
B dω

)
− 2

1

2π
tr

(∫ ∞
−∞

CBNB(ıω)Nr(ıω)∗CT
r dω

)
+

1

2π
tr

(∫ ∞
−∞

CrNr(ıω)Nr(ıω)∗CT
r dω

)
.

As shown similarly in [42], the above properties of the balanced system lead to the
simplified expression

‖GE‖2H2
= tr

(
C2Σ(r+1:n,r+1:n)C

T
2

)
+

1

2π

∫ ∞
−∞

tr ((CrH(ıω)− 2C2)NB,2(ıω)(CrH(ıω)NB,2(ıω))∗ dω) .
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Finally, we may estimate this term in order to obtain

(3.13)
‖GE‖2H2

≤ tr
(
C2Σ(r+1:n,r+1:n)C

T
2

)
+ sup

ω
‖H(ıω)∗C∗r(CrH(ıω)− 2C2)‖2 tr

(
Σ(r+1:n,r+1:n)

)
which has the same form as the H2-error bound for structured systems derived in [42].

Some remarks concerning the error bound are in order. Note that (3.13) relates
the H2-norm of the error system with the neglected part of the (balanced) system
Gramian. Hence, if the eigenvalues of Σ exhibit a fast decay, we expect the reduced-
order system to be a good approximation of the original system in terms of the
H2-norm. Moreover, let us emphasize that, once the balanced system is obtained,
the complexity of computing (3.13) is essentially depending on the reduced-order
dimension r. Indeed, computing the spectral norm can be efficiently done due to the
decomposition into factors of rank at most r. Finally, we point out that a (more
common) H∞-error bound is not readily available due to the structure-preserving
reduction technique.

4. Special choices of µ. In this section, we first consider two examples that
are concerned with coupled as well as time fractional control systems. The other
examples show that our results are indeed consistent with existing results from the
literature.

4.1. Kernels of exponential type. Consider a measure µ given as the sum of
a point mass at 0 and an exponential Volterra kernel

µ(ds) = Aδ0(ds) +

k∑
i=1

e−γisKi ds, γi > 0.

For simplicity, assume that k = 1. As a consequence, (1.1) reads as follows

(4.1)
ẋ(t) = Ax(t) +

∫ t

0

e−γ1(t−s)K1x(s) ds+ Bu(t),

y(t) = Cx(t), x(0) = x0.

Typical examples leading to a system of the form (4.1) are the discretized linear heat
equation with fading memory [31, 35] as well as linearized versions of the
FitzHugh–Nagumo system [30] frequently used in cardiac electrophsyiology.

Introduction of a new variable z(t) :=
∫ t

0
e−γ1(t−s)K1x(s) ds and differentiation

also yield

ż(t) = K1x(t)− γ1z(t), z(0) = 0.

Hence, instead of (4.1) we may consider the coupled system

(4.2)

d

dt

(
x(t)
z(t)

)
=

(
A I
K1 −γ1I

)
︸ ︷︷ ︸

Ã

(
x(t)
z(t)

)
+

(
B
0

)
︸ ︷︷ ︸

B̃

u(t),

y(t) =
(
C 0

)︸ ︷︷ ︸
C̃

(
x(t)
z(t)

)
,

(
x(0)
z(0)

)
=

(
x0

0

)
.
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In other words, replacing (1.1) by a reduced system of the form (1.3) can be
interpreted as structure-preserving model reduction for a coupled problem. Applying
the results from Proposition 3.4 to this case yields the following formulas for P and Q:

P =
1

2π

∫ ∞
−∞

R(ıω)BBTR∗(ıω) dω, Q =
1

2π

∫ ∞
−∞

R∗(ıω)CTCR(ıω) dω,

where R(ıω) = (ıωI−A− 1
ıω+γ1

K1)−1. On the other hand, for the coupled system,
we have that

P̃ =
1

2π

∫ ∞
−∞

R̃(ıω)B̃B̃T R̃∗(ıω) dω, Q̃ =
1

2π

∫ ∞
−∞

R̃∗(ıω)C̃T C̃R̃(ıω) dω.

In particular, considering the block structure

R̃(ıω) =

(
R̃11(ıω) R̃12(ıω)

R̃21(ıω) R̃22(ıω)

)
=

(
ıωI−

(
A I
K1 −γ1I

))−1

we find that R̃11(ıω) = R(ıω). Hence, our balancing step can be interpreted as bal-
ancing the (1,1) block of the regular Gramians of the linear system (4.2).

4.2. Time fractional systems. As a second example, let us consider a measure
µ of the form

µ(ds) =
sα−1

Γ(α)
A ds,

where 0 < α < 1 and Γ(·) denotes the gamma function. In this case, we obtain a time
fractional system of the form

(4.3)

ẋ(t) =
1

Γ(α)

∫ t

0

sα−1Ax(t− s) ds+ Bu(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1Ax(s) ds+ Bu(t),

y(t) = Cx(t), x(0) = 0.

Since for 0 < α < 1 it holds that (·)α−1 ∈ L1
loc(0,∞;R) we conclude that µ ∈

Mloc(0,∞;Rn×n) such that we may apply Theorem 2.4. Note that the integral term
in (4.3) in fact denotes the Riemann–Liouville integral Jα of order α of the function
x(·); see, e.g., [38]. With ∂ denoting time differentiation, instead of (4.3), we can
write [13, 14]

ẋ(t) = ∂−αAx(t) + Bu(t).

Provided the input signal is sufficiently smooth, this implies

∂1+αx(t) = Ax(t) + B(∂αu(t)).

In other words, the specific choice of µ here results in time fractional systems of order
1 < β < 2. In particular, if A is obtained by a spatial discretization of ∆, then β = 1
reflects the heat equation while β = 2 corresponds to the wave equation.

Let us address the computation of the Gramians P and Q as in Proposition 3.4.
As we pointed out in Remark 3.5, the meaning of µ̂(ıω) is not clear a priori. On
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MODEL REDUCTION FOR INTEGRO-DIFFERENTIAL EQUATIONS 3007

the other hand, if the differential resolvent Φ(·) ∈ L2(0,∞;Rn×n) then its Fourier
transform is well defined. In [13], systems of the form (4.3) have been considered in
the more abstract setting

ż(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Az(s) ds+ f(t), z(0) = z0 ∈ Z,

where A : D(A) ⊂ Z → Z is a linear, densely defined operator of sectorial type on a
complex Banach space Z and f : [0, T ]→ Z. In particular, if A generates a semigroup
with growth bound ω < 0, it has been shown that the evolution operator U(t) satisfies
‖U(t)‖ ≤ C

1+|ω|t1+α for t ≥ 0. For the example we consider in the next section, we

thus find that Φ(·) ∈ L2(0,∞;Rn×n). Let us now come back to the finite-dimensional
system (4.3). Following [38], for z > 0 applying the Laplace transform to (4.3), we
obtain

x̂(z) = (zI− z−αA)−1Bu(z)

and, therefore, the Laplace transform of the differential resolvent is Φ̂(z) = (zI −
z−αA)−1. Due to our previous considerations and assumptions on the system (4.3),
for P and Q we thus obtain

P =
1

2π

∫ ∞
−∞

R(ıω)BBTR∗(ıω) dω, Q =
1

2π

∫ ∞
−∞

R∗(ıω)CTCR(ıω) dω,

where R(ıω) = (ıωI− (ıω)−αA)−1. We provide a corresponding example in the next
section. We also point to [16], where a similar type of frequency-domain representation
has been studied in the context of Maxwell equations.

4.3. Finite delay systems. We now focus on the relation between the results
presented here and existing ones from the literature. We already pointed out similar-
ities to the finite delay case. We thus expect to regain the Gramians from [25] when
we choose

µ(ds) = Aδ0(ds) + A1δτ (ds).

Indeed, applying the Laplace transform to µ yields µ̂(z) = A + e−zτA1 and, conse-
quently, R(z) = (zI −A − e−zτA1)−1. Using a block inversion argument, the latter
expression can be shown to coincide with the (1,1) block of the resolvent (zI −A)−1

of the infinite-dimensional finite delay system. This relation has already been shown
in [25, 37].

4.4. Second order systems. While we assumed µ to be a locally finite Borel
measure, let us (only formally) set

µ(ds) = Aδ0(ds)−Mδ
(2)
0 (ds),

where δ
(2)
0 denotes the second distributional derivative of the Dirac delta distribution.

We then obtain the second order system

(4.4)
Mẍ(t) + ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0) = x0, ẋ(0) = v0.
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Again, we may rewrite the system in first order form as follows,

(4.5)

d

dt

(
x(t)
ẋ(t)

)
=

(
0 I

M−1A −M−1

)
︸ ︷︷ ︸

Ã

(
x(t)
ẋ(t)

)
+

(
0

M−1B

)
︸ ︷︷ ︸

B̃

u(t),

y(t) =
(
C 0

)︸ ︷︷ ︸
C̃

(
x(t)
ẋ(t)

)
,

(
x(0)
ẋ(0)

)
=

(
x0

v0

)
.

Let us compare the Gramians from Proposition 3.4 with those arising for second
order balanced truncation (see, e.g., [11, 39]). Interpretation as a Volterra system
(1.1) yields

P =
1

2π

∫ ∞
−∞

R(ıω)BBTR∗(ıω) dω, Q =
1

2π

∫ ∞
−∞

R∗(ıω)CTCR(ıω) dω,

where R(ıω) = (ıωI−A + (ıω)2M)−1 while the classical Gramians of (4.5) are

P̃ =
1

2π

∫ ∞
−∞

R̃(ıω)B̃B̃T R̃∗(ıω) dω, Q̃ =
1

2π

∫ ∞
−∞

R̃∗(ıω)C̃T C̃R̃(ıω) dω.

Using the position-velocity partitioning of the second order Gramians [39]

P̃ =

(
P̃p P̃12

P̃21 P̃v

)
, Q̃ =

(
Q̃p Q̃12

Q̃21 Q̃v

)
,

by simple algebraic manipulations, we can show that P = P̃p and Q = Q̃v. Note that
although the formal choice of µ is not explicitly covered by the results from section
3, it is well known that for stable second order systems all of the above integrals are
well defined; see also [11, 39]. Hence, our approach results in the position-velocity
balanced truncation method for second order systems.

5. Numerical examples. In this section, we study the performance of the sug-
gested method by means of two different (spatially discretized) partial differential
equations. We also describe a numerically efficient way of (approximately) computing
the Gramians P and Q by means of a quadrature formula.

All simulations were generated on an Intel R©Xeon(R) CPU E31270 @ 3.40 GHz
x 8, 16 GB RAM, Ubuntu Linux 14.04, MATLAB Version 8.0.0.783 (R2012b) 64-bit
(glnxa64).

5.1. Computing the Gramians. The most essential point in the construction
of the reduced-order model (1.3) is the computation of the Gramians P and Q. As we
emphasized earlier, using the definition in (3.2) does not seem to be appealing since
for large-scale systems the computation of the differential resolvent is prohibitively
expensive. Instead, we recommend using the integral representations

P =
1

2π

∫ ∞
−∞

R(ıω)BBTR∗(ıω) dω =
1

π
Re

(∫ ∞
0

R(ıω)BBTR∗(ıω) dω

)
,

Q =
1

2π

∫ ∞
−∞

R∗(ıω)CTCR(ıω) dω =
1

π
Re

(∫ ∞
0

R∗(ıω)CTCR(ıω) dω

)
.
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MODEL REDUCTION FOR INTEGRO-DIFFERENTIAL EQUATIONS 3009

For standard balanced truncation, approximating the Gramians via quadrature is
sometimes referred to under the name poor man’s truncated balanced realization; see
[3, 36, 46]. Similarly, we are interested in a numerical approximation of the integrals∫ ∞

0

f(ω) dω :=

∫ ∞
0

R(ıω)BBTR∗(ıω) dω,∫ ∞
0

f̃(ω) dω :=

∫ ∞
0

R(ıω)∗CTCR(ıω) dω.

Let us focus on the first integral. Inspired by [7], one may, for example, use the Gauss–
Kronrod quadrature formula. For this, we first transform the integration domain to
[−1, 1] such that∫ ∞

0

f(ω) dω =

∫ 1

−1

f

(
ξ

1− ξ

)
1

(1− ξ)2
dξ =

∫ 1

−1

g(ξ) dξ.

For an adaptive computation, the latter integral is further divided (via bisection) into
subintervals [a, b] ⊆ [−1, 1] and approximated via∫ b

a

g(ξ) dξ ≈
q∑

k=1

νkg(ξk),

where the weights νk > 0 and nodes ξk are obtained by the standard Gauss–Kronrod
formula. For a more detailed description, we additionally refer to [7]. One benefit of
using the Gauss–Kronrod quadrature is the fact that it includes a Gauss quadrature
of lower order such that, without additional effort, an error estimate can be obtained
by analyzing the difference of the two approximations. In our numerical experiments,
we use a Gauss–Kronrod quadrature with 7 Gauss and 15 Gauss–Kronrod points and
weights for each subinterval. The bisection then is only done when the error estimate
exceeds the desired tolerance.

Let us further comment on a numerically efficient low-rank decomposition of the
approximate Gramians. After the integrals have been evaluated for each subinterval,
we obtain an approximation of the form

P ≈ Pm =
1

π
Re

(
d∑
i=1

νig(ξi)

)
.

Note that the number of inputs and outputs often satisfy m, p� n such that evalua-
tions of g and f are in a low-rank form

g(ξi) = YiY
∗
i , Yi ∈ Cn×m.

Provided the number of evaluations d is such that dm, dp � n, we also obtain a
low-rank decomposition for the approximate Gramian

Pm = ZZ∗, Z ∈ Cn×dm.

Of course, it is not clear a priori if such a decomposition can be expected. However,
for the standard case it is known that the singular values of the Gramians P and
Q often decay reasonably fast to allow for efficient low-rank representations. While
a theoretical analysis for the generalized case considered here is out of the scope
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of this paper, we emphasize that this seems to be an important topic for future
research. Particularly, since, in the numerical experiments (see below), such a decay
can be observed. Moreover, alternative low-rank methods such as Krylov subspace or
alternating directions implicit based approaches could be further studied; see, e.g. [6].

Remark 5.1. Note that the (approximate) computation of the Gramians via a
quadrature can be interpreted as a frequency domain POD method. For the standard
case, this has already been investigated in [46]. The crucial observation is that if the
system is excited by an impulsive input u(t) = δ0(t), the corresponding frequency
response is given by x̂(ω) = (ıωI − µ̂(ıω))−1B. Hence, a POD projection onto the
subspace associated with the dominant singular values of the snapshot matrix is im-
plicitly related to the approximation of the Gramian P. Similarly, snapshots generated
by the dual system can be interpreted as approximating Q.

5.2. The heat equation with fading memory. The first example arises
within the context of heat conduction in materials with fading memory [31, 35]. For
Ω = (0, 1)× (0, 1), let us consider the following system

(5.1)
vt(t, x) = ∆v(t, x)−

∫ t

0

γ(t− s)∆v(s, x)ds+ χωu(t) in (0,∞)× Ω,

v(t, x) = 0 in (0,∞)× Γ, v(0, x) = 0 in Ω,

where Γ denotes the boundary of Ω and for ω ⊂ Ω the function χω is defined by

χω(x) :=

{
1 if x ∈ ω,
0 otherwise

such that for fixed t, the control is constant on ω. Further assume that a measurement
of the form

vobs(·) =

∫
Ω

v(·, x) dx

is given. As pointed out in [31], for stable systems, we have that 1−
∫∞

0
γ(y)ds > 0.

For the control domain we set

ω = [0.15, 0.25]× [0.2, 0.3].

After spatial discretization by finite differences, we obtain the Volterra integro-differential
system

(5.2)
ż(t) = Az(t)−

∫ t

0

K(t− s)z(s)ds+ Bu(t),

y(t) = Cz(t), z(0) = 0,

where A ∈ Rn×n,K(t) = e−γtA ∈ Rn×n,B ∈ Rn, and C ∈ R1×n. Here, A denotes
the discretization of the Dirichlet Laplacian and n = 65536 is the number of inte-
rior grid points. In Figures 1 and 2, numerical results for different values of γ and
r are shown. Note that for larger values of γ, the influence of the integro term is
reduced and the dynamics are similar to the standard heat equation; see Figure 2
(left), where the Bode plot of the transfer function G(ıω) = C(ıωI−A + 1

ıω+γA)−1B

is shown. In Figure 1 (right) and Figure 2 (right) we also show the H2-norm of the
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Fig. 1. Heat equation with fading memory, γ = 1.05, n = 65536.
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‖G − Gr‖H2
error bound

‖G − Gr‖H2
error bound

Fig. 2. Heat equation with fading memory, γ = 10, n = 65536.

error system for different reduced-system dimensions r. The Gramians are computed
via a low-rank quadrature formula as described previously. The results are shown
for approximations corresponding to two different accuracies. The estimated relative
Frobenius norm error was 10−7 (blue) and 10−3 (red), respectively. Note that for the
coarser approximation, the numerical rank of the Gramians was only 6. As a conse-
quence, the corresponding H2-error bound will be zero for reduced-system dimensions
r ≥ 6 and larger reduced systems cannot be computed. On the other hand, for the
finer approximation, the rank of the approximate Gramians was 19. As can be seen
from the figures, in this case, the error bound as well as the reduced-order systems
are more accurate.

5.3. A time fractional diffusion-wave equation. As a second example, we
consider a time fractional diffusion-wave equation

(5.3)

∂

∂t
v(t, x) =

1

Γ(α)

∫ t

0

(t− s)α−1∆v(s, x)ds+ χωu(t) in (0,∞)× Ω,

v(t, x) = 0 in (0,∞)× Γ, v(0, x) = 0 in Ω,
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Fig. 3. Time fractional diffusion-wave equation, α = 0.05, n = 65536.

Fig. 4. Time fractional diffusion-wave equation, α = 0.5, n = 65536.

where 0 < α < 1. The measurement now is assumed to be of the form

vobs(·) =

∫
ω̃

v(·, x) dx.

For the control and observation domains we choose

ω = [0.15, 0.35]× [0.15, 0.35], ω̃ = [0.65, 0.85]× [0.65, 0.85].

A spatial discretization by finite differences then yields a system of the form (4.3).
Again, the Gramians are computed for two different accuracies, indicated by blue
(fine) and red (coarse).

In Figures 3 (left), 4 (left) and 5 (left) we compare the behavior of the system in
terms of its transfer function G(ıω) = C(ıωI − (ıω)−αA)−1B for different fractional
values α. As we expect, for α = 0.05, the transfer function does not exhibit any
peaks and behaves similarly to the one obtained for the standard heat equation. On
the other hand, when α is increased, the transfer function becomes more and more
irregular. In Figure 5 (left), we see the results for α = 0.95. Since α = 1 corresponds
to the undamped wave equation, we expect the system poles to move closer to the
imaginary axis. This is reflected in the increasing number of peaks of the transfer

D
ow

nl
oa

de
d 

03
/2

6/
17

 to
 1

43
.5

0.
47

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODEL REDUCTION FOR INTEGRO-DIFFERENTIAL EQUATIONS 3013
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Fig. 5. Time fractional diffusion-wave equation, α = 0.95, n = 65536.

function. A similar conclusion can be drawn from Figure 5 (right) where the decay
of the error bound is significantly slower than for smaller values of α. Also, as in the
first example, for smaller values of α, the coarse approximation yields approximate
Gramians of very small rank such that a reliable error bound as well as reduced
systems of larger dimension cannot be obtained; see Figures 3 (right) and 4 (right).

6. Conclusion. We proposed an extension of the method of balanced truncation
to Volterra integro-differential equations. The approach relies on the simultaneous
balancing of two system Gramians that share energy interpretations known from the
standard LII case. The model reduction approach is structure-preserving and yields an
error bound with respect to the H2-norm. We have discussed the relation to existing
balancing based techniques that arise as we pointed out that one may use the method
to reduce time fractional systems arising in the context of fractional diffusion-wave
equations. Numerical examples show the applicability to large-scale systems arising
from a spatial discretization of partial differential equations.
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