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Abstract

We present new integral representations in two dimensions for the elas-
tance problem in electrostatics and the mobility problem in Stokes flow.
These representations lead to resonance-free Fredholm integral equations
of the second kind and well conditioned linear systems upon discretiza-
tion. By coupling our integral equations with high order quadrature and
fast multipole acceleration, large-scale problems can be solved with only
modest computing resources. We also discuss some applications of these
boundary value problems in applied physics.

1 Introduction

A classical problem in electrostatics is the analysis of capacitance. Briefly stated,
for an open system in two dimensions, this concerns a collection of N disjoint,
bounded regions, denoted byDj , with boundaries Γj , all of which are assumed to
be perfect conductors. Setting the potential (the voltage) on the jth conductor
to φj for j = 1, . . . , N , one would like to determine the net charge qj which
accumulates on the conductors Dj for j = 1, . . . , N . Since electrostatics is
governed by a linear partial differential equation (the Laplace equation), there
is a matrix, denoted by C, such that

q = Cφ , (1)

where φ = (φ1, . . . , φN ) and q = (q1, . . . , qN ). The matrix C is referred to as
the capacitance matrix.

Less well-studied is the converse problem, where a fixed amount of charge
is placed on each of the N conductors, and the goal is to determine the corre-
sponding, unknown, potentials. The matrix corresponding to that mapping is
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called the elastance matrix [1], denote by P, with

φ = Pq .

We should note that the goal is achievable, since the voltage on a perfect con-
ductor is constant from Maxwell’s equations [2]. P is the inverse of C, in a
suitably-defined space, discussed in greater detail in the next section. Given
either the capacitance or elastance matrix, it is straightforward to compute the
electrostatic energy E of the system [2], since

E =
1

2
φTq =

1

2
φTCφ =

1

2
qTPq .

In some contexts, particularly in chip design, the capacitance problem is more
typical [3, 4, 5, 6]. In others, including some quantum mechanical settings, the
elastance problem arises more naturally [7, 8, 9]. The elastance matrix is some-
times referred to as the charging energy matrix.

A similar duality exists in problems of Stokes flow. Given N disjoint, rigid
bodies, denoted by Di, with boundaries Γi, with prescribed translational and
rotational velocities, (vi, ωi), the resistance problem consists of determing the
corresponding forces and torques (Fi, Ti) on each of the bodies. The mobility
problem is the reverse; given prescribed forces and torques on each of the rigid
bodies, find the corresponding velocities (see, for example, [10, 11, 12, 13]). The
mappings R and M such that

F = RU and U = MF

are known as the resistance and mobility tensors. Here, U = (v1, ω1, . . . ,vN , ωN )
and F = (F1, T1, . . . ,FN , TN ).

Reformulating the governing partial differential equation as a boundary in-
tegral equation is a natural approach for the above problems, since this reduces
the dimensionality of the problem (discretizing the boundaries Γi alone) and
permits high order accuracy to be achieved in complicated geometries. More-
over, boundary integral equations can be solved in optimal or nearly optimal
time using suitable fast algorithms [14,15,16,17], and satisfy the far field bound-
ary conditions necessary to model an open system without the need for artificial
truncation of the computational domain.

In this paper, we will restrict our attention largely to the formulation of
suitable integral equations for the elastance and mobility problems. There is a
substantial literature on the development of well-conditioned second-kind Fred-
holm equations to address the capacitance problem, which we do not seek to
review here. We simply note that to apply C to a vector φ is equivalent (in the
two-dimensional setting) to solving the Dirichlet problem:

∆u(x) = 0 x ∈ R2 \
(
∪Ni=1Di

)
(2)

u|Γj = φj , (3)
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together with the radiation condition that u(x) be bounded as |x| → ∞. The
boundedness of u(x) enforces charge neutrality on the collection of conductors.
To see this, note that standard multipole estimates imply that

u(x)→ C +
Q

2π
log |x|

as |x| → ∞, where C is constant and Q is the net charge induced on all the
conductors. Thus, there would be logarithmic growth of the potential at infinity
if the system were not charge neutral.

Remark 1. It is worth noting that the constant C cannot be specified indepen-
dently. If, for example, φj were set to 1 on all conductors, the solution to the
Dirichlet problem must be u(x) = 1 (under the assumption of charge neutrality),
so that C = 1.

The Dirichlet problem, as noted above, is well-known to have a unique solu-
tion and a variety of well-conditioned integral equations have been derived for its
solution (see [5, 18, 19, 20, 21] and the references therein). The resistance prob-
lem involves solving the Stokes equations with boundary conditions imposed
on the velocity, for which there are, again, a large number of well-conditioned
formulations [12,13,22,23,24].

Suitable integral representations have been developed for both the elastance
and mobility problems, often in the form of first kind integral equations [25] or
second kind integral equations with N additional unknowns and N additional
constraints [26]. While these have been shown to be very effective, when N is
large and the geometry is complex, it is advantageous to work with formulations
that are both well-conditioned (formulated as second kind boundary integral
equations) and free of additional unknowns and constraints. We develop such
an approach for the electrostatic problem first, in section 2, followed by the
Stokes mobility problem in section 3. We illustrate their effectiveness with
numerical examples in section 4 and discuss generalizations in section 5.

Remark 2. We note that the elastance problem can be interpreted as a special
case of a modified Dirichlet problem, and second kind Fredholm integral equa-
tions for the modified Dirichlet problem are developed and discussed in [20]. In
our representation, we compute the physical charge density on each conductor
directly and stably. For the representation discussed in [20], the charge density
is given in terms of a hypersingular integral.

Second kind integral equations for mobility problems without additional con-
straints were developed earlier by Kim and Karrila [27], using the Lorentz re-
ciprocal identity. Our derivation, which leads to essentially the same integral
equation, is direct - based on the physical principle that the interior of a rigid
body must be stress free. Finally, the mobility problem can also be solved using
a double layer representation without additional unknowns. For a detailed dis-
cussion of this representation, we refer the reader to [13, 28]. Our formulation
has the advantage that certain derivative quantities, such as fluid stresses, can
be computed with weakly singular instead of hypersingular kernels.
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2 The Elastance Problem

Given the set of conductors {Di}Ni=1, let us assume that the boundaries Γi = ∂Di

are positively oriented. We will denote by Γ the total boundary Γ = ∪Ni=1Γi
and by nx the outward normal at x ∈ Γ. We let E = R2 \

(
∪Ni=1Di

)
denote the

exterior domain. For the sake of simplicty, we assume that the conductors have
smooth boundaries (Fig. 1.)

E

D1

D2

D3

�3

�2

�1

x

nx

Figure 1: Three, smooth bounded conductors in the plane, with the exterior
domain denoted by E. For x on the boundary, nx represents the outward
normal.

Application of the elastance matrix to a vector of charge strengths q =
(q1, q2 . . . qN ) is equivalent to the solution of the following boundary value prob-
lem for the potential u(x) in the exterior domain E:

∆u(x) = 0 x ∈ E (4)

u|Γj
= φj (5)

−
∫

Γj

∂u

∂n
dsx = qj (6)

u (x)→ 0 as |x| → ∞ . (7)

Here, u(x) and the constants {φj}Nj=1 are unknown. As noted in the introduc-
tion, it is a consequence of the Maxwell equations that the potential on each
distinct conducting surface is constant, so that the boundary condition (5) cor-
responds to the physical problem of interest. (6) enforces the desired charging
of the individual conductors, and (7) corresponds to setting the potential at
infinity to zero (ground).

Remark 3. (Charge neutrality): It is often said that the elastance matrix P
is the inverse of the capacitance matrix C. Unfortunately, it is straightforward to
verify that, for the vector of potential values φ0 = (1, . . . , 1), we have Cφ0 = 0,
so that C is not actually invertible. Likewise, the elastance boundary value
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problem, as stated above, cannot be solved unless q = (q1, q2 . . . qN ) satisfies

N∑
j=1

qj = 0. (8)

Otherwise, u(x) would have logarithmic growth at infinity. That is the sense
in which P is the inverse of C - as a map defined on the space of mean zero
vectors in RN .

To prove uniqueness for the elastance problem, we will need the following
lemma [29].

Lemma 1. Let u be a harmonic function in the exterior domain E defined
above, satisfying the condition (7). Let BR (0) be the ball of radius R centered
at the origin and let ∂BR (0) be its boundary. Then, there exist M,R0 such that
sup∂BR(0) |∇u| ≤ M

R2 for all R ≥ R0.

Lemma 2. (Uniqueness). Suppose that u satisfies equations (4), (5), (6) and
(7), with qi = 0 for i = 1, . . . , N . Then, u(x) ≡ 0 in the exterior domain E.

Proof. For sufficiently large R, we may write

0 =

∫
E∩BR(0)

u∆u dV =

∫
∂BR(0)

u
∂u

∂n
dsx−

N∑
i=1

∫
Γi

u
∂u

∂n
dsx−

∫
E∩BR(0)

|∇u|2 dV.

Since u(x) takes on some constant value φi on Γi, we may write∫
E∩BR(0)

|∇u|2 dV =

∫
∂BR(0)

u
∂u

∂n
dsx −

N∑
i=1

φi

∫
Γi

∂u

∂n
dsx

=

∫
∂BR(0)

u
∂u

∂n
dsx ,

since the qi are all zero. From Lemma 1, the boundedness of u, and the monotone
convergence theorem, it is easy to see that∫

E

|∇u|2 dV = lim
R→∞

∫
E∩BR(0)

|∇u|2 dV = lim
R→∞

∫
∂BR(0)

u
∂u

∂n
dsx = 0.

Thus, ∇u ≡ 0 in E and u must be a constant. From the decay condition at
infinity, u ≡ 0 as desired.

To develop an integral equation for the elastance problem, we will use the
language of scattering theory. That is, we will construct an “incident field”
which satisfies the charging conditions (6) but not the boundary conditions (5).
We will then solve for a “scattered” field which forces the conductors to be
equipotential surfaces without changing the net charge on any of the Γi. (This
will also yield a proof of existence of solutions.)
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Remark 4. In physical terms, one can think of the problem as follows: imagine
that we simply deposit charge uniformly on each conducting surface Γi to satisfy
the charging condition. This will be our incident field. The charges will then
redistribute themselves on each Γi so that they are equipotential surfaces. The
total field will be defined by that new, equilibrated charge distribution.

2.1 Mathematical preliminaries

Let γ be a smooth closed curve in R2 and let D∓ denote the domains corre-
sponding to the interior and exterior of γ. Let nx be the unit outward normal
to the curve γ and let n0 = nx0

for x0 ∈ γ . Let µ : γ → R be a continuous
function. The single layer potential is defined by

Sγµ (x) =

∫
γ

G (x,y)µ (y) dsy , (9)

where G(x,y) is the fundamental solution for the Laplace equation in free space:

G (x,y) = − 1

2π
log |x− y| . (10)

Lemma 3. [20,29,30] Let Sγµ (x) be a single layer potential with charge density
µ defined on γ. Then Sγµ (x) is harmonic in R2\γ and continuous in R2. The
single layer potential satisfies the jump relations

lim
x→x0

x∈D±

∂Sγµ (x)

∂n0,±
= ∓1

2
µ (x0) +

∮
γ

∂G (x0,y)

∂n0
µ (y) dsy (11)

where
∮
γ

indicates the principal value integral over the curve γ and the subscripts
− and + denote the limits of the integral from the interior and exterior side,
respectively. Furthermore,

−
∫
γ

∂Sγµ (x)

∂nx,+
dsx =

∫
γ

µ (x) dsx ,

∫
γ

∂Sγµ (x)

∂nx,−
dsx = 0. (12)

For a closed curve ω ⊂ D+, we also have∫
ω

∂Sγµ (x)

∂nx
dsx = 0. (13)

Finally, ∣∣∣∣Sγµ (x) +
1

2π
Q log (x)

∣∣∣∣→ 0 as |x| → ∞, (14)

where

Q =

∫
γ

µ (y) dsy.
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The double layer potential Dγµ(x) is the potential due to a surface density
of dipole sources on γ, aligned in the normal direction to the curve:

Dγµ (x) =

∫
γ

∂G (x,y)

∂ny
µ (y) dsy (15)

Lemma 4. [20, 29, 30] Let Dγµ (x) be a double layer potential. Then, Dγµ (x)
is harmonic in R2\γ and satisfies the jump relations:

lim
x→x0

x∈D±

Dγµ = ±1

2
µ (x0) +

∮
γ

∂G (x0,y)

∂ny
µ (y) dsy . (16)

Furthermore, ∫
γ

∂G (x,y)

∂ny
dsy =

{
−1 x ∈ D−

0 x ∈ D+
(17)∮

γ

∂G (x,y)

∂ny
dsy = −1

2
x ∈ γ , (18)

and
|Dγµ (x)| → 0 as |x| → ∞ . (19)

2.2 Charging the boundaries with an incident field

In the elastance problem, perhaps the simplest way to allocate the net charge
qi to the boundary Γi is to define a constant charge density

σi(x) =
qi
|Γi|

, (20)

for x on the curve Γi, where |Γi| denotes its length. We can then define σ (x) =
(σ1 (x) , σ2 (x) . . . σN (x)) and

uinc (x) = SΓσ (x) (21)

where SΓ is the operator given by

SΓσ (x) =

N∑
j=1

SΓj
σj (x) =

N∑
j=1

∫
Γj

G (x,y)σj (y) dsy .

From (12) and (13), we have

−
∫

Γj

∂uinc (x)

∂n
dsx =

∫
Γj

σj (x) dsx =
qj
|Γj |

∫
Γj

dsx = qj , (22)

for j = 1, 2, . . . , N . Thus, uinc satisfies the charge constraints (6).
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2.3 The scattered field

We now seek a scattered field

usc (x) = SΓµ (x) (23)

such that u(x) = uinc(x) + usc(x), where µ(x) = (µ1(x), µ2(x), . . . , µN (x))
with µj an unknown charge density on the boundaries Γj . To ensure that no
additional net charge has been introduced on any of the conductors, we impose
the N integral constraints on µ (x):∫

Γj

µj (x) dsx = 0 .

If we can find such functions µj(x), then

u(x) = uinc(x) + usc(x) = SΓ(µ+ σ)(x) , (24)

solves the elastance problem. Physically, (µj +σj)(x) is the final charge density
on Γj once the total charge place on the boundary has equilibrated to enforce
the perfect conductor boundary condition (5).

2.4 Formulation as a Neumann problem

Letting u(x) = uinc(x) + usc(x), note first that the corresponding potential is
also defined inside each conductor. Rather than imposing the boundary condi-
tion (5) from the exterior, however, we can make use of the fact that the electric
field inside each conductor given by ∇u (x) must be identically zero. Thus, we
may impose the interior Neumann boundary conditions

∂u

∂n−
(x) ≡ 0 (25)

for x ∈ Γ. Using (11), we obtain the following second kind integral equation:(
1

2
I +K

)
µ (x) = −

(
1

2
I +K

)
σ (x) (26)

for x ∈ Γ, subject to the constraints∫
Γj

µj (x) dsx = 0, (27)
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for j = 1, 2, . . . N . Here,

I =


I1

I2
. . .

IN

 , (28)

K =


K1,1 K1,2 . . . K1,N

K2,1 K2,2 . . . K2,N

...
...

. . .
...

KN,1 KN,2 KN,N

 , (29)

Ii : C0,α (Γi)→ C0,α (Γi) is the identity map, Ki,j : C0,α (Γj)→ C0,α (Γi), and
Ki,i : C0,α (Γi)→ C0,α (Γi) are the operators given by

Ki,jσ =

∫
Γj

∂G (x,y)

∂nx
σ (y) dsy x ∈ Γi (30)

Ki,iσ =

∮
Γi

∂G (x,y)

∂nx
σ (y) dsy x ∈ Γi , (31)

where C0,α (Γ) is the Hölder space with exponent α and α > 0. For a related
treatment of the capacitance problem, see [5].

Theorem 1. Let u (x) be defined as in (24). If µ (x) solves equations (26) and
(27), then u (x) solves the elastance problem.

Proof. Note first that u (x) is harmonic in E by construction. Using (12) and
(13), the choice of σ in equation (20) and the constraints (27), we see that u (x)
satisfies the charge constraints (6). Furthermore, from equations (8) and (14),
it follows that u (x)→ 0 as |x| → ∞. Since u (x) is harmonic in Di and satisfies
∂u
∂n−
≡ 0 on Γi, u (x) ≡ ci for some constant ci inside Di. By the continuity of

the single layer potential, u = ci from the exterior side of Γi as well.

Remark 5. (The adjoint operator): The operator K in equation (26) is a
compact operator for smooth Γ. Hence, 1

2I +K is a Fredholm integral equation
of the second kind. To study existence of solutions to

(
1
2I +K

)
µ = f , we shall

study existence of solutions for the adjoint problem
(

1
2I +K∗

)
µ = f instead,

where

K∗ =


K∗1,1 K∗1,2 . . . K∗1,N
K∗2,1 K∗2,2 . . . K∗2,N

...
...

. . .
...

K∗N,1 K∗N,2 K∗N,N

 . (32)
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Here, K∗i,j : C0,α (Γj) → C0,α (Γi) and K∗i,i : C0,α (Γi) → C0,α (Γi) are the
operators given by

K∗i,jσ =

∫
Γj

∂G (x,y)

∂ny
σ (y) dsy (33)

K∗i,iσ =

∮
Γi

∂G (x,y)

∂ny
σ (y) dsy (34)

It is straightforward to verify that K∗i,jσ(x) = DΓj
σ(x) for x ∈ Γi.

Let σ = {σi (x)}Ni=1 where each σi (x), supported on Γi, is constant. Then,
using (17),(18) and (32), we may conclude that

(
1
2I +K∗

)
σ = 0. Thus, the

dimension of the null space of 1
2I +K∗ is at least N . In fact, it is well-known

that the dimension of the null space is exactly N [20, 29].

Remark 6. 1
2I + K∗ is the integral operator one would obtain in seeking to

impose Dirichlet boundary conditions with the potential represented as a double
layer potential. The double layer potential operator for the exterior, however, is
range deficient. It cannot represent a harmonic function u (x) in the exterior
which is generated by net charge in any of the domains Di. To see this, note
that the net charge is −

∫
Γi

∂u
∂n from (12), but that the double layer potentials

satisfies
∫

Γi

∂u
∂n = 0 for i = 1, 2, . . . N from (17).

2.5 Existence of solutions

From the preceding discussion (the existence of a nontrivial nulllspace), it follows
from the Fredholm alternative that

(
1
2I +K

)
µ = f has an N dimensional space

of solutions, so long as f is in the range of the operator 1
2I + K. Using our

representation for the elastance problem, the right hand side in equation (26)
is certainly in the range of the operator 1

2I + K. The role of the additional
N integral constraints is, therefore, to pick out the unique one which doesn’t
alter the net charge on the N conductors. However, we do not wish to solve an
overdetermined (non-square) linear system. If we simply discretize the integral
equation using, say a Nyström method, with M points on Γ, we would have to
solve an (M +N)×M linear system to obtain the desired solution. Instead, we
propose to solve the integral equation

1

2
µi(x) +

N∑
j=1

Ki,jµj(x) +

∫
Γi

µi(x)dsx = −1

2
σi (x)−

N∑
j=1

Ki,jσj(x)

for x ∈ Γi, or (
1

2
I +K + L

)
µ = −

(
1

2
I +K

)
σ (35)
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where

L =


L1

L2

. . .

LN

 , (36)

with Li : C0,α (Γi)→ C0,α (Γi) defined by Liµi(x) =
∫

Γi
µi(y)dsy.

The following lemma shows that solving (35) is equivalent to solving (26)
with constraints (27).

Lemma 5. If µ solves equation (35), then µ solves equations (26) and (27)

Proof. Using equation (13), we observe that
∫

Γi
Ki,jµj (x) dsx = 0 for j 6= i.

Furthermore, switching the order of integration in
∮

Γi
Ki,iµi (x) dsx and using

property (18) of the double layer potential, we see that

∮
Γi

Ki,iµi (x) dsx =

∫
Γi

∮
Γi

∂G (x,y)

∂nx
µi (y) dsydsx (37)

=

∫
Γi

µi (y)

∮
Γi

∂G (x,y)

∂nx
dsxdsy (38)

= −1

2

∫
Γi

µi (y) dsy . (39)

Integrating expression (35) on Γi, we may conclude that

|Γi|
∫

Γi

µi (x) dsx = 0 . (40)

Thus, Liµi(x) = 0, which implies that µ satisfies the integral constraints (27)
and that (

1

2
I +K + L

)
µ =

(
1

2
I +K

)
µ = −

(
1

2
I +K

)
σ . (41)

Remark 7. For further discussion of the solution of consistent linear systems
with constraints in the finite dimensional case, see [31].

The following lemma shows that the operator 1
2I +K+L has no null space.

Lemma 6. The operator 1
2I +K + L is injective.

Proof. Let µ ∈ N
(

1
2I +K + L

)
, i.e. it solves

(
1
2I +K + L

)
µ = 0. Following

the proof of Lemma 5, we conclude that Lµ = 0 and therefore
(

1
2I +K

)
µ = 0.

Let u = SΓµ. From the properties of the single layer potential

∂u

∂n−
=

(
1

2
I +K

)
µ = 0 . (42)
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By uniqueness of solutions to interior Neumann problem, we conclude that u is
a constant on each boundary component. Thus, u solves the Elastance problem
with qi = 0, as Lµ = 0. By uniqueness of solutions to the Elastance problem,
we conclude that u ≡ 0 in E. Hence, ∂u

∂n+
= 0. From the properties of the

single layer,

µ =
∂u

∂n−
− ∂u

∂n+
= 0 . (43)

Therefore, N
(

1
2I +K + L

)
= {0}.

By the Fredholm alternative, we conclude that (35) has a unique solution µ.

3 The mobility problem

Supose now that we have N rigid bodies immersed in an incompressible Stoke-
sian fluid in R2. Let Fi, Ti denote the force and torque exerted on rigid body
Di in a fluid which is otherwise assumed to be at rest and let vi, ωi be the
corresponding rigid body motion, where ωi is the angular velocity about the
centroid of Di. The mobility matrix M ∈ R3N×3N is the linear mapping from
the forces and torques on the rigid bodies to the respective rigid body motions:

U = MF

where U = (v1, ω1, . . . ,vN , ωN ) and F = (F1, T1, . . . ,FN , TN ).
Referring to Fig. (1), let Di now represent the rigid bodies and let E repre-

sent the Stokesian fluid with viscosity µ = 1. Further, let us assume that there
are no other volume forces on the fluid. Let u(x) = (u1(x), u2(x)) represent the
fluid velocity in E and let (F1, T1, . . . ,FN , TN ) be the force and torque exerted
on the rigid bodies. Let xci = 1

|Γi|
∫

Γi
xdsx be the centroid of Γi. Let p be the

fluid pressure and let σ be the stress tensor associated with the flow:

σij = −pδij +

(
∂ui
∂xj

+
∂uj
∂xi

)
= −pδij + 2e (u) (44)

where δij is the Kronecker delta,

e (u) =
1

2

(
Du +DuT

)
(45)

is the strain tensor associated with the flow, and Du is the gradient of u.
On the surface of rigid bodies Γi,

f = σ · n =

[
σ11 σ12

σ21 σ22

] [
n1

n2

]
(46)

represents the surface force or surface traction exerted by the fluid on Di, where

n is the outward normal to Γi. For notational convenience, let x⊥ =

[
−x2

x1

]

12



and ∇⊥ =

[
− ∂
∂x2
∂
∂x1

]
. Then u (x) solves [12,13]

−∆u +∇p = 0 in E (47)

∇ · u = 0 in E (48)

u (x) |Γi = vi + ωi (x− xci )
⊥

(49)∫
Γi

f dsx =

∫
Γi

σ.n dsx = −Fi (50)∫
Γi

(f , (x− xci )
⊥) dsx = −Ti (51)

u (x)→ 0 as |x| → ∞ , (52)

where (a,b) represents the Euclidean inner product for vectors a,b ∈ R2. Equa-
tions (47) and (48) are the governing equations for Stokes flow in domain E.
Equation (49) enforces a rigid body motion on Di, where vi, ωi are unknown.
Equations (50) and (51) state the net applied forces and torques are given by
the known quantities (Fi, Ti). Finally, (52) states that the fluid is at rest in the
absense of forcing. As a consequence of Stokes paradox, there might not exist a
solution to the set of equations described above. In fact, it can be shown that

u (x) = O

(
−

N∑
i=1

Fi log |x|

)
. (53)

Thus, a necessary condition for a solution to exist is that

N∑
i=1

Fi = 0 . (54)

From [12, 13], it turns out that (54) is also sufficient for a solution satisyfing
equation (52). To prove uniqueness for the mobility problem, we need the
following lemmas which can be found in [32].

Lemma 7. If h is a bounded harmonic function in E and n is an integer greater
than 0, with h = O (r−n) as r →∞, then

h(r, θ) =

∞∑
k=n

r−kak (θ) , (55)

which converges uniformly outside BR (0) for some R.

Let ω be the vorticity corresponding to the flow, defined by

ω =
(
∇⊥,u

)
. (56)

Lemma 8. If u satisfies equation (52), then ω = O
(
r−1
)

as r →∞.
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Lemma 9. If ω = O (r−n) as r → ∞ for integer n > 0, then p = O (r−n) as
r →∞.

Using these two lemmas, it follows that

Lemma 10. If u satisfies equation (52), then on ∂Br (0),

p (u,n)− ω
(
u⊥,n

)
= O

(
r−1
)

as r →∞ . (57)

Lemma 11. If u satisfies equations (49), (50) and (51) with Fi = 0 and Ti = 0,
then ∫

Γi

(u, f) dsx = 0 . (58)

Proof.∫
Γi

(u, f) dsx =

∫
Γi

(
vi + ωi (x− xci )

⊥
, f
)
dsx = − (vi,Fi)− ωiTi = 0 . (59)

Lemma 12. If u satisfies equations (49), (50) and (51) with Fi = 0 and Ti = 0,
then ∫

Γi

p (u,n)− ω
(
u⊥,n

)
dsx = −4ω2

i |Di| (60)

Proof. On Γi, e (u) = 0 and ω = 2ωi. Using Lemma 11 and the divergence
theorem

−
∫

Γi

(u, f) + 2ωi
(
v⊥i + ωi (x− xci ) ,n

)
dsx = −4ω2

i |Di| (61)

Lemma 13 (adapted from [32]). If u (x) satisifies equations (47), (48), (49),
(50), (51) and (52) with Fi = 0 and Ti = 0, then

lim
R→∞

∫
∂BR(0)

(u, f) dsx → 0 . (62)

Proof. For large enough R, Lemma 12 yields∫
E∩BR(0)

ω2dV =

N∑
i=1

∫
Γi

p (u,n)− ω
(
u⊥,n

)
dsx

−
∫
∂BR(0)

p (u,n)− ω
(
u⊥,n

)
dsx (63)

= −4

N∑
i=1

ω2
i |Di| −

∫
∂BR(0)

p (u,n)− ω
(
u⊥,n

)
dsx . (64)
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Using Lemma 10, we conclude that∫
E

ω2dV <∞ . (65)

Using Lemma 7, we know that

ω(r, θ) = r−1a1(θ) +O
(
r−2
)
. (66)

Integrating ω2 in the annulus B = Br (0) ∩BR̄ (0)
C

, we get∫
B

ω2dV = log
( r
R̄

)∫ 2π

0

a2
1(θ)dθ +O

(
r−2
)
. (67)

Since
∫
B
ω2dV is bounded, we conclude that a1 ≡ 0 and that ω = O

(
r−2
)
.

Using Lemma 9, we conclude that p = O
(
r−2
)
. Thus∫

∂BR(0)

[
−p (u,n) + ω

(
u⊥,n

)]
dsx → 0 as R→∞ . (68)

From equation (64), it follows that ω ≡ 0 in E. Using equation (48), we conclude
that ∆u = 0 in E. Using the estimate for p and Lemma 1, we get f = O

(
r−2
)
.

Using this estimate and the decay condition in u at ∞, the result follows.

The following lemma is a modification of the standard proof of uniqueness
for Stokes flow [12,13].

Lemma 14. If u (x) satisifies equations (47), (48), (49), (50), (51) and (52)
with Fi = 0 and Ti = 0, then u (x) ≡ 0.

Proof. Let 〈·, ·〉 : R2×2×R2×2 be the Frobenius inner product. For large enough
R,∫
E∩BR(0)

〈e (u) , e (u)〉 dV =

∫
E∩BR(0)

〈Du, e (u)〉 dV

=

∫
∂(E∩BR(0))

(u, e (u) · n) dsx −
1

2

∫
E∩BR(0)

(u,∆u) dV

=

∫
∂(E∩BR(0))

(u, e (u) · n) dsx −
1

2

∫
E∩BR(0)

(u,∇p) dV

=
1

2

∫
∂(E∩BR(0))

(
u,

(
−p
[

1 0
0 1

]
+ 2e (u)

)
.n

)
dsx

= −1

2

N∑
i=1

∫
Γi

(u, f) dsx +
1

2

∫
∂BR(0)

(u, f) dsx

=
1

2

∫
∂BR(0)

(u, f) dsx .
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using (48) and Lemma 11. Taking the limit as R→∞ in the above expression
and using equation (62), we get

e (u) ≡
[

0 0
0 0

]
x ∈ E . (69)

Thus, u is a rigid body motion. However since u(x) → 0 as |x| → ∞, we
conclude that u ≡ 0.

We construct an integral representation for the mobility problem by direct
analogy with the elastance problem, with the velocity u(x) playing the role of
the potential and surface traction f playing the role of charge in the elastance
problem. (A rigid body has no interior strain or stress, with all the stress
residing on the surface.) We first construct an “incident” field which satisfies
the net force and torque conditions on each rigid body but which does not
correspond to a rigid body motion. We then find a “scattered” velocity induced
by an additional force vector µ so that the total velocity will satisfy (49) but
does not change the net force and torque. As in the elastance problem, this can
be thought of as a redistribution of the surface force.

3.1 Mathematical preliminaries

In the remainder of this paper, we will use the Einstein summation convention.
As above, we let γ be a smooth closed curve in R2 and we let D∓ denote the
domains corresponding to the interior and exterior of γ. nx = (nx,1, nx,2) will be
used to denoted the unit outward normal at x ∈ γ and n0 = (n0,1, n0,2) to denote
the unit outward normal at x0 ∈ γ. We let µ(x) = (µ1(x), µ2(x)) : γ → R2 be
a continuous function.

Following the treatment of [12, 13], the fundamental solution to the Stokes
equations (the Stokeslet) in free space is given by

Gi,j (x,y) =
1

4π

[
− log |x− y| δij +

(xi − yi) (xj − yj)
|x− y|2

]
i, j ∈ 1, 2 . (70)

The Stokeslet allows us to express the velocity field u = (u1, u2) induced by a
point force f = (f1, f2) in the form

ui = Gi,j (x,y) fj . (71)

The single layer Stokes potential is the velocity induced by a surface force on a
boundary γ:

Sγµ (x)i =

∫
γ

Gi,j (x,y)µj (y) dsy for i = 1, 2 . (72)

Lemma 15. Let Sγµ(x) denote a single layer Stokes potential of the form (72).
Then, Sγµ (x) satisfies the Stokes equations in R2\γ and Sγµ(x) is continuous
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in R2. Moreover, if we let f(x0) denote the surface traction on γ corresponding
to the velocity field Sγµ (x), then

lim
x→x0

x∈D±

fi,± (x0) = ∓1

2
µi (x0) + n0,k

∮
γ

Ti,j,k (x0,y)µj (y) dsy (73)

where Ti,j,k (x,y) is the stresslet corresponding to the flow given by

Ti,j,k (x,y) = − 1

π

(xi − yi) (xj − yj) (xk − yk)

|x− y|4
. (74)

The notation
∮
γ

is used, as above, to denote the principal value integral. The
net force and torque on the domain are given by∫

γ

f+dsx = −
∫
γ

µ (x) dsx ,

∫
γ

f− dsx = 0 (75)

and ∫
γ

(
(x− xc)

⊥
, f
)

+
dsx = −

∫
γ

(
(x− xc)

⊥
,µ
)
dsx , (76)∫

γ

(
(x− xc)

⊥
, f
)
−
dsx = 0 . (77)

If ω is a closed curve in D+, then ∫
ω

f dsx = 0 (78)∫
ω

(
(x− xc)

⊥
, f
)
dsx = 0 . (79)

Finally, ∣∣∣∣∣Sγµ (x) +
1

4π

[
log (x)

[
1 0
0 1

]
− R

|x|2

]∫
γ

µ (y) dsy

∣∣∣∣∣→ 0 (80)

as |x| → ∞, where

R =

[
x2

1 x1x2

x1x2 x2
2

]
. (81)

The double layer Stokes potential is the velocity field due to a surface density
of stresslets on the curve:

Dγµ (x)i =

∫
γ

Tj,i,k (y,x)µj (y)ny,k dsy . (82)

Lemma 16. Let Dγµ (x) denote a double layer Stokes potential of the form
(82). Then, Dγµ (x) satisfies the Stokes equation in R2\γ and the jump rela-
tions:

lim
x→x0

x∈D±

Dγµi = ±1

2
µi (x0) +

∮
γ

Tj,i,k (y,x0)µj (y)ny,k dsy . (83)

17



Furthermore, ∫
γ

Ti,j,k (y,x)ny,k dsy =

{
−δij x ∈ D
0 x ∈ E

, (84)∮
γ

Ti,j,k (y,x)ny,k dsy = −δij
2

x ∈ γ . (85)

Letting εilj be the standard Levi-Civita symbol,∫
γ

εilmylTm,j,k (y,x)ny,k dsy =

{
−εiljxl x ∈ D
0 x ∈ E

, (86)∮
γ

εilmylTm,j,k (y,x)ny,k dsy = −εiljxl
2

x ∈ γ . (87)

Finally,
|Dγµ (x)| → 0 as |x| → ∞ . (88)

3.2 Applying the net force and torque as an incident field

We construct a velocity field uinc (x) in the exterior domain E, due to set of

surface force densities
{
ρj (x)

}N
j=1

on the boundaries {Γj}Nj=1, which satisfies

the force and torque constraints (50) and (51). Each ρj is a vector density
ρj = (ρ1,j , ρ2,j). Letting ρ (x) = (ρ1,1 (x) , ρ2,1 (x) . . . ρ1,N (x) , ρ2,N (x)), we
define

uinc (x) = SΓρ (x) , (89)

where SΓ is the operator given by

SΓρ (x)i =

N∑
j=1

SΓjρj (x)i =

N∑
j=1

∫
Γj

Gi,k (x,y) ρk,j (y) dsy i = 1, 2 . (90)

If we now let fj denote the surface force on Γj corresponding to the velocity
field uinc and make use of equations (75) and (78), we obtain

Fj = −
∫

Γj

fj dsx =

∫
Γj

ρj (x) dsx for j = 1, 2, . . . N . (91)

Using equations (76), and (79), we obtain

Tj = −
∫

Γj

((
x− xcj

)⊥
, fj

)
dsx =

∫
Γj

((
x− xcj

)⊥
,ρj

)
dsx . (92)
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Thus, any choice of ρj (x) which satisfies equations (91) and (92) will define an
incident field that enforces the desired force and torque conditions. We will use
the simple formula

ρj (x) =
Fj
|Γj |

+ Tj

(
x− xcj

)⊥
Wj

, (93)

where |Γj | is the length of Γj and Wj =
∫

Γj

∣∣x− xcj
∣∣2 dsx.

3.3 The scattered field

We now seek a “scattered” velocity field usc (x) induced by unknown surface
force densities

{
µj (x)

}n
j=1

on the boundaries {Γj}nj=1. Each µj is a vector

density µj = (µ1,j , µ2,j). These densities correspond to a redistribution of
surface forces that will be used to enforce the rigid body boundary conditions
without affecting the net force and torque. We let

µ (x) = (µ1,1 (x) , µ2,1 (x) . . . µ1,N (x) , µ2,N (x))

and define

usc (x) = SΓµ (x) . (94)

To ensure that no additional net forces or torques are introduced on the surfaces
Γi, we need to impose 3N integral constraints on µ (x), namely∫

Γj

µi,j (x) dsx = 0 , (95)∫
Γj

((
x− xcj

)⊥
,µj

)
dsx = 0 . (96)

The total velocity field is given by

u (x) = uinc (x) + usc (x) = SΓ (µ (x) + ρ (x)) . (97)

3.4 Reformulation as an interior boundary value problem

The function u(x) = SΓ(µ(x)+ρ(x)) also represents the velocity field inside the
rigid bodies. Since there is no internal stress in a rigid body, the stress tensor
σ must be identically zero within Di. Thus we will seek to impose

f− = (σ · n)− ≡ 0 (98)

for x ∈ Γ. Using equation (73), we obtain the following Fredholm integral
equation of the second kind:(

1

2
I +K

)
µ (x) = −

(
1

2
I +K

)
ρ (x) x ∈ Γ (99)
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which we subject to the constraints∫
Γj

µi,j (x) dsx = 0 , (100)∫
Γj

(
(x− xcj)

⊥,µj
)
dsx = 0 , (101)

where

I =


I1

I2

. . .

IN


and

K =


K1,1 K1,2 . . . K1,N

K2,1 K2,2 . . . K2,N

...
...

. . .
...

KN,1 KN,2 KN,N

 .

Here, Ii : C0,α (Γi)×C0,α (Γi)→ C0,α (Γi)×C0,α (Γi) is the identity map, and
Ki,j : C0,α (Γj)× C0,α (Γj)→ C0,α (Γi)× C0,α (Γi) is the operator given by

(Ki,jρ)k = nx,l

∫
Γj

Tk,m,l (x,y) ρm (y) dsy x ∈ Γi

for i 6= j and

(Ki,iρ)k = nx,l

∮
Γi

Tk,m,l (x,y) ρm (y) dsy x ∈ Γi .

Theorem 2. Let u (x) be the total velocity, defined in (97). If µ (x) solves
equation (99), together with the constraints (100) and (101), then u (x) solves
the mobility problem.

Proof. u (x) clearly satisfies the Stokes equations in E by construction. Using
equations (75), (76), (78) and (79), the choice of ρ in equation (93), and the
constraints (100) and (101), we see that u (x) satisfies the net force and torque
conditions (50) and (51). Furthermore, from (54) and (80), it follows that
|u (x)| → 0 as |x| → ∞. Since u (x) solves the Stokes equations in Di and
satisfies f− ≡ 0 on Γi, u must be a rigid body motion. By the continuity of the
single layer potential, u must define a rigid body motion from the exterior as
well.

3.5 Existence of solutions

It is well-known that 1
2I + K has a 3N -dimensional null space [13]. It follows

from the Fredholm alternative that
(

1
2I +K

)
µ = g has an 3N dimensional space

of solutions, so long as g is in the range of the operator 1
2I+K. From (99), this
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is clearly the case, and the purpose of the 3N integral constraints is to select
the particular solution that doesn’t alter the net forces and torques. As for the
elastance problem, however, we do not wish to solve a rectangular linear system.
If we discretize the integral equation using Nyström quadrature, with M points
on Γ, we would have to solve a (2M + 3N) × 2M linear system to obtain the
desired solution. Instead, we propose to solve the integral equation

1

2
µi (x) +

N∑
j=1

Ki,jµj (x) +

∫
Γi

µi (y) dsy

+ (x− xc)
⊥
∫

Γi

(
(y − xci )

⊥
,µi (y)

)
dsy

= −1

2
ρi (x)−

N∑
j=1

Ki,jρj (x) x ∈ Γi (102)

or (
1

2
I +K + L

)
µ = −

(
1

2
I +K

)
ρ , (103)

where

L =


L1

L2

. . .

LN

 (104)

with Li defined by

Liµi (x) =

∫
Γi

µi (y) dsy + (x− xci )
⊥
∫

Γi

(
(y − xci )

⊥
,µi (y)

)
dsy . (105)

The following lemma shows that solving (103) is equivalent to solving (99)
with the constraints (100) and (101).

Lemma 17. If µ solves (103), then it solves (99), (100) and (101) .

Proof. Using equation (86), we see that
∫

Γi

(
(x− xci )

⊥
,Ki,jµj (x)

)
dsx = 0.

Similarly, using equation (87), we see that∫
Γi

(
(x− xci )

⊥
,Ki,iµi (x)

)
dsx = −1

2

∫
Γi

(
(x− xci )

⊥
,µi (x)

)
dsx . (106)

Since xci is the centroid of Γi,
∫

Γi
(x− xci )

⊥
dsx = 0. Taking the inner product of

(103) with (x− xci )
⊥

, integrating the expression over Γi, and using the equations
above, we obtain(∫

Γi

|x− xci |
2
dsx

)∫
Γi

(
(y − xci )

⊥
,µi (y)

)
dsy = 0 . (107)
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From (84), we observe that
∫

Γi
Ki,jµj (x) dsx = 0 for j 6= i. Furthermore,

switching the order of integration in
∫

Γi
Ki,iµi (x) dsx and using property (85)

of the double layer potential, we find that∫
Γi

Ki,iµi (x) dsx = −1

2

∫
Γi

µi (x) dsx . (108)

Integrating the expression (103) on Γi and using the fact that∫
Γi

(
(y − xci )

⊥
,µi (y)

)
dsy = 0,

we may conclude that

|Γi|
∫

Γi

µi (x) dsx = 0 . (109)

Thus, µ satisfies the integral constraints (100) and (101), implying that
Liµi (x) = 0 and that(

1

2
I +K + L

)
µ =

(
1

2
I +K

)
µ = −

(
1

2
I +K

)
ρ . (110)

The following lemma shows that the operator 1
2I+K+L has no null space.

Lemma 18. The operator 1
2I +K + L is injective.

Proof. Let µ ∈ N
(

1
2I +K + L

)
, i.e. it solves

(
1
2I +K + L

)
µ = 0. Following

the proof of Lemma 17, we conclude that µ satisfies the force and torque con-
straints given by equations (100) and (101). Thus Lµ = 0 and

(
1
2I +K

)
µ = 0.

Let u = SΓµ. Let f− and f+ denote the interior and exterior limits of the surface
traction corresponding to the velocity field u, respectively. From the properties
of the Stokes single layer potential

f− =

(
1

2
I +K

)
µ = 0 . (111)

By uniqueness of solutions to interior surface traction problem, we conclude
that u is a rigid body motion on each boundary component. Thus, u solves
the mobility problem with Fi = 0 and Ti = 0. By uniqueness of solutions to
the mobility problem, we conclude that u ≡ 0 in E. Hence, f+ = 0. From the
properties of the Stokes single layer,

µ = f− − f+ = 0 . (112)

Therefore, N
(

1
2I +K + L

)
= {0}.

By the Fredholm alternative, therefore, (103) has a unique solution µ.
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4 Numerical Examples

The fact that the capacitance and elastance problems are inverses of each other,
and that completely different techniques can be used for their solution, permits
a robust test of the performance of our method in arbitrary geometry (without
an exact reference solution). The same is true for the resistance and mobility
problems.

4.1 The elastance problem

Suppose now that we solve the capacitance problem discussed in section 2 using
known techniques (see, [20], for example). That is, given prescribed potentials
φj on a collection of perfect conductors with boundaries Γj , we may obtain the
charges induced on each conductor. We can then solve the elastance problem
with these charges as input, using the representation in section 2, and verify that
the corresponding potentials are those used in the original capacitance problem
setup. We emphasize that the integral equations used for the capacitance and
elastance problems are not inverses of each other, so this provides a nontrivial
test of accuracy.

More precisely, following the discussion in section 2, we consider the domain
exterior to N perfect conductors Di whose boundaries are given by Γi. We pre-
scribe potentials φi on the boundaries Γi and solve the capacitance problem to
obtain the net charge qi on Γi and also the potential at∞, u∞ = lim|x|→∞ u (x).

We use these charges as input for the elastance problem and to compute
the potentials induced on the conductors, letting σi,el denote the uniformly
distributed charge defined in terms of qi, as in section 2.2. µi,el, as before,
represents the unknown density on Γi for the elastance problem and

u(x) = uinc(x) + usc(x) + u∞ = SΓ(µel + σel)(x) + u∞ . (113)

We then solve (
1

2
I +K + L

)
µel = −

(
1

2
I +K

)
σel, (114)

where u∞ is the potential at ∞ computed in the capacitance problem, and the
operators K and L are described in section 2.5. This is a small modification
of the representation presented in section 2.2 to account for the potential at
∞. After solving for µel, we may check the accuracy with which u in equation
113 equals the potential φj on Γj , the potentials prescribed in the original
capacitance problem.

4.1.1 Two disc test

We first consider the case of two unit discs separated by a distance d. This is
useful because the exact solution is known and because we wish to study the
physical ill-conditioning of the problem as d→ 0.
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Figure 2: Discretization of the discs for Elastance example.

In the context of Fig. 2, we set u|Γi
= φi for i = 1, 2 (where i = 1 cor-

responds to the left disc), with φ1 = 0.209 and φ2 = −0.123. We consider
d = 0.5, 0.05, 0.005.

We use a Nyström discretization, based on subdivision of the boundary
into panels, with Gauss-Legendre nodes given on each panel. Let si,j,l denote
the jth node on the ith panel on boundary component l. Let σi,j,l,el, µi,j,l,el
denote the density evaluated at si,j,l. We use a recently developed quadrature
scheme, denoted by GLQBX (global + local quadrature by expansion) [33, 34]
for evaluating the layer potential K in equation (114). This scheme is a robust
extension of the QBX method of [35], guaranteed to yield high order accuracy
even when boundaries are close-to-touching. We use an iterative GMRES-based
solver to obtain to obtain µel, and iterate to a relative residue of 10−6. As d→ 0,
the problem becomes physically ill-conditioned, requiring an increasing number
of iterations. To improve the rate of convergence, we use an L2-based rescaling
of the unknowns [36]. That is, we use µscaleel = µi,j,l,el

√
ri as unknowns, so that

the discrete 2-norm approximates the L2 norm where ri is the length of panel i.
We iterate the following discretized linear system

D

(
1

2
I + K̃ + L̃

)
D−1µscaleel = −D

(
1

2
I + K̃

)
σel , (115)

where K̃ and L̃ are discretized versions ofK and L respectively, D is the diagonal
operator described given by Dµel = µscaleel .

In Fig. 3, we plot the net charge density σ1,el + µ1,el for the three different
values of d. In Fig. 4, we plot the potential using the off-surface evaluation
method of [37], whose development initially led to QBX. (The option of off-
surface evaluation has been incorporated into our QBX software.)

From symmetry considerations, σ2,el + µ2,el = − (σ1,el + µ1,el).
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Figure 3: Solution of integral equation for the elastance problem, σ1,el + µ1,el

as a function of d.

Figure 4: Contour plot of u in the exterior of the two discs for φ1 = 0.209 and
φ2 = −0.123 for d = 0.05.

As noted earlier, the two disc Dirichlet problem has an analytic solution.
For this, suppose that the left disc is centered at xc1 =

(
−1− d

2 , 0
)
, that the

right disc at xc2 =
(
1 + d

2 , 0
)
, and that the discs are held at constant potentials

φ1 and φ2. Then, the exterior potential is given by

uex (x) = − v1

2π
log

(
|x− (α, 0)|
|x + (α, 0)|

)
+ v2 (116)

where

α =

√
d+

d2

4
, v1 = π

(φ2 − φ1)

log
(
|x0+(α,0)|
|x0−(α,0)|

) , v2 = 0.5 (φ1 + φ2) (117)
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with x0 =
(
d
2

)
. For each value of d, we compute the charge q1 (since q2 = −q1),

the iteration count for the elastance problem nit,el, and the relative L2 error

of the potential on boundary Γi given by ei =

√ ∫
Γi
|u−uex|2 dsx∫

Γi
|uex|2 dsx

. We emphasize

again that this is not just a test of backward stability for the elastance solver,
since we are solving two different boundary value problems.

d q1 nit,el e1 e2

0.5 -0.239487 4 5.9 10−8 1.5 10−7

0.05 -0.743917 8 2.0 10−5 3.3 10−5

0.005 -2.348079 15 3.3 10−5 5.1 10−5

Table 1: Summary of results for the capacitance and elastance problems with
two discs.

4.1.2 Splash test

We repeat the test above with a more complicated geometry. We now consider
5 conductors Dj , whose boundaries Γj are parametrized by

xj (θ) = xcj + rj(θ) cos(θ + βj) (118)

yj (θ) = ycj + rj(θ) sin(θ + βj) (119)

where

rj(θ) = 1 +

12∑
k=1

aj,k sin (kθ) , (120)

with the coefficients aj,k are uniformly chosen from [0, 0.1] and prescribe an
arbitrary potential on each of these objects.

We list here the parameters for defining the geometry and the exact solution
in the previous section. The table of centers xcj , y

c
j , and βj is given below.

Γ1 Γ2 Γ3 Γ4 Γ5

xcj -1.2 1.2 0 -1.2 1.2

ycj 0 0 -2.2 -4.4 -4.4

βj π 0 π
8

3π
4 -π4

Table 2: Parameters for setting up splash test for the Elastance and Mobility
problems.

In the next table, we list the coefficients aj,k for j = 1, 2 . . . 5 and k =
1, 2, . . . 12.
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Γ1 Γ2 Γ3 Γ4 Γ5

0.012065 0.017038 0.070082 0.029959 0.012613
0.064385 0.041668 0.094629 0.069290 0.004017
0.006234 0.011991 0.046520 0.005102 0.07413
0.049028 0.022743 0.038905 0.067634 0.052361
0.030608 0.035266 0.043884 0.089215 0.084973
0.081641 0.10864 0.030143 0.097489 0.002916
0.099718 0.087338 0.084480 0.004693 0.081962
0.042460 0.096291 0.008018 0.055024 0.020443
0.076748 0.053323 0.069852 0.085238 0.069016
0.084684 0.040564 0.047617 0.070539 0.056950
0.016811 0.085034 0.015078 0.069771 0.051020
0.040454 0.016044 0.050553 0.051137 0.092286

Table 3: Coefficients aj,k. For fixed j, the coefficients aj,k for Γj are listed in
order of increasing k.

The prescribed potentials φj on Γj are given below, as well as the L2 norms

for the errors in u, given by ei =

√ ∫
Γi
|u−uex|2 dsx∫

Γi
|uex|2 dsx

on the boundary Γi. The

potential u is computed after solving the elastance problem to see if we recover
the exact values uex|Γi

= φi.

j 1 2 3 4 5
φj 0.120625 0.643859 0.062342 0.490279 0.306079
ej 2.1 10−5 4.2 10−6 2.4 10−5 8.2 10−6 8.0 10−6

Table 4: Prescribed potential on the boundary and the relative L2 error in
potential on the boundary.

The elastance problem converged in 30 GMRES iterations, with a relative
residual of 10−6. In Fig. 5, we show a contour plot of u, with boundary values
set to the φj .
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Figure 5: Contour plot of the potential u in the exterior of ∪jDj .

4.1.3 Application: Computing dielectric properties of nanocompos-
ites

Nanocomposites are composite material consisting of nanoparticles in a host
medium. Of particular interest are nanocomposites consisting of metallic parti-
cles in a homogeneous organic host due to their applications in transformation
optics and high energy density storage materials. We shall treat the nanocom-
posite as a collection of nanoparticles which are perfect conductors in ambient
space. Computing bulk dielectric properties of such materials as a function of
shape, orientation and the volume fraction of these nanoparticles is of practical
interest. Low frequency dielectric constants are typically determined experimen-
tally using “capacitance” measurements. The dielectric constant is determined
by measuring the voltage drop between two charged plates in the presence and
absence of the nanocomposite. If the two conducting plates have charge ±Q
and the measured potential difference is ∆V , then the “capacitance” of the
configuration is computed as

C̃ =
Q

∆V
(121)

The potential drop, ∆V can be computed by solving an elastance problem.

Remark 8. It should be noted that obtaingin C̃ in this manner is different
from computing the mutual capacitance between the two plates for the given
configuration of nanoparticles [38]. Experimentally one could have applied a
potential difference between the two plates and measured the charge accumulated
on them. However, to determine the mutual capacitance of this configuration
numerically, one would need to know the potentials on each of the nanoparticles,
and this data is not available.

For fixed volume fraction, we carry out a two-dimensional version of the
study in [38]. In particular, we study the effects of varying the number of
particles and their aspect ratio. Let D1 and D2 with boundaries Γ1 and Γ2,
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represent the capacitor plates. The boundaries Γ1 and Γ2 are shifted copies of
a rounded bar γ parametrized by

x (s) =

{
1.1
(

1− 2
π

(
e−100s2 + s · erf (10s)

))
s ∈

[
−π2 ,

π
2

]
−x (2π − s) s ∈ (π2 ,

3π
2 ]

(122)

y(s) =

{
0.1erf (7s) s ∈

[
−π2 ,

π
2

]
y (2π − s) s ∈ (π2 ,

3π
2 ]

(123)

The curve γ is discretized by sampling it at sk = −π2 + π(k − 0.5)/N , k =
1, 2, . . . 2N . We verify that the curve is well-resolved by studying the discrete
Fourier coefficients of the sampled curve and choose N sufficiently large that
the curve is approximated to at least the desired tolerance. More precisely, the
boundaries Γ1 and Γ2 are parametrized by (x (s) , y (s)± 1.1) and discretized
using 800 points each. For the nanoparticles, we use an m×10 lattice of elliptic
inclusions, each of which has an area equal to 0.002

m and an aspect ratio A. They
are centered at(

−0.9 +
1.8 (k − 1)

10
,−0.9 +

1.8 (j − 1)

m

)
j = 1, 2 . . .m, k = 1, 2 . . . 10 . (124)

The aspect ratio A is restricted to ensure that the nanoparticles do not overlap
Each of these elliptical inclusions is discretized using an equispaced sampling of
the central angle with 600 points each.

Figure 6: Capacitor plates with intervening nanoparticles. Here, there arem = 4
rows with aspect ratio set to A = 0.5.

In this case, we have a total of 10m + 2 conductors whose boundaries are
discretzed with Npts = 6000m+ 1600 points. We prescribe charges 1 and −1 on
conductors Γ1 and Γ2, respectively, and assume the other 10m conductors are
charge neutral. We measure the potential difference ∆V = V1 − V2 where Vi is
the potential on Γi, i = 1, 2 and compute the capacitance via equation (121)
for various values of m, n and A. As before, we compute the layer potentials
using a 6th order GLQBX scheme accelerated via an FMM, and iterate using
GMRES until the relative residual in our computation is less than 10−6.
Let C̃0 be the capacitance in the absense of the nanocomposite (corresponding to
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m A Npts Nit tsolve C̃
0 - 1600 8 0.4539 2.2949

1

0.25

7600

11 3.2965 2.3147
0.5 8 2.2417 2.3073
1.0 8 2.2907 2.3033
2.0 8 2.2167 2.3013
4.0 11 3.4305 2.3003

4

0.25

25600

11 11.5612 2.3191
0.5 9 8.7257 2.3095
1.0 7 7.2139 2.3047
2.0 9 8.6497 2.3023
4.0 10 10.1145 2.3012

16

0.25

97600

11 44.8332 2.3200
0.5 9 33.6639 2.3099
1.0 8 31.2122 2.3049
2.0 9 33.5139 2.3024
4.0 11 46.4239 2.3012

Table 5: Capacitance of nanocomposites. Nit is the number of GMRES itera-
tions, and tsolve is the time taken to solve the elastance problem in seconds on
a single CPU core.

m = 0). We plot below the percentage change in capacitance 100
(
C̃ − C̃0

)
/C̃0

as a function of m and A.
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Figure 7: % change in C̃ as a function of m and A.

4.2 Mobility problem

We turn now to a test for our mobility representation. Given prescribed veloc-
ities for a set of rigid bodies, we solve the resistance problem and compute the
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resulting forces and torques on them. We then use these forces and torques as
input for the mobility problem and check that the velocity on the boundary of
the rigid body is the prescribed rigid body motion. As before, this is a stringent
test, since the integral equation for the resistance problem is not simply the
inverse of the integral equation for the mobility problem.

We consider, as above, the domain exterior to N rigid bodies Di, whose
boundaries are given by Γi. We prescribe velocities u = vi + ωi (x− xci )

⊥
on

Γi and, solve the resistance problem to compute the forces and torques on the
rigid bodies Di and also the velocity at ∞, u∞ = lim|x|→∞ u (x). We use
these forces and torques as input for the mobility problem to compute the rigid
body motions. Let ρi,mob denote the incident velocity field due to the forces
and torques as described in section 3.2 and let µi,mob represent the unknown
density on Γi for the mobility problem. To summarize, we set

u (x) = uinc (x) + usc (x) + u∞ = SΓ (µmob (x) + ρmob (x)) + u∞ , (125)

and wish to solve (
1

2
I +K + L

)
µmob = −

(
1

2
I +K

)
ρmob , (126)

where µmob =
(
µ1,mob,µ2,mob

)
, ρmob =

(
ρ1,mob,ρ2,mob

)
, u∞ is the velocity at

∞ computed in the resistance problem, and the operators K and L are described
in section 3.5. This is a small modification of the representation presented in
section 3.2 to account for the velocity at ∞. After solving for µmob, we verify
that u in equation (125) is the original rigid body motion.

4.2.1 Two discs

We first test the mobility representation in the exterior of two discs, with the
same geometry is above, in section 4.1.1. However, we use a finer discretization
to resolve the more singular densities incurred in the mobility problem.

Figure 8: Discretization of the discs for Mobility example.
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Refering to Fig. 8, we set u|Γi = vi + ωi (x− xci )
⊥

for i = 1, 2 (i =
corresponds to the disc on the left), where we set v1 = (2.09, 1.00), v2 =
(−1.034, 0.254), ω1 = 0.12 and ω2 = 0.33. We again test the problem for
d = 0.5, 0.05, 0.005.

As above, we use a Nyström discretization with Gauss-Legendre panels.
si,j,l denotes the jth Gauss-Legendre node on panel i on boundary l. Let
ρi,j,l,mob,µi,j,l,mob denote the densities at si,j,l. We use the GLQBX quadra-

ture scheme for evaluating the layer potential, 1
2I + K in equation (126). We

use an iterative GMRES-based solver to obtain µmob, with a relative residual
tolerance of 10−6. The physical conditioning increases as d → 0, requiring a
large number of iterations. To improve the rate of convergence of GMRES, we
use L2 weighting for the unknowns [36]. That is, we use µscalemob = µi,j,l,mob

√
ri

as unknowns.
We solve the following linear system

D

(
1

2
I + K̃ + L̃

)
D−1µscalemob = −D

(
1

2
I + K̃

)
ρmob , (127)

where K̃ and L̃ are discretized versions of K and L respectively, and D is the
diagonal operator given by Dµmob = µscalemob .

We plot below the net surface traction ρ1,mob + µ1,mob and a quiver plot of
the velocity field in the exterior of the two discs for d = 0.05 (Figs. 9 and 10).
From symmetry considerations, ρ2,mob + µ2,mob = −

(
ρ1,mob + µ1,mob

)
.

Figure 9: Integral equation solution for the mobility problem: ρ1,1,mob+µ1,1,mob

(left) and ρ2,1,mob + µ2,1,mob (right) as a function of θ for d = 0.5, 0.05, 0.005
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Figure 10: Quiver plot of u and contour plot of |u| in the exterior of the two
discs.

For each value of d, we compute the forces and torques F1,1, F2,1, T1, T2

(since F2 = −F1), the iteration count for the mobility problem, nit, and the
relative L2 error of the velocity on both the boundaries Γ1 and Γ2 given by

ei =

√ ∫
Γi
|u−uex|2 dsx∫

Γi
|uex|2 dsx

. This is again a nontrivial test of our solvers, as we

enforce boundary conditions on the fluid stress here, not the velocity u.

d F1,1 F2,1 T1 T2 nit e1 e2
0.5 27.180434 -6.575686 -1.496082 1.494675 7 8.8 10−8 1.8 10−5

0.05 499.08688 -15.202716 -11.159661 -4.859692 19 5.1 10−6 8.5 10−6

0.005 14653.544 -40.877338 -42.867299 -24.078713 60 1.0 10−6 2.2 10−6

Table 6: Summary of results for two discs test for resistance and mobility prob-
lems.

4.2.2 Splash test

We repeat the test above in a more complicated geometry, but consider 5 bodies
Dj , whose boundaries Γj are parametrized as

xj (θ) = xcj + rj(θ) cos(θ + βj) (128)

yj (θ) = ycj + rj(θ) sin(θ + βj) (129)

where

rj(θ) = 1 +

12∑
k=1

aj,k sin (kθ) (130)

where the parameters aj,k, xcj and ycj are the described in section 4.1.2.
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The prescribed velocities vj = (v1,j , v2,j) and ωj on Γj are given below,

along with the L2 norm in the error in u, given by ei =

√ ∫
Γi
|u−uex|2 dsx∫

Γi
|uex|2 dsx

on the

boundary Γi, after solving the mobility problem is listed below where uex|Γi =

vi + ωi (x− xci )
⊥

.

j 1 2 3 4 5
v1,j -0.379375 -0.009720 0.497180 0.346837 -0.197527
v2,j 0.143846 -0.193921 -0.075401 -0.331891 0.273004
ωj -0.437658 0.316414 0.267477 -0.095456 -0.184353
ej 1.8 10−5 2.5 10−5 1.1 10−5 1.3 10−5 1.3 10−5

Table 7: Prescribed velocity on the boundary and the relative L2 error in velocity
on the boundary after solving the resistane and mobility problems.

The mobilitiy problem converged in 71 GMRES iterations to a relative tol-
erance of 10−6. We show a quiver plot for the velocity u corresponding to the
above prescribed value of velocity on the boundary u|Γj . The background is a
contour plot of the magnitude |u| in the exterior of the ∪jDj (Fig. 11).

Figure 11: Quiver plot of u superimposed on contour plot of |u| in the exterior
of ∪jDj .

5 Conclusions

We have derived a new, physically motivated integral formulation for the elas-
tance problem in exterior domains. The analogous physical reasoning yields a
new derivation of an integral equation developed earlier by Kim and Karrila
for the mobility problem [27]. Discretization of the resulting integral equations
using the quadrature scheme GLQBX [33, 34] permits high order accuracy to
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be obtained in complex geometry, including the interaction of close-to-touching
boundary components. The resulting linear systems can be solved iteratively
using GMRES and the necessary matrix-vector multiplications can be acceler-
ated using the fast multipole method. If N denotes the number of points used
in the discretization of the physical boundaries, the total cost scales linearly
with N . We are currently working on the extension of our scheme to closed or
periodic systems and to problems in three dimensions.
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[35] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil, “Quadrature by
expansion: A new method for the evaluation of layer potentials,” Journal
of Computational Physics, vol. 252, pp. 332–349, Nov. 2013.

[36] J. Bremer and V. Rokhlin, “Efficient discretization of Laplace boundary in-
tegral equations on polygonal domains,” Journal of Computational Physics,
vol. 229, no. 7, pp. 2507–2525, 2010.

[37] A. Barnett, “Evaluation of layer potentials close to the boundary for
Laplace and Helmholtz problems on analytic planar domains,” SIAM J.
Sci. Comput., vol. 36, pp. A427–A451, 2014.

[38] X. Zheng, J. Fontana, M. Pevnyi, M. Ignatenko, S. Wang, R. Vaia, and
P. Palffy-Muhoray, “The effects of nanoparticle shape and orientation on
the low frequency dielectric properties of nanocomposites,” Journal of Ma-
terials Science, vol. 47, no. 12, pp. 4914–4920, 2012.

38


	1 Introduction
	2 The Elastance Problem
	2.1 Mathematical preliminaries
	2.2 Charging the boundaries with an incident field 
	2.3 The scattered field
	2.4 Formulation as a Neumann problem
	2.5 Existence of solutions 

	3 The mobility problem
	3.1 Mathematical preliminaries
	3.2 Applying the net force and torque as an incident field 
	3.3 The scattered field
	3.4 Reformulation as an interior boundary value problem
	3.5 Existence of solutions 

	4 Numerical Examples
	4.1 The elastance problem 
	4.1.1 Two disc test 
	4.1.2 Splash test 
	4.1.3 Application: Computing dielectric properties of nanocomposites 

	4.2 Mobility problem 
	4.2.1 Two discs
	4.2.2 Splash test 


	5 Conclusions

