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Exponentially Small Splitting of Separatrices and Transversality Associated to
Whiskered Tori with Quadratic Frequency Ratio∗

Amadeu Delshams† , Marina Gonchenko‡ , and Pere Gutiérrez†

Abstract. The splitting of invariant manifolds of whiskered (hyperbolic) tori with two frequencies in a nearly
integrable Hamiltonian system, whose hyperbolic part is given by a pendulum, is studied. We
consider a torus with a fast frequency vector ω/

√
ε, with ω = (1,Ω), where the frequency ratio Ω

is a quadratic irrational number. Applying the Poincaré–Melnikov method, we carry out a careful
study of the dominant harmonics of the Melnikov potential. This allows us to provide an asymptotic
estimate for the maximal splitting distance and show the existence of transverse homoclinic orbits to
the whiskered tori with an asymptotic estimate for the transversality of the splitting. Both estimates
are exponentially small in ε, with the functions in the exponents being periodic with respect to ln ε,
and can be explicitly constructed from the continued fraction of Ω. In this way, we emphasize
the strong dependence of our results on the arithmetic properties of Ω. In particular, for quadratic
ratios Ω with a 1-periodic or 2-periodic continued fraction (called metallic and metallic-colored ratios,
respectively), we provide accurate upper and lower bounds for the splitting. The estimate for the
maximal splitting distance is valid for all sufficiently small values of ε, and the transversality can
be established for a majority of values of ε, excluding small intervals around some transition values
where changes in the dominance of the harmonics take place, and bifurcations could occur.
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1. Introduction and setup.

1.1. Background and state of the art. This paper is dedicated to the study of the
exponentially small splitting of separatrices in a perturbed 3-degree-of-freedom Hamiltonian
system, associated to a 2-dimensional whiskered torus (invariant hyperbolic torus) whose
frequency ratio is an arbitrary quadratic irrational number (i.e., a real root of a quadratic
polynomial with integer coefficients).

We start with an integrable Hamiltonian H0 having whiskered (hyperbolic) tori with
coincident stable and unstable whiskers (invariant manifolds). We focus our attention on a
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torus, with a frequency vector of fast frequencies,

(1) ωε =
ω√
ε
, ω = (1,Ω),

whose frequency ratio Ω is a quadratic irrational number. If we consider a perturbed Hamil-
tonian H = H0 + µH1, where µ is small, in general the whiskers no longer coincide. This
phenomenon has become known as splitting of separatrices and is related to the nonintegra-
bility of the system and the existence of chaotic dynamics. If we assume, for the two involved
parameters, a relation of the form µ = εr for some r > 0, we have a problem of singular
perturbation, and in this case the splitting is exponentially small with respect to ε. Our aim
is to detect homoclinic orbits (i.e., intersections between the stable and unstable manifolds)
associated to persistent whiskered tori, provide an asymptotic estimate for both the maximal
splitting distance and its transversality, and show the dependence of such estimates on the
arithmetic properties of the frequency ratio Ω.

To measure the splitting, it is very usual to apply the Poincaré–Melnikov method, intro-
duced by Poincaré in [34] and rediscovered much later by Melnikov [32] and Arnold [1]. By
considering a transverse section to the stable and unstable perturbed whiskers, one can con-
sider a function M(θ), θ ∈ T2, usually called a splitting function, giving the vector distance,
with values in R2, between the whiskers on this section along the complementary directions.
The method provides a first order approximation to this function, with respect to the parame-
ter µ, given by the (vector) Melnikov function M(θ), defined by an integral (see, for instance,
[44]). We have

(2) M(θ) = µM(θ) +O(µ2),

and hence for µ small enough the simple zeros of M(θ) give rise to simple zeros of M(θ),
i.e., to transverse intersections between the perturbed whiskers. In this way, we can obtain
asymptotic estimates both for the maximal splitting distance as the maximum of the function
|M(θ)| and for the transversality of the splitting, which can be measured by the minimal
eigenvalue (in modulus) of the (2× 2) matrix DM(θ∗) for any given zero θ∗.

An important fact, related to the Hamiltonian character of the system, is that both func-
tions M(θ) and M(θ) are gradients of scalar functions [16, 10]:

(3) M(θ) = ∇L(θ), M(θ) = ∇L(θ).

Such scalar functions are called splitting potential and Melnikov potential, respectively. This
means that there always exist homoclinic orbits, which correspond to critical points of L.

As said before, the case of fast frequencies ωε as in (1), with a perturbation of order µ = εr

for a given r as small as possible, turns out to be a singular problem. The difficulty comes
from the fact that the Melnikov function M(θ) is exponentially small in ε, and the Poincaré–
Melnikov method can be directly applied only if one assumes that µ is exponentially small with
respect to ε. In order to validate the method in the case µ = εr, one has to ensure that the
error term is also exponentially small, and the Poincaré–Melnikov approximation dominates
it. To overcome such a difficulty in the study of the exponentially small splitting, Lazutkin [28]
introduced the use of parameterizations of a complex strip of the whiskers (whose width is
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defined by the singularities of the unperturbed ones) by periodic analytic functions, together
with flow-box coordinates. This tool was initially developed for the Chirikov standard map
[28] and allowed several authors to validate the Poincaré–Melnikov method for Hamiltonians
with one and a half degrees of freedom (with 1 frequency) [25, 39, 14, 15, 21] and for area-
preserving maps [13].

Later, those methods were extended to the case of whiskered tori with 2 frequencies. In this
case, the arithmetic properties of the frequencies play an important role in the exponentially
small asymptotic estimates of the splitting function, due to the presence of small divisors.
This was first mentioned in [29], later detected in [41], and rigorously proved in [3] for the
quasi-periodically forced pendulum, assuming a polynomial perturbation in the coordinates
associated to the pendulum. Recently, a more general (meromorphic) perturbation has been
considered in [24]. It is worth mentioning that, in some cases, the Poincaré–Melnikov method
does not predict correctly the size of the splitting, as shown in [2], where a Hamilton–Jacobi
method is instead used. This method was previously used in [38, 30, 37], where exponentially
small estimates for the transversality of the splitting were obtained, excluding some intervals
of the perturbation parameter ε. Similar results were obtained in [9, 8]. Moreover, the
continuation of the transversality for all sufficiently small values of ε was shown in [9] for the
concrete case of the famous golden ratio Ω = (

√
5− 1)/2, and in [6] for the case of the silver

ratio Ω =
√

2− 1, provided certain conditions on the phases of the perturbation are fulfilled.
Otherwise, homoclinic bifurcations can occur, as studied, for instance, in [42] for the Arnold
example. Let us also mention that analogous estimates could also be obtained from a careful
averaging out of the fast angular variables [35], at least concerning sharp upper bounds of the
splitting.

In general, in the quoted papers the frequency ratio is assumed to be a given concrete
quadratic number (golden, silver). A generalization to some other concrete quadratic fre-
quency ratios was considered in [8], extending the asymptotic estimates for the maximal
splitting distance, but without a satisfactory result concerning transversality. Recently, a
parallel study of the cases of 2 and 3 frequencies has been considered in [4] (in the case of
3 frequencies, with a frequency vector ω = (1,Ω,Ω2), where Ω is a concrete cubic irrational
number), obtaining also exponentially small estimates for the maximal splitting distance.

In this paper, we consider a 2-dimensional torus whose frequency ratio Ω in (1) is a given
quadratic irrational number. Our main objective is to develop a methodology, allowing us to
obtain asymptotic estimates for both the maximal splitting distance and the transversality of
the splitting, whose dependence on ε is described by two piecewise-smooth functions denoted
h1(ε) and h2(ε), respectively (see Theorem 1). Such functions are periodic with respect to ln ε,
and their behavior depends strongly on the arithmetic properties of the frequency ratio Ω.
In particular, we show that the functions h1(ε) and h2(ε) can be constructed explicitly from
the continued fraction of Ω, and we can deduce some of their properties like the number of
corners in each period (this can be seen as an indication of the complexity of the dependence
on ε of the splitting). Our goal is to show that our methods can be applied to an arbitrary
quadratic ratio, and hence the results on the splitting distance and transversality generalize
those of [8, 9, 4, 6]. Although we do not study here the continuation of the transversality for
all values of ε → 0, we stress that this could be carried out by means of a specific study in
each case, as done in [42, 9, 6] for some concrete (golden, silver) ratios.
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We point out that the periodicity in ln ε of the functions h1(ε) and h2(ε) comes directly
from the special properties of the continued fractions of quadratic numbers and cannot be
satisfied in other cases (see [5], where the case of numbers of constant type is considered).

As we describe in section 1.3, the dependence on ε of the function h2(ε), associated to the
asymptotic estimates for the transversality of the splitting, is more cumbersome than for the
function h1(ε), associated to the maximal splitting distance. We stress here that, for some
purposes, it is not necessary to establish the transversality of the splitting, and it can be
enough to provide estimates of the maximal splitting distance. Indeed, such estimates imply
the existence of splitting between the invariant manifolds, which provides a strong indication of
the nonintegrability of the system near the given torus, and opens the door to the application
of topological methods [23, 22] for the study of Arnold diffusion in such systems.

1.2. Setup. Here we describe the nearly integrable Hamiltonian system under consider-
ation. In particular, we study a singular or weakly hyperbolic (a priori stable) Hamiltonian
with 3 degrees of freedom possessing a 2-dimensional whiskered torus with fast frequencies. In
canonical coordinates (x, y, ϕ, I) ∈ T×R×T2×R2, with the symplectic form dx∧dy+dϕ∧dI,
the Hamiltonian is defined by

H(x, y, ϕ, I) = H0(x, y, I) + µH1(x, ϕ),(4)

H0(x, y, I) = 〈ωε, I〉+
1

2
〈ΛI, I〉+

y2

2
+ cosx− 1,(5)

H1(x, ϕ) = h(x)f(ϕ).(6)

Our system has two parameters, ε > 0 and µ, linked by a relation µ = εr, r > 0 (the smaller
r, the better). Thus, if we consider ε as the unique parameter, we have a singular problem for
ε→ 0. See [7] for a discussion about singular and regular problems.

Recall that we are assuming a vector of fast frequencies ωε = ω/
√
ε as given in (1), with

a frequency vector ω = (1,Ω) whose frequency ratio Ω is a quadratic irrational number ; we
assume without loss of generality that 0 < Ω < 1. It is a well-known property (and we prove
it in section 2.3; see also [27, section II.2]) that any vector with quadratic ratio satisfies a
Diophantine condition

(7) |〈k, ω〉| ≥ γ

|k| ∀k ∈ Z2 \ {0} ,

with some γ > 0. We also assume in (5) that Λ is a symmetric (2× 2) matrix, such that H0

satisfies the condition of isoenergetic nondegeneracy,

(8) det

(
Λ ω
ω> 0

)
6= 0.

For the perturbation H1 in (6), we deal with the analytic periodic functions

(9) h(x) = cosx, f(ϕ) =
∑

k∈Z
e−ρ|k| cos(〈k, ϕ〉 − σk), with σk ∈ T,

where we introduce, in order to avoid repetitions in the Fourier series, the set

(10) Z = {k = (k1, k2) ∈ Z2 : k2 > 0 or (k2 = 0, k1 ≥ 0)}.
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The constant ρ > 0 gives the complex width of analyticity of the function f(ϕ). Concerning
the phases σk, they can be chosen arbitrarily for the purpose of this paper.

To justify the form of the perturbation H1 chosen in (6) and (9), we stress that it facilitates
the explicit computation of the Melnikov potential, which is necessary in order to show that it
dominates the error term in (2), and therefore to establish the existence of splitting. Moreover,
the fact that all coefficients fk = e−ρ|k|, in the Fourier expansion with respect to ϕ, are nonzero
and have an exponential decay ensures that the study of the dominant harmonics of the
Melnikov potential can be carried out directly from the arithmetic properties of the frequency
vector ω (see section 3). Since our method is completely constructive, a perturbation with
another kind of concrete harmonics fk could also be considered (like fk = |k|m e−ρ|k|), simply
at the cost of more cumbersome computations in order to determine the dominant harmonics
of the Melnikov potential.

It is worth recalling that the Hamiltonian defined in (4)–(9) is paradigmatic, since it is
a generalization of the famous Arnold example (introduced in [1] to illustrate the transition
chain mechanism in Arnold diffusion). It provides a model for the behavior of a nearly
integrable Hamiltonian system near a single resonance (see [7] for a motivation) and has often
been considered in the literature (see, for instance, [19, 30, 11]). We also mention that a
perturbation with an exponential decay as the function f(ϕ) in (9) has also been considered
(see, for instance, [35]). In the present paper, our aim is to emphasize the dependence of the
splitting, and its transversality, on the arithmetic properties of the frequency vector ω.

Let us describe the invariant tori and whiskers, as well as the splitting and Melnikov
functions. First, it is clear that the unperturbed system H0 (that corresponds to µ = 0)
consists of the pendulum, given by P (x, y) = y2/2+cosx−1, and 2 rotors with fast frequencies:
ϕ̇ = ωε+ΛI, İ = 0. The pendulum has a hyperbolic equilibrium at the origin, with separatrices
that correspond to the curves given by P (x, y) = 0. We parameterize the upper separatrix of
the pendulum as (x0(s), y0(s)), s ∈ R, where

x0(s) = 4 arctan es, y0(s) =
2

cosh s
.

Then the lower separatrix has the parameterization (x0(−s),−y0(−s)). For the rotors system
(ϕ, I), the solutions are I = I0, ϕ = ϕ0 + t(ωε+ΛI0). Consequently, the Hamiltonian H0 has
a 2-parameter family of 2-dimensional whiskered tori: in coordinates (x, y, ϕ, I), each torus
can be parameterized as

TI0 : (0, 0, θ, I0), θ ∈ T2,

and the inner dynamics on each torus is θ̇ = ωε+ΛI0. Each invariant torus has a homoclinic
whisker, i.e., coincident 3-dimensional stable and unstable invariant manifolds, which can be
parameterized as

(11) WI0 : (x0(s), y0(s), θ, I0), s ∈ R, θ ∈ T2,

with the inner dynamics given by ṡ = 1, θ̇ = ωε + ΛI0.
In fact, the collection of the whiskered tori for all values of I0 is a 4-dimensional normally

hyperbolic invariant manifold, parameterized by (θ, I) ∈ T2 × R2. This manifold has a 5-
dimensional homoclinic manifold, which can be parameterized by (s, θ, I), with inner dynamics
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ṡ = 1, θ̇ = ωε + ΛI, İ = 0. We stress that this approach is usually considered in the study
of Arnold diffusion (see, for instance, [12]).

Among the family of whiskered tori and homoclinic whiskers, we will focus our attention
on the torus T0, whose frequency vector is ωε as in (1), and its associated homoclinic whisker
W0.

When adding the perturbation µH1 for µ 6= 0 small enough, the hyperbolic KAM theorem
can be applied (see, for instance, [33]) thanks to the Diophantine condition (7) and to the
isoenergetic nondegeneracy (8). For µ small enough, the whiskered torus persists with some

shift and deformation, as a perturbed torus T = T (µ), as well as its local whiskersWloc =W(µ)
loc

(a precise statement can be found, for instance, in [11, Theorem 1]).
The local whiskers can be extended along the flow, but in general for µ 6= 0 the (global)

whiskers do not coincide anymore, and one expects the existence of splitting between the
(3-dimensional) stable and unstable whiskers, denoted Ws = Ws,(µ) and Wu = Wu,(µ), re-
spectively. Using flow-box coordinates (see [11], where the n-dimensional case is considered)
in a neighborhood containing a piece of both whiskers (away from the invariant torus), one
can introduce parameterizations of the perturbed whiskers, with parameters (s, θ) inherited
from the unperturbed whisker (11), and the inner dynamics

ṡ = 1, θ̇ = ωε.

Then the distance between the stable whisker Ws and the unstable whisker Wu can be mea-
sured by comparing such parameterizations along the complementary directions. The number
of such directions is 3 but, due to the energy conservation, it is enough to consider 2 directions,
say the ones related to the action coordinates. In this way, one can introduce a (vector) split-
ting function, with values in R2, as the difference of the parameterizations J s,u(s, θ) of (the
action components of) the perturbed whiskers Ws and Wu. Initially this splitting function
depends on (s, θ), but it can be restricted to a transverse section by considering a fixed s, say
s = 0, and we can define as in [10, section 5.2] the splitting function

(12) M(θ) := J u(0, θ)− J s(0, θ), θ ∈ T2.

As said in (3), this function turns out to be the gradient of the (scalar) splitting potential L(θ)
(see [10, 16]). Notice that the nondegenerate critical points of L correspond to simple zeros
of M and give rise to transverse homoclinic orbits to the whiskered torus.

Applying the Poincaré–Melnikov method, the first order approximation (2) of the splitting
function is given by the (vector) Melnikov function M(θ), which is the gradient of the Melnikov
potential : M(θ) = ∇L(θ). The latter one can be defined as an integral: we consider any
homoclinic trajectory of the unperturbed homoclinic whisker W0 in (11), starting on the
section s = 0, and the trajectory on the torus T0 to which it is asymptotic as t→ ±∞, and we
subtract the values of the perturbation H1 on the two trajectories. This gives an absolutely
convergent integral, depending on the initial phase θ ∈ T2 of the considered trajectories:

L(θ) := −
∫ ∞

−∞
[H1(x0(t), θ + tωε)−H1(0, θ + tωε)] dt

= −
∫ ∞

−∞
[h(x0(t))− h(0)]f(θ + tωε) dt,(13)
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where we have taken into account the specific form (6) of the perturbation.
Our choice of the pendulum P (x, y) = y2/2 + cosx− 1 in (5), whose separatrix has simple

poles, makes it possible to use the method of residues in order to compute the coefficients
Lk of the Fourier expansion of the Melnikov potential L(θ). Such coefficients turn out to be
exponentially small in ε (see their expression in section 3.1). For each value of ε only a finite
number of dominant harmonics are relevant to find the nondegenerate critical points of L(θ),
i.e., the simple zeros of the Melnikov function M(θ). Due to the exponential decay of the
Fourier coefficients of f(ϕ) in (9), it is not hard to study such dominance and its dependence
on ε.

In order to give asymptotic estimates for both the maximal splitting distance and the
transversality of the homoclinic orbits, the estimates obtained for the Melnikov function M(θ)
have to be validated also for the splitting function M(θ). The difficulty in the application
of the Poincaré–Melnikov approximation (2), due to the exponential smallness in ε of the
function M(θ) in our singular case µ = εr, can be solved by obtaining upper bounds (on a
complex domain) for the error term in (2), showing that if r > r∗ with a suitable r∗, its
Fourier coefficients are dominated by the coefficients of M(θ) (see also [11]).

We stress that our approach can also be directly applied to other classical 1-degree-of-
freedom Hamiltonians P (x, y) = y2/2 + V (x), with a potential V (x) having a unique non-
degenerate maximum, although the use of residues becomes more cumbersome when the com-
plex parameterization of the separatrix has poles of higher orders (see some examples in [15]).

1.3. Main result. For the Hamiltonian system (4)–(9) with the 2 parameters linked by
µ = εr, r > r∗ (with some suitable r∗), and a frequency vector ω = (1,Ω) with a quadratic
ratio Ω, our main result provides exponentially small asymptotic estimates for some mea-
sures of the splitting. On one hand, we obtain an asymptotic estimate for the maximal
distance of splitting, given in terms of the maximum size in modulus of the splitting function
M(θ) = ∇L(θ), and this estimate is valid for all ε sufficiently small. On the other hand,
we show the existence of transverse homoclinic orbits, given as simple zeros θ∗ of M(θ) (or,
equivalently, as nondegenerate critical points of L(θ)), and we obtain an asymptotic estimate
for the transversality of the homoclinic orbits, measured by the minimal eigenvalue (in mod-
ulus) of the matrix DM(θ∗) = D2L(θ∗), at each zero of M(θ). This result on transversality
is valid for “almost all” ε sufficiently small, since we have to exclude a small neighborhood of
a finite number of geometric sequences where homoclinic bifurcations could take place.

With our approach, the Poincaré–Melnikov method can be validated for an exponent
r > r∗ with r∗ = 3, although a lower value of r∗ can be given in some particular cases
(see remark 1 after Theorem 1). However, such values of r∗ are not optimal and could be
improved using other methods, like the parameterization of the whiskers as solutions of the
Hamilton–Jacobi equation (see, for instance, [30, 2]). In this paper, the emphasis is put on
the generalization of the estimates to the case of an arbitrary quadratic frequency ratio Ω,
rather than on the improvement of the value of r∗.

Due to the form of f(ϕ) in (9), the Melnikov potential L(θ) is readily presented in its
Fourier series (see section 3.1), with coefficients Lk = Lk(ε) which are exponentially small
in ε. We use this expansion of L(θ) in order to detect its dominant harmonics for every
given ε. Careful control of the error term in (2) ensures that the dominant harmonics of
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L(θ) correspond to the dominant harmonics of the splitting potential L(θ). Such a dominance
is also valid for the splitting function M(θ), since the size of their Fourier coefficients Mk

(vector) and Lk (scalar) is directly related: |Mk| = |k| Lk, k ∈ Z (recall the definition (10)).
As shown in section 4, in order to obtain an asymptotic estimate for the maximal distance

of splitting, it is enough to consider the first dominant harmonic, given by some vector in Z
which depends on the perturbation parameter: k = S1(ε). Using estimates for this dominant
harmonic LS1 as well as for all the remaining harmonics, we show that the dominant harmonic
is large enough to ensure that it provides an approximation to the maximum size of the whole
splitting function (see also [4, 5]). On the other hand, to show the transversality of the
splitting, it is necessary to consider at least two dominant harmonics in order to prove the
nondegeneracy of the critical points of the splitting potential (see also [8, 9]). For most values
of the parameter ε, it is enough to consider the two “essential” dominant harmonics LS1 and
LS2 (i.e., the two most dominant harmonics whose associated vectors S1(ε), S2(ε) ∈ Z are
linearly independent; see section 2.2), and the transversality is then directly established.

However, one has to consider at least three harmonics for ε close to some “transition
values” ε̂, introduced below as the values at which a change in the second essential dominant
harmonic occurs, and, consequently, the second and some subsequent harmonics have similar
sizes. Such transition values turn out to be corners of the function h2(ε), related to the size
of the second dominant harmonic (see the theorem below) and are given by a finite number of
geometric sequences. The study of the transversality for ε close to a transition value, which
is not considered in this paper, requires us to carry out a specific study that depends strongly
on the quadratic frequency ratio Ω and on the concrete perturbation considered in (9). In
some cases, the continuation of the transversality for all sufficiently small values ε → 0 can
be established under a certain condition on the phases σk in (9), as done in [9] and [6] for
the golden and silver ratios, respectively. Otherwise, homoclinic bifurcations can occur when
ε goes across a transition value (see, for instance, [42]).

The dependence on ε of the size of the splitting and its transversality is closely related
to the arithmetic properties of the frequency vector ω = (1,Ω), since the integer vectors
k ∈ Z associated to the dominant harmonics can be found, for any ε, among the main
quasi-resonances of the vector ω, i.e., the vectors k giving the “least” small divisors |〈k, ω〉|
(relatively to the size of |k|). In section 2, we develop a methodology for a complete study
of the resonant properties of vectors with a quadratic ratio, which is one of the main goals of
this paper. This methodology relies in the classification, established in [8] for any vector with
a quadratic ratio Ω, of the integer vectors k into “resonant sequences” (see also sections 2.2
and 2.3 for definitions). Among them, the sequence of primary resonances corresponds to the
vectors k which best fit the Diophantine condition (7), and the vectors k belonging to the
remaining sequences are called secondary resonances.

Regarding particular cases, for the golden ratio, Ω = (
√

5− 1)/2, the primary resonances
can be described in terms of the Fibonacci numbers: k = (−Fn−1, Fn) (see, for instance, [9]),
and in the case of the silver ratio, Ω =

√
2 − 1, the primary resonances are given in terms

of the Pell numbers (see [6]), which play an analogous role. In general, for a given quadratic
ratio Ω the sequence of primary resonances, as well as the remaining resonant sequences, can
be determined from the continued fraction of Ω, which is eventually periodic, i.e., periodic
starting at some element (see section 2.1). We can construct, from the continued fraction, a
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unimodular matrix T (i.e., with integer entries and determinant±1) having ω as an eigenvector
with the associated eigenvalue

λ = λ(Ω) > 1

(see Proposition 5 for an explicit construction). Then the iteration of the matrix (T−1)>

from an initial (“primitive”) vector allows us to generate any resonant sequence (see the
definition (21)).

Next, we establish the main result of this work, providing two types of exponentially small
asymptotic estimates for the splitting, as ε→ 0, related to the maximal distance of splitting
and its transversality. The first one is given by the maximum of |M(θ)|, θ ∈ T2. On the
other hand, we show that for most values of ε the function M(θ) has simple zeros, which
correspond to transverse homoclinic orbits, and for each zero θ∗ we give an estimate for the
minimum eigenvalue (in modulus) of the matrix DM(θ∗), as a measure for the transversality
of the splitting. This generalizes the results of [8, 9].

We stress that the dependence on ε of both asymptotic estimates is given by the exponent
1/4, and by the functions h1(ε) and h2(ε), which are periodic with respect to ln ε and piecewise-
smooth and, consequently, have a finite number of corners (i.e., jump discontinuities of the
derivative) in each period. Some examples are shown in Figures 1–2 (where a logarithmic scale
for ε is used). The oscillatory behavior of the functions h1(ε) and h2(ε) depends strongly on
the arithmetic properties of Ω, and, in fact, both functions can be explicitly constructed from
the continued fraction of Ω (see section 3.2). Below, in two additional results we establish more
accurately the behavior of the functions h1(ε) and h2(ε) in the simplest cases of 1-periodic
and 2-periodic continued fractions.

For positive quantities, we use the notation f ∼ g if we can bound c1g ≤ f ≤ c2g with
constants c1, c2 > 0 not depending on ε, µ.

Theorem 1 (main result). Assume that the conditions described above for the Hamilto-
nian (4)–(9) with a quadratic frequency ratio Ω hold, that ε is small enough, and that µ = εr,
r > 3. Then, for the splitting function M(θ), we have the following:

(a) maxθ∈T2 |M(θ)| ∼ µ
ε1/2

exp
{
−C0h1(ε)

ε1/4

}
.

(b) The number of zeros θ∗ of M(θ) is 4κ with κ(ε) ≥ 1 integer, and they are all simple,
for any ε, except for a small neighborhood of some transition values ε̂ belonging to a
finite number of geometric sequences.

(c) At each zero θ∗ of M(θ), the minimal eigenvalue of DM(θ∗) satisfies

|m∗| ∼ µε1/4 exp

{
−C0h2(ε)

ε1/4

}
.

The functions h1(ε) and h2(ε), defined in (48), are piecewise-smooth and 4 lnλ-periodic
in ln ε, with λ = λ(Ω) as given in Proposition 5. In each period, the function h1(ε) has at
least 1 corner and h2(ε) has at least 2 corners. They satisfy for ε > 0 the following bounds:

minh1(ε) = 1, maxh1(ε) ≤ J1, maxh2(ε) ≤ J2, h1(ε) ≤ h2(ε),

with the constants

(14) J1 = J1(Ω) :=
1

2

(√
λ+

1√
λ

)
, J2 = J2(Ω) :=

1

2

(
λ+

1

λ

)
.
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Figure 1. Dependence on ε of the functions in the exponents, for the metallic ratio Ω = [ 3 ] (the bronze
ratio), using a logarithmic scale for ε. (a) Graphs of the functions g∗s(q,n)(ε), associated to essential (solid
lines) and nonessential (dashed lines) resonances s(q, n); red lines correspond to the primary functions gn(ε)
(see section 3.1). (b) Graphs of the functions h1(ε) and h2(ε).
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Figure 2. Graphs of the functions h1(ε) and h2(ε) for two metallic-colored ratios. (a) Ω = [ 1, 3 ] (a
golden-colored ratio); (b) Ω = [ 2, 3 ] (a silver-colored ratio).

The corners of h1(ε) are exactly the points ε̌ such that h1(ε̌) = h2(ε̌). The corners of h2(ε)
are the same points ε̌, and the points ε̂ where the results of (b)–(c) do not apply. The (integer)
function κ(ε) is piecewise-constant and 4 lnλ-periodic in ln ε, eventually with discontinuities
at the transition values ε̂. On the other hand, C0 = C0(Ω, ρ) is a positive constant defined
in (40).

Remarks.
1. If the function h(x) in (9) is replaced by h(x) = cosx−1, then the results of Theorem 1

are valid for µ = εr with r > 2 (instead of r > 3). The details of this improvement
are not given here, since they work exactly as in [9].

2. As a consequence of the theorem, replacing h1(ε) by its upper bound J1 > 0, we get
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the following lower bound for the maximal splitting distance:

max
θ∈T2
|M(θ)| ≥ cµ√

ε
exp

{
−C0J1

ε1/4

}
,

where c is a constant. This may be enough if our aim is only to prove the existence of
the splitting of separatrices, without giving an accurate description of it.

3. The results of Theorem 1 can be partially generalized if the frequency ratio Ω is a non-
quadratic number of constant type, i.e., whose continued fraction has bounded entries,
but it is not periodic. The numbers of constant type are exactly those such that
ω = (1,Ω) satisfies a Diophantine condition with the minimal exponent, as in (7).
This case has been considered in [5], where a function analogous to h1(ε), providing
an asymptotic estimate for the maximal splitting distance, is defined. In this case,
this function is bounded but it is no longer periodic in ln ε.

For the simplest cases of continued fractions, we can obtain more accurate information
on the functions h1(ε) and h2(ε). As we show in section 2.1, we can restrict ourselves to the
case of a purely periodic continued fraction, Ω = [ a1, . . . , am ] (we assume that 0 < Ω < 1; see
section 2.1 for the notation). In particular, we consider the following two cases:

• the metallic ratios: Ω = [ a ] =
√
a2+4−a

2 , with a ≥ 1;

• the metallic-colored ratios: Ω = [ a, b ] =
√
a2b2+4ab−ab

2a , with 1 ≤ a < b
(for the metallic-colored ratios, it is not necessary to consider the case a > b, since [ a, b ] =
[ a, b, a ]).

The metallic ratios, which are limits of the sequence of quotients of consecutive terms of
generalized Fibonacci sequences, have often been considered (see, for instance, [43, 17]). For
some particular cases, we mention the golden, silver, and bronze ratios: [ 1 ], [ 2 ], and [ 3 ],
respectively. The metallic-colored ratios can be subdivided in several classes, such as

• the golden-colored ratios: Ω = [ 1, b ], with b ≥ 2;
• the silver-colored ratios: Ω = [ 2, b ], with b ≥ 3;
• the bronze-colored ratios, etc.

For such types of ratios, we next provide descriptions of the functions h1(ε) and h2(ε).
Additionally, in part (b) we include a statement concerning the exact number of critical
points of the splitting function M(θ) for the case of metallic ratios. Such results come from
an accurate analysis of the first and second essential dominant harmonics of the Melnikov
potential, studying whether they are both given by primary resonances for any ε, or they
can be given by secondary resonances for some intervals of ε. We point out that a rigorous
analysis of the role of the secondary resonances becomes too cumbersome in some cases. For
this reason, although we give rigorous proofs for some results (the statements of Theorem 2),
we provide numerical evidence for others (given below as Conjecture 3) after checking them
with intensive computations carried out for a large number of frequency ratios (see the proofs
and justifications in section 3.3).

Theorem 2. Under the conditions of Theorem 1, we have the following:
(a) If the frequency ratio Ω is metallic, the function h1(ε) has exactly 1 corner ε̌ in each

period and satisfies maxh1(ε) = h1(ε̌) = J1, and the distance between consecutive
corners is exactly 4 lnλ.
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(b) If the frequency ratio Ω is golden-colored, the function h2(ε) has at least 3 corners in
each period and satisfies minh2(ε) = J1, maxh2(ε) < J2.

(c) If the frequency ratio Ω is metallic-colored but not golden-colored, the function h1(ε)
has at least 2 corners in each period and satisfies maxh1(ε) < J1.

Conjecture 3. Under the conditions of Theorem 1, we have the following:
(a) If the frequency ratio Ω is golden-colored, the function h1(ε) has exactly 1 corner ε̌ in

each period and satisfies maxh1(ε) = h1(ε̌) = J1, and the distance between consecutive
corners is exactly 4 lnλ.1

(b) If the frequency ratio Ω is metallic, the function h2(ε) has exactly 2 corners ε̌, ε̂ in
each period and satisfies minh2(ε) = h2(ε̌) = J1, maxh2(ε) = h2(ε̂) = J2, and the
distance between consecutive corners is exactly 2 lnλ. Moreover, the number of zeros
θ∗ of M(θ) is exactly 4 for any ε except for a small neighborhood of the transition
values ε̂.2

As mentioned before, the functions h1(ε) and h2(ε) can be defined explicitly for any
quadratic ratio Ω from its continued fraction (see section 3). Such functions have piecewise
expressions, which are simple in the case of a metallic ratio, but in general can be very
complicated, depending on the number of their corners in each period. Nevertheless, we stress
that numerical justifications are required for results concerning infinite families of ratios, such
as the metallic or the golden-colored ones. Instead, for a particular frequency ratio the results
can be rigorously established, after an analysis of primary and secondary resonances that can
be carried out by a finite number of computations. As an example, we provide a rigorous
result on the properties of the functions h1(ε) and h2(ε) for a concrete frequency ratio with

a 3-periodic continued fraction: Ω = [ 1, 2, 2 ] =
√

85−5
6 (the proof is also given in section 3.3).

Such properties are illustrated in Figure 3.

Proposition 4. Under the conditions of Theorem 1, for the frequency ratio Ω = [ 1, 2, 2 ], the
functions h1(ε) and h2(ε) have exactly 2 corners ε̌ in each period and exactly 6 corners ε̌, ε̂ in
each period, respectively, and satisfy 1 < minh2(ε) < maxh1(ε) <

√
5/3 < maxh2(ε) < J1.

Moreover, the number of zeros θ∗ ofM(θ) is exactly 4 for any ε except for a small neighborhood
of the transition values ε̂.

Organization of the paper. We start in section 2 by studying the arithmetic properties of
frequency vectors ω = (1,Ω) with a quadratic ratio Ω. Such properties are closely related to the
continued fraction of Ω (section 2.1), which allows us to construct the iteration matrices and
study the resonant properties of the vector ω (sections 2.2 and 2.3), and to provide accurate
results for the cases of metallic and metallic-colored ratios (section 2.4), mainly considered in
this paper. Next, in section 3 we find an asymptotic estimate for the first and second dominant
harmonics of the splitting potential, which allows us to define the functions h1(ε) and h2(ε)
and study their general properties (sections 3.1 and 3.2), as well as the specific properties
for 1-periodic and 2-periodic continued fractions (section 3.3) considered in Theorem 2 and
Conjecture 3, and for a particular 3-periodic case in Proposition 4. Finally, in section 4
we provide rigorous bounds of the remaining harmonics, allowing us to obtain asymptotic

1The result of part (a) has been checked numerically for golden-colored ratios Ω = [ 1, b ], 2 ≤ b ≤ 106.
2The results of part (b) have been checked numerically for metallic ratios Ω = [ a ], 1 ≤ a ≤ 104.
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resonances are not represented (see the proof of Proposition 4).
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Figure 3. Graphs of the functions g∗s(q,n)(ε), h1(ε), and h2(ε) for Ω = [ 1, 2, 2 ]: the two sequences of
primary resonances correspond to the red and magenta graphs; the nonessential resonances are not represented
(see the proof of Proposition 4).

estimates for both the maximal splitting distance and the transversality of the splitting, as
established in Theorem 1.

Finally, we introduce some notation that we use in this paper. For positive quantities,
we write f � g if we can bound f ≤ c g with some constant c not depending on ε and µ. In
this way, we can write f ∼ g if g � f � g. On the other hand, when comparing positive
sequences an, bn we use an expression like “ an ≈ bn as n→∞ ” if limn→∞(an/bn) = 1, and
also “ an ≤ bn as n→∞ ” if lim supn→∞(an/bn) ≤ 1.

2. Vectors with quadratic ratio.

2.1. Continued fractions of quadratic numbers. It is well known that any irrational
number 0 < Ω < 1 has an infinite continued fraction

Ω = [ a1, a2, a3, . . . ] =
1

a1 +
1

a2 +
1

a3 + · · ·

, aj ∈ Z+, j ≥ 1

(notice that the integer part is a0 = 0; hence we have removed the entry “0;” from the
notation). Its entries aj are called the partial quotients of the continued fraction. It is
also well known that the rational numbers

pj
qj

= [a1, . . . , aj ], j ≥ 1, called the (principal)

convergents of Ω, provide successive best rational approximations to Ω. Thus, if we consider
the “vector convergents” w(j) := (qj , pj), we obtain approximations to the direction of the
vector ω = (1,Ω) (see, for instance, [40] and [27] as general references on continued fractions).

The convergents of a continued fraction are usually computed from the standard recur-
rences

(15)
q−1 = 0, q0 = 1, qj = ajqj−1 + qj−2,

p−1 = 1, p0 = a0 = 0, pj = ajpj−1 + pj−2, j ≥ 1.
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Alternatively, we can compute them in terms of products of unimodular matrices [5, Propo-
sition 1],

(16)

(
qj qj−1

pj pj−1

)
= A1 · · ·Aj , where Ai = T (ai) :=

(
ai 1

1 0

)
.

If we consider the first column, we can write w(j) = A1 · · ·Ajw(0).
An important tool in the study of continued fractions is the Gauss map g : (0, 1) −→ [0, 1),

defined as g(x) =
{

1
x

}
, where {·} stands for the fractional part of any real number. This map

acts on a given continued fraction by removing the first entry: for Ω = [ a1, a2, a3, . . . ], we have
g(Ω) = [ a2, a3, . . . ]. We consider, for a given number Ω ∈ (0, 1), the sequence (xj) defined by

(17) x0 = Ω xj = g(xj−1), j ≥ 1,

which satisfies that xj 6= 0 for any j if Ω is irrational. It is clear that xj = [ aj+1, aj+2, . . . ]
for any j.

In our case of a quadratic irrational number Ω, it is well known that the continued fraction
is eventually periodic, i.e., periodic starting at some partial quotient. For an m-periodic
continued fraction, we use the notation

Ω = [ b1, . . . , br, a1, . . . , am ].

In fact, as we see below, we can restrict ourselves to the numbers with purely periodic continued
fractions, i.e., periodic starting at the first partial quotient: Ω = [ a1, . . . , am ]. It is easy to
relate such properties with the sequence (xj) defined by the Gauss map: the continued fraction
of Ω is eventually periodic (hence, Ω is quadratic) if and only if xr+m = xr for some r ≥ 0,
m ≥ 1, and it is purely periodic if and only if xm = x0 for some m ≥ 1.

In the following proposition, which plays an essential role in the results of this paper, we
see that for any given vector ω = (1,Ω) with a quadratic ratio Ω, there exists a unimodular
matrix T = T (Ω) having ω as an eigenvector with the associated eigenvalue λ = λ(Ω) >
1. We show how we can construct both T and λ, directly from the continued fraction of
Ω. Additionally, we show that applying the matrix T to a convergent w(j), we get the
convergent w(j +m).

Proposition 5.
(a) Let Ω ∈ (0, 1) be a quadratic irrational number with a purely periodic continued frac-

tion, Ω = [ a1, . . . , am ], and consider the matrices Aj = T (aj) as in (16). Then the
matrix T = A1 · · ·Am is unimodular and has ω = (1,Ω) as eigenvector with eigenvalue
λ = 1

x0x1···xm−1
> 1, where (xj) is the sequence defined by (17). Moreover, for the

convergents w(j) of Ω we have that Tw(j) = w(j +m) for any j ≥ 0.
(b) Let Ω̂ be a quadratic irrational number with a nonpurely periodic continued fraction:

Ω̂ = [ b1, . . . , br,Ω ], with Ω as in (a), and consider the matrices Bj = T (bj) and

S = B1 · · ·Br. Then the matrix T̂ = STS−1 is unimodular and has ω̂ = (1, Ω̂) as
eigenvector with eigenvalue λ as in (a). Moreover, for the convergents ŵ(j) of Ω̂ we
have that T̂ ŵ(j) = ŵ(j +m) for any j ≥ r.
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Proof. Using the construction of the sequence (xj) associated to Ω, we see that 1
xj−1

=

aj + xj , and we easily deduce the equality

(
1

xj−1

)
= xj−1Aj

(
1

xj

)
, n ≥ 1.

Iterating this equality for j = 1, . . . ,m and using that x0 = Ω = xm, we obtain

(
1

Ω

)
= x0x1 · · ·xm−1 A1A2 · · ·Am

(
1

Ω

)
,

which proves that Tω = λω, and it is clear that T is unimodular. To complete part (a),
using (16) and the periodicity of the continued fraction, we have

Tw(j) = A1 · · ·AmA1 · · ·Ajw(0) = A1 · · ·Aj+mw(0) = w(j +m).

With similar arguments we prove part (b). Indeed, using the sequence (x̂j) associated to

Ω̂, we see that (
1

Ω̂

)
= x̂0x̂1 · · · x̂r−1 B1B2 · · ·Br

(
1

Ω

)
,

which says that the matrix S provides a unimodular linear change between the directions of
the vectors ω and ω̂. We deduce that T̂ ω̂ = λω̂. On the other hand, the matrix S also provides
a relation between their respective convergents. Indeed, using (16) we see that, for j ≥ r,

ŵ(j) = B1 · · ·BrA1 · · ·Aj−rŵ(0) = Sw(j − r)

(notice that ŵ(0) = w(0) = (1, 0)). Then, using (a), we deduce that

T̂ ŵ(j) = STw(j − r) = Sw(j) = ŵ(j + r).

Remarks.
1. In what concerns the contents of this paper, it is enough to consider quadratic numbers

with purely periodic continued fractions. As we see from the proof of this proposition,
writing S = ( s1 s2s3 s4 ), we have the equality

Ω̂ =
s3 + s4Ω

s1 + s2Ω
with s1s4 − s2s3 = ±1,

expressing the equivalence of the number Ω̂, with an eventually periodic continued
fraction, with the number Ω with a purely periodic one. Then it can be shown that
our main result (Theorem 1) applies to both numbers Ω and Ω̂ for ε small enough,
and we only need to consider the purely periodic case. For instance, the results for
the golden number Ω = [ 1 ] also apply to the noble numbers Ω̂ = [ b1, . . . , br, 1 ]. We
point out that the threshold in ε of validity of the results, not considered in this paper,
would depend on the nonperiodic part of the continued fraction.
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2. This proposition provides a particular case of an algebraic result by Koch [26], which
also applies to higher dimensions: for any given vector ω ∈ Rn whose components
generate an algebraic number field of degree n, there exists a unimodular matrix
T having ω as an eigenvector with the associated eigenvalue λ of modulus greater
than 1. This result is usually applied in the context of renormalization theory, since the
iteration of the matrix T provides successive rational approximations to the direction
of the vector ω (see, for instance, [26, 31]).

2.2. Resonant sequences. In this section and the next one, we review briefly the tech-
nique developed in [8] for classifying the quasi-resonances of a given frequency vector ω = (1,Ω)
whose ratio Ω is quadratic, and we study their relation with the convergents of the continued
fraction of Ω. A vector k ∈ Z2 \ {0} can be considered a quasi-resonance if 〈k, ω〉 is small in
modulus. To determine the dominant harmonics of the Melnikov potential, we can restrict
ourselves to quasi-resonant vectors, since the effect of vectors far enough from resonances can
easily be bounded.

More precisely, we say that an integer vector k 6= 0 is a quasi-resonance of ω if

|〈k, ω〉| < 1

2
.

It is clear that any quasi-resonance can be presented in the form

k0(q) := (−p, q), with p = p0(q) := rint(qΩ)

(we denote by rint(x) the closest integer to x). Hence, we have the small divisors
〈
k0(q), ω

〉
=

qΩ− p. We denote by A the set of quasi-resonances k0(q) with q ≥ 1 (which can be assumed
with no loss of generality). We also say that k0(q) is an essential quasi-resonance if it is not
a multiple of another integer vector (if p 6= 0, this means that gcd(q, p) = 1), and we denote
by A0 the set of essential quasi-resonances.

As stated in section 2.1, the matrix T = T (Ω) given by Proposition 5 (in both cases of
purely or nonpurely periodic continued fractions) provides approximations to the direction of
ω = (1,Ω). Instead of T , we are going to use another matrix providing approximations to
the orthogonal line 〈ω〉⊥, i.e., to the quasi-resonances of ω. Notice the following simple but
important equality:

(18)
〈

(T−1)>k, ω
〉

=
〈
k, T−1ω

〉
=

1

λ
〈k, ω〉 ,

with λ = λ(Ω) as given by Proposition 5. With this in mind, for a quadratic ratio with an
(eventually) m-periodic continued fraction, we define the matrix

(19) U = U(Ω) := σ (T−1)>, where σ := detT = (−1)m

(the sign σ, which is not relevant, is introduced in order to have a simpler expression in (22)). It
is clear from (18) that if k ∈ A, then also Uk ∈ A. We say that the vector k = k0(q) = (−p, q)
is primitive if k ∈ A but U−1k /∈ A. If so, we also say that q is a primitive integer and denote
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by P the set of primitive integers, with q ≥ 1. We deduce from (18) that k is primitive if and
only if the following fundamental property is fulfilled:

(20)
1

2λ
< |〈k, ω〉| < 1

2
.

If a primitive k0(q) = (−p, q) is essential, we also say that q is an essential primitive integer,
and we denote by P0 ⊂ P the set of essential primitive integers.

Now we define, for each primitive vector k0(q), the following resonant sequences of integer
vectors:

(21) s(q, n) := Unk0(q), n ≥ 0.

It turns out that such resonant sequences cover the whole set of vectors in A, providing a
classification for them.

Remark. A resonant sequence s(q, n) generated by an essential primitive k0(q) cannot be
a multiple of another resonant sequence. Indeed, in this case we would have k0(q) = c s(q̃, n0)
with c > 1 and n0 ≥ 0, and hence k0(q) would not be essential.

Let us establish a relation between the resonant sequences s(q, n) and the convergents
of Ω. Alternatively to the convergents w(j) = (qj , pj) considered in section 2.1, we rather
consider the “resonant convergents” (see also [5]),

v(j) := (−pj , qj).

The next lemma shows that the action of the matrix U defined in (19) on the vectors v(j) is
analogous to the action of T on the vectors w(j) (which has been described in Proposition 5).
This implies that the sequence of resonant convergents is divided into m of the resonant
sequences defined in (21). We also see that the primitive vectors generating such sequences
are the m first resonant convergents (belonging to A).

Lemma 6.
(a) Let Ω be a quadratic number with an (eventually) periodic continued fraction, Ω =

[ b1, . . . , br, a1, . . . , am ] (with r ≥ 0). Then we have

Uv(j) = v(j +m), j ≥ r,

and hence the sequence of resonant convergents v(j), for j ≥ r, is divided into m res-
onant sequences.

(b) If Ω has a purely periodic continued fraction, Ω = [ a1, . . . , am ], the primitive vectors
among the resonant convergents are

v(1), . . . , v(m) if a1 = 1;

v(0), . . . , v(m− 1) if a1 ≥ 2.



998 A. DELSHAMS, M. GONCHENKO, AND P. GUTIÉRREZ

Proof. We use the following simple relation between the entries of the matrices T and U
(valid in both cases r = 0 or r ≥ 1):

(22) if T =

(
a b

c d

)
, then U =

(
d −c
−b a

)
,

where we have taken into account that detT = (−1)m. Then the equality Tw(j) = w(j+m),
which holds for j ≥ r, is exactly the same as Uv(j) = v(j + m), as stated in (a), by the
relation between the vectors v(j) and w(j). As an immediate consequence, we have that the
sequence of resonant convergents v(j) (for j ≥ r) is divided into m resonant sequences.

To prove (b), we first see that the small divisors associated to the resonant convergents
v(j) satisfy the equality

qjΩ− pj = (−1)jx0 · · ·xj , j ≥ 0,

where (xj) is the sequence introduced in (17). This can easily be checked by induction using
the recurrence (15) and the equality 1

xj−1
− aj = xj .

If the continued fraction of Ω is purely periodic, recalling the expression for λ given in
Proposition 5(a) and the fundamental property (20), it is clear that a resonant convergent
v(j) is primitive if and only if the following inequalities hold:

x0 · · ·xm−1

2
< x0 · · ·xj <

1

2
.

Recall that xj ∈ (0, 1) for any j. Using (a), we see that such inequalities can only be fulfilled
by, at most, m consecutive values of j. For a1 ≥ 2, the first one is j = 0 since x0 = Ω < 1/2,
and the last one is clearly j = m − 1. Instead, for a1 = 1 the first one is j = 1, since
x0 = Ω > 1/2 and x0x1 = 1− x0 < 1/2, and the last one is j = m since xm = x0 > 1/2.

Remarks.
1. The matrices T and U cannot be triangular; i.e., we have b 6= 0 and c 6= 0 in (22).

Indeed, this would imply that the eigenvalue λ is rational, and hence the frequency
ratio Ω would also be a rational number.

2. The primitive resonant convergents given in part (b) of this proposition are all es-
sential primitive vectors, since all the convergents pj/qj are reduced fractions (as a
consequence of the fact that the matrices in (16) are unimodular).

2.3. Primary and secondary resonances. Now, our aim is to study which integer vectors
k best fit the Diophantine condition (7). As in [8], we define the “numerators”

(23) γk := |〈k, ω〉| · |k| , k ∈ Z2 \ {0} ,

where we use the norm |·| = |·|1 (i.e., the sum of absolute values). As said in section 2.2,
we can restrict ourselves to vectors k = k0(q) ∈ A (with q ≥ 1), and such vectors will be
called primary or secondary resonances depending on the size of γk. We are also interested in
studying the “separation” between both types of resonances.

Recall that the matrix T given by Proposition 5 has ω = (1,Ω) as an eigenvector with
eigenvalue λ > 1. We consider a basis ω, v2 of eigenvectors of T , where the second vector v2
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has the eigenvalue σ/λ (of modulus < 1; recall that σ = detT ). For the matrix U defined
in (19), let u1, u2 be a basis of eigenvectors with eigenvalues σ/λ and λ, respectively. Writing
the entries of the matrices T and U as in (22), it is not hard to obtain expressions for such
eigenvalues and eigenvectors:

λ = a+ bΩ,
σ

λ
= d− bΩ,(24)

v2 = (−bΩ, c), u1 = (c, bΩ), u2 = (−Ω, 1).(25)

We also get the quadratic equations for the frequency ratio Ω and the eigenvalue λ:

(26) bΩ2 = c− (a− d)Ω, λ2 = (a+ d)λ− σ.

For any primitive integer q, recalling that we write k0(q) = (−p, q), we define the quantities

(27) rq :=
〈
k0(q), ω

〉
= qΩ− p, zq :=

〈
k0(q), v2

〉
= cq + bpΩ.

Remark. As a consequence of the fact that Ω is an irrational number, one readily sees
that if q 6= q, then rq 6= rq and zq 6= zq (in the latter case, using also that c 6= 0, as seen in
remark 1 after Lemma 6).

The following proposition, whose proof is given in [8] (see also [4] for a comparison with
the case of 3-dimensional cubic frequencies), shows that the resonant sequences s(q, n) defined
in (21) have a limit behavior: the sizes of the vectors s(q, n) exhibit a geometric growth, and
the numerators γs(q,n) tend to a “limit numerator” γ∗q as n→∞.

Proposition 7. Let ω = (1,Ω) be a frequency vector whose ratio Ω ∈ (0, 1) is quadratic,
and consider the vectors v2 and u2 as in (25). For any primitive integer q ∈ P (see (20)),
consider the quantities rq and zq defined in (27). Then the resonant sequence s(q, n) defined
in (21) satisfies

(a) |s(q, n)| = Kqλ
n +O(λ−n), where Kq :=

∣∣ zq
〈u2,v2〉 u2

∣∣;
(b) γs(q,n) = γ∗q +O(λ−2n), where γ∗q := limn→∞ γs(q,n) = |rq|Kq.

Using (25)–(27), we get the following alternative expression for the limit numerators:

(28) γ∗q =
Ω(1 + Ω)

|c+ bΩ2| |δq| , where δq :=
rqzq
Ω

= cq2 − (a− d)qp− bp2, p = p0(q).

It is clear that δq 6= 0 and it is an integer. We can select the minimal of the values |δq| and,
consequently, of the limit numerators γ∗q , which is reached by some concrete primitive q̂. We
define

(29) δ∗ := min
q∈P
|δq| =

∣∣δq̂
∣∣ ≥ 1, γ∗ := min

q∈P
γ∗q = γ∗q̂ > 0.

It is easy to see, as a consequence, that lim inf |k|→∞ γk = γ∗ > 0. Hence, any vector with a
quadratic ratio satisfies the Diophantine condition (7), and we can consider γ∗ as the asymp-
totic Diophantine constant.
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As we see, all limit numerators γ∗q are multiples of a concrete positive number. An im-
portant consequence of this fact is that it allows us to establish a classification of the vectors
in A. We define the primary resonances as the integer vectors belonging to the sequence
s0(n) := s(q̂, n), and secondary resonances the vectors belonging to any of the remaining
sequences s(q, n), q 6= q̂ (recall that q̂ is the primitive giving the minimum in (29)). We also
introduce normalized numerators γ̃k and their limits γ̃∗q , q ∈ P, after dividing by γ∗, and in
this way γ̃∗q̂ = 1. We also define a value B0 = B0(Ω) measuring the “separation” between the
primary and the essential secondary resonances:

(30) γ̃k :=
γk
γ∗
, γ̃∗q :=

γ∗q
γ∗

=
|δq|
δ∗

, B0 := min
q∈P0\{q̂}

γ̃∗q .

Using the fundamental property (20) and the inequality |p− qΩ| < 1/2, we get the follow-
ing lower bound for the limit numerators, which slightly improves the analogous bound given
in [8]:

(31) γ∗q >
(1 + Ω)q − α

2λ
, α =

|b|Ω(1 + Ω)

2 |c+ bΩ2| .

Remarks.
1. Since the lower bound (31) is increasing with respect to q, it is enough to check a finite

number of cases in order to find the minimum in (29).
2. We are implicitly assuming that the primitive integer q̂ providing the minimum in (29)

is unique. In fact, we will show in section 2.4 that this is true for the cases of metallic
or metallic-colored ratios Ω introduced in section 1.3. But in other cases, the minimum
could be reached by two or more primitives, and consequently there could be two or
more sequences of primary resonances. For instance, for the ratio Ω = [ 1, 2, 2 ] there
are two sequences of primary resonances (see the proof of Proposition 4 in section 3.3).

3. Any primitive integer q̂ generating a sequence of primary resonances is essential. In-
deed, if q̂ is not essential, then we have k0(q̂) = c s(q, n0) with c > 1 and n0 ≥ 0,
and therefore s(q̂, n) = c s(q, n0 + n), which implies by (23) that γ∗q̂ = c2γ∗q , and the
minimum in (29) would not be reached for q̂.

Next, we show that the sequence of primary resonances is one (or more) of the m resonant
sequences in which, by Lemma 6, the resonant convergents are divided if the continued fraction
of Ω is m-periodic. In fact, we can give a lower bound for the numerators of all the remaining
sequences.

Lemma 8. For any primitive integer q such that the vectors in the sequence s(q, n) are not
resonant convergents, its normalized numerator satisfies γ̃∗q >

√
5/2.

Proof. We use some results in [40, section I.5] (namely, Theorems I.5B and I.5C) con-
cerning the properties of the convergents of any irrational number. On one hand, for an
infinite number of convergents the inequality |qnΩ− pn| < 1/(

√
5 qn) is satisfied, and on the

other hand, if a given integer q ≥ 1 is not a convergent and p/q is a reduced fraction, then
|qΩ− p| ≥ 1/2q. To compare such results with our Diophantine condition (7), notice that∣∣k0(q)

∣∣ = q + p ≈ (1 + Ω)q as q →∞.
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The first quoted result implies that, at least for one of the resonant sequences s(q, n)
whose vectors are resonant convergents, its limit numerator satisfies γ∗q ≤ (1 + Ω)/

√
5. By

the second result, if a given resonant sequence s(q, n) is generated by an essential primitive
q and its vectors are not resonant convergents, then γ∗q ≥ (1 + Ω)/2. This is also true if q is
not essential, by the previous remark 3. Dividing the two obtained bounds, we get the lower
bound

√
5/2 for the normalized limit γ̃∗q , when q does not generate a sequence of resonant

convergents.

2.4. Results for metallic and metallic-colored ratios. Now, we provide particular arith-
metical results for the (purely periodic) cases of a metallic ratio Ω = [ a ] and a metallic-colored
ratio Ω = [ a, b ] introduced in section 1.3.

Metallic ratios. Let us write, for a given Ω = [ a ], a ≥ 1, the matrix T = T (Ω) and the
eigenvalue λ = λ(Ω), as deduced from Proposition 5(a), and the matrix U = U(Ω) from (22),

(32) T =

(
a 1

1 0

)
, U =

(
0 −1

−1 a

)
, λ =

1

Ω
= a+ Ω.

We also have from (26) the quadratic equation

(33) λ2 = aλ+ 1.

By Lemma 6, all resonant convergents v(j) belong to a unique resonant sequence, whose
primitive vector is v(1) = (−1, 1) if a = 1, and v(0) = (0, 1) if a ≥ 2. We deduce from
Lemma 8 that this resonant sequence provides the primary resonances: in both cases q̂ = 1
and hence s0(n) = s(1, n). In the next result, we compute the separation B0, defined in (30),
for all metallic ratios, providing in this way a sharp lower bound for the normalized numerators
of all the essential secondary resonances.

Proposition 9. Let Ω = [ a ], a ≥ 1, be a metallic ratio. Then the sequence of primary
resonances is generated by the primitive integer q̂ = 1, and we have

B0 = γ̃∗q1 =

{
5 if a = 1,

a if a ≥ 2
for q1 =





7 if a = 1,

3 if a = 2,

a± 1 if a ≥ 3.

Proof. We use the expression (28), taking into account the entries of the matrix T given

in (32). For the primary resonances, we have δ1 = δ∗ = 1, and hence γ∗ = Ω(1+Ω)
1+Ω2 . Divid-

ing (31) by γ∗ and using that λ = 1/Ω, we get, for the normalized numerators γ̃∗q = |δq|, the
following lower bound:

γ̃∗q >
1 + Ω2

2
q − Ω

4
.

If a = 1 (the golden ratio), one checks that the second essential primitive is (−4, 7) with
γ̃∗7 = 5, and γ̃∗q > 5 for q ≥ 8. For a ≥ 2, assuming that q > 2/Ω, we get γ̃∗q > a. Otherwise,
if q < 2/Ω, since p < qΩ − 1/2, we get p = p0(q) < 3/2, i.e., p = 0 or p = 1. The only
essential primitive with p = 0 is (0, 1), which gives the primary resonances, and for p = 1 we
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have an “interval” of primitives (−1, q), with a+1
2 ≤ q ≤ 3a

2 and q 6= a (we have applied (20)
together with the fact that a < 1/Ω < a + 1). For such primitives, applying (28) we obtain
δq = q2 − aq − 1, a quadratic polynomial in q, which is an increasing function for q ≥ a/2,
with δa±1 = ±a. This change of sign indicates that γ̃∗q = |δq| is minimal for q = a ± 1. This
argument is valid for a = 2 (the silver ratio), but in this case we must exclude q = a − 1,
which lies outside the interval considered.

Metallic-colored ratios. Now, we consider Ω = [ a, b ], 1 ≤ a < b. Recall that, for a = 1,
this is called a golden-colored ratio; we see below that our results are somewhat different for
this particular case. We have

T =

(
ab+ 1 a

b 1

)
, U =

(
1 −b
−a ab+ 1

)
, λ =

1

1− aΩ
= ab+ 1 + aΩ

and, from (26), the quadratic equation

(34) λ2 = (ab+ 2)λ− 1.

Applying Lemma 6, we see that the resonant convergents v(j) are divided into 2 resonant
sequences, whose respective primitive vectors are

(35)
v(1) = (−1, 1), v(2) = (−b, b+ 1) if a = 1;

v(0) = (0, 1), v(1) = (−1, a) if a ≥ 2.

By Lemma 8, one of the 2 sequences of resonant convergents provides the primary resonances:
s0(n) = s(q̂, n). We call the vectors in the second sequence the main secondary resonances and
denote them by s1(n) := s(q, n). Next, we find in Proposition 10 the value of γ̃∗q , i.e., the limit
numerator of the main secondary resonances, and this gives a rigorous upper bound for the
separation B0. In Conjecture 11 we present numerical evidence of the exact equality B0 = γ̃∗q
after checking it for a large number of ratios. We point out that for a given concrete frequency
ratio Ω the separation B0(Ω) can be rigorously determined since, by the lower bound (31),
it is enough to consider the limit numerators γ̃∗q for a finite number of essential primitive
integers q.

We also find in Conjecture 11 the value of the “second separation,” i.e., the minimal
normalized limit numerator among the essential resonant sequences whose vectors are not
resonant convergents:

(36) B1 := min
q∈P0\{q̂,q}

γ̃∗q .

Proposition 10. Let Ω = [ a, b ], 1 ≤ a < b, be a metallic-colored ratio. Then the sequences
of primary resonances and main secondary resonances are generated, respectively, by primitive
integers q̂, q given by

q̂ = 1, q = b+ 1 if a = 1,
q̂ = a, q = 1 if a ≥ 2.

In both cases, the separation satisfies

1 < B0 ≤ γ̃∗q =
b

a
.
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Proof. We use (28) in order to determine which primitives (35) generate the sequence of
primary resonances. For a = 1, we obtain δ1 = −1 and δb+1 = b. For a ≥ 2, we obtain δ1 = b
and δa = −a. In both cases, the minimum (in modulus) is δ∗ = a, which is reached for q̂ = 1
if a = 1, and q̂ = a if a ≥ 2. Then we have q = b + 1 if a = 1, and q = 1 if a ≥ 2, and
we obtain γ̃∗q =

∣∣δq/δq̂
∣∣ = b/a, which provides the upper bound: B0 ≤ b/a. We also have the

inequality B0 > 1 as a consequence of Lemma 8.

Conjecture 11. In the notation of Proposition 10, the separation and the second separation
are exactly 3

(37) B0 = γ̃∗q =
b

a
, B1 =





b+ 4 if a = 1,

(a− 1)b+ a

a
if a ≥ 2,

which satisfy 1 < B0 < B1.

Justification. Numerically, we can compute B1 by bounding from below the limit numer-
ators γ̃∗q for all the essential primitives q 6= q̂, q (in view of (31), only a finite number of
primitives q have to be considered). We have checked that they all satisfy γ̃∗q > b/a (at least
for all the frequency ratios we have explored), and hence we get B0 = b/a and B1 > B0. We
also obtain an expression for B1, given in (37) separately for the cases a = 1 and a ≥ 2.

Remark. The numerical explorations allow us to determine accurately the primitive inte-
gers q2 such that B1 = γ̃∗q2 , i.e., giving the minimum in (36):

q2 =





2 if a = 1, b = 2,

3, 9 if a = 1, b = 3,

4, 11 if a = 1, b = 4,

5, 8, 13 if a = 1, b = 5,

b+ 3 if a = 1, b ≥ 6,

2b+ 3 if a = 2,

a− 1, ab+ a+ 1 if a ≥ 3.

In each case, the primitive integers q2 generate the “third most resonant” sequences among
the nonconvergent ones (i.e., after the 2 sequences of resonant convergents). Again, we stress
that it is possible to obtain this kind of result thanks to the lower bound (31), which allows
us to carry out a finite number of computations for any given ratio Ω.

3. Searching for the asymptotic estimates. In order to provide asymptotic estimates
for the splitting, we start with the first order approximation, given by the Poincaré–Melnikov
method. Although our main result (Theorem 1) is stated in terms of the splitting function
M(θ) = ∇L(θ), it is more convenient for us to work with the (scalar) splitting potential L(θ),
whose first order approximation is given by the Melnikov potential L(θ).

3The values of B0 and B1 have been checked numerically for all golden-colored ratios with 1 = a < b ≤ 106

and for all metallic-colored ratios with 2 ≤ a < b ≤ 103.
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In this section, we provide the constructive part of the proof, which amounts to finding,
for every sufficiently small ε, the first and the second dominant harmonics of the Fourier
expansion of the Melnikov potential L(θ), with exponentially small asymptotic estimates for
their size, given by functions h1(ε) and h2(ε) in the exponents. As a direct consequence of
the arithmetic properties of quadratic ratios, such functions are periodic with respect to ln ε.
We also study, from such arithmetic properties, whether the dominant harmonics are given by
primary resonances. This allows us to provide a more complete description of the functions
h1(ε) and h2(ε) in some particular cases (Theorem 2 and Conjecture 3).

The final step in the proof of our main result is considered in section 4. It requires providing
bounds for the sum of the remaining terms of the Fourier expansion of L(θ), ensuring that it
can be approximated by its dominant harmonics. Furthermore, to ensure that the Poincaré–
Melnikov method (2) predicts correctly the size of the splitting in the singular case µ = εr,
one has to extend the results to the Melnikov functionM(θ) by showing that the asymptotic
estimates of the dominant harmonics are large enough to overcome the harmonics of the
error term in (2). This step is analogous to the one done in [9] for the case of the golden
number Ω = [ 1 ] (using the upper bounds for the error term provided in [11]).

3.1. Estimates of the harmonics of the splitting potential. We plug our functions f
and h, defined in (9), into the integral (13) and get the Fourier expansion of the Melnikov
potential, where the coefficients can be obtained using residues:

L(θ) =
∑

k∈Z\{0}
Lk cos(〈k, θ〉 − σk), Lk =

2π|〈k, ωε〉| e−ρ|k|
sinh |π2 〈k, ωε〉|

.

We point out that the phases σk are the same as in (9). Using (1) and taking into account the
definition of the numerators γk in (23), we can present each coefficient Lk = Lk(ε), k ∈ Z\{0},
in the form

(38) Lk = αk e−βk , αk(ε) ≈
4πγk
|k| √ε , βk(ε) = ρ |k|+ πγk

2 |k|√ε ,

where an exponentially small term has been neglected in the denominator of αk. The most
relevant term in this expression is βk, which gives the exponential smallness in ε of each
coefficient, and we will show that αk provides a polynomial factor. This says that, for any
given ε, the smallest exponents βk(ε) provide the largest (exponentially small) coefficients
Lk(ε) and hence the dominant harmonics. We are going to study the dependence on ε of this
dominance.

We start with providing a more convenient expression for the exponents βk(ε), which
shows that the smallest ones are O(ε−1/4) (this is directly related to the exponents 1/4 in
Theorem 1). We introduce for any given X, Y the function

(39) G(ε;X,Y ) :=
Y 1/2

2

[( ε
X

)1/4
+

(
X

ε

)1/4
]
,

which has its minimum at ε = X, with G(X;X,Y ) = Y 1/2 as the minimum value. Notice
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that each function G(·;X,Y ) is determined by the point (X,Y 1/2). Now, we define

gk(ε) := G(ε; εk, γ̃k), εk :=
D0γ̃

2
k

|k|4
, D0 :=

(
πγ∗

2ρ

)2

,

and the functions gk(ε) have their minimum at ε = εk, with the minimal values gk(εk) = γ̃
1/2
k .

Recall that the asymptotic Diophantine constant γ∗ = γ∗q̂ and the normalized numerators
γ̃k = γk/γ

∗ were introduced in (29)–(30). We deduce from (38) that

(40) βk(ε) =
C0

ε1/4
gk(ε), C0 := (2πργ∗)1/2,

and hence the lower bound βk(ε) ≥ C0γ̃
1/2
k

ε1/4
.

Since we are interested in obtaining asymptotic estimates for the splitting and its transver-
sality, rather than lower bounds, we need to determine for any given ε the first and the second
essential dominant harmonics, which can be found among the smallest values gk(ε). To this
aim it is useful to consider, for a given frequency ratio Ω, the graphs of the functions gk(ε)
associated to essential quasi-resonances k ∈ A0 (recall that the notion of “essentiality” has
been introduced at the beginning of section 2.2). As an illustration, such graphs are shown
in Figure 1(a) for a concrete example (the bronze ratio Ω = [ 3 ]), using a logarithmic scale
for ε. Other examples are shown in Figures 2–3. The periodicity which can be noticed from
the graphs can easily be explained from the classification of the integer vectors into resonant
sequences (recall their definition in (21)). Indeed, for k = s(q, n) belonging to a concrete
resonant sequence, using the approximations for |s(q, n)| and γs(q,n) given by Proposition 7,
we obtain the following approximations as n→∞:

(41) gs(q,n)(ε) ≈ g∗s(q,n)(ε) := G(ε; ε∗s(q,n), γ̃
∗
q ), εs(q,n) ≈ ε∗s(q,n) :=

D0(γ̃∗q )2

K 4
q λ

4n
,

which motivates the use of a logarithmic scale. We point out that the graphs shown in
Figure 1(a) do not correspond to the true functions gs(q,n)(ε), but rather to the approximations
g∗s(q,n)(ε), which satisfy the following scaling property:

(42) g∗s(q,n+1)(ε) = g∗s(q,n)(λ
4ε).

This gives, for any resonant sequence, the mentioned periodicity: the graph of g∗s(q,n+1) is a
translation of g∗s(q,n), to distance 4 lnλ. For nonessential resonant sequences, whose vectors

do not belong to A0, we see that if s(q, n) = c s(q, n0 + n) with c > 1 and n0 ≥ 0, then

(43) g∗s(q,n)(ε) = c g∗s(q,n0+n)(ε)

(see also the remark 3 just before Lemma 8).
In order to study the dependence on ε of the most dominant harmonics, it is useful to

study the intersections between the graphs of different functions g∗k(ε), since this gives the
values of ε at which a change in the dominance may take place. In the next lemma, we
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consider the graphs associated to two different quasi-resonances, k, k ∈ A, and we show that
only two situations are possible: they do not intersect (which says that one of them always
dominates the other one), or they intersect transversely in a unique point (and in this case a
unique change in the dominance takes place).

Lemma 12. Let k, k ∈ A, with k 6= k, given by k = s(q, n) and k = s(q, n), and assume

that γ̃∗q ≤ γ̃∗q . Denoting Z =
(
ε∗
k
/ε∗k
)1/4

and W =
(
γ̃∗q/γ̃

∗
q

)1/2
, the graphs of the functions

g∗k(ε) and g∗
k
(ε) intersect if and only if Z < 1/W or Z > W . If so, the intersection is unique

and transverse and takes place at ε = ε∗k ·
(Z(WZ−1)

Z−W
)2

.

Proof. First of all, we show that g∗k and g∗
k

cannot be the same function. By the def-
inition (39), if g∗k = g∗

k
, then we have γ̃∗q = γ̃∗q and ε∗k = ε∗

k
. The latter equality im-

plies that Kqλ
n = Kqλ

n. Using the expressions given in Proposition 7, we get the equal-
ities |rqzq| = |rqzq| and zqλ

n = zqλ
n. We deduce that |rq/rq| = λn−n, but we have

|rq| , |rq| ∈ (1/2λ, 1/2) by the fundamental property (20). This says that n = n and hence
zq = zq. As seen in the remark next to the definition (27), we also get q = q, which contradicts
the assumption k 6= k.

Now, introducing the variable ζ = (ε/ε∗k)
1/4 > 0, we define

f1(ζ) :=
1

2

(
ζ +

1

ζ

)
=

g∗k(ε)(
γ̃∗q
)1/2 , f2(ζ) :=

W

2

(
ζ

Z
+
Z

ζ

)
=

g∗
k
(ε)

(
γ̃∗q
)1/2 ,

with W ≥ 1 by hypothesis, and it is clear from the above analysis that we cannot have
W = Z = 1. It is straightforward to check that the graphs of f1 and f2 can intersect only
once, transversely, at ζ2 = Z(WZ−1)

Z−W . Such an intersection occurs if and only if Z < 1/W or
Z > W . Then we get the result after translating from ζ to the original variable ε.

The sequence of primary resonances s0(n) = s(q̂, n), introduced in section 2.3, plays an
important role, since they give the smallest minimum values among the functions g∗k(ε), and
hence they will provide the most dominant harmonics, at least for ε close to such minima.
With this fact in mind, and recalling that γ̃∗q̂ = 1, we denote

gn(ε) := g∗s0(n)(ε) = G(ε; ε̄n, 1) =
1

2

[(
ε

ε̄n

)1/4

+
( ε̄n
ε

)1/4
]
,(44)

ε̄n := ε∗s0(n) =
D0

K 4
q̂ λ

4n
.(45)

To study the periodicity with respect to ln ε, we introduce intervals In, whose “length”
(in the logarithmic scale) is 4 lnλ, centered at ε̄n, and the left and right “halves” of such
intervals,

(46) In :=
[
ε̄ ′n+1, ε̄

′
n

]
= I+

n ∪ I−n , I+
n :=

[
ε̄ ′n+1, ε̄n

]
, I−n :=

[
ε̄n, ε̄

′
n

]
,

where ε̄ ′n :=
√
ε̄nε̄n−1 = λ2ε̄n are the geometric means of the sequence ε̄n. For a given n ≥ 1,

it is easy to determine the behavior of the functions (44): for ε ∈ I+
n , the value of the function
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gn(ε) decreases from J1 to 1, the value of the function gn+1(ε) increases from J1 to J2, and
we have gm(ε) ≥ J2 if m 6= n, n + 1 (recall that the values J1 and J2 were defined in (14)).
A symmetric result holds for ε ∈ I−n with the functions gn(ε) and gn−1(ε) (see the red graphs
in Figure 1(a) for an illustration).

3.2. Dominant harmonics of the splitting potential. In this section, we introduce the
functions h1(ε) and h2(ε), appearing in the exponents in Theorem 1, as the first and second
minima for any given ε of the values g∗k(ε) among the essential quasi-resonances k ∈ A0. We
study some of the properties of h1(ε) and h2(ε), which hold for an arbitrary quadratic ratio Ω.
In section 3.3, we put emphasis on the dependence of such functions on the continued fraction
of the frequency ratio Ω, giving a more accurate description of them for the cases of metallic
and metallic-colored ratios, whose arithmetic properties have been studied in section 2.4.

Namely, we provide information on the minimum and maximum values of the functions
h1(ε) and h2(ε) and show that they are piecewise-smooth and 4 lnλ-periodic in ln ε, and we
give lower bounds for the number of their corners (i.e., jump discontinuities of the derivative)
in any period, say the interval In = [ε̄ ′n+1, ε̄

′
n], or rather the semiopen interval (ε̄ ′n+1, ε̄

′
n],

to avoid repetitions if the endpoints are corners. In fact, such properties are clear from
Figures 1–3 for the concrete frequency rations considered there, but we are going to show that
they hold for an arbitrary quadratic ratio Ω.

Previously to this, let us define two functions analogous to h1(ε) and h2(ε), but taking
into account only the primary resonances:

(47) h1(ε) := min
n
gn(ε) = g∗N1

(ε), h2(ε) := min
n6=N1

g∗n(ε) = g∗N2
(ε),

with Ni = Ni(ε). In other words, the two dominant harmonics among the primary resonances
correspond to

Si = Si(ε) = s0(Ni), i = 1, 2.

On each concrete interval In (see the definition (46)) one readily sees, from the properties
described in the last part of section 3.1, what primary resonances provide the first and second
minima: N1(ε) = n for ε ∈ In, and N1(ε) = n±1 for ε ∈ I±n . It is also clear that the functions
h1(ε) and h2(ε) are piecewise-smooth and 4 lnλ-periodic. In each period, the function h1(ε)
has exactly 1 corner (at ε̄ ′n), and h2(ε) has exactly 2 corners (at ε̄ ′n and ε̄n). Moreover, we
have

minh1(ε) = h1(ε̄n) = 1, maxh2(ε) = h2(ε̄n) = J2,

maxh1(ε) = minh2(ε) = h1(ε̄ ′n) = h2(ε̄ ′n) = J1

(see also Figure 1(b) for an illustration).
Now, we define the functions hi(ε) as the minimal values of the functions g∗k(ε) among all

essential quasi-resonances, and we denote by Si = Si(ε) the integer vectors k at which such
minima are reached:

(48)

h1(ε) := min
k∈A0

g∗k(ε) = g∗S1
(ε), h2(ε) := min

k∈A0\{S1}
g∗k(ε) = g∗S2

(ε),

h3(ε) := min
k∈A0\{S1,S2}

g∗k(ε) = g∗S3
(ε).
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It is clear that hi(ε) ≤ hi(ε) for any ε and i = 1, 2. In order to provide an accurate description
of the splitting and its transversality, we have to study whether the equality between the
above functions can be established for any value of ε, or at least for some intervals of ε.
This amounts to studying whether the dominant harmonics can always be found among the
primary resonances (Si = Si) or, on the contrary, secondary resonances have to be taken into
account.

In fact, the properties described above for the functions hi(ε) are partially generalized to
the functions hi(ε) in the next proposition, which corresponds to some parts of the statement
of Theorem 1 concerning such functions. Recall that the values J1 and J2 were defined in (14).

Proposition 13. The functions h1(ε) and h2(ε) are piecewise-smooth, 4 lnλ-periodic in ln ε.
In each period, the function h1(ε) has at least 1 corner and h2(ε) has at least 2 corners. They
satisfy for ε > 0 the following bounds:

minh1(ε) = 1, maxh1(ε) ≤ J1, maxh2(ε) ≤ J2, h1(ε) ≤ h2(ε).

The corners of h1(ε) are exactly the points ε̌ such that h1(ε̌) = h2(ε̌). The corners of h2(ε)
are the same points ε̌, and the points ε̂ where h2(ε̂) = h3(ε̂).

Proof. First of all, it is clear that the functions h1 and h2 are 4 lnλ-periodic in ln ε, as
we see from the scaling property (42). Then we can restrict ourselves to a concrete interval,
say I1. Recalling also that hi(ε) ≤ hi(ε) ≤ Ji for any ε and i = 1, 2, the minimum in the
definition (48) of hi can be restricted to the integer vectors k = s(q, n) ∈ A0 such that the
graph of the function g∗s(q,n) visits (the interior of) the rectangle I1 × [1, Ji]. We are going
to show that this is possible only for a finite number of integer vectors.

Indeed, recalling (39), if the graph of a functionG(ε;X,Y ) visits I1×[1, J1], then Y 1/2 < J1

and ε̄2 < X < ε̄0; and if it visits I1 × [1, J2], then Y 1/2 < J2 and ε̄ ′3 < X < ε̄ ′0. For the
function g∗s(q,n), defined in (41), we have to consider Y = γ̃∗q and X = ε∗s(q,n). By the lower

bound (31), it is clear that only a finite number of functions g∗s(q,n) can visit the rectangle

I1 × [1, Ji], i = 1, 2. This implies, by Lemma 12, that only a finite number of (transverse)
intersections between the graphs of g∗s(q,n) can take place inside the rectangles I1 × [1, Ji].

We deduce from the above considerations that the functions h1 and h2 are both piecewise-
smooth. Indeed, we can consider a partition of I1 into subintervals such that, for ε belonging
to (the interior of) each subinterval, the function h1 coincides with only one of the functions
g∗s(q,n), i.e., the dominant harmonic is given by S1(ε) = s(q, n), which remains constant on
this subinterval. At each endpoint of such subintervals, a change in the dominant harmonic
takes place, i.e., S1 has a jump discontinuity. By Lemma 12, the endpoints of the subintervals
correspond to transverse intersections between the graphs of different functions g∗s(q,n), which
give rise to corners ε̌ of h1. A similar argument applies to the function h2, with a different
partition, associated to the changes of the second dominant harmonic S2(ε). In fact, the
values ε̌ are the points where h1(ε̌) = h2(ε̌), and they are corners of both functions h1 and h2.
In the same way, the function h2 has additional corners ε̂ at the points where h2(ε̂) = h3(ε̂).

Finally, we provide a lower bound for the number of corners ε̌, ε̂ in a given period (if the
endpoints of a period are corners, we count them as one single corner). Since g1(ε̄1) = 1,
we have S1(ε) = S1(ε) = s0(1) in some neighborhood of ε̄1 ∈ I1. Analogously, we have
S1(ε) = S1(ε) = s0(2) in some neighborhood of ε̄2 ∈ I2, which implies the existence of at least
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one corner of h1 with ε̄2 < ε̌ < ε̄1 and, consequently, in any given period. On the other hand,
if ε̌ < ε̃ are two consecutive corners of h1 (and h2), there exists at least one additional corner
ε̂ of h2 (and h3), since S1(ε) and S2(ε) cannot be simultaneously constant in the interval [ε̌, ε̃]
(this would imply that g∗S1

and g∗S2
intersect at both points ε̌ and ε̃, which is not possible by

Lemma 12).

Remarks.
1. We can also deduce from the proof of this proposition some useful properties of the

functions Si = Si(ε), giving the dominant harmonics. Namely, each function Si(ε) is
“piecewise-constant,” with jump discontinuities at the corners of hi(ε). Moreover, the
asymptotic behavior of the functions Si(ε) as ε→ 0 turns out to be polynomial:

(49) |Si(ε)| ∼
1

ε1/4
.

Indeed, the first dominant harmonic belongs to some resonant sequence: we can write
S1(ε) = s(q,N) for some q = q(ε), and for N = N(ε) such that the value ε∗s(q,N) is

the closest to ε among the sequence ε∗s(q,n), n ≥ 0. Recalling (41) and the estimate

|s(q,N)| ∼ λN given in Proposition 7(a), we get (49). An analogous argument holds
for S2(ε), possibly replacing N by N±1, and possibly belonging to a different resonant
sequence s(q, ·). Notice that it is not necessary to include q in the estimate (49) (in
spite of the fact that Kq and γ̃∗q appear in the expression (41)), since by the arguments
in the above proof (Proposition 13) only a finite number of resonant sequences s(q, ·)
can be involved.

2. A more careful look at the arguments of the previous remark says that if the dominant
harmonics in a given interval In are known, then in view of the scaling property (42)
the dominant harmonics in the interval In+1 are the next vectors in the respective
resonant sequences:

Si(ε) = U Si(λ
4ε)

(recall that the matrix U appears in the definition of the resonant sequences in (21)).
3. Although we implicitly assume that there exists only one sequence of primary reso-

nances (see remark 2 before Lemma 8), it is not hard to adapt the definitions and
results to the case of two or more sequences of primary resonances. In this case, we
would choose one of such sequences as “the” sequence s0(n) when the functions gn(ε)
are defined in (44). As an example, for the ratio Ω = [ 1, 2, 2 ] considered in Propo-
sition 4, we show in Figure 3 the graphs of h1(ε) and h2(ε), with two sequences of
primary resonances.

3.3. Dominant harmonics for metallic and metallic-colored ratios. This section is de-
voted to the proof of Theorem 2 and the justification of Conjecture 3, providing a more
accurate description of the functions h1(ε) and h2(ε) for the cases of 1-periodic and 2-periodic
continued fractions, i.e., for metallic and metallic-colored ratios Ω, introduced in section 1.3,
using some arithmetic results from section 2.4. We emphasize the different behavior of the
two functions in each case.

The main issue is to discuss whether the first dominant harmonic S1(ε) and (eventually)
the second one S2(ε) are given, for any ε, by primary resonances: Si(ε) = Si(ε). If so, the
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function h1(ε) and (eventually) the function h2(ε) coincide with the functions hi(ε) introduced
in (47), whose description is very simple (as in Figure 1). Otherwise, the dominant harmonics
are given by secondary resonances at least for some intervals of ε, which leads to a more
complicated function h2(ε) (than h2(ε), as in Figure 2(a)) or both complicated functions
h1(ε) and h2(ε) (as in Figures 2(b) and 3).

The proof of such results requires a careful analysis of the role of secondary resonances
and is carried out rigorously for the statements of Theorem 2. Instead, for the statements of
Conjecture 3, we provide evidence after having checked them numerically for a large number
of frequency ratios.

Proof of Theorem 2(a)/Justification of Conjecture 3(a). Both of these results concern the
behavior of h1(ε) for a metallic ratio or a golden-colored ratio. In the first case we provide
a rigorous proof, and in the second case the result relies on Conjecture 11, which has been
validated numerically for a large number of cases.

It will be enough to show the lower bound

(50)
√
B0 > J1 ,

where B0 is the separation between the primary and the essential secondary resonances (recall
the definition (30)). This lower bound ensures that the most dominant harmonic is found, for
all ε, among the primary resonances: S1(ε) = S1(ε), and hence h1(ε) = h1(ε) (such facts are
reflected in Figures 1(b) and 2(a)), which completes the proof, in view of the properties of the
function h1 defined in (47).

Hence, it remains to show that the inequality (50) is fulfilled in the two cases of a metallic
and a golden-colored ratio. Notice that, by the definition of J1 in (14), we can rewrite (50) as
4B0λ > (λ+ 1)2.

For a metallic ratio Ω = [ a ], a ≥ 1, we know from Proposition 9 that B0 = 5 if a = 1,
and B0 = a if a ≥ 2 (a rigorous result). Then the inequality (50) is easily checked using the
quadratic equation (33).

On the other hand, for a golden-colored ratio Ω = [ 1, b ], b ≥ 2, by Conjecture 11 we
have B0 = b (which has been established for 2 ≤ b ≤ 106). Then it is easy to check the
inequality (50) using in this case the quadratic equation (34).

Proof of Theorem 2(b). Let us consider a golden-colored ratio Ω = [ 1, b ], b ≥ 2. We know
from Proposition 10 that the primary resonances s0(n) = s(q̂, n) and the main secondary
resonances s1(n) = s(q, n) are generated, respectively, by q̂ = 1 and q = b+ 1 or, equivalently,
by the vectors v(1) = (−1, 1) and v(2) = (−b, b + 1). To study the relative position of the
graphs of the functions g∗s1(n) with respect to the functions gn = g∗s0(n), we compute

ε∗s1(n)

ε̄n
=

(
γ̃∗b+1

)2
K 4

1

K 4
b+1

=
b2(λ− 1)4

(bλ)4
=

1

λ2
,

where we have used the quadratic equation (34) and the fact that, by (27),

Kb+1

K1
=
zb+1

z1
=
b(b+ 1) + bΩ

b+ Ω
=

bλ

λ− 1
.
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Hence, we have seen that ε∗s1(n) = ε̄n/λ
2 = ε̄ ′n−1, i.e., the geometric means introduced in (46)

(see also Figure 2(a)).
Now, let us check that

(51)
√
B0 J1 < J2.

We know from Proposition 10 that B0 ≤ b (a rigorous result). Then it is enough to see that
bλ(λ+ 1)2 < (λ2 + 1)2, which can be easily checked using again the quadratic equation (34).

Notice that gs1(n)(ε̄n) = gs1(n+1)(ε̄n) =
√
B0 J1. We deduce from (51) that, for some

interval around ε̄n, the second dominant harmonic S2 is not the primary resonance S2 =
s0(n− 1) (if ε > ε̄n) or S2 = s0(n+ 1) (if ε < ε̄n), since at least a main secondary resonance
is more dominant: s1(n) (if ε > ε̄n) or s1(n + 1) (if ε < ε̄n) (eventually, another secondary
resonance could also be the second dominant harmonic S2). This implies that at least 3 changes
in the second dominant harmonic take place in a given period, and hence the function h2 has
at least 3 corners. We also deduce that the maximum value of the function h2 is < J2, since the
value J2 can only be reached, at the points ε̄n, if a primary resonance is the second dominant
there (again, see Figure 2(a) for an illustration, where h2 has 4 corners in each period).

Concerning the minimum of the function h2, it is always reached at the points ε̄ ′n by
a primary resonance: gn(ε̄ ′n) = gn−1(ε̄ ′n) = J1, since by the inequality (50) all secondary
resonances take greater values at ε̄ ′n.

Proof of Theorem 2(c). Now, we consider a metallic-colored but not golden-colored ratio,
Ω = [ a, b ], 2 ≤ a < b. In this case, we know from Proposition 10 that the primary and main
secondary resonances, s0(n) and s1(n), are generated, respectively, by q̂ = a and q = 1 or,
equivalently, by the vectors v(1) = (−1, a) and v(0) = (0, 1). As in part (c), we study the
relative position of the functions g∗s1(n) with respect to gn, by computing

ε∗s1(n)

ε̄n
=

(γ̃∗1)2K 2
a

K 4
1

=
(b/a)2(λ− 1)4

b4
= λ2,

where we have used the quadratic equation (34) and the fact that

Ka

K1
=
za
z1

=
ab+ aΩ

b
=
λ− 1

b
.

Hence, we have seen that ε∗s1(n) = λ2ε̄n = ε̄ ′n (see also Figure 2(b)).

Next, we show that, instead of (50), we have

√
B0 < J1

or, equivalently, 4B0λ < (λ + 1)2. We know from Proposition 10 that B0 ≤ b/a (a rigorous
result). Then it is enough to see that 4bλ < a(λ+ 1)2, which can be checked using again the
quadratic equation (34).

We deduce that, for some interval around ε̄ ′n, the most dominant harmonic is not a
primary resonance, S1 6= S1, since at least the secondary resonance s1(n) is more dominant.
This implies that at least 2 changes in the dominance take place in a given period, and
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hence the function h1 has at least 2 corners. We also deduce that the maximum value of
the function h1 is < J1, since the value J1 can only be reached at the points ε̄ ′n, provided a
primary resonance is the most dominant there (again, see Figure 2(b) for an illustration).

Justification of Conjecture 3(b). We consider a metallic ratio Ω = [ a ], a ≥ 1, and we
are going to show that for any ε the second dominant harmonic is also a primary resonance,
S2(ε) = S2(ε), and hence h2(ε) = h2(ε) (see Figure 1 for an illustration). Then it is enough
to use the simple properties of the function h2 defined in (47).

Thus, we have to check that a secondary resonance cannot be the second dominant har-
monic in any interval of ε. By the periodicity, we can restrict ourselves to primitive vectors:
s(q, 0) = k0(q). The function g∗s(q,0) reaches its minimum at the point ε∗s(q,0), belonging for

some n = n(q) to one of the intervals In = I+
n ∪ I−n (see the definition (46)). Assume, for

instance, that ε∗s(q,0) ∈ I+
n =

[
ε̄ ′n+1, ε̄n

]
. In this interval, the two dominant harmonics among

the primary resonances are S1 = s0(n) = S1 and S2 = s0(n+ 1). By the inequality (50), the
second dominant harmonic among all resonances is S2 = S2, at least for ε ∈ I+

n close enough
to ε̄ ′n+1, and we have to check that this is also true on the whole interval I+

n . Otherwise,
assume that S2 = s(q, 0) (a secondary resonance) for some values ε ∈ I+

n (far from ε̄ ′n+1).
Then there would be an intersection between the graphs of gn+1 and g∗s(q,0) in the interval I+

n+1

and, in view of the uniqueness given by Lemma 12, we would have g∗s(q,0)(ε̄n) < gn+1(ε̄n) = J2.

A symmetric discussion can be done for the case ε∗s(q,0) ∈ I−n .
By the above considerations, we have to check that, for any essential primitive q, and

denoting n = n(q) as above, we have the lower bound

(52) g∗s(q,0)(ε̄n) ≥ J2.

Since the minimal value of the function g∗s(q,0) is
(
γ̃∗q
)1/2

, it is enough to consider the essential

primitives such that
(
γ̃∗q
)1/2

< J2 (by the lower bound (31), there is a finite number of such
primitives). We have carried out a numerical verification of (52) for all metallic ratios with
1 ≤ a ≤ 104.

Finally, we have to justify the statement concerning the number of zeros θ∗ of the splitting
function M(θ) for any ε except for a small neighborhood of the transition values ε̂. Notice
that since the second dominant harmonic changes from s0(n− 1) to s0(n+ 1) as ε goes from
I−n to I+

n , the transition values are ε̂ = ε̄n. As mentioned above, the dominant harmonics
S1 = S1 = s0(n) and S2 = S2 = s0(n ± 1) are two consecutive resonant convergents, and
hence we get κ = 1 in (69). As explained in section 4.2, this implies directly that the number
of zeros of M(θ) is exactly 4κ = 4.

Remark. The exact equality in (52) holds true for some primitives q, as one can see in
Figure 1 for the concrete case of the bronze ratio.

We point out that rigorous results can always be given if one considers a particular fre-
quency ratio, instead of infinite families of ratios. As an illustration, we include in this section
the proof of Proposition 4, concerning a frequency ratio with a 3-periodic continued fraction:
Ω = [ 1, 2, 2 ].

Proof of Proposition 4. We see from Proposition 5(a), the relation (22), and the equali-
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ties (24) that

(53) T =

(
7 3

5 2

)
, U =

(
2 −5

−3 7

)
, λ =

1

3Ω− 2
= 7 + 3Ω.

By Lemma 6, the resonant convergents v(j) are divided into 3 resonant sequences, whose
respective primitive vectors are

(54) v(1) = (−1, 1), v(2) = (−2, 3), v(3) = (−5, 7),

and the primary resonances are found among such sequences, according to Lemma 8. We
obtain from (28) the values δ1 = −3, δ3 = 3, and δ7 = −5, whose minimum (in modulus) is
reached for the first two primitive vectors in (54). Hence, two of the sequences of resonant
convergents are primary resonances, s(1, n) and s(3, n), with the limit numerator γ∗ = γ∗1 =

γ∗3 = 3Ω(1+Ω)
5+3Ω2 . The third one is secondary, s(7, n), with the normalized limit numerator

γ̃∗7 = γ∗7/γ
∗ = 5/3. On the other hand, we find from (20) that the nonconvergent (essential)

primitive vectors k0(q) = (−p, q), generating resonant sequences s(q, n), are given by q =
2, 4, 5, 11, 13, 15, 16, . . . with p = rint(qΩ). Their normalized limit numerators γ̃∗q and the
amounts Kq can be explicitly obtained from (28)–(30) and Proposition 7(a), respectively.

To determine the functions h1(ε) and h2(ε), we need to study the relative position between
the graphs of different functions g∗s(q,n)(ε) introduced in (41). To keep the notation used
in this paper, we choose one of the sequences of primary resonances as the “main” one,
s0(n) := s(1, n), and we also denote gn(ε) and ε̄n as in (44)–(45) and ε̄ ′n and In as in (46). As
in Proposition 13, we can restrict ourselves to a concrete period, say I1 = [ε̄ ′2, ε̄

′
1] (containing

ε̄1).
For the sake of simplicity, it is convenient to introduce as in Lemma 12 the variable

ζ = (ε/ε̄1)1/4. Then the interval I1 becomes J1 := [λ−1/2, λ1/2]. In the new variable, we
denote f∗s(q,n)(ζ) := g∗s(q,n)(ε), and also fn(ζ) := gn(ε) for the particular case q = 1. It is clear

from the scaling property (42) that f∗s(q,n)(ζ) = f∗s(q,1)(λ
n−1ζ). We can write

(55) f∗s(q,1)(ζ) =
Wq

2

(
ζ

Zq
+
Zq
ζ

)
, Wq :=

(
γ̃∗q
)1/2

, Zq :=

(
ε∗s(q,1)

ε̄1

)1/4

.

Hence, any function f∗s(q,n)(ζ) has its minimum at Zqλ
−(n−1), with Wq as the minimum value.

Using the definition (41), together with (27) and the first expression for λ in (53), we get

(56) Zq =
(
γ̃∗q
)1/2 K1

Kq
=
(
γ̃∗q
)1/2 5 + 3Ω

5q + 3pΩ
=
(
γ̃∗q
)1/2 7λ+ 1

(5q + 2p)λ+ p
.

Denoting also Fi(ζ) := hi(ε), i = 1, 2, our aim is to study such functions for ζ ∈ J1. As a
previous step, we can define functions F̃i(ζ), i = 1, 2, as in (47), but taking the minima over
the two sequences of primary resonances, fn(ζ) and f∗s(3,n)(ζ), i.e., for the primitives q = 1, 3.

For such primitives, we know that W1 = W3 = 1 and, computing from (56), we see that Z1 = 1
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1

1

W7

W2 = W4

J1

λ−1/2 λ1/2Z3 Z4 ζ(1) ζ(2)Z2 ζ(4)ζ(3)

F1(ζ)

F2(ζ)

f̄1

f∗
s(7,0)

f∗
s(3,1)

f∗
s(3,0)

f∗
s(2,1)

f∗
s(7,1) f∗

s(4,1)

Figure 4. Graphs of the functions fn, f∗s(q,n)(ζ), F1(ζ), and F2(ζ) in the rectangle J1 × [1, J1] for Ω =

[ 1, 2, 2 ], using a logarithmic scale for ζ. The relevant values Wi, Zi are also shown, as well as the corners ζ(i),
which include ζ(5) = Z3 and ζ(6) = 1 (for the notation, see the proof of Proposition 4).

and λ−1/2 < Z3 < λ−1/4. It is not hard to deduce that both of the functions F̃1(ζ) and F̃2(ζ)
are given, for any ζ ∈ J1, by the first and the second minimum among the 3 functions

(57) f∗s(3,1), f1, f∗s(3,0),

having their minima at the points Z3, 1, Z3λ, respectively. A careful analysis of the intersec-
tions in the interval J1 (or rather the semiopen interval (λ−1/2, λ1/2]) between the graphs of
the functions (57) (including also the “next” function f0) allows us to determine the corners of
the functions F̃i(ζ). By the symmetry of the graphs (in the logarithmic scale), such intersec-

tions are given as geometric means. Namely, we see that F̃1(ζ) has 2 corners, at ζ(1) := Z
1/2
3

and ζ(2) := (Z3λ)1/2, and F̃2(ζ) has 4 corners, at the same points ζ(1) and ζ(2), and also at
ζ∗ := Z3λ

1/2 and ζ∗∗ := λ1/2. We deduce that max F̃1(ζ) = f1(ζ(2)), min F̃2(ζ) = f1(ζ(1))
(where we take into account that f1(ζ(1)) < f1(ζ(2))), and max F̃2(ζ) = f∗s(3,1)(ζ

∗) = f1(ζ∗∗) =

J1 (recall the definition (14)). (Such facts are illustrated by Figure 4.)
For the functions Fi(ζ) = hi(ε), we also have to take into account some secondary reso-

nances. Since Fi(ζ) ≤ F̃i(ζ), we can restrict our study to the graphs visiting (the interior of)
the rectangle J1×[1, J1]. Thus, we only need to consider resonant sequences s(q, n) generated
by primitive vectors with Wq < J1, with Wq being given by (55). Using the definition (28)
together with the lower bound (31) (which allows us to check a finite number of cases), we
see that only a few additional primitives have to be considered: q = 7, 2, 4; for them, we have
W7 =

√
5/3 and W2 = W4 =

√
7/3. It is not hard to check that W7 > max F̃1(ζ), which

implies that the harmonics associated to secondary resonances cannot provide the minimum
among the functions f∗s(q,n), and hence F1(ζ) = F̃1(ζ) for any ζ ∈ J1.

It remains to compare F2(ζ) with F̃2(ζ). For the secondary primitives q = 7, 2, 4, we get
Z7 = λ−1ζ(2) and λ−1/2 < Z4 < ζ(1) < Z2 < 1, and we see that the rectangle J1 × [1, J1] is
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visited by the graphs of the functions

f∗s(7,1), f∗s(7,0), f∗s(2,1), f∗s(4,1), f∗s(4,0).

The intersections between such graphs and those of the functions (57) can be explicitly com-
puted by the formula given in Lemma 12. We can check in this way that the corners ζ(1)

and ζ(2) of F2(ζ) remain unchanged as corners of F̃2(ζ), whereas the corners ζ∗ and ζ∗∗ are
replaced by 4 new corners of F̃2(ζ), which we denote by ζ(i), i = 3, 4, 5, 6 (which become the
transition points), provided by intersections of f∗s(7,1) and f∗s(7,0) with the graphs of (57), and

we see that maxF2(ζ) < J1. We point out that f∗s(2,1) and f∗s(4,1) also intersect the graphs

of (57) exactly at two such points, ζ(5) = Z3 and ζ(6) = 1, but they do not provide the second
dominant harmonic in any interval of ζ. (Again, see Figure 4 for more details.)

Finally, it is not hard to check that, in each interval between consecutive transition values
ε̂, the determinant of the two vectors s(q, n) providing the 2 dominant harmonics is ±1, which
implies that the number of zeros θ∗ of the splitting function M(θ) is exactly 4 (see also
section 4).

Remark. As in some parts of Theorem 2, it is not hard to provide in this example explicit
expressions, in terms of λ (or Ω), for the values of maxh1(ε) = f1(ζ(1)), minh2(ε) = f1(ζ(2))
and maxh2(ε) = f1(ζ(5)), but they are somewhat cumbersome and we omit them.

4. Justification of the asymptotic estimates.

4.1. Approximation of the splitting potential by its dominant harmonics. The last part
of this paper is devoted to the proof of Theorem 1, which gives exponentially small asymptotic
estimates of the maximal splitting distance and the transversality of the splitting. We start
by describing our approach in a few words.

Notice that Theorem 1 is stated in terms of the Fourier coefficients of the splitting function
M = ∇L introduced in (12). We write, for the splitting potential and function,

(58) L(θ) =
∑

k∈Z\{0}
Lk cos(〈k, θ〉 − τk), M(θ) = −

∑

k∈Z\{0}
Mk sin(〈k, θ〉 − τk),

with scalar positive coefficients Lk, and vector coefficients

(59) Mk = kLk.

Although the Melnikov approximation (2) is in principle valid for real θ, it is standard to see
that it can be extended to a complex strip of suitable width (see, for instance, [11]), from
which one gets upper bounds for |Lk − µLk| and |τk − σk|, which imply the asymptotic esti-
mates given below in Lemma 14, ensuring that the most dominant harmonics of the Melnikov
potential L(θ) are also dominant for the splitting potential L(θ). The asymptotic estimates
for the maximal splitting distance and the transversality, given in Theorem 1, are determined
from a few (one or two) dominant harmonics of the potential. Thus, we consider approxima-
tions on L(θ) given by such dominant harmonics, together with estimates of the sum of all
other harmonics, which show that they are dominated by the most dominant ones.
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For the proof of part (a) of the theorem, which provides an asymptotic estimate for the
maximal splitting distance, it will be enough to consider the approximation given by the first
dominant harmonic. Thus, we write

(60) L(θ) = L(1)(θ) + F (2)(θ), L(1)(θ) := LS1 cos(〈S1, θ〉 − τS1),

and we give below, in Lemma 14, an estimate of the sum of all harmonics in the remainder
F (2)(θ). This ensures that the maximal splitting distance can be approximated by the size of
the coefficient of the dominant harmonic S1 = S1(ε) (see the proof of Theorem 1(a) below).

On the other hand, for the proof of parts (b) and (c) of Theorem 1, which concern the
transversality of the splitting, we need to detect simple zeros of M(θ). This is not possible
with the approximation (60) given by only one harmonic, and we need to consider at least two
harmonics. Recalling that, by (59), each (vector) harmonicMk ofM(θ) lies in the direction of
the integer vector k, we consider the two most dominant essential harmonics, given by linearly
independent quasi-resonances S1 = S1(ε) and S2 = S2(ε) (recall the definition of essential
quasi-resonances at the beginning of section 2.2). In fact, some nonessential harmonics c S1,
c = 2, . . . ,m, can be (eventually) more dominant than S2. In order to show, in section 4.2, that
such nonessential harmonics have no effect on the transversality, we consider them separately,
with specific upper bounds. We define the index of nonessentiality m = m(ε) ≥ 1 as the
integer satisfying

g∗S1
(ε) < · · · < g∗mS1

(ε) ≤ g∗S2
(ε) < g∗(m+1)S1

.

Recall from (43) that g∗cS1
= c g∗S1

. It is clear that m = 1 if and only if the two most dominant
harmonics are the nonessential ones, S1 and S2. For instance, we see from Figure 2(a) that,
for the case Ω = [ 1, 3 ], we have m = 2 for ε belonging to some intervals, and m = 1 for the
remaining values of ε.

Now, we write

L(θ) = L(2)(θ) + F (2̂)(θ) + F (3)(θ),(61)

L(2)(θ) := LS1 cos(〈S1, θ〉 − τS1) + LS2 cos(〈S2, θ〉 − τS2),

F (2̂)(θ) :=

m∑

c=2

LcS1 cos(c 〈S1, θ〉 − τcS1),

and F (3)(θ) containing all harmonics not in L(2)(θ) or F (2̂)(θ) (of course, we consider F (2̂) = 0

if m = 1). Then suitable estimates of the harmonics in F (2̂)(θ) and F (3)(θ) allow us to
establish the existence of simple zeros θ∗ of M(θ), together with an asymptotic estimate for
the minimal eigenvalue of DM(θ∗), which can be taken as a measure for the transversality of
the splitting (see section 4.2). However, we have to exclude some intervals where the second
and third essential dominant harmonics are of the same magnitude and the approximation (61)
does not ensure transversality. Such intervals are small neighborhoods of the transition values
ε̂, where a change in the second dominant harmonic takes place. Such transition values can
be defined as the values where

(62) h2(ε̂) = h3(ε̂).
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We will use the following lemma, analogous to the one established in [8, 9], providing an
asymptotic estimate for the dominant harmonics LS1 and LS2 (and an upper bound for the
difference of their phases τSi with respect to the original ones σSi), as well as an estimate for
the sum of all the harmonics in the remainders F (i), i = 2, 2̂, 3, appearing in (60) and (61).
To unify the notation, we write F (i) =

∑
k∈Zi

(· · · ), defining the sets of indices

Z2 = Z \ {0, S1}, Z2̂ = {2S1, . . . ,mS1}, Z3 = Z \ ({0, S1, S2} ∪ Z2̂).

The estimate for each sum is given, due to the exponential smallness of the harmonics, in
terms of the dominant harmonic in each set Zi, which we denote as S̃i = S̃i(ε), i = 2, 2̂, 3.
Notice that, for i = 2̂, the dominant harmonic is clearly S̃2̂ = 2S1 (nonessential), and for

i = 2, 3, the dominant harmonic can be either S̃i = Si (essential) or S̃i = 2Si−1 (nonessential).
With this in mind, we introduce the functions

(63)
h̃2̂(ε) := 2h1(ε) = g∗

S̃2̂

(ε),

h̃i(ε) := min(hi(ε), 2hi−1(ε)) = g∗
S̃i

(ε), i = 2, 3.

We stress that, in the three cases, the function h̃i(ε) is given by the minimum of the values
g∗k(ε), with k belonging to the corresponding set of indices: h̃i(ε) = mink∈Zi

g∗k(ε), i = 2, 2̂, 3.
Compared with the functions hi(ε) defined in (48), we see that nonessential harmonics are also
taken into account in the definition of h̃i(ε). Notice also that the equality (62) characterizing
the transition values can be rewritten as h2(ε̂) = h̃3(ε̂).

Recall that the coefficients Lk, introduced in (58), are all positive. In fact, we are not
directly interested in the splitting potential L(θ), but rather in some of its derivatives (such
as M(θ), DM(θ)). The constant C0 in the exponentials is the one defined in (40). On the
other hand, recall that the meaning of the notation “∼” and “�” was introduced at the end
of section 1.3.

Lemma 14. For ε small enough and µ = εr with r > 3, one has

(a) LSi ∼ µLSi ∼ µ
ε1/4

exp
{
−C0hi(ε)

ε1/4

}
,
∣∣τSi − σSi

∣∣ � µ

ε3
, i = 1, 2;

(b)
∑

k∈Zi
Lk ∼ 1

ε1/4
L
S̃i
∼ µ

ε1/4
exp

{
− C0h̃i(ε)

ε1/4

}
, i = 2, 2̂, 3.

Sketch of the proof. We only give the main ideas of the proof, since it is similar to analo-
gous results in [9, Lemmas 4 and 5] and [8, Lemma 3]. At first order in µ, the coefficients of
the splitting potential can be approximated, neglecting the error term in the Melnikov approx-
imation (2), by the coefficients of the Melnikov potential, given in (38): Lk ∼ µLk = µαk e−βk .
As mentioned in section 3.1, the main behavior of the coefficients Lk(ε) is given by the expo-
nents βk(ε), which have been written in (40) in terms of the functions gk(ε). In particular,
the coefficients LSi associated to the two essential dominant harmonics k = Si(ε), i = 1, 2,
can be expressed in terms of the functions hi(ε) introduced in (48). In this way, we obtain an
estimate for the factor e−βSi , which provides the exponential factor in (a).

We also consider the factor αk, with k = Si(ε). Recalling from (49) that |Si| ∼ ε−1/4, we
get from (38) that αSi ∼ ε−1/4, which provides the polynomial factor in part (a).
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The estimate obtained is valid for the dominant coefficient of the Melnikov potential
L(θ). To complete the proof of part (a), one has to show that an analogous estimate is
also valid for the splitting potential L(θ), i.e., when the error term in the Poincaré–Melnikov
approximation (2) is not neglected. This requires obtaining an upper bound (provided in [11,
Theorem 10]) for the corresponding coefficient of the error term in (2) and showing that, in
our singular case µ = εr, it is also exponentially small and dominated by the main term in
the approximation. This can be worked out straightforwardly as in [9, Lemma 5] (where the
case of the golden number was considered), so we omit the details here.

The proof of part (b) is carried out in similar terms. For the dominant harmonic k = S̃i
inside each set Zi, i = 2, 2̂, 3, we get

∣∣S̃i
∣∣ ∼ ε−1/4 as in (49), and an exponentially small

estimate for L
S̃i

with the function h̃i(ε) defined in (63). Such estimates are also valid if one
considers the whole sum in (b), since for any given ε the terms of this sum can be bounded
by a geometric series, and hence it can be estimated by its dominant term (see [9, Lemma 4]
for more details).

In regard to the proof of Theorem 1(a),(c), we need to measure the size of each perturbation
F (i)(θ) in (60)–(61) with respect to the coefficients of the approximations K(j)(θ). Since by
Lemma 14 the size of F (i)(θ) is given by the size of its dominant harmonic, we introduce the
small parameters

(64) ηi,j :=
L
S̃i

LSj

∼ exp

{
−C0(h̃i(ε)− hj(ε))

ε1/4

}
, (i, j) = (2, 1), (2̂, 1), (3, 1), (3, 2),

as a measure of the perturbations F (i) in (60)–(61), relatively to the size of the essential
dominant coefficients LSj (we consider η2̂,1 = 0 if the index of nonessentiality is m = 1).
Although we define the parameters ηi,j in terms of the coefficients of L(θ), we can also define
them from the coefficients of its derivatives, such as the splitting function M(θ), in view
of (59) and the fact that the respective factors have the same magnitude: |Sj | ∼

∣∣S̃i
∣∣.

The parameters ηi,j are always exponentially small in ε, provided we exclude some small
neighborhoods where LSj and L

S̃i
can have the same magnitude. For instance, we have η3,2

exponentially small if ε is not very close to the transition values (62), at which the second
and third dominant harmonics have the same magnitude. Analogously, the parameter η2,1 is
exponentially small, excluding neighborhoods where the first and second dominant harmonics
have the same magnitude.

Proof of Theorem 1(a). Applying Lemma 14, we see that the coefficient of the dominant
harmonic of the splitting functionM(θ) is greater than the sum of all other harmonics. More
precisely, we have for ε→ 0 the estimate

(65) max
θ∈T2
|M(θ)| = |MS1 | (1 +O(η2,1)) ∼ |MS1 | ∼ |S1| LS1 ,

which implies the result, using the asymptotic estimate (49) for |S1|, and the asymptotic
estimate for |MS1 |, in terms of h1(ε), deduced from Lemma 14(a).

We point out that the previous argument does not apply directly when ε is close to a
value where h1 and h2 coincide; i.e., the first and second dominant harmonics have the same
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magnitude (for instance, for a metallic ratio Ω this occurs near the values ε̄ ′n; see (46) and
Figure 1(b)). Eventually, more than two harmonics (but a finite number, according to the
arguments given in Lemma 12) might also have the same magnitude and become dominant.
In such cases, the parameter η2,1 is not exponentially small, but we can replace the main term
in (65) by a finite number of terms, plus an exponentially small perturbation, and by the
properties of Fourier expansions the maximum value of |M(θ)| can be compared to any of its
dominant harmonics.

4.2. Nondegenerate critical points and transversality. This section is devoted to the
study of the transversality of the homoclinic orbits for values of the perturbation parameter
ε, not very close to the transition values ε̂ defined in (62). For such values of ε we show
that, under suitable conditions, the splitting potential L(θ) has 4κ nondegenerate critical
points for some integer κ ≥ 1, i.e., the splitting function M(θ) has 4κ simple zeros, which
give rise to 4κ transverse homoclinic orbits. Such critical points are easily detected in the
approximation L(2)(θ) introduced in (61), given by the 2 essential dominant harmonics, and

using the estimates for F (2̂)(θ) and F (3)(θ) given in Lemma 14 we can prove the persistence
of the critical points in the whole function L(θ).

In fact, we make the computations easier by performing a linear change on T2, taking
L(2)(θ) to a very simple form. As in [8, 9], we introduce the variables

(66) ψ1 = 〈S1, θ〉 − τS1 , ψ2 = 〈S2, θ〉 − τS2 .

This change of variables is valid for ε in the interval between two consecutive transition values,
in which we have two concrete essential dominant harmonics S1(ε) and S2(ε), which remain

constant in this interval. In the new variables, the functions L, L(2), F (2̂), F (3) in (61) become

(67) K(ψ) = K(2)(ψ) + G(2̂)(ψ1) + G(3)(ψ),

where, in particular, we have

(68) K(2)(ψ) = LS1 cosψ1 + LS2 cosψ2.

It is clear that K(2) has the 4 critical points ψ∗,0 := (0, 0), (π, 0), (0, π), (π, π), all non-
degenerate (one maximum, two saddles, and one minimum, respectively). Regarding K(ψ)
as a perturbation of K(2)(ψ), we are going to show that it also has 4 critical points ψ∗, all
nondegenerate, which are close to the critical points ψ∗,0 of K(2)(ψ). We point out that, in
general, the change (66) is not one-to-one on T2, but rather “κ-to-one,” where

(69) κ = κ(ε) := |det(S1, S2)| .

Hence, the number of critical points of L(θ) is 4κ. It is not hard to show that κ(ε) is 4 lnλ-
periodic in ln ε. Moreover, it is “piecewise-constant” with (eventual) jump discontinuities
when changes in the dominant harmonics take place.

Remark. For a metallic ratio Ω = [ a ], we know from Conjecture 3(b) that κ = 1 (a result
checked numerically for 1 ≤ a ≤ 104), and hence there are exactly 4 transverse homoclinic
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orbits for any ε small enough (excluding a neighborhood of the transition values ε̂). Although
for other frequency ratios it is possible, in principle, to have κ ≥ 2, we have obtained κ = 1
for all the cases we have explored.

To establish the persistence of the critical points, we are going to use the following lemma,
whose proof is a simple application of the 2-dimensional fixed point theorem and is omitted
here.

Lemma 15. If f1, f2 : T2 −→ R are differentiable and satisfy

f 2
i +

(∣∣∣∣
∂fi
∂ψ1

∣∣∣∣+

∣∣∣∣
∂fi
∂ψ2

∣∣∣∣
)2

< 1, i = 1, 2,

then the system of equations

(70) sinψ1 = f1(ψ), sinψ2 = f2(ψ)

has exactly 4 solutions ψ∗, which are simple. Furthermore, if f1(ψ), f2(ψ) = O(η) for any
ψ ∈ T2, with η sufficiently small, then the solutions of the system satisfy ψ∗ = ψ∗,0 +O(η),
with ψ∗,0 = (0, 0), (0, π), (π, 0), (π, π).

In order to apply this lemma, we introduce the following perturbation parameter, using
the parameters ηi,j defined in (64),

(71) η := max(η2̂,1, η3,1, η3,2).

Lemma 16. The function K(ψ) has exactly 4 critical points, all nondegenerate:

(72) ψ∗ = ψ∗,0 +O(η), with ψ∗,0 = (0, 0), (0, π), (π, 0), (π, π).

At each critical point, we have

det DK(ψ∗) = δ∗1δ
∗
2 LS1 LS2 (1 +O(η)) ,

where δ∗i = cosψ∗,0i = ±1, i = 1, 2.

Proof. We see from (67)–(68) that the system of equations ∇K(ψ) = 0 can be written as
in (70), with the functions

f1(ψ) =
1

LS1

(
dG(2̂)

dψ1
+
∂G(3)

∂ψ1

)
, f2(ψ) =

1

LS2

· ∂G
(3)

∂ψ2

(notice that G(2̂) does not depend on ψ2). By Lemma 14, we have f1(ψ), f2(ψ) = O(η), with
η as given in (71). Hence, applying Lemma 15 we deduce the result for the critical points of
K(ψ).

We also provide, for each critical point, an asymptotic estimate for the determinant of
D2K(ψ∗). It is clear, for the perturbed critical points, that the signs δ∗i = ±1 become perturbed
as follows: cosψ∗i = δ∗i +O(η2). Writing

D2K(ψ) =

(
k11 k12

k12 k22

)
,



SPLITTING WITH QUADRATIC FREQUENCY RATIO 1021

we have from (67) the approximations

k11 =
∂2K
∂ψ 2

1

= −LS1

(
cosψ1 +O(η2̂,1, η3,1)

)
,(73)

k12 =
∂2K

∂ψ1 ∂ψ2
= LS1 · O(η3,1) = LS2 · O(η3,2),(74)

k22 =
∂2K
∂ψ 2

2

= −LS2 (cosψ2 +O(η3,2)) ,(75)

and we deduce the expression for the determinant of D2K(ψ∗).

Now we complete the proof of part (b) of our main theorem by applying the inverse of
the linear change (66) to the critical points ψ∗ of K(ψ), in order to get the critical points θ∗

of the splitting potential L(θ), i.e., the zeros of the Melnikov function M(θ).

Proof of Theorem 1(b). Since the linear change (66) is “κ-to-one,” with κ as in (69),
the 4 critical points ψ∗ of K(ψ) give rise to 4κ critical points θ∗ of L(θ). It is clear that
such critical points are also nondegenerate, and hence they are simple zeros of the splitting
function M(θ).

Remarks.
1. Recall that the vectors Si = Si(ε) remain constant between consecutive transition

values ε̂ (see the proof of Proposition 13). On the other hand, by (72) the points ψ∗

are O(η)-close to the points ψ∗,0, where η is exponentially small. Hence, the points
θ∗ = θ∗(ε) remain “nearly constant” along each interval of ε between consecutive
transition values ε̂ and can “change” when ε goes across a value ε̂.

2. As a particular interesting case, we may consider the phases σk = 0 in the perturba-
tion (9). In this case, our Hamiltonian system given by (4–9) is reversible with respect
to the involution

(76) R : (x, y, ϕ, I) 7→ (−x, y,−ϕ, I)

(indeed, its associated Hamiltonian field satisfies the identity XH ◦ R = −RXH).
We point out that reversible perturbations have also been considered in some related
papers [18, 20, 36]. Under the reversibility (76), the whiskers are related by the
involution: Ws = RWu. Hence, their parameterizations in (12) can be chosen in such
a way that J s(θ) = J u(−θ), provided the transverse section x = π is considered in
their definition. This implies that the splitting function is an odd function,M(−θ) =
−M(θ) (and the splitting potential L(θ) is even), and, using its periodicity, one sees
thatM(θ) has at least the following 4 zeros: θ∗ = (0, 0), (π, 0), (0, π), (π, π) (notice
that they do not depend on ε). Although such zeros could be nonsimple in principle,
the result of Theorem 1(b) says that they are simple for any ε except for a small
neighborhood of the transition values ε̂, at which some bifurcations of the zeros could
take place.

It remains to provide, for each zero θ∗ of the splitting function M(θ), an asymptotic
estimate for the minimal eigenvalue of the matrix D2L(θ∗) = DM(θ∗) as a measure for the
transversality of the splitting.
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Proof of Theorem 1(c). Denoting D = det D2L(θ∗) and T = tr D2L(θ∗), we can present
the (modulus of the) minimal eigenvalue of D2L(θ∗) in the form

|m∗| = 2 |D|
|T |+

√
T 2 − 4D

∼ |D||T | ,

where we have taken into account that 0 ≤
√
T 2 − 4D ≤ |T |. Thus, we need to find estimates

for |D| and |T | at the critical points θ∗ of L(θ) (or zeros of M(θ)).
By the linear change (66), we have D2L(θ∗) = A>D2K(ψ∗)A, where A is the matrix

having the vectors S1 and S2 as rows. In (69), we have defined κ = |detA|. Since κ = κ(ε)
is piecewise-constant and periodic in ln ε, it is bounded from below and from above: κ ∼ 1.
Applying Lemma 16, we get the asymptotic estimate

|D| = LS1 LS2 (1 +O(η)) ∼ LS1 LS2 .

On the other hand, in order to estimate T we write D2K as in (73)–(75) and obtain

D2L(θ) = k11 S1 · S>1 + k12(S1 · S>2 + S2 · S>1 ) + k22 S2 · S>2 ,

which implies that T = k11 |S1| 22 + 2k12 〈S1, S2〉 + k22 |S2| 22 , where |·|2 denotes the usual
Euclidean norm (which is equivalent to the norm |·| = |·|1 mainly used in this paper). Now
we use, at the critical points ψ∗, the estimates for the matrix D2K(ψ∗) given in (73)–(75). We
obtain |k11| ∼ LS1 as the main entry, and |k12| ∼ LS1 ·O(η3,1), |k22| ∼ LS2 . Applying also the
estimate (49), we obtain

|T | ∼ 1√
ε
LS1 , and hence m∗ ∼ |D||T | ∼

√
εLS2 .

Applying the estimate for LS2 given in Lemma 14, we obtain the desired estimate for the
minimal eigenvalue.
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