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OBSERVABILITY INEQUALITY OF BACKWARD STOCHASTIC

HEAT EQUATIONS FOR MEASURABLE SETS AND ITS

APPLICATIONS

DONGHUI YANG AND JIE ZHONG

Abstract. This paper aims to provide directly the observability inequality
of backward stochastic heat equations for measurable sets. As an immediate
application, the null controllability of the forward heat equations is obtained.
Moreover, an interesting relaxed optimal actuator location problem is for-
mulated, and the existence of its solution is proved. Finally, the solution is
characterized by a Nash equilibrium of the associated game problem.

1. Introduction

Observability inequality is an important and powerful tool for the study of sta-
bilization and controllability problems of partial differential equations. However,
most of related works for heat equations concern with the internal control living on
an open subset. Recently, the authors in [3, 14] establish the observability inequal-
ity of the heat equation for the measurable subsets, and show the null controllability
with controls restricted over these sets. This generalization facilitates the study of
the optimal actuator location problem for a wider class of equations. For example,
compared to the one dimensional case studied in [1] and a special class of controlled
domains considered in [8], the authors in [7] investigate the optimal actuator loca-
tion of the minimum norm controls for heat equations in arbitrary dimensions, and
the actuator domain is only required to have a prescribed Lebesgue measure.

One of the main contributions of this paper is the direct derivation of the ob-
servability inequality for stochastic backward heat equations for measurable subsets,
which is considered very challenging and difficult in [18, page 99 and page 108-110].
By duality we obtain the null controllability for the corresponding forward equa-
tion. Our results extend the deterministic case to the stochastic counterpart. It
is worth noting that we cannot simply mimic the calculations in the deterministic
case by applying the time change technique, and treat the backward and forward
equations in the same way, since adaptedness is always required in the stochastic
system. On the other hand, our observability estimate also recovers the result in
[11, Proposition 4.1], where only open controlled domain is considered, and the
result is obtained by null controllability. For more general stochastic parabolic
equations, but with two controls, we refer the reader to the work in [16].
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2 OBSERVABILITY INEQUALITY AND ITS APPLICATIONS

As an important application, we consider the optimal actuator location of the
minimum norm control problem for internal null controllable stochastic heat equa-
tions. In fact, the actuator location problem for deterministic equations has been
widely studied; see for example, [1, 5, 7, 15], and also numerical research in [12, 13,
17]. To the best of our knowledge, this paper is the first attempt to consider the
shape optimization for the stochastic system. We show the existence of the min-
imum norm control, which is done by solving a variational problem with suitable
norms guaranteed by the observability inequality. Then we prove the existence of
the relaxed optimal actuator location and characterize the solution of the relaxed
problem via a Nash equilibrium.

Before we state our main theorems, let us introduce necessary notations.
Let T > 0 be a fixed positive time constant, and D be a bounded domain in

R
d with a C2 boundary ∂D. Let E and G be measurable subsets with positive

measures of [0, T ] and D, respectively.
Throughout this paper, we denote by (·, ·) the inner product in L2(D), and

denote by ‖ · ‖ the norm induced by (·, ·). We also use the notations (·, ·)G and
‖·‖G for the inner product and the norm defined on L2(G), respectively. We denote
by | · | the Lebesgue measure on R

d.
Let F = (Ω,F , {Ft}t≥0,P) be a stochastic basis with usual conditions. On F, we

define a standard scalar Wiener process W = {w(t)}t≥0. For simplicity, we assume
that the filtration {Ft}t≥0 is generated by W .

Given a Hilbert space H , we denote by L2
F(0, T ;H) the Banach space con-

sisting of all H-valued {Ft}t≥0-adapted processes X such that the square of the
canonical norm E‖X(·)‖2L2(0,T ;H) < ∞; denote by L∞

F (0, T ;H) the Banach space

consisting of all H-valued {Ft}t≥0-adapted bounded processes, with the essential
supremum norm; and denote by L2

F(Ω;C([0, T ];H)) the Banach space consisting of
all H-valued {Ft}t≥0-adapted continuous processes X such that the square of the
canonical norm E‖X(·)‖2C(0,T ;H) <∞. For any t ∈ [0, T ], the space L2(Ω,Ft,P;H)

consists of all H-valued Ft-measurable random variables with finite second mo-
ments.

Let A be an unbounded linear operator on L2(D):

D(A) = H2(D) ∩H1
0 (D), Av = ∆v, ∀v ∈ D(A).

The goal of this paper is to derive directly the observability inequality for the
following backward stochastic heat equation

{

dz = −Azdt− a(t)Zdt+ Zdw(t), t ∈ (0, T ),

z(T ) = η,
(1.1)

where a ∈ L∞
F (0, T ;R). For each η ∈ L2(Ω,FT ,P;L

2(D)), it is known (see for
example [9, 6]) that the equation (1.1) admits a unique solution (z, Z) in the space
of (L2

F (Ω;C(0, T ;L
2(D))) ∩ L2

F(0, T ;H
1
0(D))) × L2

F(0, T ;L
2(D)).

The following is our main theorem.

Theorem 1.1. Let D be a bounded domain in R
d with a C2 boundary. Let x0 ∈ D

and R ∈ (0, 1] such that B4R(x0) ⊆ D. Suppose G is a subset of D with positive

measure, contained in BR(x0), and E is measurable subset of [0, T ] with positive
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measure. Then there exists a constant C = C(T,D,R, |G|, |E|) such that the fol-

lowing observability inequality holds: for any η ∈ L2(Ω,FT ,P;L
2(D)),

E‖z(0;T, η)‖2 ≤ C

(
∫

E

(

E‖z(t;T, η)‖2G
)1/2

dt

)2

. (1.2)

As a result, we obtain the null controllability for a class of forward stochastic
heat equations:

{

dy = Aydt+ χEχGu(t)dt+ a(t)ydw(t), t ∈ (0, T ),

y(0) = y0.
(1.3)

Theorem 1.2. The equation (1.3) is L∞-null controllable. That is, for each initial

data y0 ∈ L2(Ω,F0,P;L
2(D)), there is a control u in the space L∞

F (0, T ;L2(D))
such that the solution y of the equation (1.3) satisfies yT = 0 in D, P-a.s. Moreover,

the control u satisfies the following estimate

E‖u‖2L∞(0,T ;L2(D)) ≤ CE‖y0‖2. (1.4)

The rest of the paper is organized as follows. In Section 2, we prove our main
theorems. In Section 3, we discuss the relaxed optimal actuator location problem.
More specifically, we state and formulate the problem in Section 3.1. In Section
3.2, we show the existence of the optimal minimal norm control. In Section 3.3,
the existence of relaxed optimal actuator location is proved. Finally, Section 3.4
provides the characterization of the solution of the relaxed optimal actuator location
problem by a Nash equilibrium. For completeness, we include some basics of two
person zero sum game in Appendix.

2. Observability Inequality and Null Controllability

In this section, we will prove our main therorem and provide the observability
inequality (1.2). By duality, the equivalence between the null controllability of
the equation (1.3) and the observability estimate for the adjoint equation (1.1) is
obtained. As a result, we obtain Theorem 1.2.

Let us start with some notations. we write

0 < λ1 ≤ λ2 ≤ · · ·
for the eigenvalues of −∆ with the zero Dirichlet boundary condition over ∂D, and
{ej}j≥1 for the orthonormal basis for L2(D). For each λ > 0, we define

Eλf =
∑

λj≤λ

(f, ej)ej, and E⊥
λ f =

∑

λj>λ

(f, ej)ej.

Now recall an important spectral inequality used later in this paper; see Theorem
5 in [3].

Lemma 2.1. Let D be a bounded domain in R
d with a C2 boundary. Let x0 ∈ D

and R ∈ (0, 1] such that B4R(x0) ⊆ D. Suppose G is a subset of D with pos-

itive measure, contained in BR(x0). Then there exists a positive constant N =
N(D,R, |G|) such that

‖Eλη‖2 ≤ N exp
(

N
√
λ
)

‖Eλη‖2G, ∀η ∈ L2(D), λ > 0. (2.1)
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Set τ = ‖a‖2L∞

F
(0,T ;R).

Let us denote by z(·;T, η) the solution of equation (1.1) given the terminal con-
dition η = z(T ). By linearity, it is easy to check that

z(t;T, Eλη) =
∑

λj≤λ

zj(t;T, ηj)ej = Eλz(t;T, η); (2.2)

z(t;T, E⊥
λ η) =

∑

λj>λ

zj(t;T, ηj)ej = E⊥
λ z(t;T, η), (2.3)

where ηj = (η, ej) and (zj(·;T, ηj), Zj(·;T, ηj)) is the solution of the following back-
ward stochastic differential equation

{

dzj = λjzjdt− a(t)Zjdt+ ZjdW (t), t ∈ (0, T ),

zj(T ) = ηj .
(2.4)

Lemma 2.2. Given any η in the space of L2(Ω,FT ,P;L
2(D)), we have for each

t ∈ [0, T ],

E‖z(t;T, E⊥
λ η)‖2 ≤ e(−2λ+τ)(T−t)

E‖η‖2 (2.5)

Proof. Applying Itô formula to exp[(2λ− τ)(T − t)]‖z(t;T, E⊥
λ )‖2, we obtain

‖E⊥
λ η‖2 − e(2λ−τ)(T−t)‖z(t;T, E⊥

λ η)‖2

=

∫ T

t

e(2λ−τ)(T−s) [2(z, Az)− 2a(s)(z, Z)] ds

+

∫ T

t

e(2λ−τ)(T−s)‖Z‖2ds+
∫ T

t

e(2λ−τ)(T−s)2(z, Z)dW (s)

−
∫ T

t

e(2λ−τ)(T−s)(2λ− τ)‖z(s;T, E⊥
λ η)‖2ds.

Taking the expectation, it follows from equality (2.3) that

E‖E⊥
λ η‖2 − e(2λ−τ)(T−t)

E‖z(t;T, E⊥
λ η)‖2

= E

∫ T

t

e(2λ−τ)(T−s)
(

2
∑

λj>λ

λj(z
j)2 − 2a(s)(z, Z)

+‖Z‖2 − (2λ− τ)‖z(s;T, E⊥
λ η)‖2

)

dt

≥ E

∫ T

t

e(2λ−τ)(T−s)
(

− 2a(s)(z, Z)

+ ‖Z‖2 + τ‖z(s;T, E⊥
λ η)‖2

)

dt

≥ E

∫ T

t

e(2λ−τ)(T−s)
(

(‖Z‖ − |a(s)|‖z(s;T, E⊥
λ η)‖)2

+ (τ − |a(s)|2)‖z(s;T, E⊥
λ η)‖2

)

dt

≥ 0,

which implies the inequality (2.5). �

Next, we provide an interpolation inequality.
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Proposition 2.3. For η ∈ L2(Ω,FT ,P;L
2(D)), and t ∈ [0, T ), there exists a

constant K = K(T,D,R, |G|) such that

E‖z(t;T, η)‖2 ≤ K exp(K(T − t)−1)(E‖z(t;T, η)‖2G)1/2(E‖η‖2)1/2. (2.6)

Proof. Set z = z(·;T, η), then it follows from the spectral estimate (2.1) that

E‖Eλz(t)‖2 ≤ N exp(N
√
λ)E‖Eλz(t)‖2G

≤ N exp(N
√
λ)
(

E‖z(t)‖2G + E‖E⊥
λ z(t)‖2G

)

for some constant N = N(D,R, |G|). Therefore, by the decay estimate (2.5) we
obtain that

E‖z(t)‖2 = E‖Eλz(t)‖2 + E‖E⊥
λ z(t)‖2

≤ N exp(N
√
λ)
(

E‖z(t)‖2G + E‖E⊥
λ z(t)‖2G

)

+ E‖E⊥
λ z(t)‖2

≤ 2N exp(N
√
λ)
(

E‖z(t)‖2G + E‖E⊥
λ z(t)‖2

)

≤ 2N exp(N
√
λ)
(

E‖z(t)‖2G + e(−2λ+τ)(T−t)
E‖η‖2

)

≤ 2NeτT exp(N
√
λ)
(

E‖z(t)‖2G + e(−2λ(T−t))
E‖η‖2

)

= 2NeτT exp(N
√
λ− λ(T − t))

(

eλ(T−t)
E‖z(t)‖2G + e−λ(T−t)

E‖η‖2
)

.

It is easy to verify that for all λ > 0,

N
√
λ− λ(T − t) ≤ N2

4(T − t)
.

Hence, there exists a constant K = K(T,D,R, |G|) such that

E‖z(t)‖2 ≤ K exp(K(T − t)−1)
[

eλ(T−t)
E‖z(t)‖2G + e−λ(T−t)

E‖η‖2
]

,

which is equivalent to

E‖z(t)‖2 ≤ K exp(K(T − t)−1)
[

ε−1
E‖z(t)‖2G + εE‖η‖2

]

, ∀ε ∈ (0, 1). (2.7)

Noting that E‖z(t)‖2 ≤ CE‖η‖2, where C is a constant depending on T , we see
that the inequality (2.7) holds for all ε > 0. Finally, minimizing (2.7) with respect
to ε leads to the desired estimate (2.6). �

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. Let ℓ ∈ (0, T ) be any Lebesgue point of E. Then for each
constant q ∈ (0, 1) which is to be fixed later, there exists a monotone increasing
sequence {ℓm}m≥1 in (ℓ, T ) such that

lim
m→+∞

ℓm = ℓ,

ℓm+2 − ℓm+1 = q(ℓm+1 − ℓm), ∀m ≥ 1 (2.8)

and

|E ∩ (ℓm, ℓm+1)| ≥
ℓm+1 − ℓm

3
, ∀m ≥ 1.

Set

τm = ℓm+1 −
ℓm+1 − ℓm

6
, ∀m ≥ 1.

For each t ∈ (ℓm, τm), by the interpolation inequality (2.6), we have

E‖z(t)‖2 ≤ K exp(K(ℓm+1 − t)−1)(E‖z(t)‖2G)1/2(E‖z(ℓm+1)‖2)1/2.
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Since

ℓm+1 − t ≥ ℓm+1 − τm =
ℓm+1 − ℓm

6
,

and for some constant C = C(T ), E‖z(ℓm)‖2 ≤ CE‖z(t)‖2, there exists a constant
C = C(T,D,R, |G|) such that for all m ≥ 1, and t ∈ (ℓm, τm),

E‖z(ℓm)‖2 ≤ Ce
C

ℓm+1−ℓm (E‖z(t)‖2G)1/2(E‖z(ℓm+1)‖2)1/2,
which implies for each ε > 0,

E‖z(ℓm)‖2 ≤ ε−1Ce
C

ℓm+1−ℓm E‖z(t)‖2G + εE‖z(ℓm+1)‖2,
by the Cauchy inequality with ε. Equivalently, we have

Am ≤ ε−1Ce
C

ℓm+1−ℓmB(t) + εAm+1, (2.9)

where

Am =
(

E‖z(ℓm)‖2
)1/2

, B(t) =
(

E‖z(t)‖2
)1/2

. (2.10)

Integrating the previous inequality (2.9) over E ∩ (ℓm, τm), and noting that

|E ∩ (ℓm, τm)| = |E ∩ (ℓm, ℓm+1)| − |E ∩ (τm, ℓm+1)|

≥ ℓm+1 − ℓm
3

− ℓm+1 − ℓm
6

=
ℓm+1 − ℓm

6
,

we have that for each ε > 0

Am ≤ εAm+1 + ε−1Ce
C

ℓm+1−ℓm

∫ ℓm+1

ℓm

χEB(t)dt.

Multiplying the above inequality by ε exp(−C/(ℓm+1− ℓm)), and replacing ε by
√
ε

lead to

√
εe

− C
ℓm+1−ℓmAm ≤ εe

− C
ℓm+1−ℓmAm+1 + C

∫ ℓm+1

ℓm

χEB(t)dt.

Finally choosing ε = exp(−1/(ℓm − ℓm+1)) in the above inequality, we get

e
− C+1/2

ℓm+1−ℓmAm − e
− C+1

ℓm+1−ℓmAm+1 ≤ C

∫ ℓm+1

ℓm

χEB(t)dt.

Now, choosing q = C+1/2
C+1 in (2.8), we have

e
− C+1/2

ℓm+1−ℓmAm − e
− C+1/2

ℓm+2−ℓm+1Am+1 ≤ C

∫ ℓm+1

ℓm

χEB(t)dt.

Summing the above inequality from m = 1 to +∞, we have

A1 ≤ Ce
C+1/2
ℓ2−ℓ1

∫ ℓ1

ℓ

χEB(t)dt.

By the substitution (2.10), we obtain

E‖z(ℓ1)‖2 ≤ Ce
C+1

ℓ2−ℓ1

(

∫ ℓ1

ℓ

χE(E‖z(t)‖2G)1/2dt
)2

,

which implies the observability inequality (1.2), completing the proof. �
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Next, by the standard duality augment, we have the following equivalence be-
tween the null controllability of the equation (1.3) and the observability inequality
for the adjoint equation (1.1).

Proposition 2.4. For any T > 0, the equation (1.3) is null controllable at time

T with the control u in the space of L∞
F (0, T ;L2(D)) such that the estimate (1.4)

holds if and only if there exists C > 0 such that the solution of the adjoint equation

(1.1) satisfies the observability inequality (1.2).

We omit the proof here, and refer the reader to, for example [10, Proposition
1.1]. Then Theorem 1.2 is a direct consequence of Theorem 1.1 and Proposition
2.4.

3. A Relaxed Optimal Actuator Location Problem

3.1. Problem formulation. In the sequel, we assume E = [0, T ].
Now we consider the following norm optimal control problem

N(G) = inf{E‖u‖2L2((0,T )×D) | y(T ;G, u) = 0 in D,P-a.s.}, (3.1)

where y(·;G, u) is the solution of equation (1.3). In the problem (3.1), we say u
is an admissible control if u ∈ L2

F(0, T ;L
2(D)) and y(T ;G, u) = 0 in D, P-a.s.; we

say u∗ is an optimal minimal norm control if u∗ is an admissible control such that
N(G) is achieved.

Remark 3.1. It is obvious that minimizing E‖u‖2L2((0,T )×D) is equivalent to mini-

mizing E‖u‖L2((0,T )×D). Thus, the problem we consider is a natural generalization

of the usual norm optimal control problem in the deterministic case.

Given α ∈ (0, 1), let

W = {G ⊆ D | G is Lebesgue measurable with |G| = α|D|}, (3.2)

where | · | is the Lebesgue measure on R
d.

A classical optimal actuator location of the minimal norm control problem is to
seek a set G∗ ∈ W such that

N(G∗) = inf
G∈W

N(G). (3.3)

If such a G∗ exists, we say that G∗ is an optimal actuator location of the optimal
minimal norm controls. Any optimal minimal norm control u∗ satisfying

E‖u∗χG∗‖2L2((0,T )×D) = N(G∗),

is called an optimal control with respect to the optimal actuator location G∗.
The existence of the optimal actuator location G∗ is generally not guaranteed

because of the absence of the compactness of W . For this reason, we consider
instead a relaxed problem. To this end, define

B =
{

β ∈ L∞(D; [0, 1]) | ‖β‖2 = α|D|
}

. (3.4)

Note that the set B is a relaxation of the set {χG | G ∈ W}.
For any β ∈ B, consider the following equation

{

dy = Aydt+ βu(t)dt+ a(t)ydw(t), t ∈ (0, T ),

y(0) = y0.
(3.5)
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We denote by y(·;β, u) the solution of equation (3.5), and say the system (3.5) null
controllable if there exists u ∈ L2

F(0, T ;L
2(D)) such that y(T ;β, u) = 0 in D, P-a.s.

Accordingly, the problem (3.1) is replaced by

N(β) = inf{E‖u‖2L2((0,T )×D) | y(T ;β, u) = 0 in D,P-a.s.}, (3.6)

and the classical optimal actuator location problem (3.3) is changed into the fol-
lowing relaxed problem

N(β∗) = inf
β∈B

N(β). (3.7)

Any solution β∗ to the problem (3.7) is called a relaxed optimal actuator location

of the optimal minimal norm controls.
Now we study the controllability of the relaxed system (3.5) with the same

adjoint equation (1.1), and make sure that the set on the right hand side of (3.6) is
not empty. In fact, the null controllability is equivalent to the following observability
inequality, as we have done in the proof of Theorem 1.2.

Lemma 3.2. The system (1.1) is exactly observable, i.e., there exists a con-

stant C > 0, independent of β, but possibly depending on α such that for all

η ∈ L2(Ω,FT ,P;L
2(D)) and β ∈ B,

E‖z(0;T, η)‖2 ≤ C

∫ T

0

E‖βz(t;T, η)‖2dt. (3.8)

Proof. By Theorem 1.1, for each G ∈ W , there exists a constant C > 0 such that
the solution of equation (1.1) satisfies

E‖z(0;T, η)‖2 ≤ C

∫ T

0

‖χGz(t;T, η)‖2dt, (3.9)

for all η ∈ L2(Ω,FT ,P). Moreover, the constant C only depends on the measure of
the set G.

For any β ∈ B, let

γ =
|{β ≥

√

α/2}|
|D|

Since

α · |D| =
∫

D

β2dx =

∫

{β≥
√

α/2}

β2dx+

∫

{β<
√

α/2}

β2dx

≤ |{β ≥
√

α/2}|+ α

2
· |{β <

√

α/2}|,

we have

γ · |D|+ α

2
(1− γ) · |D|,

and consequently,

γ ≥ α

2− α
.

Therefore, we obtain

|{β ≥
√

α/2}| ≥ α

2− α
· |D|, (3.10)
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for all β ∈ B. It then follows from inequality (3.9) with G = {β ≥
√

α/2} that

E‖z(0;T, η)‖2 ≤ CE

∫ T

0

∫

D

χ
{β≥

√
α/2}

z2(t;T, η)dxdt

≤ CE

∫ T

0

∫

D

χ
{β≥

√
α/2}

(

β
√

α/2

)2

z2(t;T, η)dxdt

= C · 2
α
· E
∫ T

0

∫

D

χ
{β≥

√
α/2}

β2z2(t;T, η)dxdt

≤ C

∫ T

0

E‖βz(t;T, η)‖2dt,

which completes the proof. �

Remark 3.3. The observability inequality (3.8) is in fact an L2 estimate, and it is

sufficient for our purpose in this section, though we have an L1 estimate in (1.2).

3.2. The optimal minimal norm control. In general, it is not easy (or impos-
sible) to solve the problem (3.6) directly; see [8] for a special class of subdomains.
Instead, let us introduce a functional

J (η;β) =
1

2

∫ T

0

E‖βz(t; η)‖2dt+ E(y0, z(0; η)), (3.11)

and propose the following variational problem

J (β) = inf
η∈L2(Ω,FT ,P;L2(D))

J (η;β). (3.12)

Here and what follows, we simply set z(·; η) = z(·;T, η) for the solution of the
adjoint equation (1.1) with the terminal condition z(T ) = η. We will show later
the equivalence between the problem (3.12) and the problem (3.6).

To this end, denote by

X = {z(·; η) | η ∈ L2(Ω,FT ,P;L
2(D))}, (3.13)

and for each β ∈ B, define Fβ : X → R by

Fβ(z) =

(

E

∫ T

0

‖βz‖2dt
)1/2

. (3.14)

It follows from the observability inequality (3.8) that Fβ is indeed a norm on space

X . We denote by Xβ the completion of the space X under the norm Fβ . The

following proposition provides us a description of Xβ .

Lemma 3.4. Under an isomorphism, any element of Xβ can be expressed as a

process ϕ ∈ L2
F(Ω;C([0, T );L

2(D))), which satisfies

dϕ = −Aϕdt− a(t)Zdt+ Zdw(t) (3.15)

for some Z ∈ L2
F (0, T ;L

2(D)) in L2(0, T ;L2(D)), P-a.s. Moreover, βϕ = limn→∞ βz(·; ηn)
for some sequence {ηn} ⊆ L2(Ω,FT ,P) in L

2(Ω;L2((0, T )×D)).

Proof. Let ϕ ∈ (Xβ , Fβ), where (Xβ , Fβ) is the completion of (X,Fβ). Then there
exists a sequence {ηn} ⊆ L2(Ω,FT ,P) such that

Fβ(z(·; ηn)− ϕ) → 0, as n→ ∞,
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from which, one has

Fβ(z(·; ηn)− z(·; ηm)) = Fβ(z(·; ηn)− z(·; ηm)) → 0 as n,m→ ∞.

In other words,

E

∫ T

0

‖βz(t; ηn)− βz(t; ηm)‖2dt → 0 as n,m→ ∞. (3.16)

Hence, there exists ϕ̂ ∈ L2
F(0, T ;L

2(D)) such that

βz(·, ηn) → ϕ̂ strongly in L2(Ω; (0, T )×D). (3.17)

Now choose a strictly increasing sequence {Tk} ⊆ (0, T ) such that Tk → T as
k → ∞. Set (zn, Zn) = (z(·; ηn), Zn(·; ηn)), i.e., the solution of equation (1.1) with
the terminal condition zn(T ) = ηn.

(a) For T1. By the observability inequality (3.8) and (3.16),

E‖z(T2, ηn)‖2 ≤ C1E

∫ T

T2

‖βz(t; ηn)‖2dt ≤ C1E

∫ T

0

‖βz(t; ηn)‖2dt ≤ C1,

for all n ≥ 1. Then there exist a subsequence {z(T2, η1n)} of {z(T2, ηn)} and
zT2,1 ∈ L2(Ω,FT2

,P) such that

z(T2, η1n) → zT2,1 weakly in L2(Ω×D).

Consequently, there exist a subsequence {(z1n, Z1n)} of {(zn, Zn)} and (ϕ1, ψ1) in
the space of L2

F(Ω;C([0, T2];L
2(D))) × L2

F(0, T2;L
2(D)) solving the adjoint equa-

tion (1.1) with the terminal conditions z1n(T2) = z(T2, η1n) and ϕ1(T2) = zT2,1,
respectively, and

(z1n, Z1n) → (ϕ1, ψ1) weakly in L2(Ω;C([0, T2];L
2(D))) × L2(Ω; (0, T2)×D).

In particular,

(z1n, Z1n) → (ϕ1, ψ1) weakly in L2(Ω;C([0, T1];L
2(D))) × L2(Ω; (0, T1)×D),

(3.18)
and

βz1n → βϕ1 weakly in L2(Ω; (0, T1)×D). (3.19)

Thus, it follows from (3.17) and (3.19) that

βϕ1 = ϕ̂ in L2(Ω; (0, T1)×D).

(b) For T2. In the same spirit of (a), we can find a subsequence {(z2n, Z2n)} of
{(z1n, Z1n)}, and (ϕ2, ψ2) in the space of L2

F(Ω;C([0, T3];L
2(D)))×L2

F (0, T3;L
2(D))

solving the adjoint equation (1.1) with the terminal conditions z2n(T3) = z(T3, η2n)
and ϕ1(T3) = zT3,2, respectively, and

(z2n, Z2n) → (ϕ2, ψ2) weakly in L2(Ω;C([0, T3];L
2(D))) × L2(Ω; (0, T3)×D),

where {η2n} is a subsequence of {η1n} such that z(T3; η2n) converges weakly to
zT3,2 in L2(Ω×D). Then it follows from (3.17), (3.18) and (3.19) that

(ϕ2, ψ2) ↾[0,T1]= (ϕ1, ψ1),

and
βϕ2 = ϕ̂ in L2(Ω; (0, T2)×D).

(c) In general, we obtain a sequence {(ϕk, ψk)} satisfies for each k ≥ 1 that

• {(ϕk, ψk)} ∈ L2
F(Ω;C([0, Tk+1];L

2(D)))× L2
F(0, Tk+1;L

2(D));
• (ϕk+1, ψk+1) ↾[0,Tk]= (ϕk, ψk);
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• {(ϕk, ψk)} satisfies (3.15) on (0, Tk+1);
• βϕk = ϕ̂ in L2(Ω; (0, Tk)×D).

Now define

(ϕ(t), Z(t)) = (ϕk(t), ψk(t)), t ∈ [0, Tk].

Then (ϕ(t), Z(t)) ∈ L2
F(Ω;C([0, T );L

2(D))) × L2
F (0, T ;L

2(D)) satisfies equation
(3.15), and

βϕ = ϕ̂ = lim
n→∞

βz(·; ηn).
Under an isometric isomorphism, we can identify ϕ by ϕ. The proof is completed.

�

Remark 3.5. The element ϕ in Xβ is not necessarily in the space of L2
F(0, T ;L

2(D)),
but βϕ ∈ L2

F(0, T ;L
2(D)) for β ∈ B. Also, because of the isomorphism, we can

write Fβ(ϕ) =
(

E
∫ T

0
‖βϕ‖2dt

)1/2

.

Next, let us introduce an auxiliary operator

Tβ : βXβ ⊆ L2
F(0, T ;L

2(D)) → L2(Ω;L2(D)), βϕ→ ϕ(0). (3.20)

By Lemma 3.4, the operator Tβ is well defined, and it is bounded as well. In fact,
if we consider the equation (1.1) on the interval (0, T/2), then by the observability
inequality (3.8), we have

E‖ϕ(0)‖2 ≤ CE

∫ T/2

0

‖βϕ‖2dt ≤ CE

∫ T

0

‖βϕ‖2dt.

Then the functional J (β) defined in (3.12) can be written as

J (β) = inf
z∈X

[

1

2

∫ T

0

E‖βz‖2dt+ E(y0, z(0))

]

= inf
ϕ∈Xβ

[

1

2

∫ T

0

E‖βϕ‖2dt+ E(y0, Tβ(βϕ))
]

= inf
ϕ∈Xβ

[

1

2

∫ T

0

E‖βϕ‖2dt+
∫ T

0

E(T ∗
β y0, βϕ)dt

]

.

Set y0,β = T ∗
β y0, and thus the problem (3.12) is equivalent to the following problem

V(β) = inf
ϕ∈Xβ

[

1

2

∫ T

0

E‖βϕ‖2dt+
∫ T

0

E(y0,β , βϕ)dt

]

. (3.21)

The key motivation of this transformation is that the functional on the right hand
side of the problem (3.21) is coercive in ϕ with respect to the norm Fβ , but in
general, J (η;β) in (3.11) does not satisfy such a condition. The next theorem
characterizes the minmal norm control of problem (3.6) in terms of the solution of
the problem (3.21).

Theorem 3.6. Fix β ∈ B. Suppose y0 ∈ L2(Ω,F0,P;L
2(D)). Then problem (3.21)

admits a unique solution ϕ∗. Moreover, the control defined by

u∗ = βϕ∗ (3.22)
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is the minimal norm optimal control to the problem (3.6), and

N(β) =

∫ T

0

E‖βϕ∗‖2dt. (3.23)

Proof. It is obvious that the functional on the right hand side of (3.21) is continuous,
strictly convex and coercive in ϕ with respect to the norm Fβ . Therefore, the
problem (3.21) admits a unique solution, denoted by ϕ∗.

It follows from Lemma 3.4 that the control u∗ = βϕ∗ is well defined and u∗ ∈
L2
F(0, T ;L

2(D)). We claim first that u∗ is a control driving the solution y of
equation (3.5) to rest at time T . In fact, by the optimality of ϕ∗, we obtain the
following Euler-Lagrange equation to the variational problem (3.21):

∫ T

0

E(u∗, βψ)dt+

∫ T

0

E(y0,β , βψ)dt = 0, for all ψ ∈ Xβ. (3.24)

Taking ψ = z(·; η) ∈ X for any η ∈ L2(Ω;L2(D)), a straightforward computation
and Itô formula imply that

y(T ;β, u∗) = 0 in D,P-a.s.

Next, we will show that u∗ is optimal in the sense that
∫ T

0

E‖u∗‖2dt ≤
∫ T

0

E‖û‖2dt, (3.25)

for any û ∈ L2
F (0, T ;L

2(D)) such that y(T ;β, û) = 0 in D, P-a.s.
Without loss of generality, we assume u∗ 6= 0. By Itô formula, we have

∫ T

0

E(û, βz)dt+ E(y0, z(0)) = 0, for all z ∈ X,

or equivalently
∫ T

0

E(û, βz)dt+

∫ T

0

E(y0,β , βz)dt = 0, for all z ∈ X,

which, together with equality (3.24), implies
∫ T

0

E(u∗, βz)dt =

∫ T

0

E(û, βz)dt, for all z ∈ X. (3.26)

By the density argument, the equality (3.26) still holds for all ψ ∈ Xβ . Thus,
replacing z in (3.26) by ϕ∗ gives

∫ T

0

E‖u∗‖2dt =
∫ T

0

E(u∗, û)dt ≤
(

∫ T

0

E‖u∗‖2dt
)1/2(

∫ T

0

E‖û‖2dt
)1/2

.

Therefore, the inequality (3.25) is true and this concludes the proof. �

From above, we can describe the relation between V(β) (or equivalently J (β))
and N(β).

Corollary 3.7. Let β ∈ B and y0 ∈ L2(Ω,F0,P;L
2(D)). Then

V(β) = −1

2
N(β), (3.27)

where V(β) and N(β) are defined as in (3.21), and (3.6), respectively.
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Proof. Let ϕ∗ be a solution of the problem (3.21) such that

V(β) = 1

2

∫ T

0

E‖βϕ∗‖2dt+
∫ T

0

E(y0,β , βϕ
∗)dt.

On the other hand, it follows from the Euler-Lagrange equation (3.24) that
∫ T

0

E(y0,β, βϕ
∗)dt = −

∫ T

0

E‖βϕ∗‖2dt.

Thus, by (3.23) we have

V(β) = −1

2

∫ T

0

E‖βϕ∗‖2dt = −1

2
N(β).

�

3.3. Existence of relaxed optimal actuator location. Now we are ready to
show the existence of relaxed optimal actuator location of the optimal minimal
norm controls, i.e., we can find β∗ ∈ B such that N(β∗) = infβ∈BN(β). To this
end, define

Θ =

{

θ ∈ L∞(D; [0, 1]) |
∫

D

θ(x)dx = α|D|
}

. (3.28)

It is clear that

β2 ∈ Θ for any β ∈ B, and θ1/2 ∈ B for all θ ∈ Θ. (3.29)

Then it follows from the relation (3.27) that

inf
β∈B

1

2
N(β) = inf

β∈B
−V(β) = inf

β∈B
−J (β)

= inf
β∈B

sup
z∈X

[

1

2

∫ T

0

E‖βz‖2dt+ E(y0, z(0))

]

= inf
θ∈Θ

sup
z∈X

[

−1

2
E

∫ T

0

∫

D

θz2dxdt − E(y0, z(0))

]

=: inf
θ∈Θ

sup
z∈X

F (θ, z),

where the functional F is defined by

F (θ, z) = −1

2
E

∫ T

0

∫

D

θz2dxdt − E(y0, z(0)). (3.30)

Therefore, seeking a minimizer β∗ ∈ B for N(β) amounts to finding a minimizer
θ∗ ∈ Θ for supz∈X F (θ, z).

Let us equip L∞(D) with the weak∗ topology. Then Θ is compact in L∞(D).

Lemma 3.8. Given y0 ∈ L2(Ω;F0,P;L
2(D)) and z ∈ X. Then the functional

F (·, z) : Θ → R ∪ {+∞} defined in (3.30) is sequentially weakly∗ lower semi-

continuous.

Proof. Suppose there is a sequence {θn} ⊆ Θ such that

θn → θ weakly∗ in L∞(D).
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Then for any t ∈ [0, T ], we have

lim
n→∞

E

∫

D

θnz
2(t)dx = E

∫

D

θz2(t)dx ≤ E‖z(t)‖2.

Since
∫ T

0 E‖z(t)‖2dt < ∞, it follows from the Dominated Convergence Theorem,
and (3.30) that

lim
n→∞

F (θn, z) = F (θ, z).

So F (·, z) is sequentially weakly∗ continuous, and in particular, lower semi-continuous.
�

It is obvious that the functional F (·, z) is linear in θ for any z ∈ X , so it is
convex. Then it follows from Proposition 2.31 in [2, page 62] that F (·, z) is weakly∗
lower semi-continuous. Under the weak∗ topology in L∞(D), F (·, z) is lower semi-
continuous, so is supz∈X F (·, z). Together with the fact that Θ is compact in
L∞(D), we claim that there exists θ∗ ∈ Θ minimizing supz∈X F (·, z) by Theorem
38.B in [19, page 152]. Equivalently, we obtain the following theorem of existence
to conclude this subsection.

Theorem 3.9. Suppose y0 ∈ L2(Ω,F0,P;L
2(D)). Then the problem (3.7) admits

a solution β∗ ∈ B, i.e.,
N(β∗) = inf

β∈B
N(β).

3.4. Characterization via Nash equilibrium. Now we define a non-negative
nonlinear functional FΘ on X by

FΘ(z) := sup
θ∈Θ

Fθ1/2(z), z ∈ X (3.31)

where Fθ1/2 is defined as in (3.14). Since Fθ1/2 is a norm on X for each θ ∈ Θ, FΘ

is also a norm on X . Thus, (X,FΘ) is a normed space, and we denote by (XΘ, FΘ)
its completion.

Along the same line in the proof of Lemma 3.4, we have the following similar
result.

Lemma 3.10. Under an isomorphism, any element of XΘ can be expressed as a

process ϕ ∈ L2
F(Ω;C([0, T );L

2(D))), which satisfies

dϕ = −Aϕdt− a(t)Zdt+ Zdw(t) (3.32)

for some Z ∈ L2
F(0, T ;L

2(D)) in L2(0, T ;L2(D)), P-a.s. Moreover, FΘ(ϕ) =
limn→∞ FΘ(z(·; ηn)) for some sequence {ηn} ⊆ L2(Ω,FT ,P).

By Lemma 3.10, we have the following inclusion relation:

XΘ ⊆ L2
F(0, T ;L

2(D)). (3.33)

In fact, suppose that n0 ∈ N so that n0 ≥ 1/α. Then there are n0 measurable
subsets G1, · · · , Gn0

of D such that

Gj ∈ W , 1 ≤ j ≤ n0, and

n0
⋃

j=1

Gj = D.
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Then the inclusion relation follows from

∫ T

0

E‖ϕ‖2dt =
∫ T

0

E

∥

∥

∥

∥

∥

∥

ϕ

n0
∑

j=1

χGj

∥

∥

∥

∥

∥

∥

2

dt

≤ n0

n0
∑

j=1

∫ T

0

E‖ϕχGj‖2dt

≤ n0

n0
∑

j=1

FΘ
2
(ϕ) = n2

0FΘ
2
(ϕ).

On the other hand, it is obvious that FΘ(ϕ) ≤
∫ T

0
E‖ϕ‖2dt. Thus, FΘ and

(

E‖ · ‖2L2((0,T )×D)

)1/2

are equivalent norms on X .

In this subsection, we solve the following Nash equilibrium problem of two-person
zero-sum game (see Appendix): to find θ̄ ∈ Θ, ϕ̄ ∈ XΘ such that

F (θ̄, ϕ̄) = sup
ϕ∈XΘ

F (θ̄, ϕ) = inf
θ∈Θ

F (θ, ϕ̄), (3.34)

where F (θ, ϕ) is defined as in (3.30). This requires by Theorem A.2 in Appendix
that we solve the following two problems

inf
θ∈Θ

sup
ϕ∈XΘ

F (θ, ϕ), (3.35)

and

sup
ϕ∈XΘ

inf
θ∈Θ

F (θ, ϕ), (3.36)

and verify the equality (3.34).
In fact, the problem (3.35) is solved by choosing θ̄ = (β∗)2, where β∗ ∈ B is a

solution of the problem (3.7), guaranteed by Theorem 3.9. To see this clearly, recall
that X is dense in Xβ , and for each θ ∈ Θ with θ = β2

sup
ϕ∈X

F (θ, ϕ) = sup
ϕ∈Xβ

F (θ, ϕ),

where we use the fact that F (θ, ·) is continuous with respect to the norm Fβ , the
completion of Fβ in (3.14). On the other hand, since for each β ∈ B, we have

∫ T

0

E‖βz‖2dt ≤ F 2
Θ(z), ∀z ∈ X,

which implies

XΘ ⊆ Xβ, ∀β ∈ B.
Therefore,

sup
z∈X

F (θ, z) ≤ sup
ϕ∈XΘ

F (θ, ϕ) ≤ sup
ϕ∈Xβ

F (β2, ϕ) = sup
z∈X

F (θ, z), (3.37)

and thus

inf
β∈B

1

2
N(β) = inf

β∈B
−J (β) = inf

θ∈Θ
sup
z∈X

F (θ, z) = inf
θ∈Θ

sup
ϕ∈XΘ

F (θ, ϕ).

So the problem (3.35) is solved by Theorem 3.9.
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To solve the problem (3.36) is to find ϕ̄ ∈ XΘ such that

inf
θ∈Θ

F (θ, ϕ̄) = sup
ϕ∈XΘ

inf
θ∈Θ

F (θ, ϕ),

or equivalently,

sup
θ∈Θ

−F (θ, ϕ̄) = inf
ϕ∈XΘ

sup
θ∈Θ

−F (θ, ϕ). (3.38)

Lemma 3.11. For any y0 ∈ L2(Ω,F0,P;L
2(D)), the problem (3.38) admits a

unique solution.

Proof. Define the functional F : XΘ → R by

F (ϕ) := sup
θ∈Θ

−F (θ, ϕ).

Then

F (ϕ) = sup
θ∈Θ

1

2

∫ T

0

E‖θ1/2ϕ‖2dt+ E(y0, ϕ(0)) = FΘ
2
(ϕ) + E(y0, ϕ(0)).

It is clear that F is strictly convex in ϕ. To show continuity and coercivity, we
consider the equation (3.32) on the time interval (0, T/2). Then by the observability
inequality (3.8), we have for all β ∈ B and ϕ ∈ XΘ

E‖ϕ(0)‖2 ≤ CE

∫ T/2

0

‖βϕ‖2dt ≤ CE

∫ T

0

‖βϕ‖2dt ≤ CFΘ
2
(ϕ). (3.39)

Thus, by Cauchy-Schwartz inequality, we have |E(y0, ϕ(0))| ≤ CFΘ(ϕ). Now
suppose there exists a sequence {ϕn} ⊆ XΘ such that ϕn → ϕ in XΘ, i.e.,
FΘ(ϕn − ϕ) → 0, then

|F (ϕn)− F (ϕ)| ≤
∣

∣

∣
FΘ

2
(ϕn)− FΘ

2
(ϕ)
∣

∣

∣
+ |E(y0, (ϕn − ϕ)(0))|

≤ C
∣

∣FΘ(ϕn)− FΘ(ϕ)
∣

∣+ CFΘ(ϕn − ϕ)

≤ CFΘ(ϕn − ϕ) → 0,

which implies that F is continuous. Finally, it follows from (3.39) that

F (ϕ) ≥ FΘ
2
(ϕ)− CFΘ(ϕ),

and so F is coercive. Hence, the problem (3.38) has a unique solution. �

Now it remains to show the equality (3.34) holds. To this end, denote by

U+ = inf
θ∈Θ

sup
z∈X

F (θ, z), U− = sup
z∈X

inf
θ∈Θ

F (θ, z), (3.40)

where F is defined in (3.30). Let K be the collection of all the finite subsets of X .
For any K ∈ K, set

UK = inf
θ∈Θ

sup
z∈K

F (θ, z), Û := sup
K∈K

UK . (3.41)

Then it is easy to verify that

U− ≤ Û ≤ U+. (3.42)

Furthermore, we can obtain the equalities in (3.42).

Proposition 3.12. Define U− and U+ as in (3.40), then

U− = U+.
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Proof. We first show that U+ ≤ Û .
Given any K ∈ K, using a similar argument to the one above Theorem 3.9, we

can find θK ∈ Θ such that

sup
z∈K

F (θK , z) = inf
θ∈Θ

sup
z∈K

F (θ, z) = UK .

This, together with the definition of Û in (3.41), enables us to derive

F (θK , z) ≤ UK ≤ Û , for all z ∈ K. (3.43)

Let z ∈ X , define

Sz := {θ ∈ Θ | F (θ, z) ≤ Û}.
It follows from (3.43) that the set Sz is not empty, and

{θK} ⊆
⋂

z∈K

Sz 6= ∅. (3.44)

In addition, since F (·, z) is weakly∗ lower semi-continuous, Sz is weakly∗ closed in
L∞(D). By the compactness of Θ under the weak∗ topology of L∞(D), we have

⋂

z∈X

Sz 6= ∅.

Thus, there exists θ̂ ∈ Θ such that supz∈Z F (θ̂, z) ≤ Û , and so

U+ = inf
θ∈Θ

sup
z∈X

F (θ, z) ≤ Û .

Next, we show U− = Û .
It is clear that both Θ and X are convex sets. Note that F (θ, ·) is convex for each

θ ∈ Θ and F (·, z) is convex (in fact, it is linear) for each z ∈ X . By Proposition

8.3 in [4, page 132], U− = Û .
Therefore, we have

U+ ≤ U−,

which, together with (3.42) implies U− = U+. �

Again, it follows from (3.37) that

U+ = inf
θ∈Θ

sup
ϕ∈XΘ

F (θ, ϕ).

On the other hand,

U− = sup
z∈X

inf
θ∈Θ

F (θ, z) = sup
ϕ∈XΘ

inf
θ∈Θ

F (θ, ϕ) ≤ inf
θ∈Θ

sup
ϕ∈XΘ

F (θ, ϕ),

and thus by U− = U+ we obtain

sup
ϕ∈XΘ

inf
θ∈Θ

F (θ, ϕ) = inf
θ∈Θ

sup
ϕ∈XΘ

F (θ, ϕ).

Summarizing the previous analysis, we arrive at the following theorem.

Theorem 3.13. The problem (3.34) admits at least one Nash equilibrium. Specif-

ically, ϕ̄ is a solution of the problem (3.38) and β∗ is a solution of the relaxed

optimal actuator location problem (3.7), if and only if the pair (θ̄ = (β∗)2, ϕ̄) is a

Nash equilibrium.

Consequently, we can characterize the solution of the relaxed optimal location
problem (3.7) via a Nash equilibrium.
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Theorem 3.14. There exists at least one solution of the problem (3.7). In addition,

β∗ is a relaxed optimal actuator location of the optimal minimal norm controls if

and only if there exists ϕ̄ ∈ XΘ such that the pair (β∗, ϕ̄) is a Nash equilibrium of

the following two-person zero-sum game problem: to find (β∗, ϕ̄) ∈ B × XΘ such

that

1

2

∫ T

0

E‖β∗ϕ̄‖2dt+ E(y0, ϕ̄(0)) = sup
β∈B

[

1

2

∫ T

0

E‖βϕ̄‖2dt+ E(y0, ϕ̄(0))

]

,

1

2

∫ T

0

E‖β∗ϕ̄‖2dt+ E(y0, ϕ̄(0)) = inf
ϕ∈XΘ

[

1

2

∫ T

0

E‖β∗ϕ‖2dt+ E(y0, ϕ(0))

]

. (3.45)

Appendix A. Appendix

Let us recall some basics for the two-person zero-sum game problem; for more
details, see for example [4, Chapter 8].

There are two players: Emil and Francis. Consider a real-valued function f :
E×F → R, where f(x, y) is both the loss of Emil by taking the strategy x from her
strategy set E and the gain of Francis by taking the strategy y from his strategy
set F (the sum of the gains is zero). Emil wants to minimize the function f ,
while Francis wants to maximize f . The most important concept in the two-person
zero-sum game is the Nash equilibrium.

Definition A.1. Suppose that E and F are strategy sets of Emil and Francis,

respectively. Let f : E×F → R be an index cost functional. We say (x̄, ȳ) ∈ E×F
is a Nash equilibrium, if

f(x̄, y) ≤ f(x̄, ȳ) ≤ f(x, ȳ), ∀x ∈ E, y ∈ F.

The following result is well known, see, for instance, Proposition 8.1 in [4, page
121], which says seeking a Nash equilibrium is equivalent to solving a minimax and
a maxmini problems, respectively, so that the extremes achieved are the same.

Theorem A.2. The pair (x̄, ȳ) is a Nash equilibrium if and only if

sup
y∈F

f(x̄, y) = V +, inf
x∈E

f(x, ȳ) = V −,

and V + = V −, where

V + := inf
x∈E

sup
y∈F

f(x, y), V − := sup
y∈F

inf
x∈E

f(x, y).
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