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Abstract. This paper introduces a new windowed Green function (WGF) method for the numer-
ical integral-equation solution of problems of electromagnetic scattering by obstacles in the presence
of dielectric or conducting half-planes. The WGF method, which is based on the use of smooth
windowing functions and integral kernels that can be expressed directly in terms of the free-space
Green function, does not require evaluation of expensive Sommerfeld integrals. The proposed ap-
proach is fast, accurate, flexible, and easy to implement. In particular, straightforward modifications
of existing (accelerated or unaccelerated) integral-equation solvers suffice to incorporate the WGF
capability. The method relies on a certain integral equation posed on the union of the boundary of
the obstacle and a small flat section of the interface between the penetrable media. Our analysis
and numerical experiments demonstrate that both the near- and far-field errors resulting from the
proposed approach decrease faster than any negative power of the window size. In the examples con-
sidered in this paper the proposed method is up to thousands of times faster, for a given accuracy,
than a corresponding method based on use of Sommerfeld integrals.
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1. Introduction. The problem of scattering in the presence of layer media plays
important roles in a wide range of contexts, with application in simulations of printed
circuits, patch antennas, ground-plane cloaks, multilayer aircraft coatings (for stealth
applications), partially or completely buried objects, well logging, propagation of ra-
dio waves on the earth surface and ionosphere, etc. The solution of problems of
scattering by obstacles or defects in the presence of planar layered dielectric or con-
ducting media has typically required the use of Sommerfeld integrals and associated
layer Green functions—which automatically enforce the relevant transmission con-
ditions on the unbounded flat surfaces and thus reduce the scattering problems to
integral equations on the obstacles and/or defects. As is well known, however, the
numerical evaluation of layer Green functions and their derivatives, which amounts
to computation of certain challenging Fourier integrals [9, 28], is extremely expensive
and gives rise to a significant bottleneck in layer-media simulations (see, e.g., [7] for
details). This paper presents a novel integral-equation approach for problems involv-
ing layered media. The new approach, which is based on use of certain “windowing”
functions and considerations associated with the method of stationary phase, does
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not require the use of expensive Sommerfeld integrals. Our analysis and numerical
experiments demonstrate that both the near- and far-field errors resulting from the
proposed approach decrease faster than any negative power of the window size.

A variety of methods have been provided for the solution of problems of scattering
by obstacles in the presence of layered media. Amongst the most effective such ap-
proaches we mention (1) methods which evaluate Sommerfeld integrals on the basis of
path-integration in the complex plane [7, 8, 25, 26] (such approaches require numeri-
cal evaluation of integrals of functions that oscillate, grow exponentially in a bounded
section of the integration path, and, depending on the relative position of the source
and observation points to the interface between the two media, may decay slowly at
infinity; (2) the complex images method reviewed in [1] (a discussion indicating certain
instabilities and inefficiencies in this method is presented in [8, section 5.5]); (3) the
steepest descent method [12, 13], which, provided the steepest descent path is known,
reduces the Sommerfeld integral to an integral of an exponentially decaying function
(unfortunately, however, the application of the steepest descent method for each ob-
servation point can be challenging and expensive [7, 8, 12]); (4) the contribution [20],
which, utilizing Laplace transforms in addition to the Fourier transforms in the Som-
merfeld method, demonstrates an improved performance over direct integration of the
Sommerfeld integrals—but, as the authors stress, this is probably due to the straight-
forward character of the Sommerfeld integration method they use; and (5) a method
presented in [24] that relies on a combination of Sommerfeld integral representations
as well as the method of images for a related application to the impedance problem,
and which is demonstrated in low-frequency contexts. As is known, in any case, all
of these methods entail significant computational costs [7, 20, 24].

The ideas embodied in the windowed Green function (WGF) method proposed
in this paper are related to apodization techniques used in optics, as well as taper-
ing or Hann functions utilized widely in signal processing. Apodization is used in
the design of certain optical devices to eliminate edge effects; the Hann functions, in
turn, are used to produce signals of finite duration from infinite-time signals while
reducing distortions in the spectrum caused by the windowing process itself. From
a computational perspective in a problem related to wave scattering, finally, the ap-
proach proposed in this paper bears similarities with certain “finite-section” methods
in the field of rough-surface scattering. These methods utilize approximations based
on truncated portions of a given unbounded rough surface [21, 27, 30], and, in some
cases, they incorporate a “taper” [22, 29, 30] to eliminate artificial reflections from
the edges of the finite sections. In fact the smooth taper function utilized in [22]
(Figure 2 in that reference) resembles the smooth windowing function we use (Fig-
ure 3.1 below and [5, 23]). But as indicated in comments provided in section 3.1 in
regards to certain slow-rise windowing functions, essential differences exist between
the finite-section approaches and the methods proposed in this paper. In particular,
with exception of the slow-rise windowing function method [5, 23], none of the pre-
vious tapered rough surface algorithms has demonstrated high-order convergence as
the width of the finite sections tend to infinity.

In section 5 the proposed WGF method is compared to the high-order integral
equation method recently introduced in [26], which is based on the accurate and
efficient evaluation of Sommerfeld integrals. In the examples considered in that section
the proposed method is up to thousands of times faster, for a given accuracy, than the
corresponding layer-Green-function method. A similar improvement in computational
costs has been observed for problems of electromagnetic scattering by defects and
obstacles in multilayer structures in two and three dimensions; a detailed discussion
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of such problems, however, is left for future work.

This paper is organized as follows. After some basic preliminaries are presented
in section 2, the proposed methodology is introduced in section 3. A formal error
analysis of the method, based on multiple-scattering perturbation theory, then follows
in section 4. A variety of numerical results presented in section 5, finally, demonstrate
the accuracy and speed of the proposed approach.

2. Preliminaries. We consider two-dimensional problems of reflection and trans-
mission by dielectric or conducting media under TE and TM polarizations. As is well
known, the z components u = E, and u = H, of the total electric and magnetic fields
satisfy the Helmholtz equation Au + kfu =01in Q;, j = 1,2 (see Figure 2.1), where
calling o > 0 and w > 0 the magnetic permeability of vacuum and the temporal
frequency, and letting €; > 0 and o; > 0 (o1 = 0) denote the electric permittivity
and the electrical conductivity in €2;, the corresponding wavenumbers k; are defined
by k‘? = w?(gj +ioj/w)po, 7 = 1,2. In either case the total field resulting from a
plane-wave incident field

(2.1) uinc(w) — otk1(z1 cosatassina)

with incidence angle o € (—m,0) measured from the horizontal (see Figure 2.1) is
given by

" e

U in QQ,

where u; and us denote the reflected and transmitted waves, respectively. As is known
(see, e.g., [15, section 5]), the scattered and transmitted fields u; and uy admit the
representations

ou .
(2.3&) Uy = @1 [U1|F] - y1 |:81 :| m Ql,
np
Ous I
(2.3b) ug = —Ps [us|r] + Fo | — +u in Qo
on |p
where
ethizrcosa 4f o — kil cosal,
(2.4) ul (@) = 2=l cosal
0 if ko # ky|cosal,

and where, letting
L o(1) .
Gj(w7y) = ZHO (kjlw - y|)7 J=12,

denote the free-space Green function for the Helmholtz equation with wavenumber k;,
the single- and double-layer potentials in (2.3) are defined by means of the improper
integrals

0G;
(2.5)  Zjnl(=) = g Gj(z,y)n(y)dsy and  Z;[n)(z) = g @ y)u(y) dsy,

]

respectively—whose convergence is conditioned upon the oscillatory behavior of the
integrand. Throughout this paper the interface I' is assumed to be a piecewise smooth
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F1a. 2.1. Description of the problem under consideration: scattering by a defect on a penetrable
planar dielectric or conducting layer. T' denotes the interface between the two media, and I1 denotes
the interface between the upper and lower half-planes.

curve that coincides with the flat interface {zo = 0} for large enough values of |z1];
see, e.g., Figure 2.1.

By evaluating the fields (2.3) and their normal derivatives on I" and using the
transmission conditions

- Ous  Oup  Oun
Uy — Uy = u', v—= - = = on I
2 ’ on  On on

(with v = 1 and v = €1 /e in TE- and TM-polarizations, respectively), we obtain the
second-kind system of integral equations [17]

(2.6) E¢p+T[p)=¢™ on T
for the surface currents ¢. Here
Lo talr N i
E:[o 15] =1 duz s ST = | o tul)
on Ir on r
and
| Da=D1 =S5 +vS5
2.7) T= { Ny — N1 —Ks+vK, ] ’

where, using the potentials (2.5), the entries in the matrix operator 1" are defined by

Slil@) = 7@, D) = [ 5 @y ds,
(2.8) } i
Nil@) = 22 @), Kbl = [ 5 e ) ds,

for x € I and for j =1, 2.
3. WGF method: Basic concepts.

3.1. Slow-rise windowing function. Instead of solving the problem (2.6) on
the entire infinite interface I', a locally windowed problem could be used in an attempt
to obtain the local currents over all relevant portions of I' in an inexpensive manner.
To pursue this idea we introduce a smooth windowing function w4 depicted in Fig-
ure 3.1, which is nonzero in an interval of length 2A, and which has a slow rise—that
is,

(3.1) wa(z1) = w(z1/4;¢,1)
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for some fixed window function w. Throughout this paper the window function

17 ‘8‘ S S0,
207!/ |s| — so
w(s;80,81) = { exp , 8o < |s| < s1,u="——,
u—1 S1 — So

0, |s| > s1,

is used. (The value ¢ = 0.7 was utilized to produce all of the numerical examples
presented in this paper.) Clearly, wy rises from zero to one in regions of length
proportional to A > 0. As demonstrated in [5, 23] the slow-rise character of the
window function w4 is essential to ensure superalgebraically fast convergence (i.e.,
faster than any power of 1/A) of windowed oscillatory integrals. Throughout this
paper the function w4, which only depends on z1, is viewed as a function defined for
all values of (z1,x9) € R2—which is constant with respect to xo for each fixed value
of z7.

The parts of the boundary T' where wy(x1) # 0 and wa(x1) =1 — wa(xy) # 0
will be denoted by I"'4 and r A, respectively. The width 24 > 0 is only restricted by
the requirement that w4 (x1) vanishes on any corrugations that exist on the surface
I' as well as on any additional obstacles that may exist above and/or below I'. As
shown below in this text, solutions converge rapidly as A increases beyond the bound
posed by this restriction.

Remark 3.1. For notational simplicity our derivations in the remainder of sec-
tion 3 are presented for cases for which the corrugations on the surface I" are the only
departures from planarity (see, e.g., Figure 2.1). Cases in which additional scatterers
exist (e.g., Figures 4.5 and 5.3) are considered in sections 4 and 5.

Ty

Fic. 3.1. Window function wa and the windowed sections I' 4 and fA of the unbounded curve I'.

3.2. Windowed integral equation: Preliminary considerations. With ref-
erence to Remark 3.1, letting W4 = w4 - I, where I is the 2 x 2 identity matrix, we
consider the preliminary approximate equation

(3.2) EQ* + T [Wag*] =™ on Ty,

where ¢* denotes a new unknown defined on I' 4. In order to assess the errors inherent
in this approximation, we also consider the form

(3.3) E¢p+T[Wag]=¢™ —~T[(I-Wa)¢] on Ty

of the exact equation (2.6).
As indicated in section 4, arguments based on integration by parts and the
concept of stationary-phase can be used to establish that both the right-hand side
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T[(I —Wa)¢] in (3.3) and the approximation error |¢p — ¢*| are superalgebraically
small—i.e., smaller than CA~™™ for any positive integer m as A — oo, where the
constant C' is independent of A—throughout the center region {w4 = 1} of the sur-
face I" 4. However, large window sizes may be required in such a scheme to correctly
account for all fields reflected and refracted by the planar surface—a difficulty that
can be visualized easily for incidence angles approaching grazing.

In order to demonstrate this difficulty (which is in fact overcome in section 3.4
by incorporating certain closed-form and numerically evaluated expressions), here we
consider a test case in which (3.2) is used to approximate the solution of the TE-
problem of scattering of a plane-wave by a semicircular bump of radius a = 1 placed
directly on top of a planar dielectric surface (see, e.g., Figure 3.5). The problem
was discretized using a direct generalization of the Nystrom method presented in [18]
which, relying on graded meshes over the surfaces of the bump and the windowed
portion of the planar interface, accurately accounts for the singularities of the currents
at and around corners. For this example the wavenumbers k; and ks in the regions
above and below the plane were set to 47 and 87, respectively, and approximately 20
points per unit length of the surface of the bump and the surrounding were used.

Figure 3.2 shows that, as suggested above, the naive windowing approach embod-
ied in (3.2) requires, for a given accuracy, large values of A—well beyond the extent
of the nonplanar local geometry—as the incidence angle decreases. A correction that
resolves this difficulty, and which results in superalgebraic convergence uniformly for
all incidence angles, is presented in section 3.4.
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o
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Fi1G. 3.2. Relative errors (see Remark 5.1) in the integral densities resulting from numerical
solution of (3.2) by means of a naive implementation of the WGF method for a semicircular bump-
shaped defect, for various window sizes (measured in numbers A/A of wavelengths, where X = 27 /k1
denotes the free-space wavelength) and angles of incidence « = —n/4 (blue), —mw/32 (green), and
—7/256 (red). Left: log-log scale. Right: semi-log scale. Clearly, the window size required by the
naive method to produce a given accuracy increases dramatically as the angle of incidence approaches
grazing. Color is available online only.

3.3. Error sources in (3.2). In order to provide an insight into the source
of the errors displayed in Figure 3.2, we present Figure 3.3. Figure 3.3(a) depicts
rays incident on the left planar region as well as their reflection and transmission.
Clearly, in view of the incidence angle considered in this example, these reflected
fields subsequently illuminate the defect and thus give rise to multiple scattering.

Remark 3.2. In the present section we make free use of standard geometrical op-
tics nomenclature, with mention, in particular, of shooting and bouncing rays. Addi-
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tionally, we make reference to the property of superalgebraic convergence that arises
from the windowing of integral representations of scattered fields around points of
stationary-phase [6]. A justification of the geometrical-optics and integral-asymptotics
arguments used throughout section 3 is provided in section 4—on the basis of the
concept of stationary phase, and the methods of contour integration and multiple-
scattering perturbation theory.

Continuing with our argument concerning Figure 3.3(a), then, let us consider
separately the rays shown in blue and red (or, in gray-scale, dark gray and light gray,
respectively) in that figure. The blue rays represent the reflections that are correctly
taken into account in the solution of (3.2) (since they impinge within the windowed
region), but, clearly, the red arrows represent reflections that are neglected in this
equation. Figure 3.3(b), on the other hand, represents reflections by the defect. The
color-code in the left figure carries over to the right figure: the blue (resp., red) rays
in Figure 3.3(b) represent the fields scattered by the defect which arise from the
blue (resp., red) arrows in Figure 3.3(a). It is natural to suggest that, as justified
in section 4, the omission of the incident fields represented by the red arrows causes
the errors observed in Figure 3.2. We also note that the relatively fast convergence
demonstrated by the blue curves in Figure 3.2 can be explained by the fact that for
near normal incidence (o ~ —m/2) there is not a significant “red field” interacting
with the defect. In contrast, for incidence near grazing (o ~ 0), “red fields” from
regions far away from the windowed area do interact with the defect, and therefore
give rise to significant errors if neglected. As shown in section 3.4, the introduction
of adequate corrections in (3.2) which account for such neglected terms allows us to
establish superalgebraically fast convergence uniformly over the domain [—, 0] of all
possible incidence angles.

~= o @| [~ o (b)

Fic. 3.3. Physical concepts underlying the WGF method.

3.4. Uniform superalgebraically fast convergence for all incidence an-
gles. To address the difficulties demonstrated in Figure 3.2 we consider again the
exact integral equation (3.3), and we replace the unknown density ¢ on the right-
hand side of this equation by the corresponding (known) density ¢f; associated with
the problems of scattering and transmission of a plane-wave by a perfectly flat infinite
interface 11 = {(w1,22) € R? : x5 = 0}. A closed form expression for the density
qb{l = qb{l(xl) is derived in Appendix A of the supplementary materials, which are
linked from the main article webpage. We thus obtain the approximate equation

(3.4) B¢" + T [Wag"] = ¢"™ — T [(I = Wa)pf| on Ta,
whose solution ¢" is (see Remark 3.3) a superalgebraically close approximation of

the exact solution ¢ which is valid throughout the region I'y N {w4 = 1} and which
does not deteriorate as the incidence angle a tends to zero.
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In order to evaluate the term T'[(I — WA)quJf[], we first consider the flat interface
IT and, in view of (2.7), we switch the integrations over I' of integrands involving
(I—WA)d)ﬁ into integrations over II. To do this we rely on the fact that, since both q’){f[
and W4 are functions of x; only, these quantities and their product (I fWA)(ﬁé can be
trivially extended to corresponding functions defined for all values of (z1,xs) € R?—
as constant functions of x5 for each fixed x1—which, in fact, vanish whenever w4 = 1.
The modification is thus straightforward: since (I — WA)gbf[ vanishes on T'\ TI (at
least for A large enough), we may substitute the integration of an integrand equal to
zero over the region 'y N {w4 = 1} by the integral over an integrand equal to zero
over the region II N {w4 = 1}. We thus obtain

(1~ Wa)gh] @) =T [(1 - Wa)gh) (@), @eT.

where, letting the layer potentials tfﬂj-n and .@JH (j = 1,2) be given by

35 @) = [ Gy, md 2@ = [ @),
for all x € R?, and defining the boundary integral operators
5@ = @, D)= [ gf;‘m)n@) sy,
r,j=1,2
Ve = 22 D), Rlae) = [ 9% i) ds, o

the operator fn is defined by

EH - EH —§H + 1/§H
(3.6) Tu=| - ? o

NO_ AT _RI 4 RD

An important subtlety to be noted concerns the fact that TH maps density functions
defined on II to functions defined on T.
Thus (3.4) becomes

(3.7) E¢" + T [Wag"] = ¢™ — Tiy [qbﬁ + T [Wmﬁ] on Ta.

Clearly the expression Tir[Waef;] can be evaluated by means of numerical integra-
tion over the bounded region 4 = I N {(x1,22) € R? : wa(x1) # 0}. As shown
in Appendix A of the supplementary materials, on the other hand, the expression

fn {qﬁl{[} can be computed in closed form:
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T
- | [uép, (1;,/)8;21 INaRIS
B9 Tn[of] o o
[uf, au] on I'\IL
n

The expressions on the right-hand side of (3.7) can thus be evaluated numerically
throughout the surface I' 4, and the corresponding bounded-domain integral equation
can be solved by means of any available integral equation methodology—such as, for
example, the highly accurate Nystrom method [11, 18] we use.

To conclude this section, we demonstrate the fast and angle-independent conver-
gence of " to ¢ in Figure 3.4: clearly the value of A required to obtain an accurate
approximation of the exact solution has been reduced substantially and the errors are
uniformly small as the incidence angle decreases to zero.

Remark 3.3. As mentioned above in this section, the solution of (3.4) is a uniform-
in-cv, superalgebraically close approximation of the exact solution ¢ throughout the
curve I'y N {wa = 1}. This is established by means of a formal error analysis in
section 4. But a brief rationale may be provided within the geometrical-optics frame-
work considered in the present section. Indeed, notice at first that, in view of the
theory of asymptotic evaluation of integrals [4], the value of the surface potentials .%;
and Z; in (2.5) which, in view of (2.3), are needed to evaluate the field at a point x,
can be obtained with superalgebraic accuracy by means of windowed integration in a
region which contains all points of stationary phase [4, section 3.3]. But the points of
stationary phase that arise for a given observation point x are precisely the points on
the scattering surface where the rays reflect prior to their incidence upon . Thus,
the windowed region in Figure 3.3, for example, contains (resp., does not contain) the
points of stationary phase associated with the blue rays (resp., the red rays). But
the contributions from red rays are reincorporated per (3.7), and, thus, all of the
incidences that impact upon the curve I'y N {w4 = 1} on the first multiple-scattering
iteration are taken into account with superalgebraically small errors. There remain
fields that are not accounted for in (3.7), such as the field reflected by the windowed
region which impacts outside of the windowed region. But these fields do not result
in significant errors within the windowed region in any of the subsequent multiple-
scattering iterations: examination of the associated reflection points shows that only a
superalgebraically small portion of the field reflected by the windowed region into the
plane outside the windowed region reflects back into the windowed domain. We may
thus conclude that the error arising from the substitution of ¢ by qSﬂ ought to give
rise to superalgebraically small errors in (3.7) throughout the curve I'y N {w4 = 1}.

As mentioned in Remark 3.3, certain fields reflected by the windowed region,
which do not affect the accuracy of the solution within the region I'y N {w4 = 1}, are
not taken into account within the formalism described in this section. These neglected
fields do affect near fields and far fields in certain areas, however, as suggested by the
ray description used throughout section 3. But, as shown in sections 3.5 and 3.6 below,
the solution ¢ can be used to produce both the associated near field u everywhere
in space as well as far fields in all directions.

3.5. Field evaluation: Near fields. The discussion in Remark 3.3 extends
directly to evaluation of near fields. Indeed, that remark tells us that substitution
of ¢ by wad” + (1 —wa)pl, (¢f = [gpf,q/;f]T) in the integral equation (3.3) leads
to superalgebraically small errors e = ¢ — ¢ within the curve T'y N {wsq = 1}.
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Fi1G. 3.4. Relative errors (see Remark 5.1) in the integral densities ¢* on the surface of
the defect resulting from numerical solution of (3.7) for a semicircular bump-shaped defect, and
for various window sizes and angles of incidence a = —mw/4 (blue), —w/32 (green), and —m/256
(red)—including extremely shallow incidences. Left: log-log scale. Right: semi-log scale. Clearly,
this version of the WGF method computes integral densities with superalgebraically high (but not
exponential) accuracy uniformly for all angles of incidence (cf. Figure 3.2). Color is available online
only.

Similar arguments can be used to establish that an analogous set of substitutions into
the representation formula (2.3) produces the near field u with superalgebraically
small errors throughout the strip [—cA, cA] x R (but see Remark 4.1). The necessary
substitutions are as follows: substitution of w;|r and Oui/On|r by wap™ + (1 —
wa)ed —u|p and v(wa® + (1 —wa)pf) — Ou"®/On|r, respectively, in (2.3a), and
substitution of uz|r and dus/In|r by wap® + (1 —wa)e? and way™ + (1 —wa)Yf,
respectively, in (2.3b) (see (A.13) in Appendix A of the supplementary materials).
These substitutions together with the relation

auinc

on

0= @1 [uinclr] —5”1 [

:| in Q]_
r

(see [15]) leads to the expression
(3.9)
w { u' + 9 [wAcpw + (1 — wA)gaf] — v [ULA@ZJW + (1 - wA)¢f] in O,
u =
ul — Py [wap® + (1 —wa)p’] + S [wa® + (1 —wa)yp/]  in Qo
for the approximate total near field «* in terms of the layer potentials defined in (2.5).
After some manipulations similar to those presented in the derivation of (3.8), and

using the relations (A.1), (A.2a), and (A.2b) of Appendix A in the supplementary
materials, the formula in (3.9) is re-expressed in the forms

(3.10a)
u’ = D [wap”] — v [wah?]
uf — P [wap!| + v [wa?] in  {z2 >0},
(1 — MTA) u! — DY [wap’] + vST [wa!] on  {zs =07},
_|_
w—;uf — DI [wAgpf} +vSH [wAU)f] on {xo =07},
T [wap?| + v [way/] in {zy <0},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/08/16 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

WINDOWED GREEN FUNCTION METHOD 1881

within Qq, and

(3.10b)
u" = =D [wap"”] + L2 [wayy"]
P8 lwap!| = F3" [warp!] in {zy >0},
%uf + DI [wAgof] —si [wAwf] on {xs =07},

(1 — waA) ’u,f —+ Dg [U/Aspf] — S;[ [wAwf] on {IZ _ 07},

uf + D [wap!] — S50 [war?] in {zy <0},

within 29, in terms of various surface potentials and operators defined either on I
or on II-—namely, the potentials .7; and %; defined in (2.5), the potentials 5@“ and
2" defined in (3.5), and the operators Sj' and Dj', j = 1,2, defined in (A.3) of
Appendix A in the supplementary materials. Note that, by construction, the straight
finite-length segments IINQ;, j = 1,2, are contained in the region {—cA < z; < cA}
for A large enough; see Figures 2.1 and 3.6. Thus, for such values of A the second
and third expressions in both (3.10a) and (3.10b) give rise to an overall continuous
and, indeed, smooth solution u", across the finite segments II N 2 and IT N Qo,
respectively (Figure 2.1)—as it behooves a solution of the Helmholtz equation away
from the dielectric interface I'.

Figure 3.5 displays the total near field produced by means of both the WGF
method and the layer-Green-function (LGF) method [26] for the solution of the prob-
lem of scattering of a plane-wave by a semicircular bump of radius ¢ = 1 in TE-
polarization—with wavenumbers k1 = 10 and ks = 15, and under two different in-
cidence angles: o = —n/2 and o« = —7/6. The WGF solutions were obtained from
the integral equation (3.7) followed by evaluation of field values on the basis of (3.10)
(but see also the last paragraph is section 3.6 in regards to near-field evaluation with
higher accuracy and/or overextended regions). The absolute errors (see Remark 5.1)
in the WGF solutions displayed in Figures 3.5a and 3.5c over the complete range
shown are 1-107% and 2 - 10, respectively.

3.6. Field evaluation: Far fields. In view of the analysis in section 4 it follows
that formulae (3.10) do not generally provide an accurate approximation of either far
fields or near fields outside bounded subsets of [—cA,cA] x R (see, in particular,
Remark 4.1). In order to tackle this difficulty we consider the boundary S of a disc
D such as the one depicted in Figure 3.6. The curve S encloses the portion of I'
that differs from the flat interface II; as indicated above, superalgebraic convergence
of the fields u; and wuy takes place everywhere on and within such a curve S. Then,
application of the Green identities, integration over the region exterior to S, and use
of the layer Green function (see (B.6) in Appendix B of the supplementary materials)
leads to the integral representation

(3.11) wiw = [ {5 @) - GG ) s,

of scattered field u® = u — u/, which is valid for & everywhere outside S. Here G
denotes the layer Green function for the Helmholtz equation with wavenumbers k7 in
{zs > 0} and ks in {z2 < 0} (see Appendix B of the supplementary materials). Note
that the necessary values of the scattered field v° and its normal derivative on S can
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(a) WGF method (b) LGF method (¢) WGF method (d) LGF method

Fi1G. 3.5. Real parts of the total fields produced by the WGF method and the LGF method for the
problem of scattering of a plane-wave by a semicircular bump. Figures 3.5a and 3.5b: oo = —7/6.
Figures 3.5¢ and 3.5d: o = —m/2. The width of the support of the selected window function is
2A = 16\ =~ 10.053 in all these calculations. The black lines represent the domains where the
respective integral equation formulations are posed. (Note that in addition to the surface of the
bump itself, the LGF method [26] entails discretization of a certain transparent boundary in the
lower half-plane—so that, in the present bump cases, for example, the LGF integral equations are
actually posed on the full circles depicted in Figures (b) and (d)).

F1G. 3.6. Curve S utilized in (3.11).

be computed directly utilizing (3.10), since, by construction, S lies inside the region
where (3.10) provides an accurate approximation of the total field w.

The far-field pattern us (&), which is related to the scattered field by the asymp-
totic formula

ik1|w|
w(@) = (@) + O (2] ), el oo, @ =

Vil

can be produced by replacing G and its normal derivative in (3.11) by their corre-
sponding leading-order asymptotic expansions as || — co. As shown in Appendix B
of the supplementary materials, the first-order term of the asymptotic expansion of
the layer Green function in a given direction & = (cosf,sinf), 0 < § < m, can be
obtained by the method of steepest descent; see [3]. Substitution of the result in

xr

mv
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(3.11) yields the expression

312 @) = [ {0 Haeiew) - 6nten G s,

for the far field us (2), where the far-field kernels G, and H , are given in (B.13)
and (B.14) of Appendix B in the supplementary materials, respectively. Thus, unlike
the layer Green function G itself for small values of | — y|, the far-field associated
with G can be computed inexpensively by means of the explicit expressions (B.13)
and (B.14). Figure 3.7 provides a comparison of the far-field patterns computed using
the LGF and WGF methods for the problem considered in section 3.5.

U —WGFM 0 45 —WGFM
120 60 | - LGFM 120 60 | - LGFM
0.4

1
03
150 30 150 30

Q/;W
180 0 180 0

F1G. 3.7. Far-field patterns obtained using the LGF method [26] (red dotted curve) and the
WGF method (continuous blue line) for the solution of the problem of scattering considered in this
section at incidences o = —7/2 (left) and o = —7/6 (right). Color is available online only.

In view of section 3.5 and the discussion above in this section, (3.10) and (3.12)
can be used to accurately and efficiently evaluate near fields and far fields, respectively.
These are typically the quantities of interest in scattering simulations involving layered
media. The evaluation of the fields in an intermediate region, such as the complement
of a bounded domain within the strip [—cA,cA] (where (3.10) yields an accurate
approximation), can be approximated efficiently on the basis of (3.11). Indeed, in
such cases, for which source points y lie on S and observation points x are at a
large distance away from S, the Sommerfeld integrals in (B.6) of Appendix B in
the supplementary materials (which by Cauchy’s theorem can be expressed in terms
of complex contour integrals with highly oscillatory and/or exponentially decaying
integrands) can be obtained rapidly by means of asymptotic numerical methods [2,
6]—based on localization around critical points and the method of steepest descents
in very small regions around saddle points.

4. Formal error analysis. A formal multiple-scattering error analysis intro-
duced in section 4.4 validates the ray-based discussions presented in section 3. The
arguments presented in section 4.4 rely on the WGF approximation properties for
certain simple “obstacle-free problems”: the problem of scattering by a planar inter-
face in the absence of a defect or obstacle, and including point-source incident fields.
Useful insights into these regards can be obtained by consideration of obstacle-free
problems under plane-wave incident fields with possibly compler wavevectors—which,
via integration, can be used to represent an arbitrary point source by complex contour
evaluation of the integral in (4.12). The preliminary discussion concerning plane-wave
incidence is advantageous in a number of ways, as (1) the error of the complete range
of relevant plane-wave approximations is dominated by the “worst-case” errors which
arise for real wavevectors at normal incidence (see, e.g., Figures 4.1 and 4.2); (2) the
worst-case errors can be characterized by a single parameter (namely the number of
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wavelengths A/\ = k1 A/(27) contained in the windowed region); and, as shown else-
where, (3) the windowed obstacle-free problem lends itself more directly to analysis
under plane-wave incidence—since, unlike the WGF solutions for point-source prob-
lems, the plane-wave WGF solutions (for either a real or complex incident wavevector)
can be expressed as the product of the incident field times a function whose derivatives
decay as A — oo.

Section 4.1 presents a discussion of the WGF method for the plane-wave obstacle-
free problem, and sections 4.2 and 4.3 further illustrate and augment these discussions
through a variety of numerical examples for both plane-wave and point-source illu-
mination. As mentioned above, our formal multiple-scattering error analysis is then
presented in section 4.4.

4.1. WGF solution of plane-wave-illuminated planar interface.

4.1.1. WGF error sources. With reference to (4.12) and its complex contour
representation used in section 4.3, for a given point y = (y1,¥2), y2 > 0, and complex
wavevector (f ,—iy1(€ )) we consider the problem of scattering by a dielectric half-plane

illuminated by a (generalized) plane wave uignc of the form

et€(@1—y1) =71 () |r2—y2|

71(£)
(Ce = %) with yo > x9 (z2 = 0 for the planar interface considered in

this section). Here v1(§) = /&2 —k? = /€ —ki/E+ ki with branches selected

as indicated in Appendix B of the supplementary materials. Note that the quantity

|z2 —y2| in (4.1) equals ya —zo under the yo > x5 assumption included in the equation,

of course, but the absolute values are kept in order to match the form of the integrand

in the plane-wave integral expression (4.12) for a point-source incident field.
Following section 2 we obtain the integral equation formulation

(4.2) E¢e + Tulpe] = ¢ on 10

for the present problem, where the operator 71y is defined as in (2.7)—(2.8) with I" = II,
and where letting ¢, = (¢, ¢¢), the right-hand-side is given by

. o dule
1nc — ulnC ,
¢f € |H dﬂ?g II

The solution of (4.2) can be obtained by letting { = k1 cos « in the relevant expressions
in Appendix A of the supplementary materials: with this identification we have oL =
¢¢/Ce, and, thus, the exact solution of (4.2) coincides with (A.13) in Appendix A

of the supplementary materials. In terms of £ we thus have

=C; o€t (Oz2

(4.1) uignc(:n) =

i 71(6)Ce(2 —T¢)
(4.3) pe(t) = CeTe e and  we(t) = M et
where Ty = #l% and where v,(§) = /€2 — k5 (with a choice of branches as

specified in Appendix B of the supplementary materials).

Our analysis relies on the use of a certain approximate solution gbg’ = [(pg’, 1/)%”] 4
of (4.2) which is obtained by means of the windowing approximation but without use
of a correction term akin to T'[(I — WA)quJfI] in (3.4): the density ¢’ satisfies

(4.4) E¢¢ + Tu[Wadf] = ¢ on Tlgu,
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where TI4 = TN {-A <z < A}. As shown in what follows, both ¢’ itself and the
reflected and transmitted fields it produces according to

91! [wmpé”} (x) — v [wﬂ/zg’} (x), {x2>0},
(4.5) ug' (z) =
-1 [wAgog’} (z) + 3 {U}A’L/)éu] (x), {x2 <0}

(cf. (2.3)), are highly accurate for a certain range of complex values of {—a fact that
is relevant in the analysis presented at various points in section 4.4.

In order to appreciate the need for consideration of complex values of £ we first
study the errors that result from the use of the approximate equation (4.4) for a given
real value of £. To gain an insight into the extent of such errors we subtract (4.4)
from (4.2), and we thus find that the error ey = e — d)? satisfies the equation

Ee? + TH[WAB?] =1Tn [(I - WA)¢£] on Il4.

The error source 11y [(I - WA)q&&] provides an important indication of the expected
error sizes. For definiteness we focus on one of the various contributions to this
quantity, namely T72 [(1 —wa4)e] (see (2.7)); all other contributions can be treated
similarly.

The error source term Th2 [(1 —wa)ye| is given by a linear combination of the
single-layer potentials

S (1 —wa()) e (1) = 1 / T HD (gt )L - wa (7))o dr
: sz '
(4.6) =1 /_ HSY (kjlt — 7])@a(7) 7 dr

+ 5 [ HO W= i) e ar
cA

(j = 1,2). We consider the last term first. Introducing the change of variables t = As
and 7 = Ao the last integral in (4.6) is expressed in the form

(47) e [ hotakyls - ol (o) 647 do,

which we estimate in what follows for values of s throughout the interval [—c,c]
(that is, throughout the region {s : wa(As) = 1} = {s : w(s;¢,1) = 1}) under the
assumption k; + & # 0. Here, given k£ > 0 and d > 0, the (nonoscillatory) function
he(z) = e Hél)(x) (£ >0, z > 0) satisfies the estimates

Coo(kx) ™YV 227 if kx> d,
< Co(kx)~tz=™ if 0<kr <dand m+£> 0,

d m
s |(§) bt
Coo(l+|logkz]) if O<kr<dand m=¢=0

for some constants Cy, ¢ > 0, m > 0. (This follows from the well-known asymptotic
expression [19, section 5.11] for the Hankel function; see also [14, Lemma 1].)

To estimate the error source (4.7) for a given £ we note that, in view of the absence
points of stationary phase in the region {|o| > c}, after m integrations by parts we
obtain

(_1)mAe—iAkjs

e TS

/ (da) [ho(Ak;|s — o] )i (0)] 4759 dg,
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since all the boundary contributions vanish. This can be checked by taking into
account that (a) the function w; and its derivatives vanish at o = ¢, and that, in view
of (4.8), (b) the function ho(Ak;|s — o|) and its derivatives decay as o — oc.

The integration-by-parts procedure used above requires that for all s € [—c¢, c] the
integrand in (4.7) be an infinitely smooth function of o throughout the integration
domain. This is straightforward for s € [—¢,¢), and it holds for s = ¢ as well—in
spite of the fact that, for s = ¢, ho(Ak;j(oc — s)) and its derivatives are singular at
o = c—since the window function w; (o) = 1 —w(o; ¢, 1) vanishes along with all of its
derivatives at the endpoint o = c.

Utilizing (4.8) it additionally follows that the value of the integral in (4.9) remains
bounded for all A > 0. We therefore conclude from (4.9) that for |s| < ¢ the last
integral in (4.6) is a superalgebraically small quantity (it decays faster than any integer
power of 1/A) as long as k; +& # 0. Similarly, it can be shown the next-to-last integral
in (4.6) is superalgebraically small as long as k; — § # 0, and thus we conclude that
provided k; £ & # 0 the term Ty [(I — WA)¢5] decreases superalgebraically fast as
A — oo within the interval [—cA, cA].

Clearly, increasingly larger values of A are necessary to keep the error-source
term (4.9) below a given tolerance as |k; = &| — 0. The last column of Table 4.1
demonstrates that, as expected, the corresponding errors e’ arising in the integral
equation (4.4) exhibit slow convergence for small values of |k; +£| as well. Fortunately,
however, small values of |k; ££| can be completely avoided in the analysis presented in
section 4.4 by representing point sources as a contour integral in the complex £ plane.
A discussion concerning the errors ey’ that arise in the integral equation (44) as a
result of the aforementioned errors sources, but with allowance for complex values of
&, is presented in the following section.

4.1.2. Error estimation for complex values of £. As mentioned in sec-
tion 4.1.1, the formal multiple-scattering error analysis presented in section 4.4, which
applies to the case in which the WGF method is used to produce the solutions of prob-
lems of scattering by a bounded obstacle in the presence of a planar dielectric layer,
can be established provided corresponding estimates for the error e’ on [—cA, cA] for
the obstacle-free problem are available for certain complex values of £&. Under certain
smoothness assumptions on (,z’)é“, which have been verified numerically, such estimates
on e can be obtained (for £ € C, Re{-Im¢ < 0, £ # +k;) on the basis of the
“improper” integral equation

(4.10) Beg + Tulee] = (I - Wa) {60 = Tu[Wao{]} on T

that is satisfied by a new error density es = ¢ — WAqbg’. Note that, by definition,
ec = e on [—cA,cAl.

We call this integral equation improper in view of its infinite-domain exponentially
growing integrand. Notice, for example, that the related integral equation (4.2), which
for such complex values of £ entails a closely related exponentially growing integrand,
admits the exact solution (4.3). Equation (4.2) represents the most singular term
in (4.10); the remaining terms do not present difficulties. (The numerical values of
e¢ presented in Table 4.1 for complex values of £, for example, were evaluated as the
difference of the numerical WGF solution and the exact solution (4.3).) The integral
equation (4.10) could alternatively (and more generally) be interpreted via an appeal
to analytic contour integration in the complex plane, following the work [16] and
associated literature.
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Relying on (1) the convolution character of the operator T' to explicitly solve (4.10)
by means of Fourier transform techniques, together with (2) an extension of the
integration-by-parts arguments presented in section 4.1.1 to complex values of &,
and (3) the aforementioned smoothness assumptions on ¢, it can be shown that
the error eg is superalgebraically small throughout the region [—cA, cA]. Addition-
ally, the error estimates can be extended to the values of the scattered fields in certain
regions around the windowed domain (but see also Remark 4.1). The rigorous proofs
of these estimates lie outside of the scope of this paper and will be presented else-
where. The next section presents a variety of numerical results demonstrating that, as
suggested in the present section, the WGF method for the obstacle-free case does give
rise to superalgebraically convergent integral-equation solutions and scattered fields.

Remark 4.1. It is important to note that the aforementioned near-field conver-
gence is not uniform in the strip [—cA, cA] xR: for points in this region with larger and
larger values of x5, correspondingly larger and larger values of A > 0 are necessary to
reach a prescribed error tolerance; see also Figures 4.1, 4.2, and 4.4.

TABLE 4.1

Errors |legl|poo(—ca,ca)) = ll€llLoc ((—ca,ca) = lpg — @ | Loo((—ca,ca)) for various window
sizes and values of the parameter £ obtained in the solution of the problem of scattering of uig‘c,
defined in (4.1) for y = (0,1), by a dielectric plane for wavenumbers k1 = 20 and ko = 40.
As demonstrated by the & = 19.99 column in this table, which is included for completeness, slow
convergence takes place for values of & for which |kj £&| is small. As indicated in the text, however,
such situations are bypassed in the error analysis presented in section 4.4 by an appropriate selection
of complex integration contours.

Error

A £E=0 E=20—i | £€=40—1i &=50 &£ =19.99
2\ | 1.26-1072 | 1.06-1073 | 2.10-10~17 | 1.42-10722 | 2.04-10°°
22X\ | 3.29-1073 | 5.72-107% | 1.04-10~17 | 9.21-10723 | 1.95-107°
23X\ | 5.04-10~* | 8.98-107% | 1.35-10~1° | 1.38-10~2* | 3.70-101
24X\ 1 2.95-1075 | 7.91-1077 | 828-10"21 | 1.31-10725 | 2.36-101
25X\ | 5.,57-10~7 | 1.57-1078 | 3.68-10"2! | 8.65-10727 | 1.45-10"1

4.2. Obstacle-free problem under plane-wave incidence: Numerical il-
lustrations. To illustrate the WGF approximation properties considered in sec-
tion 4.1, here we present Table 4.1 and Figures 4.1 and 4.2. With reference to the
notations in that section, Table 4.1 displays the maximum throughout [—cA, cA] of the
numerical errors e¥ that result for incident waves uignc with various relevant complex
values of £ (cf. (4.1) and the associated text). As demonstrated in these experiments,
(;52” does indeed approximate ¢, with superalgebraically small errors within the region
[—cA,cA] for € € C, Ref -Im¢& < 0, such that £ # +ky or £ # +ko. In accordance
with the discussion in section 4.1, it is clear that large values of A are generally re-
quired for convergence to a given error whenever |k; + | is small. But this does not
impact upon the multiple-scattering error analysis presented in section 4.4, since the
complex integration contour used in that section (Figure 4.3) completely avoids a
neighborhood of the points £ # +k;.

The errors introduced by the obstacle-free WGF method in the scattered field
for values of £ along the aforementioned complex contour are also considered in the
context of the multiple-scattering error analysis presented in section 4.4. The field
errors resulting for a few relevant complex-wavevector incidences £ are presented in
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(c) € = 40 — i. (d) € = 50.

F1G. 4.1. Logarithm of the field errors logyq |ug(x) — ué"(w)| obtained by means of the WGF
method with A = 16\ (X = 2I1/k1 ) for the problem of scattering ofuigrlc defined in (4.1) fory = (0,1),
by a dielectric plane for various values of § and wavenumbers k1 = 20 and k2 = 40. The quantity uz:“
is defined in (4.5), and ug equals the exact reflected field C¢(Te — 1) ¢ €r1=71(8%2 jn the upper half-
plane {x2 > 0} and the exact transmitted field C¢Tg €¥6%1172(8)%2 i the lower half-plane {2 < 0}.

Figure 4.1. Note the extremely small field values that arise for the relatively small
window size A = 16\. In fact, the largest such errors take place for the case £ = 0—
which corresponds to an incident field with a real wavevector (that is, a physically
realizable incident field) under normal incidence. As demonstrated in Figure 4.2, even
in this case fast convergence takes place. For example, the use of windows of sizes
A =8\ A=16)\, and A = 32\ suffices to produce solutions with errors of the order
of 107368 107518 and 107704, respectively, on a certain representative segment in
space (details are presented in the figure caption).

4.3. Obstacle-free problem under point-source incidence: Numerical
illustrations. To conclude this section we study the errors introduced by the WGF
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F1G. 4.2. Logarithm of the field errors logyq |ug(a) — ug’ (z)| obtained by means of the WGF
method for the problem of scattering of uig‘c, & =0, defined in (4.1) for y = (0,1), by a dielectric
plane for various window sizes A = 8\ (left), 16\ (middle) and 32\ (right) and wavenumbers
k1 =20 and kg =40 (A = 2I1/k1). As in Figure 4.1, ug’ is defined in (4.5), and ug¢ equals the exact

reflected field Cg(Te — 1) et€%1~ 122 4 the upper half plane {z2 > 0} and the exact transmitted
field C¢Ty eir1+72(22 in the lower half-plane {z2 < 0}. The absolute errors on the segment
{(z1,22) : =1 < x1 < 1 and x2 = 4}, for example, are 107368 107518 and 107704 for A = 8X,
A = 16X, and A = 32X, respectively, thus demonstrating superalgebraic convergence. Note that given
the highly oscillatory character of the error, in both the horizontal direction and, at a much lower
frequency, the vertical direction, it is difficult to obtain a clean (nonoscillatory) convergence pattern
at any given point in space.

method in the solution of the problem of scattering of a point-source incident field
(where the source is located at a point y = (y1,y2) with y2 > 0) by a flat dielectric half-
plane in the region {—cA < z; < cA}. The resulting integral equation formulation
for this problem is once again

(4.11) E¢, + Tule,] = ¢y on TI,

where the right-hand side is now given by

T
inc 1 0 1
Sy = L[ 0al a0l ||
According to well-known formula

—vjlwe—y2|
(4.12) H(l)(k @ —y)) = — /e—ezé(zl—yl)dg

4 4r o7

(where £ = (—00,00)), the field produced by a point source can be expressed as a
superposition of incident fields ufgnc as defined in (4.1). But, to obtain a superposi-
tion which includes favorable plane-waves only (that is, plane-waves for which, like
the ones considered in section 4.1 and above in the present section, the WGF method
gives rise to superalgebraic convergence), we resort to Cauchy’s theorem to deform the
integration contour in the integral (4.12) so that the modified integration contour in
the complex plane, denoted by C (see Figure 4.3), avoids the singular points £ = +ko
and £ = +k; at which the WGF method fails. According to section 4.2, for each & € C
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Im¢

—ky -k

Reg

F1a. 4.3. Complez integration path utilized in the evaluation of the integral in (4.12).

8 8

Fic. 4.4. Base-10 logarithm of the absolute error (see Remark 5.1) in the WGF-computed
reflected and transmitted fields for the problem of scattering of a point-source incidence field by a
dielectric plane.

the WGF method approximates, with superalgebraically small errors, the field result-
ing from the scattering of uig“:. Thus, in view of (4.12) with £ = C, we see that the
solution of the integral equation (4.11) for point source illumination is also approx-
imated with superalgebraically small errors throughout the interval [—cA, cA]—as
illustrated in Figure 4.4.

Remark 4.2. The approximation properties demonstrated above in this section
for incident fields given by point sources can easily be extended to illuminations given
by surface distributions of point sources of the form

(4.13) e () = i /S HO (k1 — y))o(y) dsy,

where S is a bounded curve contained in the upper half-plane {zy > 0} (Figure 4.5)
and o denotes a given surface density. Indeed, letting ¢™¢ = [@!"¢|r, 04" /On|n]T,
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the solutions ¢ = ¢(x) and ¢* = ¢ (x) of the exact and windowed integral equations

(4.14) E¢+Tu[p] = ¢™ on II
and
(4.15) E¢Y 4+ T [Wag®”] = ¢™ on Iy

are given by integrals of the form

/ 1y ()0 (y) dsy,
S

where n,, = ¢,, (vesp., n,, = ¢,,) is the exact solution (resp., the WGF approximation
of the solution) of (4.11). Since, in view of the discussion presented above in this sec-
tion, ¢, is a superalgebraically uniformly accurate approximation of the correspond-
ing solution ¢,, throughout the region [—cA, cAJ for all point sources y € S, it follows
that ¢" must itself be a superalgebraically accurate approximation of ¢ within the
region [—cA, cA]. Similarly, the use of the representation formula (4.5) with densities
@ produces the associated reflected and transmitted fields with superalgebraically
small errors within the strip [—cA4, cA] x R and, in particular, throughout the curve
S. An entirely analogous discussion applies, finally, to illumination by incident fields
given by dipole distributions of the form

(4.16) e /—H D (sl — y))o(y) dsy.

The contents of this remark play an important role in the multiple-scattering error
analysis presented in section 4.4.

4.4. Formal error analysis via multiple scattering. To place the descriptive
discussions in section 3 within a more mathematically precise framework, this section
presents a formal error analysis based on multiple-scattering iterations. For clarity
and simplicity we limit the discussion in this section to geometrical configurations
in which a defect, in the form of a dielectric obstacle bounded by the curve S, lies
completely above the dielectric planar interface II—as depicted in Figure 4.5.

o g

kq

ko

Fi1G. 4.5. Description of the domain consisting of an obstacle above a dielectric half-plane uti-
lized in the multiple-scattering discussion in section 4.4. For notational simplicity the wavenumber
within S was selected to equal the “ground” wavenumber ka. But this is otherwise an absolutely
unessential assumption.

The specifics in the context of the configuration in Figure 4.5 are as follows.
Upon illumination of such a structure by a plane-wave u"¢(x) = et*1(z1cosatzzsina)
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and letting ¢i"® = [u™| 1y aumc/ﬁnhﬂ , P = [uinc|s,8ui"c/6n|5]T, the integral
equations (2.6) may be re-expressed as the equation system

(4.17a) E¢y + T [oy] = o8¢ + RY [pg] on I,

(4.17b) E¢g+Ts [pg] = ¢5° + Ry [¢py] on S

for the unknowns ¢g = [U2|S, OuQ/anLq} and ¢ = [u2|n, 8U2/an|H]T (whose com-
ponents are the values of the total field and its normal derivative at the boundaries
S and TI, respectively). Here the operators Ty and Ts are defined as in (2.7)-(2.8)
with I' = IT and I" = 5, respectively, and the operators Rg and Rﬁ are given by

— /g{gf (@, y)o1(y >—vG1<w,y>¢2<y>}dsy

(4.18) Rg[¢)(z) = , L well,
[ o) — v 52 e weata) | as,
[ {52 @ wionto) — vt oate) s,
(119) Rilglw)=| " oo Lzes.
[ {or@mont) v @ ot f s,

In order to estimate the errors that arise as the system (4.17) is solved by means of
the WGF method, we reformulate (4.17) in terms of the new unknowns ¢H = ¢n— q,’)H

on IT and a&s = ¢g f¢£ on S. Here, denoting by ug and uf the exact transmitted field
and the total field for the obstacle-free problem, respectively (see (A.1) in Appendix

A of the supplementary materials), we have set qbl’fl = [ug I, 8u£ /8n|H]T and ¢l =
[uf|s,8uf/8n|s]T Using the identities Eqﬁﬂ +Tn [¢ﬁ] ¢ on 11, RY [d)é] =0,
and RS [¢ﬁ] ¢ — ¢, which follow from Green’s theorem (using (A.12) and (A.2)
in Appendix A of the supplementary materials) and replacing ¢ = JSH + ¢ﬁ and

b = &S + c;Sé in (4.17a) and (4.17b), respectively, we obtain the following integral
equation system:

(4.20a) Ey + T {&H} — Rl [&S} on I,
(4.20b) Edg +Ts [55} — ¢l + RS [Jm] on S.

The multiple-scattering character of the problem embodied in (4.20) (or, equiva-
lently, (4.17)) can be elucidated by means of the formal Neumann series solution

b o 5 (n) s _ n
O | _ ¢ _ 0 (E+Tn) 'RY 0
SE Sl rm T Latyoe)

Clearly (2)%? ) 0, and ¢g0) is the solution of the integral equation

0 0
(4.21) ESY +Ts [qbg)] ¢! on S
The n > 0 terms in the series, in turn, satisfy the recurrence relation
(n) — ~(n—1
b {<E+Tn>1 0 Ho Rﬁ] o "
i 0" g Ry 0 ]| g |
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or, equivalently,

(4.22a) Eq?)(r?) +Tn [q}ﬁl)} = RY [&Sgﬂil)} on I,
(4.22b) E¢S” + Ts [&;1 - RS [&)(; *1)} on 8.

The corresponding “multiple-scattering” form of the windowed integral equa-
tions (3.4) for the configuration depicted in Figure 4.5, in turn, is given by the system

Evpyy + T [Watpy] = o1i° — Tu {(I - WA)Q%} + R§ [tpg] on I,

Etps +Ts [$s] = ¢85 + B, Watpu] + B [(I - Wa)ef)] on 5,
which, letting 17)H =Yy — qb{; on IT4 and 1715 =g — (;Sé on S, becomes
(4.23a) By + T [WAJ;H} = R [Tps} on T4,

(4.23b) Bt +Ts |vs| = oL + Ry [Wavy| on 5,

where IT4 = II N [—A, A]. Thus, comparison with (4.20) shows that, similarly, the

~ (0
multiple-scattering recursion for the windowed problem is initialized by 1/,'%) =0on

II4 and

~ (0 ~ (0
(4.24) EdS +Ts [0 = 0L on 8,
with n > 0 terms given by the solutions of the equations
~ (n) ~ ()] _ o [5.(m-1)
(425&) E¢H +T1'[ WA'(PH = RS ’l,[)s on HA7

(4.25b) EpY 4 Ty [{pg")] — RS [WAqZJ(r}L‘”] on &

Since (4.21) and (4.24) coincide, so do their solutions: the n = 0 approximation
produced by the WGF method, which is given by {/;g)), coincides with the exact
solution &g)) throughout S. Similarly, {pﬁ) - 0 coincides with the restriction of

~(0 ~(1
(]5%) =0 to IT4. And, the same is true about the n = 1 approximation on S: 1/)59) =

~(1
gbg) = 0. But the n = 1 approximation on II as well as all subsequent approximations

do not coincide on either IT or S. As shown in what follows, however, the WGF iterates

Q}(Sn) approximate the exact iterates (}55:) with superalgebraic accuracy.

In order to establish this approximation result (and thus complete our multiple-
scattering error analysis) we rely on the fact that the right-hand sides in (4.22a),
(4.25a), (4.22b), and (4.25b) can be interpreted as scattered fields by either S or II
resulting from illumination by fields scattered in previous stages of the multi-scattering
recurrence. For example, the right-hand side in (4.22a) (resp., (4.25a)) coincides with
the values on II (resp., II4) of the fields scattered by S under illumination given
by RZ [&7(;72)] (resp., R [WA'&%*Z)]). Similarly, the right-hand side in (4.22b)
(resp., (4.25b)) coincides with the values on S of the fields scattered by IT (resp., I14)

under illumination given by Rg [;bfgn_m] (resp., Rg [1:[)5:_2)]).
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On the strength of this observation, then, let us consider once again the n = 1

terms &)g ) and 12}%1 ) (on IT4) which, as indicated above, do not exactly coincide. Not-
ing that the incident fields in (4.22a) and (4.25a) are given by identical distributions

of point sources along S, however, Remark 4.2 tells us that the WGF solution 1,~bl(-[1 )

~(1
approximates QSEI) with superalgebraically small errors.
Continuing with the multiple-scattering process let us now consider the n = 2
instance of (4.22b) and (4.25b). Relying once again on Remark 4.2, the established

superalgebraic convergence of 1,~bl(-[1 ) to (}5;[1 ) throughout [—cA, cA] implies, in turn, that
Rﬁ [WAng )] approximates Rﬁ [&)g )] with superalgebraically small errors as well, and
thus the stability of the integral equation posed on S permits us to conclude that 1:[);2)
approximates &5(52) with superalgebraically small errors. In view of (4.22a) and (4.25a),

on the other hand, we note that ég) = 0on Il and 17;5—12) = 0 on II 4, as both equations
have null right-hand sides.

Clearly, this argument can be carried out to all orders in perturbation theory,
allowing us to conclude, within this formal framework, that, at least for the configu-
ration depicted in Figure 4.5, the overall WGF method produces scattering solutions
with superalgebraically small errors over the strip [—cA, cA] xR (but see Remark 4.1).
As indicated in sections 3.5 and 3.6, once such solutions are available, equally accu-
rate solutions can easily be obtained over prescribed regions in space as well as in the
far-field regions.

5. Numerical experiments. This section illustrates the proposed methodology
with a variety of numerical results concerning dielectric media, including relevant
efficiency and accuracy studies as well as generic application examples. For the sake
of definiteness, test cases were only considered for dielectric materials (real ko values),
but similar performance was observed for absorptive materials (complex ko values)—
including values for materials with low (resp., high) conductivity, such as limestone
and saturated sand (resp., silt and clay).

Remark 5.1. In most cases considered in this paper, errors are reported as “rel-
ative errors in the L°° norm,” or just “relative errors,” for short, but absolute L
errors are used as well. The “absolute error” over a given region is defined here as the
maximum value of the error over every numerical grid point in that region. The rela-
tive error over a region, on the other hand, is defined as the quotient of the absolute
error over the region by the maximum value of the solution over the region.

Our first example demonstrates the efficiency of the new approach by comparing
the computing times required to create the systems of equations (which is the oper-
ation that dominates the computing time in all of the examples considered) for the
WGF method (3.7) and the LGF method [26, equation (7)]. To do this we consider
once again the configuration associated with Figure 3.4, i.e., the problem of scattering
by a semicircular bump defect on a dielectric plane under TE-polarization. Figure 5.1
displays the computing times for various wavenumbers k; and ky = 2k; for each
method. The discretization density was held proportional to k; to properly resolve
the oscillatory character of the integrands, and, in order to easily allow for pointwise
comparison of the corresponding integral-density solutions, the same discretization
was used for both methods on the semicircular bump. For each run the WGF pa-
rameters were optimized to produce ¢ with a relative error which did not exceed
5 x 107° on the bump surface. Similarly, the key parameters in the implementation
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103+ ——LGF method |4
—— WGF method
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Fic. 5.1. Computing times required to form the linear systems of equations resulting from the
Nystrom discretization of the relevant integral equations for the WGF method (red line) and the
LGF method [26] (blue line), as functions of the wavenumber k1. The wavenumber ko was taken to
equal 2k1. Comparable ratios in computing times were obtained in cases in which complex ko values
(k2 = wy/(e2 + io2/w)po ) were assumed, with either large or small values of the conductivity o—
including values for materials such as limestone, saturated sand, silt, and clay. Color is available
online only.

Now e U N o ©

Fic. 5.2. City-like geometry and windowing function used. The windowing function w4 was
vertically stretched by a factor of 8 for visualization purposes.

of the LGF method (including the parameters associated with the numerical evalu-
ation of the Sommerfeld integrals) were adjusted to yield the fastest computation of
the corresponding integral density solution within a relative error of 5 x 107°. Note
that the data points around k; = 87 = 25.1 in Figure 5.1 (which is the last data
point presented for the LGF method) shows that, for such frequencies, the WGF is
approximately three orders of magnitude faster than the LGF method [26].

The problem of scattering by the city-like structure depicted in Figure 5.2 is
considered next. Figure 5.2 also displays the window function utilized in this ex-
ample. In contrast with the results presented previously in this paper, the case of
TM-polarization was considered for this test. Table 5.1 reports the computing times
required to form the relevant system matrices for both the WGF method and the
LGF method. Both solvers were optimized to produce a absolute error of 5 x 1072 in
the solutions of the integral equation, and the same computational grids were utilized
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to discretize the buildings for both methods.

Table 5.1 compares the computing times required by the WGF method and the
LGF method for two values of ky. In particular, we note not only that the new method
is much faster than the previous approach, but also that the speed-up factor grows: a
speed-up factor in the hundreds for the value ko = 27 is doubled as ks is itself doubled
to the value ko = 4w. Additionally, application of the LGF method in this context
requires the use of fictitious curves underneath each building [26], each one of which
(curves) itself must be discretized, while the WGF method requires discretization
of the ground between the buildings and in the region where the windowing takes
place. In the present case the LGF method produced a system of 2384 unknowns,
while the WGF method produced a system of nearly identical size: 2406 unknowns. At
higher frequencies, the WGF method requires fewer unknowns than the LGF method,
since, as demonstrated in Table 5.2, at higher frequencies the width of the windowing
function can be decreased while maintaining accuracy.

TABLE 5.1

Computing times required by the LGF and WGF methods to produce integral equation solutions
with an accuracy better than 5x 1073 for the city-like geometry displayed in Figure 5.2. We note that
the LGF computing times for this problem are significantly larger than those considered in Figure 5.1
for similar wavenumbers. Such large costs arise in the present problem from the relatively large
number of discretization points that need to be used near the plane y = 0 to resolve the solution’s
corner singularity and from the high cost required by the associated Sommerfeld integral evaluation
at such points.

k1 ko LGF time | WGF time | ratio

s 2 588 s. 3.07 s. 192

T | 4w 3579 s. 9.10 s. 393
TABLE 5.2

Extent of the windowed region required by the WGF method (3.7) to maintain an accuracy of
5 x 10~° in the approzimation of the surface fields for the problem of scattering from a semicircular
bump of unit radius with various wavenumbers. The angle of incidence was taken to equal « = —m /8.

k1 ko A

™ 27 6.5
27 A7 3.5
4 81 1.75
8r | 167 | 1.1875

In our last numerical example we consider an obstacle over a rough ground which
contains indentations below ground level. Figure 5.3 displays the geometry under
consideration, together with a selection of window function (which yields an relative
error of approximately 1% in the integral equation solution) and corresponding near
fields under TE-polarized plane-wave illumination with incidence angle & = —7/8 and
with k1 = 27 and ko = 47. As demonstrated in Figure 5.4, superalgebraic convergence
is once again observed as A/\ grows.
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N W b O O N

Fi1G. 5.3. Obstacle over a rough ground containing indentations below ground level and associ-
ated near fields. Interestingly, the rather narrow window function used (which was scaled vertically
in this image for visual clarity) is wide enough to produce a relative error smaller than 1% in the
integral equation solution.

107 g
1072
- —
o o
g 2 a3
3 g 10
[ [}
= =
= = 10
Q [}
Q'i +71’/4 Qi +7r/4
10° | ——7/32 10° | ——7/32
——1/256 k ——7/256 k
105 : : : : 10 : : : : :
0.125 0.5 1 2 4 6 0 1 2 3 4 5 6
A/N A/X

F1G. 5.4. Relative errors in the integral densities resulting from numerical solution of (3.7) for
the structure depicted in Figure 5.3 by means of the full WGF method, for various window sizes
and angles of incidence—including extremely shallow incidences. Left: log-log scale. Right: semi-log
scale. Once again we see that the WGF method computes integral densities with superalgebraically
high accuracy uniformly for all angles of incidence.
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