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POINTWISE BEST APPROXIMATION RESULTS FOR GALERKIN FINITEE LEMENT SOLUTIONS
OF PARABOLIC PROBLEMS

DMITRIY LEYKEKHMAN T AND BORIS VEXLER

Abstract. In this paper we establish a best approximation propertylhf fliscrete Galerkin finite element solutions of secondeor
parabolic problems on convex polygonal and polyhedral dosnia the L°° norm. The discretization method uses of continuous Lagrang
finite elements in space and discontinuous Galerkin methotisie of an arbitrary order. The method of proof differsrfraghe established
fully discrete error estimate techniques and for the firsetiallows to obtain such results in three space dimensidnssek elliptic results,
discrete resolvent estimates in weighted norms, and tlveetiésmaximal parabolic regularity for discontinuous @dlemethods established
by the authors in [16]. In addition, the proof does not regjainy relationship between spatial mesh sizes and time $tépalso establish an
interior best approximation property that shows a morellbehavior of the error at a given point.
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1. Introduction. Let Q be a convex polygonal/polyhedral domainsiff, N = 2,3 andl = (0,7). We
consider the second order parabolic problem

Owu(t,x) — Au(t,z) = f(t,z), (t,z) €I xQ,
u(t,z) =0, (t,x) € I x 09, (1.1)
u(0, ) = up(x), x € .

For the purpose of this paper we assume thandu, are such that the unique solutianof (I.1) fulfills v €
C(I x Q)N C(I; HL(Q)). To achieve this, we can for example assume that the right-blef € L" (I x )
withr > & + 1 anduy € C(Q) N H (), cf., e.g.,[42, Lemma 7.12], but other assumptions areipless

To discretize the problem we use continuous Lagrange fildiments in space and discontinuous Galerkin
methods in time. The precise description of the method isrgin Sectiod 2. Our main goal in this paper is
to establish global and interior space-time pointwise hpgiroximation type results for the fully discrete error,
namely,

T
||u - Ukh”Loo([XQ) S C|1n h| In E”’u - XHLoo(IXQ), (12)

whereuy;, denotes the fully discrete solution agds an arbitrary element of the finite dimensional spaces
the spatial mesh parameter ahdtands for the maximal time step. Such results have onlyalaissumptions
on the problem data and are desirable in many applicationsxample in optimal control problems governed by
parabolic equations.

Most of the work on pointwise error estimates for paraboticbems were devoted to establishing optimal
convergence rates for the error between the exact solufigrand the semidiscrete solutiad (¢) that is contin-
uous in time,[[3[ 4, 5,16, 20, 21, P3,124,130) 82,133, 41]. The dpproximation results for the semidiscrete error
u(t) — up(t) in L(I x ) norm can be found, for example, in[14,32].

Results on fully discrete pointwise error estimates arelmess abundant. Currently, there are several tech-
nigues available for obtaining fully discrete error estiesa One popular technique splits the fully discrete error
into two parts as — ugn, = (u—wup)+ (up —uky). The first part of the error is estimated by the semidiscrete e
estimates and the second part of the error is treated by tessngts from rational approximation of analytic semi-
groups in Banach spaces. Thus, for example, optimal coameryrates for backward Euler and Crank-Nicolson
methods were obtained in [33] (see alsa [40, Sec. 9] fornreat of general Padé schemes). A similar technique
uses a different splittingy — uxp, = (u — Rpu) + (Rpu — ugp), WhereRy, is the Ritz projection. In this approach
the first part of the error is treated by elliptic results ahne second part of the error satisfies a certain parabolic
equation with the right-hand side involvirlg — Rju), which again can be treated by results from rational ap-
proximation of analytic semigroups in Banach spatces [16% @sol[4D, Thm. 8.6]). For smooth solutions, both
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approaches above produce error estimates with optimakcgence rates. However, in many applications these
two techniques require unreasonable assumptions on thgatatvell as on the regularity of the solution. As a
result, the best approximation propeffy {1.2) can not bivelérexcept for the one-dimensional cése [43].

Another approach, that is more direct, is based on the wedpbtetchnique. FolN = 2 and low order time
schemes, this technique works rather well and allows onét@imsharp results. Thus, in/[9] (see alsal[25, Thm.
4.1]) optimal convergence error estimates of the form

1
tn ) 2
Jutta) = w6} ey < Cltnl (105 ) o (K910Pul o0 + 2Dl 01 0).

for piecewise constant and piecewise linear time dis@#gtins, i.e.q = 1 andq = 2, correspondingly, were
derived on convex polygonal domains (the resultin [9] atyuzolds even on mildly graded meshes). The best
approximation property of the fori (1.2) was derived_in/ [28]convex polygonal domains without any unnatural
smoothness requirements. However, fér= 3, the weighted technique is much more cumbersome and as of
today, there is no three dimensional pointwise best appration results or optimal error estimates even for
backward Euler method.

In this paper for the time discretization we consider digitnrous Galerkin (dG) methods of an arbitrary
order. These methods were introduced to parabolic probierfi?2] and deeply analyzed in_[L1]. There are a
number of important properties that make dG schemes ateair temporal discretization of parabolic equa-
tions. For example, such schemes allow for a priori erranmeges of optimal order with respect to discretization
parameters, such as the size of time steps, as well as wjikae® the regularity requirements for the solution
[8.[9]. Different systematic approaches for a posterianeestimation and adaptivity developed for finite element
discretizations can be adapted for dG temporal discréatizatf parabolic equations, see, e. g../[37, 38]. Since the
trial space allows for discontinuities at the time nodes the of different spatial discretizations for each timp ste
can be directly incorporated into the discrete formulatsee, e. g./[37]. Compared to the continuous Galerkin
methods, dG schemes are not only A-stable but also stronglaile [13]. An efficient and easy to implement
approach that avoids complex coefficients, which arise énetfpuations obtained by a direct decoupling for high
order dG schemes, was developed.in [29].

Our approach in establishing (1L.2) for dG methods is morkerspirit of the work of Palencia[26] and does
not require semidiscrete error estimates or even any qulittirsg. Moreover, it does not require any relationship
between the spatial mesh siz&and the maximal time stefp which is essential for problems on graded meshes.

Our approach is based on two main tools: The newly estaldidiserete maximal parabolic regularity re-
sults [16] for discontinuous Galerkin time schemes andrdtsaesolvent estimates of the following form:

C

[(z 4+ An) " Xl Lo (o) < E

||X||LOO(Q), forz € (C\E,y, forall y € Vi, = V), + iV, (1.3)

whereV}, is the space of continuous Lagrange finite elements and
Yy ={zeCllarg(z)| <~}, (1.4)

for somey € (0, §) and the constan®' that may contairln | but must be independent afotherwise. Such a
discrete resolvent estimate can be shown directly|[L, 2ot By showing stability and smoothing results of the
semidiscrete solution operatéy, (t) = e~“»* [20,[32]. The first approach is preferable since it estabi{H.3)
for an arbitraryy € (0, %), while the second approach via theorem of Hille (see, eagy 27], Thm. 2.5.2) only
guarantees existence of some (0, 7).

In this paper we also establish a local version of the besiospation result[{12). This result (cf. Theorem
[2.2) shows more local behavior of the error at a fixed point.éfigptic problems such estimates are well known
(cf. [34,[36,44]), but for parabolic problems the only résut are aware of is in_[28], which is stated for convex
polygonal domains without a proof and [15, 18] that are glabdme. To obtain this result, in addition to the
stability of the Ritz projection in.>° () norm and the resolvent estimafe {1.3), we need the followieighted
resolvent estimate

Cllnh|
2|

o (= 4 M) |z < lo* Xz, forzeC\%,, foralxeVi, — (15)

with o(z) = /|z — z¢[2 + K2h2. This estimate is established in Theofleni 4.1. The estirfzi is somewhat
stronger than the corresponding resolvent estimatethnorm, meaning thaf(1.3) follows rather easily from
(1.8) (modulo logarithmic terrfin A[), but not vice versa.
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The rest of the paper is organized as follows. In the nexi@eeate describe the discretization method and
state our main results. In Sectibh 3, we review some essefitjatic results in weighted norms. Sectibh 4 is
devoted to establishing resolvent estimate in weightechsotn Sectiofib, we review some results from discrete
maximal parabolic regularity. Finally, in Sectidds 6 ahevé,give proofs of global and interior best approximation
properties of the fully discrete solution.

2. Discretization and statement of main results.To introduce the time discontinuous Galerkin discretiza-
tion for the problem, we partition the interv@dl, 7] into subintervald,,, = (¢,,,—1, t] of lengthk,,, = t,,, —t,,—1,
where0 = ty < t; < -+ < ty—1 < tyy = T. The maximal and minimal time steps are denoted by
k = maxy, k,, and ky;, = min,, k,,, respectively. We impose the following conditions on thadimesh
(asin [16] or [22]):

(i) There are constants 8 > 0 independent ok such that

kmin Z Ck/ﬁ
(i) There is a constant > 0 independent ok such thatforalin =1,2,..., M — 1

Kk

-1
ko <
km+1

< K.

(iii) Itholds k < 1T
The semidiscrete spacé of piecewise polynomial functions in time is defined by

X = {ux € LA(I; Hy () | uklr,, € Py(Hy(Q)), m=1,2,...,M },
whereP, (V) is the space of polynomial functions of degeeim time with values in a Banach spate We will

employ the following notation for functions i/

F = tm ) m = li tm — €), m = t =, 2.1
=l o). = i = 2), [ =k - i, 2.1)

Next we define the following bilinear form

M M
B(u,p) = Y (0t} 1,10 + (Vu, Vo) rxa + Y ([ulm-1, 051 )a + (o8 o, (2.2)
m=2

m=1
where(-, -)q and(-, -)1,, xq are the usual.? space and space-time inner-produ¢ts);, «q is the duality product
betweenL?(1,,; H=*(Q)) and L?(I,,,; H}(2)). We note, that the first sum vanishes fore X?. The dGg)
semidiscrete (in time) approximatian, € X! of (1) is defined as
Bl(uk, ox) = (f,01)1x0 + (u0, 1 0)a  forall ¢ € X} (2.3)
Rearranging the terms in(2.2), we obtain an equivalentljdxaression ofB:

M M-1

B(u,p) = = Y (w,09) 1, x0 + (Vu, Vo) 1xa = Y (U, [Plm)a + (U o3p)0- (2.4)

m=1 m=1

Next we define the fully discrete approximation. Forc (0, hol; ho > 0, let 7 denote a quasi-uniform
triangulation ofQ2 with mesh sizeh, i.e., 7 = {7} is a partition ofQ into cells (triangles or tetrahedrons)of
diameterh, such that folh = max, h,,

diam(r) < h < C|T|%, VreT.

Let V, be the set of all functions i/} () that are polynomials of degreec N on eachr, i.e. V}, is the usual
space of conforming finite elements. To obtain the fully dise approximation we consider the space-time finite
element space

XZ:ZZ{UkhELQ(I;Vh) ]vkhhmepq(vh), m:1,2,...,M}, q>0, r>1. (2.5)
We define a fully discreteG(r)dG/(q) solutionuy, € X}, by

B(ukn, prn) = (f, orn)rxa + (uo, 01;,)a  forall g, € X (2.6)
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2.1. Main results. Now we state our main results.

2.1.1. Global pointwise best approximation error estimate. The first result shows best approximation
property ofcG(r)dG(q) Galerkin solution inL.>° (I x Q) norm. ForN = 2 andq = 0, » = 1, the result can be
found in [28] for convex polygonal domains. A similar ressiiowing optimal error estimate is established in [9],
Thm. 1.2. We are not aware of any pointwise best approximayioe results fotV = 3.

THEOREM 2.1 (Global best approximation)et u anduy;, satisfy(L.J)and (2.8) respectively. Then, there
exists a constan® independent of andh such that

T
u—Uu 0o <Cln—|lnh| inf |lu-— 0o .
[ khllz (IxQ) = kl |X6X2:2|| Xl (IxQ)

The proof of this theorem is given in Sectigh 6.

2.1.2. Interior pointwise best approximation error estimaes. For the error at the point, we can obtain
a sharper result, that shows more localized behavior of ttor at a fixed point. For elliptic problems similar
results were obtained ih [84,136]. We denoteRy= B,(z) the ball of radiusl centered ak.

THEOREM 2.2 (Interior best approximation)Let v and uy, satisfy (I.1) and (2.8), respectively and let
d > 4h. Lett € I,,, with somen € {1,2,..., M} and By CC Q, then there exists a constaftindependent of
h, k, andd such that

- T .
|(u — ukh)(t,x0)| S Cln E'ln h| N 1nfq’r{||u — XHLOC((Oytm)XBd(:EO))

€EXpih
_ N
+d” > (||U — Xl ((0,t,):22(2)) + IV (u — X)||Loo((o,tm);1:2(sz))) }

The proof of this theorem is given in Sectidn 7.

3. Elliptic estimates in weighted norms. In this section we collect some estimates for the finite elgme
discretization of elliptic problems in weighted norms omeex polyhedral domains mainly taken from [17].
These results will be used in the following sections withia proofs of Theorefn 2.1 and Theorem] 2.2.

Letzy € 2 be afixed (but arbitrary) point. Associated with this poirtintroduce a smoothed Delta function
[36, Appendix], which we will denote by = SIO. This function is supported in one cell, which is denoted-hy
and satisfies

(X7 6)7'% = X(xO)v Vx € 7)7'(7-7;0)- (31)
In addition we also have
Sllwewiy <Ch ™" NI=3) 1 <p<oo, s=0,1. 3.2
()

Thus in particulaf|d]| 11y < C, [|8]lz2) < Ch™%, and||d]| z=) < Ch~N. Next we introduce a weight
function

o(z) = |z — x0|? + K2h2, (3.3)

whereK > ( is a sufficiently large constant. One can easily checkdhsttisfies the following properties:

lo~% || 12y < C|nh|?, (3.42)
|[Vo| < C, (3.4b)

V20| < Clo™| (3.4c)
maxo < Cmein o, VT. (3.4d)

For the finite element spadé, we will utilize the L? projectionP;, : L?*(Q2) — V}, defined by

(Prv,x)a = (v,X)e, Vx € Vi, (3.5)
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the Ritz projection;,: Hi(Q) — Vj, defined by
(VRLv,VXx)a = (Vu,VX)a, VYx € W, (3.6)

and the usual nodal interpolatian: Co(2) — V,,. Moreover we introduce the discrete Laplace operator
Ap: Vi, — V, defined by

(7Ahvh,)()g = (Vvh, VX)Q, VX e V. (3.7)

The following lemma is a superapproximation result in wégghnorms.
LeEmMA 3.1 (Lemma 2.3 in[17]) Letv;, € V},. Then the following estimates hold for anys € R and K
large enough:

||O'Q(Id 7'L‘h)(O'BfUh)HL2(Q) + h”O’aV(Id 7'L‘h)(O'BfUh)||L2(Q) S ChHO’aJrﬁilv}L”L%Q), (38)
||O'a(1d 7Ph)(O—BfUh)HL2(Q) + h”O’aV(Id 7Ph)(0'ﬂvh)||L2(Q) S Ch”O’a-’_B_thHLZ(Q). (39)

The next lemma describes a connection between the regeddbielta functionad and the weight.
LEMMA 3.2. There holds

||U%SHL2(Q) + hHO’%VgH[;(Q) + ||U%Phg||L2(Q) <C. (310)

The proof of the above lemma fo¥ = 2, for example, can be found inl[9] and fof = 3 in [17], Lemma 2.4.
The next result shows that the Ritz projection is almostlstabl > norm.
LEMMA 3.3.There exists a constant > 0 independent oh, such that for any € L>°(Q) N Hj (),

|Rutll ey < Clin bl o]z (o).

For smooth domains such result was established in [35],dlygonal domains ir [31], and for convex polyhedral
domains in[[17, Thm. 3.1]. In the case of smooth domains ocdowex polygonal domains the logarithmic factor
can be removed for higher than piecewise linear order elesnea. » > 2. The question of log-free stability
result for convex polyhedral domains is still open.

Next lemma is rather peculiar and can be thought as weighégi@g@do-Nirenberg interpolation inequality.
The proofis in[[17], Lemma 2.5.

LEMMA 3.4. Let N = 3. There exists a constant independent ol andh such that for anyf € H}(Q),
anya, 8 € Rwitha > —2 andanyl < p < oo, % + i =1 holds:

lo® fll 720y < Cllo® ™" fllzo@ o PV £l Lo )

provided||c® 7 f|| s () and|lo* TV f[| ., ) are bounded.

4. Weighted resolvent estimatesin this section we will prove weighted resolvent estimateswo and
three space dimensions. We will require such estimatesriged@moothing type estimates in the weighted norms
in Section’b. Since in this section (only) we will be dealinghacomplex valued function spaces, we need to
modify the definition of thel.2-inner product as

(u,v)q = /Q u(x)v(x) de,

whereu is the complex conjugate efand the finite element space¥s = Vj, + iV},.
In the continuous case for Lipschitz domains the followiegult was shown in [39]: For any< (0, %) there
exists a constan® independent of such that

I(z+ A)_1U||LP(Q) < lvllLe), 2z€C\E,, 1<p<oo, welLP(Q), (4.2

1+ |z
wherel,, is defined by

Y, ={zeC|largz| <~v}. (4.2)
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In the finite element setting, it is also known that for any (0, 7) there exists a constagt independent of.
andz such that

1z + An) ey < %MHX“LOO(Q), forzeC\%,, forallyeV,. (4.3)
For smooth domains such result is establishedlin [2] anddovex polyhedral domains with a constant containing
[In 2| in [17]. In [20] the above resolvent result is establishettfanvex polyhedral domains for somes (0, §),
but with a constant’ independent of.
Our goal in this section is to establish the following resuitestimate in the weighted norm.
THEOREM4.1. For anyy € (0, §), there exists a constant independent of and z such that

Cllnh|

N
2] o2 x||r2(q), forzeC\x,,

lo® (2 + An) "Xl z2() <

for all x € V3, whereX,, is defined inf4.2).
4.1. Proof of Theoren{4.] for’N = 2. For an arbitraryy € V;, we define

up = (z+ Ap) 7y,
or equivalently
2(un, ) — (Vun, Vo) = (x,9), Vo € V. (4.4)
In this section the norrj - || will stand for || - || 12(q). To estimaté|ouy|| we consider the expression
loVun||? = (V(c?un), Vur) — 2(6Vaouy, Vuy). (4.5)
By takingy = — P, (0%uy,) in (@.4) and adding it td (415), we obtain
— z|loun||® + |oVun||* = F, (4.6)
where
F=F +F+ Fy = —(0%up, x) + (V(c?up — Pu(c?up)), Vup) — 2(cVaun, Vuy).
Sincey < |arg z| < 7, this equation is of the form
e“a+b=f, with a,b>0 0<]|a/<7—7,

by multiplying it by e~% and taking real parts, we have

atb< (cos(2)) 7 1s1< (sin (D)) 1A= el

From [4.6) we therefore conclude
|z|[|loun||? + [[oVun|® < Cy|F|, forze C\X,.
Using the Cauchy-Schwarz inequality and the arithmetimrgetric mean inequality we obtain,
1B = [(0%un, X)| < llounllllox]| < CCy 27 lox]|* + ﬁl\ouhII?
To estimateF, we use LemmB3l1, the Cauchy-Schwarz and the arithmetiorgieic mean inequalities,
B < [lo™ 'V (0% un — Pu(o?un))|[loVun| < ﬁllowhl2 +CC [lun]*.

Finally, using the properties of, we obtain

1
|Fs| < CllunlllloVun|l < EIIUVMH2 + CC, [fun|*.
v
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Combining estimates faFs and kicking back, we obtain
|lllownl® + loVun|* < C (I loxl|* + lunl®) - (4.7)
Thus, in order to establish the desired weighted resohaimhate, we need to show
[unll* < Cllnhf?[2[~H|ox]f. (4.8)
To accomplish that, testinf (4.4) with = w;, we obtain similarly as above
[2lllun ]l + [ Vun|® < Cy|fl, for 2z € C\ 3y,
wheref = (x, up). Using the discrete Sobolev inequality (se€ [33, Lemma)1.1]
Jonll =y < Clh|2 | Vol r2),  Yon € Vi,
and using the property of (3.44d), we obtain

lzl[unl? + IVun|® < Cyllox|L2@llo ™ unll L2 @)

< Gy lloxllzz@ o ez lunll Lo @)
< Cymh|llox|z [ Vunl L2

1
< kP lox|l7z ) + 5 I1VurlZaq)-
( 9 )

Kicking back%||VuhH%2(Q), we establish{4]8) and hence Theofem 4.1 in the casdé of2.

4.2. Proof of Theoren{4.1 fortV = 3. The three dimensional case is more involved and we requineso
auxiliary results. For a given poinf) € ), we introduce the adjoint regularized Green'’s funciios= G*°(x, )

by
G=G*(x,z)=(2+A)71
and its discrete analag, = G;°(z, z2) € V;, by
Ghp =Gy (2,7) = (Z+ Ap) "1 Py0,
which we can write in the weak form as

2(p,Gn) — (Vo,VGp) = (¢,9), Yo € V. (4.9)

From [17] we have the following result.
LEMMA 4.2 ([17]). Let G}, € V}, be defined by4.9). There holds

|Gl L3y < Clnh|3.

LEMMA 4.3. Letw, € V), be the solution of
z(wn, ) = (Vwn, Vo) = (f,9), Yo eV,
for somef € L2 (). There exists a constafit > 0 such that

ol zoeoy < CImBRIALg

Proof. There holds

wh(l’o) = z(wh,Gh) - (th, VG}L) = (f, Gh).
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Hence,

lwa(zo)| = |(f, Gu)l < Il 3

L Gl

Applying Lemmd 4.2 we obtain the restt.
LEMMA 4.4.Letv, € V), be the solution of

z(vn, @) — (Vun, Vo) = (f, ), Yo eV,

andf € L'(Q). There exists a constadt > 0 such that

lonll sy < Cluhl3 | fll o)

Proof. We consider a dual solutian, € V;, defined by
z(p,wn) — (Vo, Vwn) = (p,vnlvn]), Ve € Vp.
There holds
lonllza) = 2(vn, wn) = (Von, Vwr) = (f,wn) < 1| flliollwnl s @)-
By Lemmd4.3B that also holds for the adjoint problem, we have
lwnllzo @) < Clinhf* [oalonlll g o) < CllnhlE[vn]7sq)-
Thus, we get
1
lonllZaay < Cluhls | fllzy@)llonllZaqy-

Canceling||vh|\%3(m completes the proofl
With these results we proceed with the proof of Thedrer 4. Vie= 3.
Proof. For an arbitrary € V;, we define

up = (2 + Ap) " 'x.
or equivalently
z2(un, 9) = (Vun, Vo) = (x,¢), Vo € Vp.

To estimaté|o2uy, || we consider the expression

o2 Vun|? = (V(oup), Vun) — 3(a>Vouy, Vuy,).
By takingy = — P, (c3uy,) in (4.10) and adding td (4.11), we obtain

—zlloun]]® + 0% Vus|* = F,
where
F =F + Fy+ Fy = —(Py(c®up), x) + (V(cPup — Pu(c®up)), Vup) — 3(0*Voup, Vuy).

Sincey < |arg z| < m, this equation is of the form

e“a+b=f, with a,b>0 0<]|a/<7—7,

by multiplying it bye*%“ and taking real parts, we have

atb (cos(2)) 1< (sin (D)) 1=l

(4.10)

(4.11)

(4.12)
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From [4.12) we therefore conclude
lzllloFup|? + |02 Vus||> < C,|F|, forzeC\3,.
Using the Cauchy-Schwarz inequality and the arithmetimrgetric mean inequality we obtain,
|2]

3 3 — 3 3
1| = [(0%un, )| < lo2un||lo? x| < OOzl lo2x* + 5= llo 2 unl*.
Yy

To estimateF, we use LemmBa3l1, the Cauchy-Schwarz and the arithmetiorgiizc mean inequalities,

_3 3 1 3 1

(Bl < [lo™ 3V (0%un = Pu(o®un)) o * Vunl| < 5510 Vun]|® + CCy o> un|*
v
Finally, using the properties of, we obtain
1 3 1 3 2 1 2
B3] < Cllobunlllo? Vunll < 25 lloF Vun | + OC, o un |
vy

Combining the estimates fdf, s and kicking back, we obtain

2llloFunl® + o Vunl < € Iz~ o X + b un?) (4.13)
Thus, in order to establish the desired weighted resoh&ihate, we need to show

o2 un® < Cllnhf[=~Ho? x|, (4.14)
To accomplish that, we consider the expression
—zllozup|? + |02 Vur||® = —z(un, oun) + (Vun, Vious)) — (Vup, Voup).
Testing [4.1D) withp = Py (ouy,) we obtain similarly as above
[#lloun]® + o2 Vun|* < G|, for zeC\Z,,
where
f=fi+ fa+ f3:=—=(Pnloun), x) + (V(oup — Pp(oun)), Vup) — (Voup, Vup).
Using the Cauchy-Schwarz inequality and the arithmetimagetric mean inequality, we obtain
[l = loun 0| < o~ Hunllloxll < 2o~ bunl® + Sl
To estimatef, we use Lemmp_3l1, the Cauchy-Schwarz and the arithmeticgieiz mean inequalities,
|2l < llo™ 2V (oun — Pu(oun))|lllo = V]| < ﬁno%vw + 0l 2

Finally, using the properties of, we obtain

|3 < Cllo™ Fun|llo® Vun | < ﬁw%vw +CCy o™ Fun.
Combining estimates fof!s and kicking back, we obtain
[2lllounll? + llod Vunl? < € (o™ unl® + ¥ xl1?) (4.15)
To estimate|o—2uy, | we use LemmB3l4 with = 8 = —1 andp = 3, to obtain

o~ Funll < Cllunllfoa IVenll (4.16)

3@
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Using Lemmd& 4}, we have
[unll L3y < Cln a3 |[xll L) < Clnhls]lo=2|[lo? x|| < Clnh|E o2 x|

To estimatd| Vuy|| , we proceed by the Holder inequality

L3

[Vunll, 3 g < Clln h[%[|o® Vup|| 12(q)- (4.17)

Thus, using[(4.35) and the above estimates, we have

1 1 3
2llloFunll? + o2 Vun |2 < € (lunll s | Vunll, 4 ) + o3 x11?)

< C (Imnllod unllllo? xl + lo¥x1?)
< Clnh?||o? x| + %HJ%VuhHQ.
Kicking back||o'2 Vuy, |2, we finally obtain
loun||* < ClinhPl2] o ? x|,

which shows[(4.14) and hence the theor&m.

5. Maximal parabolic and smoothing estimates.In this section we state some smoothing and stability
results for homogeneous and inhomogeneous problems thagatral in establishing our main results. Since we
apply the following results for different norms dn,, namely, forL?(Q2) and weighted.?(£2) norms, we state
them for a general norii-|||.

Let ||-[| be a norm or/, (extended in a straightforward way to a norméy) such that for some € (0, %)
the following resolvent estimate holds,

M,
1=+ an) 7 xlll < Tl forz e C\ L, (5.1)
for all x € V;,, whereX,, is defined in[(4.2) and the constal, is independent of.
This assumption is fuffilled foff-[| = ||-|zr(), 1 < p < oo, with a constant\/;, < C independent of,
see[[21], and foff|-|| = HU%'HLZ(Q) with M;, < C|ln k|, see Theorem 4.1.

5.1. Smoothing estimates for the homogeneous problem in Bach spaces.First, we consider the homo-
geneous heat equatidn(1.1), i.e. wjth= 0 and its discrete approximatian,, € X;", defined by

Bl(ukn, prn) = (w0, 93n0)  Veorn € X) (5.2)

The first result is a smoothing type estimate, seé [16, Tmedr&], cf. also[[10, Thmeorem 5.1] for the case of
the L2 norm.

LEmMMA 5.1 (Fully discrete homogeneous smoothing estimatedt ||-|| be a norm onV}, fulfilling the
resolvent estimats. ). Letuy, be the solution of5.2). Then, there exists a constafitindependent ot and i
such that

CMjy,

sup [|0surn (W) + sup [|Anurn @) + ko lfsn]m-1 ] < —— IPnuoll,
tel,, telm, m
form=1,2,..., M. Form = 1 the jump term is understood &s;]o = u;h o — Pruo.

For the proofs of Theorefn 2.1 and Theorenm 2.2, we will needdatitianal stability result, which is also
formulated for a general norijt || fulfilling (5.3).

LEMMA 5.2. Let||-|| be a norm or¥}, fulfilling the resolvent estimai&.1). Letuy,, be the solution of5.2).
Then there exists a constafitindependent of andh such that

M

T
S ([ Worusa ol + | Wweunlde-+ uaal-al) < O3y L Pl

m=1 Im, ITVL
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For m = 1 the jump term is understood &sx]o = u,jm — Pyuyp.
Proof. Using the above smoothing result, we have

M

3 < [ Nocusaollar-+ [ dwuna @l -+ [ummun)

m=1 m m

M
< Z K (sup l@pwren (£)] + sup Il Apugn ()| + kml|||[“"~’h]m1|“>
— €lm
M T
< CM, mz: t—m | Pruoll < CMp In—| Phuoll,

where in the last step we used thaf,_, *= < 0'In L
5.2. Discrete maximal parabolic estimates for the inhomogeeous problem in Banach spacesNow, we

consider the inhomogeneous heat equafion (1.1), with 0 and its discrete approximation,, € X,Z:,TL defined
by

Blugn, pxn) = (fsorn),  Veorn € X[ (5.3)

The following discrete maximal parabolic regularity reéssitaken from[[16, Theorem 14].

LemmA 5.3 (Discrete maximal parabolic regularity)et ||-||| be a norm orV, fulfilling the resolvent esti-
mate(G.J)and letl < s < co. Letuy, be a solution of(5.3). Then, there exists a constafitindependent of
andh such that

M % M % M %
(Z/f |||<9tUkh(t>lllsdt> + (Z/f |||Ahu;ah(t)lllsdt> + <Z Ko ||| o Tt ]om—1 | )
m=1 m m=1 m m=1

T ; :
<oy ([unsora) .

with obvious notation change in the casesef co. For m = 1 the jump term is understood &8, ]o = Uzh,o-

REMARK 5.4. As mentioned above the assumpt@®dl) is fulfilled for ||-| = ||| z»(q) and anyl < p < oo
with Mj, < C and for|||-|| = Ha%-HLz(Q) with M}, < C|lnh|. Therefore the results of Lemtals.1, Lenim& 5.2,
and LemmaX’]3 are fulfilled for these two choices of norms thigltorresponding constanid, .

6. Proof of Theorem[2.1. Let € (0,7] and letzy € Q be an arbitrary but fixed point. Without loss of
generality we assumiec (t,_1, 7). We consider two cases:= T andty;_; <t < T.

Case 1,t = T: To establish our result we will estimate,, (T, zo) by using a duality argument. First, we
defineg to be a solution to the following backward parabolic problem

78tg(t,z) - Ag(t,l‘) =0 (t,l‘) €lx Qv
g(t,x) =0, (t,x) €I x 09, (6.1)
g(T,x) = SZU, x €,

whered = 510 is the smoothed Dirac function introduced [n_{3.1). gL € X,’j:,: be the corresponding
cG(r)dG(g) solution defined by

B(okn, gkn) = orn(T,20)  Veorn € Xj,. (6.2)
Then using that cG{dG(q) method is consistent, we have

urn (T, x0) = B(ukn, gkn) = B(u, grn)
M M-1
=— Z w, Os i) 1., x2 + (Vu, Vgen) rxa — Z U, [gkn]m)o + (W(T), Gyp, ar)0 (6.3)
m=1

m=1

=J1+ Jo+ J3s+ Jy.
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Using the Holder inequality we have

M
Ji < Z Nl oo (1, x ) 1 Oegrn | L1 (1,501 (2))
m=1
Ny (6.4)
<l rxq) Z 10egknll Lt (10501 (2))-
m=1

For J, we obtain using the stability of the Ritz projectionifi°(£2) norm on polygonal and polyhedral domains,
see Lemm@a3]3,

J2 = (VRru, Vgin)rxo = —(Brt, Angrn) rxe
< || Rnullpoe (x| Angrnll o1 (1,01 () (6.5)
< Clnhfl|ull Lo (1x) | Angrnll L1 (1;21 ()

For J5 and.J; we obtain

M—-1 M—-1
T3 <D Mumllze@lllgenlmlli) < lullexay Y Igrnlmllzi@),
m=1 m=1 (66)
Jy < ||U(T)HL°°(Q)||g];h,M||L1(Q) < ||u||L°°(I><Q)”gl;h,M”Ll(Q)-
Combining the estimates fok, .J», .J3, and.J, and applying Lemm@ 5.2 witl:| = || - ||.1 (o) andM;, < C, cf.

RemarkK5.4, we have

M

[un (T, o) < Cllnhl||ul|L=(rxa) <Z 10cgrnllLr (1,inr @) + 1ARGRR | L1 (101 ()

m=1

M-1
+ D Mgwnlmllzicay + ||g;Zh,M||L1<g>>

m=1
T .
< C[lnh|ln EHUHL“(IXQ)HPh(SHLl(Q)
T
< C[lnh|ln EH“HLW(IXQ);
where in the last step we used the stability of fifeprojectionP, with respect to thd.}(Q2) norm, see, e.g..[7]
and the fact thad|| 1 (o) < C.

Using that the cG()dG(g) method is invariant o/} , by replacingu anduy, with w — x anduy, — x for
anyy € X, and using the triangle inequality we obtain

T .
|w(T, o) — ugn(T,20)| < Cln E|ln bl inf flu— x|lLee(1xq)-
xXEX{

Case 2tp—1 <t < T:
In this case we consider the following regularized Greemsfion

—0g(t,x) — Ag(t,x) = Szo(x)é(t) (t,x) e I xQ,
g(t,x) =0, (t,x) € I x 09, (6.7)
g(T,z) =0, x €€,

whered C*(I) is the regularized Delta function in time with properties
Suppéc (t]VI—laT)a ”éHLl(IM) <C
and

(év (pk)IM = (Pk(f), Vo € /Pq(I]\/I)-
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Let grn, be cGE)dG(g) approximation ofj, i.e.
B(pkn, § — grn) =0 Vo € X[}

Then, using that cG{dG(g) method is consistent, we have

e (£, 20) = (Wkh, 0200) = B(ugn, §) = Bukn, grn) = B(u, Grn)

M M
= - Z (ua atgkh)ImXQ + (vua v‘gkh)IXQ - Z (Um, [gkh]m)Qv
m=1 m=1

where in the sum with jumps we included the last term by sgtfin, »,+1 = 0 and defining consequently
[Grr]ar = —Grn,m- Similarly to the estimates ofy, Jz, J3 above, using the stability of the Ritz projectionfifi®
norm on polyhedral domains, see Lemma3 3.3, we have

M
win(f,20) = = > (, 0rgikn) 1x0 + (Vtt, Vin) 1x0 —

m=1

NE

(W, [Grnlm)o

3
I

M M
< Cllnh|f[ullpe(rxa) (Z 0G|l L1(1,:01 () + 1ARGRR | L1 (1,01 (02)) + Z ||[§kh]m||L1(sz)> -

m=1 m=1
Using the discrete maximal parabolic regularity resultiroemma 5.8 with||-||| = || - || 1 (q) andM;, < C, cf.
RemarK5.4, we obtain
- T ~ ~ T
urkh(t, z0) < Cln[nhfllull Lo x| Pudao 2 @10l 22 (rar) < Cln [k ufl e (rx0).-
As in the first case this implies
o . T .
|w(t, o) — ukn(t,zg)] < C'ln E|lnh| 1nfq N = xllzes (1x0)-
XEXy),
This completes the proof of the theorem.

7. Proof of Theorem[Z2.2. To obtain the interior estimate we introduce a smooth ctifewmiction w with the
properties that

wx)=1, z€ By (7.1a)
w(x)=0, z€Q\ By (7.1b)
|Vw| < Cd™t,  |V2w| < Cd™?, (7.1c)

whereB,; = By(z) is a ball of radius! centered at.
As in the proof of Theorefn 2.1 we consider two cages:T andty;_; < t < T'. In the first case we obtain

upn (T, 20) = B(uknh, grn) = B(u, gkn) = B(wu, grn) + B((1 — w)u, gkn), (7.2)

whereg is the solution of[(6l1) angdy, € X}, is the solution of[(EJ2). The first term can be estimated using
the global result from Theoren 2.1. To this end we introdiuce wu and the cG)dG(g) solutionay, € X,’j:,:
defined by

B(ﬂkh — U, rn) =0 forall pg € XZ’Z
There holds
- - 5 T ~ T
B(t, gkn) = B(tkh, gkn) = @kn (T, 20) < Cln E|1n hl[|@]| L (rx0) < Cln E|1n R|[Jw] oo (1x Bya)-
This results in

T
|ugn (T, 20)] < Cln E|1n h|[[w]| oo (1% Byg) + B((1 — w)u, grn)- (7.3)
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It remains to estimate the ter®((1 — w)u, gkr). Using the dual expressidn (2.4) of the bilinear faBmve obtain

M
B((1 — w)u, gxn) Z (1 —w)u, Oegin) 1, xo + (V((1 —w)u), Vgrn) rxo
m=1

i

- ((1 = W), [grnlm)a + (1= w)u(T), gy, a1 )0

3
Il

(7.4)

N
2

(072 (1 — w)u, 02 Bygin) 1, 0 + (V((1 — w)tr), Vgan) 1xa

I
NE

=1

N

(1 - w)u(T)v 0—7g];h7M)Q

N
o2

vz

(1 — W)U, 02 [grn]m)a + (0~

H 3
MH ;
q
m|2

J2+J3 + Jy.

For Jy, using thab—2 < Cd~> onsupp(l —w) C Q\ By and(1 — w) < 1, we obtain
M
Ji1 < HU_%(l — w)ul| oo (1;22(02)) Z ||U%atgkh||L1(Im;L2(Q))
u (7.5)
< Cd_%”U”LOO(I;L%Q)) Z ||O'%atgkh||L1(Im;L2(Q))-

m=1
To estimate/,, we definey) = (1 — w)u and proceed using the Ritz projecti@y defined by[(316). There holds
(Vip(t), Varn(t))a = (VRrY(t), Varn(t))a = — (R (t), Angrn(t))o
—(Bp(t), Angkn(t)) B,y — (Rntp(t), Angrn(t)) o\ s,
< Rrp ()| Lo (Ba)o) 1A1gkR ()| L1 (B,2)
+ Cd™ | Rith(0) |20\ By 0% Argin (Dl 20\ 8,2)
< NRR O = (80| Angin (8) | 1) + Cd™ F | Ruth (1) |2 0% Angin (8)]|2().

where we used—= < Cd~* on() \ Bgyz. In the interior pointwise error estimates _[36, Thm. 1.1fw# = 0,
choosingy = 0, s = 0, ¢ = 2 and using the triangle inequality and the fact thatp ¢(t) C Q@ \ By, we have

[Bap ()] Lo (B,,2) < CA[Y ()| Lo (By) + Cd™ 2 [[Batp(8)l| L2() = Cd™ 2 | Rutb ()| L2 (o) -

Using a standard elliptic estimate and recallifhg- (1 — w)u we have

I Rrp () |l2() < 1 ()llz2) + 19() — Rup ()| 220
< ()| 20y + Vb (t) || L2
< Nu(®)llL2(e) + chl|(1 — w)Vu(t) — Vwu(t)| 22
< cllu@®)llz2) + bl Vu(t) ||l L2 ().

where in the last step we usfdw| < Cd~! < Ch™1L.
Therefore we obtain

(V(1), Vagrn()a < Cd™F ([ult)]| p20) + ch| Vult)| 12 (||Ah9kh(t)|\L1(Q) + ||U%Ah9kh(t)|\m(ﬂ)) :
This results in

N N
Jo < Cd™7 ([|ull oo r;02(0)) + ch||Vull Lo (1,02 (02))) (HAhgkh“Ll(I;Ll(Q)) + [lo2 Ahgk:h||L1(I;L2(Q))) :
(7.6)
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For J3, similarly to J; we obtain

M-1
_N N
Js < o™ 2 (1 —w)ullz=r2@) Y, o7 grnlmllL2@)

m=1

Y M-—1 N (7'7)
< Cd™ 2 ||ull Lo (1,L2(0)) Z o2 [gkn]m |l L2(0)-
m=1
Finally,
_N N

J1 < Cd™ = ||ull o (1,020 102 Gpasll L2 (- (7.8)

Combining the estimates fok, Js, J3, andJy, we have
B((1 —w)v, gu) < Cd™ % (llll oo (1:22 () + el Vull oo (1,L2(02)))

m=1

M
N N
X <Z o2 OegnllLr(r,:n2(0)) + 1ARGERI L1 (1,01 (0)) + |02 AnginllLr(1;22(0)

M-1
N N
+ Z o2 [gkn]mllL2) + llo2 9kh,M|L2(sz)>-
m=1

For the term|Angrn | L1 (1,01 ()) Wwe apply Lemmas]2 with-|| = || - || 1oy and M}, < C and for all weighted
terms with||-|| = Ho%(~)||L2(Q) andM;, < C|lnhl, cf. Remark5K, resulting in

T
B((1 —w)v, gkn) < Cd~% In E|lnh| (

[ull oo (1;02(0)) + PIVUl| Lo (1,02(0))) (||Ph5||L1<sz) + ||0%Ph5|\m(n))
w. T
<Cd %l 7 Ikl (lull o (z:22 () + PIVUllLoo(r:L2(0))) 5

where in the last step we again used the stability ofiRgrojection with respect to the! norm, the fact that
6] L1 (@) < C, and Lemm&3]2 for the terfmf%PhéHLZ(Q). Inserting this inequality intd (7] 3), we obtain

T _N
[urn (T, z0)| < Clngllnhl (||U||Lw(1xB2d) +d % (llull oo (1,22 (02)) + h||VUHLoo(1;L2(Q)))) :

Using that the cG(dG(g) method is invariant otX,Z:,TL, by replacingu anduy;, with u — xy andug, — x for any
X € X}, we obtain Theorein 2.2 for the case- T

In the case;_, < t < T we proceed as in the proof of Theoréml2.1 using the dual pmoffe?) instead
of (6.J). Then, we proceed as in the above proof using in tsteskep the discrete maximal parabolic regularity
from Lemmd5.B instead of Lemrhab.2. This completes the proof
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