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Abstract. We propose general notions to deal with large scale polynomial optimization problems
and demonstrate their efficiency on a key industrial problem of the twenty first century, namely the
optimal power flow problem. These notions enable us to find global minimizers on instances with
up to 4,500 variables and 14,500 constraints. First, we generalize the Lasserre hierarchy from real
to complex to numbers in order to enhance its tractability when dealing with complex polynomial
optimization. Complex numbers are typically used to represent oscillatory phenomena, which are
omnipresent in physical systems. Using the notion of hyponormality in operator theory, we provide
a finite convergence criterion which generalizes the Curto-Fialkow conditions of the real Lasserre
hierarchy. Second, we introduce the multi-ordered Lasserre hierarchy in order to exploit sparsity in
polynomial optimization problems (in real or complex variables) while preserving global convergence.
It is based on two ideas: 1) to use a different relaxation order for each constraint, and 2) to iteratively
seek a closest measure to the truncated moment data until a measure matches the truncated data.
Third and last, we exhibit a block diagonal structure of the Lasserre hierarchy in the presence of
commonly encountered symmetries.

Key words. Multi-ordered Lasserre hierarchy, Hermitian sum-of-squares, chordal sparsity,
semidefinite programming, optimal power flow.
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1. Introduction. Polynomial optimization encompasses NP-hard non-convex
problems that arise in various applications and it includes, as special cases, integer
programming and quadratically-constrained quadratic programming. The Lasserre
hierarchy [,,], which draws on algebraic geometry [], enables one to solve such
problems to global optimality using semidefinite programming. A big challenge today
is to make it applicable to large scale real world problems. Recent approaches in this
direction include the use of chordal sparsity [], the BSOS hierarchy [] and Sparse-
BSOS hierarchy [], the DSOS and SDSOS hierarchies [,,], and ADMM for
sum-of-squares []. The Lasserre hierarchy has two dual facets, moments and sums-
of-squares, and most approaches to reduce the computational burden can be viewed as
a restriction on the sum-of-squares: [] restricts the number of variables, [] restricts
the degree, and [] restricts the number of terms inside the square. Following this line
of research, we propose to restrict sum-of-squares to Hermitian sum-of-squares []
for optimization problems with oscillatory phenomena (e.g. power systems [,,],
imaging science [,,], signal processing [,,,], automatic control [], and
quantum mechanics []). In addition, we propose to restrain the use of high degree
sum-of-squares to only some constraints by using a different degree for each constraint.
Finally, we show that if the polynomials defining the objective and the constraints are
even (i.e. all the monomials have an even degree), then we can restrict the sum-of-
squares to be even at no loss of bound quality. We show that a similar result holds for
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Hermitian sum-of-squares. The relevance of the restrictions to sum-of-squares that we
propose is demonstrated on the optimal power flow problem in electrical engineering.

The optimal power flow is a central problem in power systems introduced half a
century ago in []. It seeks to find a steady state operating point of an alternating
current transmission network that respects Kirchhoff’s laws, Ohm’s law, and power
balance equations. In addition, the point has to be optimal under a criterion such as
total power generation or generation costs. It must also satisfy operational constraints
which include narrow voltage ranges around nominal values and line ratings to keep
Joule heating to acceptable levels. While many non-linear methods [,] have been
developed to solve this difficult problem, there is a strong motivation for producing
more reliable tools. First, power systems are growing in complexity due to the increase
in the share of renewables, the increase in the peak load, and the expected wider
use of demand response and storage. Second, new tools are needed to profit from
high-performance computing and advanced telecommunications (phasor measurement
units, dynamic line ratings, etc.). Finally, the ultimate goal is to solve large problems
(e.g. 10,000 buses in the synchronous grid of Continental Europe) with combinatorial
complexity due to phase-shifting transformers, high-voltage direct current, and special
protection schemes. Solving the continuous case (i.e., optimal power flow) to global
optimality would be of great benefit to that end. Since 2006, semidefinite and second-
order conic relaxations have been proposed [,,,,,]. It has emerged that the
only approach that systematically yields global minimizers is the Lasserre hierarchy
[,,], although so far only for medium sized problems []. We solve large scale
instances within minutes thanks to the restrictions of sum-of-squares discussed above.

This paper is organized as follows. Section generalizes the Lasserre hierarchy to
complex numbers to deal with complex polynomial optimization. Asymptotic conver-
gence is discussed in Section, while finite convergence is studied in Sections and5. Sparsity is exploited in real and complex numbers via the multi-ordered Lasserre
hierarchy in Section, and symmetry is exploited via the block diagonal Lasserre
hierarchy in Section. Finally, Section concludes our work.

2. Complex Lasserre hierarchy. Consider the problem of finding global solu-
tions to a complex polynomial optimization problem

(2.1)

inf
z∈Cn

f(z, z̄) :=
∑
α,β

fα,βz
αz̄β

s.t. gi(z, z̄) :=
∑
α,β

gi,α,βz
αz̄β > 0, i = 1, . . . ,m.

We use the multi-index notation zα := zα1
1 · · · zαn

n for z ∈ Cn, α ∈ Nn, and z̄ stands
for the conjugate of z. As usual, C denotes the set of complex numbers (with i the
imaginary number) and R denotes the set of real numbers. The functions f, g1, . . . , gm
are real-valued polynomials so that in the above sums only a finite number of coef-
ficients fα,β and gi,α,β are nonzero and they satisfy

fα,β = fβ,α and gi,α,β = gi,β,α.
The feasible set is defined as K := {z ∈ Cn : gi(z, z̄) > 0, i = 1, . . . ,m}.

Example 2.1. The optimal power flow problem is a complex polynomial optimiza-
tion problem. It reads:

inf
z∈Cn

n∑
i=1

Ci2

 n∑
j=1

Y ij
2
zizj +

Yij
2
zjzi

2

+ Ci1

 n∑
j=1

Y ij
2
zizj +

Yij
2
zjzi

 + Ci0
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s.t.



(V min
i )2 6 |zi|2 6 (V max

i )2, i = 1, . . . , n

Pmin
i − P dem

i 6
n∑
j=1

Y ij

2 zizj +
Yij

2 zjzi 6 Pmax
i − P dem

i , i = 1, . . . , n

Qmin
i −Qdem

i 6
n∑
j=1

Y ij

2i zizj −
Yij

2i zjzi 6 Qmax
i −Qdem

i , i = 1, . . . , n

|Bijziz̄i + Yijzj z̄i|2 6 (Smax
ij )2, i, j = 1, . . . , n, when Yij 6= 0

where all symbols in capital letters are physical constants. Figure 1 illustrates a global
solution on an instance with 14 complex variables [, IEEE 14 Bus] . Each variable
corresponds to a node in the graph and represents the voltage at that node. Once the
voltages are computed, one can deduce the power production at each generator and
the power flows on the edges. In order to supply 261 MW of power to consumers
(in red), the least expensive generation plan entails a total power production of 268
MW (in black). The global solution was computed with the first order relaxation of
the real Lasserre hierarchy (after converting the problem to real numbers). This is in
accordance with the seminal work of Lavaei and Low [] who showed that the first
order relaxation solves many instances of the optimal power flow problem. It was later
shown that there are also many instances that need higher-order relaxations [] . Such
instances can be found in Table 1.

Fig. 1. Globally optimal power flow in the Midwestern United States

In order to solve complex polynomial optimization problems, we follow the point
of view of Lasserre [,] in real numbers, that is the reformulation

(2.2) inf
µ∈M+(K)

∫
K

fdµ subject to

∫
K

dµ = 1

where M+(K) denotes the set of finite positive Borel measures on K. Lasserre ob-
serves that if the objective and constraints are real polynomials, then one may invoke
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the real moments
∫
K
xαdµ, α ∈ Nn, of the measure µ. We remark that with complex

polynomials, this leads instead to the complex moments of the measure µ, that is

(2.3)

∫
K

zαz̄βdµ , ∀α, β ∈ Nn.

Complex moments, like real moments, characterize the measure when K is compact,
thanks to the Stone-Weiestrass theorem. Note that when K is compact, Borel mea-
sures are referred to as Radon measures and identify with the topological dual of the
continuous functions from K to R equipped with the operator norm. This is due to
the Riesz representation theorem (see standard textbooks, e.g. []).

In order to define the original Lasserre hierarchy, the sequence of moments is
truncated

{∫
K
xαdµ, |α| 6 2d

}
where d is the truncation order and |α| :=

∑n
k=1 αk.

In order to define the complex Lasserre hierarchy, we suggest truncating as follows:{∫
K
zαz̄βdµ, |α|, |β| 6 d

}
. This naturally leads to a moment/sum-of-squares hierar-

chy in complex numbers:

infy Ly(f) s.t. y0,0 = 1, Md(y) < 0, and Md−ki(giy) < 0, i = 1, . . . ,m

supλ,σ λ s.t. f − λ = σ0 + σ1g1 + . . .+ σmgm

where < stand for positive semidefinite. It relies on the following key notions:

• The complex moment matrix is a Hermitian matrix defined by

(2.4) Md(y) := (yα,β)|α|,|β|6d

In contrast to the real moment matrix (in the original Lasserre hierarchy), it
is not a Hankel matrix. In other words, yα,β is not necessarily only a function
of α + β. In the real case, we have xαxβ = xα+β for x ∈ Rn, whereas in the
complex case, no such relationship holds for zαz̄β where z ∈ Cn.1

• The Riesz functional is defined by

(2.5) Ly(f) :=
∑
α,β

fα,β yα,β

• The localizing matrices are defined by

(2.6) Md−ki(giy) :=

∑
γ,δ

gi,γ,δ yα+γ,β+δ


|α|,|β|6d−ki

where ki := max{|α|, |β| s.t. gi,α,β 6= 0}. Naturally, the truncation or-
der d must be greater than or equal to dmin := max{k0, k1, . . . , km} where
k0 := max{|α|, |β| s.t. fα,β 6= 0}.

1In fact, if one were to enforce the Hankel property in the complex moment matrix, one obtains
the real Lasserre hierarchy applied to the complex polynomial optimization problem where all the
complex variables are restrained to the real line. But make no confusion: this is not the real
polynomial optimization problem obtained by identifying real and imaginary parts of the complex
variables.
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• A polynomial σ(z, z̄) =
∑
|α|,|β|6d σα,βz

αz̄β is a Hermitian sum-of-squares,

i.e. it belongs to Σd[z, z̄], if it is of the form2

(2.7) σ(z, z̄) =
∑
k

∣∣∣∣∣∣
∑
|α|6d

pk,αz
α

∣∣∣∣∣∣
2

where pk,α ∈ C.

This is equivalent to (σα,β)|α|,|β|6d < 0 where α, β ∈ Nn. In the complex
Lasserre hierarchy, σ0 ∈ Σd[z, z̄] and σi ∈ Σd−ki [z, z̄], i = 1, . . . ,m.

• A Hermitian sum-of-squares is a special case of a real sum-of-squares (used
in the original Lasserre hierarchy), that is, a polynomial of the form

(2.8) σ(z, z̄) =
∑
k

∣∣∣∣∣∣
∑

|α+β|6d

pk,α,βz
αz̄β

∣∣∣∣∣∣
2

where pk,α,β ∈ C.

This is equivalent to the existence of a real positive semidefinite matrix
(ϕα,β)|α|,|β|6d where α, β ∈ N2n such that σ(z, z̄) =

∑
α,β ϕα,βx

α+β . (We
have identified real and imaginary parts zk := xk + xk+ni.)

Example 2.2. x21 + 2x1 + 1 + x22 with x1, x2 ∈ R is a Hermitian sum-of-squares
because it is equal to |1 + x1 + x2i|2 = |1 + z|2 where z := x1 + x2i. In contrast,
x21 + 2x1 + 1 is a real sum-of-squares but not a Hermitian sum-of-squares. Indeed, we

have x21 + 2x1 + 1 =
∣∣1 + 1

2z + 1
2 z̄
∣∣2 = 1 + z + z̄ + 1

4z
2 + 1

2 |z|
2 + 1

4 z̄
2. In other words

(2.9) x21 + 2x1 + 1 =

 1
z
z2

∗ 1 1 1/4
1 1/2 0

1/4 0 0

 1
z
z2


where (·)∗ stands for conjugate transpose. The above matrix is unique and it is not
positive semidefinite. Hence the polynomial is not a Hermitian sum-of-squares. The
unicity in the Hermitian decomposition (which is true for any polynomial, not just in
this example) contrasts with the non-unicity in the real decomposition x21+2x1+1 = . . .

1
x1

x2

x2
1

x1x2

x2
2


T 

1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
x1

x2

x2
1

x1x2

x2
2

 =


1
x1

x2

x2
1

x1x2

x2
2


T 

1 1 0 1/2 0 0
1 0 0 0 0 0
0 0 0 0 0 0

1/2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1
x1

x2

x2
1

x1x2

x2
2


where (·)T stands for transpose. One of the above matrices is positive semidefinite,
making the polynomial a real sum-of-squares (which is otherwise obvious).

Example 2.3. Consider the following complex polynomial optimization problem

(2.10) inf
z∈C

z + z̄ s.t. |z|2 = 1

whose optimal value is −2. Letting z =: x1 + ix2, it can converted into real numbers:

(2.11) inf
x1,x2∈R

2x1 s.t. x21 + x22 = 1.

2We use | · | to denote the modulus of a complex number. In a Hermitian sum-of-squares, the
dependence on both z and z̄ can be seen upon developing the squares.
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It can be solved to global optimality using real sum-of-squares since

(2.12) 2x1 − (−2) = 1 + (x1 + x2)2 + 1× (1− x21 − x22).

But it can also be solved using Hermitian sum-of-squares since

(2.13) z + z̄ − (−2) = |1 + z|2 + 1× (1− |z|2).

Hermitian sum-of-squares entail a trade-off. At each truncation order, they
are cheaper to compute, but they potentially provide a relaxation bound of poorer
quality. More precisely, as the number of variables grows, the moment matrix in the
real Lasserre hierarchy is 2d times bigger than the moment matrix in the complex
hierarchy. Regarding the optimal power flow problem, the relaxation bounds for
the real and complex hierarchies are the same at each order in all our numerical
experiments.

Example 2.4. The advantage of Hermitian sum-of-squares for finding global min-
imizers to the optimal power flow problem can be seen in Table . In 17 out of the
18 instances, they are faster, sometimes up to an order of magnitude. The mini-
mizers obtained are feasible up to 0.005 p.u. at voltage constraints and 1 MVA at
all other constraints3, and the objective evaluated in the minimizers matches the re-
laxation bound with 0.05% relative to the bound. In order to obtain these results,
sparsity is exploited using the multi-ordered Lasserre hierarchy (Section) , and sym-
metry is exploited using the block diagonal Lasserre hierarchy (Section) . We thus
increment the relaxation order at up to 176 constraints, and up to order 2. The
largest maximal clique size is 19. Regarding the software, YALMIP 2015.06.26 []
and MOSEK are used for the experiments. For test case descriptions, see [] for
case14Q–case300, [] for the “nesta” cases with “active power increases” (API) load-
ing scenarios, and [,,] for PL-2383wp–PEGASE-2869. For the Polish (PL)
and PEGASE cases, a preprocessing step was used to eliminate lines with impedances
less than 1× 10−3 and 3× 10−3 per unit, respectively, a 1× 10−4 per unit minimum
resistance was enforced on each line (as in []) , and the objective was active power
loss minimization. Table displays the number of variables and constraints after the
preprocessing step.

Having motivated the introduction of the complex Lasserre hierarchy, we discuss
asymptotic convergence and finite convergence in the next two sections. These two as-
pects are significantly different from the real hierarchy. Most other aspects of the real
hierarchy carry over to the complex hierarchy in a straightforward fashion, including
strong duality [] and the generalized Lagrangian interperation (see [, Section 7]
for details). One aspect that is unresolved is the question of generic finite conver-
gence [], which is a subject for future research.

3. Asymptotic convergence. In 1968, Quillen [] showed that a real-valued
bihomogeneous complex polynomial that is positive away from the origin can be de-
composed as a Hermitian sum-of-squares when it is multiplied by (|z1|2 + . . .+ |zn|2)r

for some r ∈ N. The result was rediscovered by Catlin and D’Angelo [] and ignited a
search for complex analogues of Hilbert’s seventeenth problem [,] and the ensuing

3Typical violations are smaller than 1 MVA. For instance, with the complex hierarchy PL-3012wp
has over 99% of the buses with less than 0.02 MVA violation, and only 0.09% of the buses with greater
than 0.1 MVA violation. Maximum line flow violation is 0.0006 MVA.



Large Scale Polynomial Optimization 7

Table 1
Global value found by multi-ordered Lasserre hierarchy and solver time in seconds

Case Real Const- Real Lasserre Complex Lass.
Name Variables raints Obj. Time Obj. Time

case14Q 28 57 3,302 4.7 3,302 2.6
case14L 28 97 9,359 1.9 9,359 1.5
case39Q 78 239 11,221 741.7 11,211 58.7
case39L 78 239 41,921 2.3 41,921 1.4
case57Q 114 192 7,352 3.4 7,352 3.3
case57L 114 352 43,984 1.4 43,984 1.3
case118Q 236 516 81,515 15.7 81,515 3.7
case118L 236 888 134,907 10.5 134,907 5.5
case300 600 1,107 720,040 7.2 720,040 4.1
nesta case24 48 526 6,421 246.1 6,421 61.7
nesta case30 60 272 372 302.7 372 15.4
nesta case73 146 1,605 20,125 506.9 20,124 52.6
PL-2383wp 4,354 12,844 24,990 583.4 24,991 53.9
PL-2746wop 4,378 13,953 19,210 2,662.4 19,212 124.3
PL-3012wp 4,584 14,455 27,642 318.7 27,644 141.0
PL-3120sp 4,628 13,948 21,512 386.6 21,512 193.9
PEGASE-1354 1,966 6,444 74,043 406.9 74,042 1,132.6
PEGASE-2869 4,240 12,804 133,944 921.3 133,939 700.8

Positivstellensätze [,–]. Notably, D’Angelo and Putinar proved the following
powerful result in 2008.

Theorem 3.1 (D’Angelo’s and Putinar’s Positivstellenstatz [] ). Assume that
one of the constraints of K is a sphere |z1|2 + . . .+ |zn|2 = R2 for some radius R > 0.
If f > 0 on K, then there exists Hermitian sum-of-squares σ0, . . . , σm such that

(3.1) f = σ0 +

m∑
i=1

σigi.

This theorem naturally admits a dual perspective.
Theorem 3.2 (Putinar and Scheiderer [] ). If one of the constraints of K is a

sphere, then the following properties are equivalent:
1. ∃µ ∈M+(K) : ∀α, β ∈ Nn, yα,β =

∫
K
zαz̄βdµ;

2. ∀d > dmin , Md(y) < 0, Md−ki(giy) < 0.
Global convergence in the complex hierarchy is thus guaranteed in the presence

of a sphere constraint. This is in contrast to the real hierarchy where it is guaranteed
in the presence of a ball constraint. A sphere may appear more restrictive than a ball.
However, this is sufficient to solve complex polynomial optimization problems with
compact feasible sets. Indeed, one can add a slack variable zn+1 ∈ C and a redundant
constraint |z1|2 + . . .+ |zn+1|2 = R2 to the description of the feasible set when it is in
a ball of radius R. This is similar to Lasserre who proposes to add a redundant ball
constraint x21 + . . .+ x2n 6 R2.

Example 3.1. Consider the following optimization problem

(3.2) inf
z∈C

1− 4

3
|z|2 +

7

18
|z2|2 s.t. 1− |z|2 > 0
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whose optimal value is 1/18. D’Angelo and Putinar [] have demonstrated that there
does not exist Hermitian sum-of-squares σ0 and σ1 such that

(3.3) 1− 4

3
|z|2 +

7

18
|z|4 = σ0(z, z̄) + σ1(z, z̄)(1− |z|2).

As a result, the complex hierarchy cannot exceed the value 0. In fact, it finds −1/3
at all orders because

(3.4) M(y) =

1 z̄ z̄2 z̄3

1 1 0 0 0 . . .

z 0 1 0 0

z2 0 0 0 0

z3 0 0 0 0

...
. . .

is a primal optimal point. We propose to add a complex slack variable

(3.5) inf
z1,z2∈C

1− 4

3
|z1|2 +

7

18
|z1|4 s.t. 1− |z1|2 − |z2|2 = 0,

enabling the second order complex relaxation to find the global infimum

(3.6)

1− 4
3 |z1|

2 + 7
18 |z1|

4 − 1
18

=

5
18 |z2|

2 + 5
18 |z1z2|

2 + 2
3 |z2|

4

+(
17
18 −

7
18 |z1|

2 + 2
3 |z2|

2
)

(1− |z1|2 − |z2|2).

Note that the polynomial that multiplies the constraint is not a Hermitian sum-of-
squares. This would be a contradiction when taking z2 = 0.

We next discuss a weaker condition ensuring global convergence in the Lasserre
hierarchy. In the real hierarchy, convergence is guaranteed if the Archimedean con-
dition holds, that is to say, if there exists R > 0 and real sums-of-squares σ0, . . . , σm
such that R2 − x21 − . . . − x2n = σ0(x) +

∑m
i=1 σi(x)gi(x), ∀x ∈ Rn. In the com-

plex hierarchy, a similar condition can be deduced from the work of Putinar and
Scheiderer [, Propositions 6.6 and 3.2 (iii)]. For notational convenience, suppose
that some of the inequality constraints gi(z, z̄) > 0 are actually equality constraints
gi(z, z̄) = 0. Let E ⊂ {1, . . . ,m} denote the indices of the equality constraints.
Global convergence in the complex hierarchy is guaranteed if there exists R > 0,
a Hermitian sum-of-squares σ0, and real-valued complex polynomials pi’s such that
R2 − |z1|2 − . . . − |zn|2 = σ0(z, z̄) +

∑
i∈E pi(z, z̄)gi(z, z̄), ∀z ∈ Cn. In particular, in

presence of the equalities |zk|2 = 1, k = 1, . . . , n, convergence is guaranteed. In this
case, there is no need to add a slack variable as suggested above. This applies for
instance to the non-bipartite Grothendieck problem over the complex numbers [].
Interestingly, in the optimal power flow problem, despite the absence of such equal-
ities, global convergence is attained in all numerical experiments without adding a
slack variable (as reported in Table). Of course, it is also attained when adding a
slack variable.
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When the weaker assumption presented above does not hold, there exists a way
to quantify how far D’Angelo’s and Putinar’s Positivstellensatz is from being true.
This is given by the Hermitian complexity [] of the ideal associated with the equality
constraints. This number is related to the greatest number of distinct points (possibly
infinite) z(i) ∈ Cn, 1 6 i 6 p, such that gk(z(i), z(j)) = 0 for all k ∈ E. Loosely
speaking, the greater this number, the farther away the Positivstellensatz is from
being true. In particular, when one of the equalities is σ(z, z̄)+ |z1|2 + . . .+ |zn|2 = R2

with σ a Hermitian sum-of-squares and R > 0, then the Hermitian complexity is equal
to 1. The Positivstellensatz is then true, in accordance with the weaker assumption
presented above.

4. Finite convergence. The relaxation of order d of the complex Lasserre hi-
erarchy yields a set of complex numbers (yα,β)|α|,|β|6d. Global solutions may be
extracted if there exists a measure that represents those yα,β that appear in the ob-
jective and constraint functions. In particular, this is true if there exists positive Borel
measure µ supported on the semi-algebraic set K such that yα,β =

∫
Cn z

αz̄βdµ for all
|α|, |β| 6 dmin. In this case, the complex hierarchy has finite convergence and global
optimality is attained. In this section, we will show that the conditions ensuring fi-
nite convergence in the complex hierarchy differ significantly from the real hierarchy.
Additional conditions need to be satisfied as shown in the next result. We will use
the definition dK := max{2, k1, . . . , km} where the number 2 will be explained in the
next section. It is meant to guarantee that dK > 2, in contrast to the real case when
it is only required that dK > 1 (see [, equation (6.1)]).

Proposition 4.1. Assume that one of the constraints of the multivariate (n > 1)
optimization problem is a ball |z1|2+. . .+|zn|2 6 R2 for some radius R > 0. Consider
an optimal solution y to the complex moment relaxation of order d.

• If there is an integer t such that dmin 6 t 6 d and rankMt(y) = 1, then global
optimality is attained and there is at least one global solution.

• If there is an integer t such that max{dmin, dK} 6 t 6 d and if the following
conditions hold:

1. rank Mt(y) = rank Mt−dK (y) (=: S)

2.

 Mt−dK (y) Mt−dK (ziy) Mt−dK (zjy)
Mt−dK (z̄iy) Mt−dK (|zi|2y) Mt−dK (zj z̄iy)
Mt−dK (z̄jy) Mt−dK (ziz̄jy) Mt−dK (|zj |2y)

 < 0, ∀1 6 i < j 6 n

then global optimality is attained and there are at least at least S global solutions.
Proof. This is a consequence of Theorem.

Under the assumptions of Proposition, if the rank is equal to one, then a
global solution z can then be read from the moment matrix, i.e. z = (yα,0)|α|=1 ∈ Cn.
This is just like in the real Lasserre hierarchy. Otherwise, if the rank is greater than
one (S > 1), then S global solutions can be extracted using [, Algorithm 4.1]. In
fact, this algorithm can also extract global solutions from the real Lasserre hierarchy.
It appears to be the most efficient way to do so as it only requires one singular value
decomposition followed by an eigendecomposition. Earlier approaches can be found
in [,,].

Example 4.1. Consider the following problem whose elliptic constraint is taken
from [] :

(4.1) inf
z1,z2∈C

3− |z1|2 −
1

2
iz1z̄

2
2 +

1

2
iz22 z̄1
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(4.2) s.t.


|z1|2 − 1

4z
2
1 − 1

4 z̄
2
1 = 1

|z1|2 + |z2|2 = 3

iz2 − iz2 = 0, z2 + z2 > 0.

The feasible set is represented in Figure 2, which we generated using POV-Ray 3.7.0
[]. The hierarchy starts at the second order (dmin = dK = 2) which yields4 the lower

Fig. 2. Feasible set at the intersection of the sphere and the elliptic cylinder

bound 0.155089 and the optimal moment matrix

M2(y) =

1 z̄1 z̄2 z̄21 z̄1z̄2 z̄22
1 1.0000 0.3747i 0.8485 1.8272 0.5100i 1.0864

z1 −0.3747i 1.9136 −0.5100i 0.1929i 1.0505 −0.9313i

z2 0.8485 0.5100i 1.0864 0.9245 0.9313i 1.4950

z21 1.8272 −0.1929i 0.9245 4.5886 −0.1162i 0.9324

z1z2 −0.5100i 1.0505 −0.9313i 0.1162i 1.1523 −1.4140i

z22 1.0864 0.9313i 1.4950 0.9324 1.4140i 2.1069

It holds that rankM0(y) = 1, rankM1(y) = 3, and rankM2(y) = 3. Since rankM0(y) 6=
rankM2(y), the rank condition in Proposition does not hold. The positive semide-
fine condition holds with t = 2 but not with t = 3:

(4.3) sp


 M1(y) M1(z1y) M1(z2y)
M1(z̄1y) M1(|z1|2y) M1(z2z̄1y)
M1(z̄2y) M1(z1z̄2y) M1(|z2|2y)

 =



−1.5874
−0.1295
−0.0000

0.0000
0.1574
0.7711
3.5471
5.0544
8.1869


4MATLAB 2015b, CVX 2.0 [], and SDPT3 4.0 [] are used for the numerical experiments.
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where sp{·} stands for spectrum. The third order complex relaxation yields the value
0.428175 and the moment matrix satisfies rankM3(y) = 1. This yields a global solution
(z1, z2) = (−0.8165i, 1.5275) which can be read from the third order moment matrix.
Interestingly, it is not necessary to go up to the third order relaxation. Since the
positive semidefinite condition is a convex property, it can be added to the second
order relaxation, with t = 3 for instance:

(4.4)

 M1(y) M1(z1y) M1(z2y)
M1(z̄1y) M1(|z1|2y) M1(z2z̄1y)
M1(z̄2y) M1(z1z̄2y) M1(|z2|2y)

 < 0.

We then obtain the value 0.428175 and the following moment matrix

M2(y) =

1 z̄1 z̄2 z̄21 z̄1z̄2 z̄22
1 1.0000 0.8165i 1.5275 −0.6667 1.2472i 2.3333

z1 −0.8165i 0.6667 −1.2472i 0.5443i 1.0184 −1.9052i

z2 1.5275 1.2472i 2.3333 −1.0184 1.9052i 3.5642

z21 −0.6667 −0.5443i −1.0184 0.4444 −0.8315i −1.5556

z1z2 −1.2472i 1.0184 −1.9052i 0.8315i 1.5556 −2.9102i

z22 2.3333 1.9052i 3.5642 −1.5556 2.9102i 5.4444

which satisfies rankM2(y) = 1. A global solution can be read in the first column:
(z1, z2) = (−0.8165i, 1.5275). We have just used a notion in operator theory to reduce
the rank from 3 to 1 in a convex relaxation. For explanations, see the next section.

5. Truncated moment problem. The complex Lasserre hierarchy brings into
the picture a truncated moment problem which has not been considered in past lit-
erature to the best of our knowledge. Given a set of complex numbers (yα,β)|α|,|β|6d,
it raises the question of whether there exists positive Borel measure µ supported on
the semi-algebraic set K such that

(5.1) yα,β =

∫
Cn

zαz̄βdµ , for all |α|, |β| 6 d.

In this section, we propose a solution to this problem. Precisely, we characterize when
there exists a rankMd(y)-atomic representing measure for the data (yα,β)|α|,|β|6d. We
do so via the existence of an extension of the data, which must satisfy certain con-
ditions, in the footsteps of Curto and Fialkow [–]. Such is how they character-
ize [, Theorem 5.1] atomic measures µ supported on the semi-algebraic set K such
that

(5.2) yα,β =

∫
Cn

zαz̄βdµ , for all |α|+ |β| 6 2d

given some complex numbers (yα,β)|α|+|β|62d. However, this moment problem is not
relevant for the complex Lasserre hierarchy since the truncation of the data is different.
Below, we’ve represented the second order truncation in the complex hierarchy in blue
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and the second order truncation of Curto and Fialkow in black and blue:

1 z z̄2 z̄3 z̄4

1 • • • • • . . .

z • • • •

z2 • • •

z3 • •
. . .

z4 •

...

This leads to different notions of moment matrices. Below, we’ve represented the
moment matrix of the complex hierarchy (on the left, in blue) and the moment matrix
of Curto and Fialkow (on the right, in black):

1 z̄ z̄2

1 • • •

z • • •

z2 • • •

1 z̄ z z̄2 z̄z z2

1 • • • • • •

z • • • • • •

z̄ • • • • • •

z2 • • • • • •

zz̄ • • • • • •

z̄2 • • • • • •

The moment matrix in the complex hierarchy is referred to as pruned complex moment
matrix in []. However, the associated moment problem is not considered. Despite
the discrepancies between the moment matrices, like Curto and Fialkow, we will rely
on the notion of flat extension, which is an extension of the moment matrix that
preserves the positive semidefiniteness and the rank.

Note that the complex moment problem of Curto and Fialkow is equivalent in
some sense (see [, Theorem 5.2]) to the real moment problem, i.e. where we seek a
measure on a real semi-algebraic set such that

(5.3) yα =

∫
R2n

xαdµ , for all |α| 6 2d

given some real numbers (yα)|α|62d. In contrast, the truncated moment problem
arising in the complex hierarchy captures the real truncated moment problem as a
special case. It corresponds to the case where the moment data forms a Hankel matrix
(see Theorem below).

To provide a solution to the truncated moment problem arising in the complex
hierarchy (Theorem below), we rely on the notion of hyponormality in operator
theory. Indeed, we are unable to adapt the algebraic arguments used by Curto and
Fialkow. They consider the ideal generated by the monomials that are indexes of the
rows of their moment matrix. We are unable to make use of it in our context. We thus
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pursue a different approach, based exclusively on operator theory. The relationship
between this discipline and the moment problem was recognized early on, as described
by Akhiezer [, Chapter 4] in 1965. It has since been enriched by a vast literature
including the works of Cassier [], Schmüdgen [], and Putinar []. In particular,
Atzmon [] used operator theory to solve the full moment problem on the unit disc in
the complex plane. Later, Curto and Putinar [, Theorem 3.1] extended this result
to subalgebraic subsets of the complex plane defined by one inequality. For such sets,
the real moment problem was shown to be reducible to a complex moment problem
in []. In fact, Putinar employed this complexification of the real moment problem
in his seminal result [] which implies convergence of the (real) Lasserre hierarchy.
Going back to the full complex moment problem, a solution was given in [] when
the support is the entire complex plane. An operator-valued moment problem is also
considered in that work. In the more recent paper [], a Hermitian-matrix-valued
truncated moment problem is investigated in the multivariate setting.

We now outline our approach. We need a few notations: let B(H) denote the set
of linear bounded operators acting on a Hilbert space (H, 〈·, ·〉). For all T ∈ B(H), let
T < 0 denote 〈Tu, u〉 > 0 for all u ∈ H. In addition, the commutator of A,B ∈ B(H)
is defined as [A,B] := AB − BA. Finally, let A∗ denote the adjoint of A ∈ B(H).
Following Halmos [], an operator T ∈ B(H) is said to be . . .

• normal if [T ∗, T ] = T ∗T − TT ∗ = 0;
• subnormal if it can be extended to a normal operator N on a larger Hilbert

space K;
• hyponormal if [T ∗, T ] = T ∗T − TT ∗ < 0.

The notions of subnormality and hyponormality were introduced by Halmos in 1950 in
order to extend the spectral theory of normal operators to a larger class of operators.
They have since been used to shed light on the moment problem, as in [,] and the
works cited above. The following implications hold (for explanations, see, e.g., []):

normal =⇒ subnormal =⇒ hyponormal

The gap between subnormality and hyponormality has been the subject of much
investigation, such as in [,]. It was later discovered in [] that there is in fact
a significant gap: even polynomially hyponormal operators (i.e. such that p(T ) is
hyponormal for all p ∈ C[z]) are not necessarily subnormal. The key ingredient for
our proof is that in finite dimension, normality, subnormality, and hyponormality are
all equivalent. Indeed, if H is finite dimensional, then the trace of [T ∗, T ] is equal to
zero. If in addition [T ∗, T ] < 0, then it must be that [T ∗, T ] = 0. We next show how
this observation is relevant for a tuple of operators.

Following the definition of Athavale [], operators T1, . . . , Tn ∈ B(H) are jointly
hyponormal if

(5.4)


[T ∗1 , T1] [T ∗2 , T1] . . . [T ∗n , T1]
[T ∗1 , T2] [T ∗2 , T2] . . . [T ∗n , T2]

...
...

...
[T ∗1 , Tn] [T ∗2 , Tn] . . . [T ∗n , Tn]

 < 0

in the sense that for all u1, . . . un ∈ H, there holds
n∑

i,j=1

〈ui, [T ∗j , Ti]uj〉 > 0.
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Thanks to our previous observation, in finite dimension, this is equivalent to5

(5.5)


[T ∗1 , T1] [T ∗2 , T1] . . . [T ∗n , T1]
[T ∗1 , T2] [T ∗2 , T2] . . . [T ∗n , T2]

...
...

...
[T ∗1 , Tn] [T ∗2 , Tn] . . . [T ∗n , Tn]

 = 0.

This is itself trivially equivalent to

(5.6)

(
[T ∗i , Ti] [T ∗j , Ti]
[T ∗i , Tj ] [T ∗j , Tj ]

)
= 0, ∀1 6 i < j 6 n,

and to

(5.7)

 I T ∗i T ∗j
Ti T ∗i Ti T ∗i Tj
Tj T ∗i Tj T ∗j Tj

 < 0, ∀1 6 i < j 6 n,

thanks to a Schur complement.
The purpose of the third condition of Theorem below is to guarantee that

joint hyponormality holds for a certain set of operators acting on a finite dimensional
space. The purpose of the second condition of Theorem is to ensure that these
operators commute (recall that dK := max{2, k1, . . . , km}). The operators in question
are shift operators, which are commonly used when dealing with the moment problem
(e.g., [, Proposition 8]). More explanations can be found in the proof.

Theorem 5.1. Consider a positive integer d and some complex numbers (yα,β)|α|,|β|6d.
Assume that K contains a ball constraint |z1|2 + . . . + |zn|2 6 R2 for some radius
R > 0 and that we are in the multivariate setting (n > 1). Then there exists a
positive rankMd(y)-atomic measure µ supported on K such that

(5.8) yα,β =

∫
Cn

zαz̄βdµ , for all |α|, |β| 6 d

if and only if there exists an extension (yα,β)d<|α|,|β|6d+dK such that:

1. Positivity of moment and localizing matrices:

Md+dK (y) < 0 and Md+dK−ki(giy) < 0, i = 1, . . . ,m

2. Commutativity of the shifts:

rankMd+dK (y) = rankMd(y)

3. Joint hyponormality of the shifts: Md(y) Md(ziy) Md(zjy)
Md(z̄iy) Md(|zi|2y) Md(zj z̄iy)
Md(z̄jy) Md(ziz̄jy) Md(|zj |2y)

 < 0, ∀1 6 i < j 6 n.

Proof. See Appendix. In the univariate setting (n = 1), the “joint hyponor-
mality of the shifts” condition must be replaced by

(5.9)

(
Md(y) Md(zy)
Md(z̄y) Md(|z|2y)

)
< 0.

5Make no confusion: this is not the definition of a normal tuple of operators, which is that
[Ti, Tj ] = [T ∗i , Ti] = 0 for all i, j = 1, . . . , n (see [, p. 1505]).
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Theorem then holds with dK := max{1, k1, . . . , km}, in contrast to the multivariate
setting where dK := max{2, k1, . . . , km} (see proof for explanations).

In the next result, we consider two cases where the ball constraint and the “joint
hyponormality of the shifts” condition can be removed. One case is when the moment
data forms a Toeplitz matrix, that is to say when yα,β = yβ,α only depends on α− β.
This is revelant when optimizing in the presence of the constraints |zk|2 = 1, k =
1, . . . , n. The other case is when the moment data forms a Hankel matrix, that is to
say when yα,β is real and only depends on α+ β. This is relevant for real polynomial
optimization, which can be viewed as an instance of complex polynomial optimization
with the constraints izk−iz̄k = 0, k = 1, . . . , n. It corresponds exactly to the moment
data generated by the original (real) Lasserre hierarchy.

Theorem 5.2. Consider a positive integer d and some complex numbers (yα,β)|α|,|β|6d.
Assume that K contains either the constraints |zk|2 = 1, k = 1, . . . , n or the con-
straints izk − iz̄k = 0, k = 1, . . . , n. Then there exists a positive rankMd(y)-atomic
measure µ supported on K such that

(5.10) yα,β =

∫
Cn

zαz̄βdµ , for all |α|, |β| 6 d

if and only if there exists an extension (yα,β)d<|α|,|β|6d+dK such that:

1. Positivity of moment and localizing matrices:
Md+dK (y) < 0 and Md+dK−ki(giy) < 0, i = 1, . . . ,m

2. Commutativity of the shifts:
rankMd+dK (y) = rankMd(y).

Proof. See Appendix.
Our solution to the moment problem in the Toeplitz case is new to the best of

our knowledge. In the univariate case n = 1 with support equal to the full space
K = C, it corresponds to the truncated trigonometric moment problem. A solution
to this problem has been given by [, P. 211], [, Theorem I.I.12], and [, Theorem
6.12]. It can be stated as follows. A Toeplitz matrix can be represented by a positive
Borel measure if and only it is positive semidefinite. In other words, there need not
exist a flat extension for there to exist a measure. For some more recent work on the
trigonometric moment problem, see [,,]. See also [] for its relevance in the
context of matrix completions.

The Hankel case in Theorem corresponds to the solution of real truncated
moment found in [, Theorem 3.11] due to Curto and Fialkow [, Theorem 1.1].
However, their result is stronger because it only requires that dK > 1, while we
require that dK > 2. The reason why we record this result is to underscore the
link between the moment problems arising in the real and complex hierarchies. It
also provides a new proof based solely on operator theory, in contrast to the proof
of Curto and Fialkow, and the more recent proof of Laurent []. The latter relies
partly on algebraic tools, while the former relies only on algebraic tools. Note that
the result has been generalized to moment matrices indexed by arbritary monomials
in [].

6. Multi-ordered Lasserre hierarchy. In [], a heuristic was proposed to
exploit sparsity in the Lasserre hierarchy when applied to the optimal power flow
problem. Inspired by that work, we propose a general approach to exploit sparsity in
any polynomial optimization problem (in real or complex variables) which preserves
global convergence. The approach associates a different relaxation order to each
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constraint, in contrast to the Lasserre hierarchy which associates the same relaxation
order to all constraints.

6.1. Defining a relaxation order at each constraint. In order to define a
relaxation order for each constraint, we build on the work of Waki et al. []. Those
authors propose to use chordal sparsity in the Lasserre hierarchy. They draw on the
correlative sparsity graph whose vertices are the variables and whose edges signify that
two variables appear simultaneously either in the objective or a constraint. The idea
of Waki et al. is to restrain the variables appearing in the sum-of-squares (a priori all
variables) to subsets of variables. Indeed, in the sum-of-squares decomposition, i.e.

(6.1) f − λ = σ0 +

m∑
i=1

σigi

one would like to restrain the variables appearing in σi in function of the variables ap-
pearing in the constraint gi. For instance, if the variables appearing in one constraint
gi are x1, x2, x3, x4 (among say x1, . . . , x100) one could hope to restrain the variables
appearing in σi to x1, x2, x3, x4 (or some slightly larger set). This hope becomes a
reality when considering the maximal cliques of a chordal extension of the correla-
tive sparsity graph. Then, to each constraint gi, one can associate a maximal clique
containing all the variables of gi (preferably with the fewest number of variables if
several cliques work). Next, one can restrain the variables in the sum-of-squares σi to
that clique. The sum-of-squares σ0 can be restricted to a sum of terms, where each
term is a sum-of-squares with variables belonging to a clique. At a given order, the
relaxation might be weaker but global convergence is preserved, as was first shown
by Lasserre [, Theorems 2.28 and 4.7], and later confirmed in [] and []. These
results easily generalize to complex numbers: the proof is the same as in the real
case [, Lemma B.13 and 4.10.2 Proof of Theorem 4.7] once the real vector spaces
on which measures are defined are replaced by complex vector spaces. Note that the
assumption of a redundant ball constraint per clique must be replaced by a sphere
and slack variable per clique. To sum up, if C1, . . . , Cp are the cliques, Waki et al.
propose to restrain () to

(6.2) f − λ =

p∑
k=1

σk0 +
∑

constraints i
associated to Ck

σigi


where the variables of σk0 and σi are restrained to the clique Ck.

The approach of Waki et al. reduces the computational burden of the Lasserre
hierarchy for sparse problems. Concerning the optimal power flow problem, it allows
one to solve some hard instances to global optimality with up to 80 variables []
(instead of 20 without exploiting sparsity []). However, by using the correlative
sparsity graph discussed above, a lot of the sparsity is lost. We thus propose a finer
notion of sparsity that takes advantage of the fact that the objective and constraints
are polynomials. To that effect, we define the monomial sparsity graph whose vertices
are the variables and whose edges signify that two variables appear simultaneously in
a monomial of either the objective or a constraint. We can then define a relaxation
order di for each constraint gi. If we want a constraint gi to have a high order,
i.e. with a sum-of-squares σi of degree greater than zero, then we add the correlative
sparsity induced by gi to the monomial sparsity graph. We then consider the maximal
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cliques of a chordal extension of the resulting graph. To each constraint gi that is of
high order, one can associate a maximal clique containing all the variables of gi. The
variables in the sum-of-squares σi can then be restrained to the clique associated to
gi when it is of high order; if not of high order, the sum-of-squares is a nonnegative
real number. The sum-of-squares σ0 can be restricted to a sum of terms, where each
term is a sum-of-squares with variables belonging to a clique. To sum up, we replace
() by

(6.3) f − λ =

p∑
k=1

σk0 +
∑

constraints i
of high order

associated to Ck

σigi

+
∑

constraints i
not of high order

σigi

where the variables of σk0 are restrained to the clique Ck, and same goes for σi in
the case of high order constraints associated to Ck; otherwise σi is a nonnegative real
number. The polynomial σk0 is a sum of squares of polynomials of degree less than or
equal to the maximal relaxation order di among all high order constraints associated
to Ck. If no high order constraints are associated to Ck, the degree is less than or
equal to one. As can be seen in (), if all the constraints have a high order, we
are back to (), i.e. the approach of Waki et al.6, but with different orders at each
constraint. Global convergence is thus preserved as the minimal order increases to
infinity.

Example 6.1. Consider the following optimization problem:

(6.4) inf
x1,x2,x3,x4∈R

x1x2 + x1x4 s.t.

{
x1x2 + x1x3 > 0

x1x3 + x1x4 + x1x2 > 0

It is solely meant to illustrate the above notions; the next example is much more
interesting from a numerical perspective. Figure 6.1 illustrates the correlative sparsity
used by Waki et al. and the monomial sparsity advocated in this paper. Suppose
one wants to impose order 2 at the first constraint (i.e. a high order) and order 1
at the second constraint (i.e. not a high order). The correlative sparsity induced by
the first constraint is the triangle formed by the first three variables. When added
to the monomial sparsity pattern, it yields the graph on the left of Figure 6.1 if the
edge (2,3) is added. The variables in the sum-of-squares σ1 can then be restrained
to x1, x2, x3, while the sum-of-squares σ2 is a nonnegative real number. The reason
why we must add the correlative sparsity induced by the high order constraint to the
monomial sparsity pattern is because in the expression σ1(x1, x2, x3)g1(x1, x2, x3), all
the possible products x1x2, x1x3, x2x3 appear.

Example 6.2. In [, WB5, Qmin
5 = −30.00 MVAr] an instance of the optimal

power flow problem is proposed. It can be viewed as a complex polynomial optimization
problem with five variables z1, z2, z3, z4, z5 ∈ C. Let mon(·) denote the monomial
sparsity induced either by the objective f or by one of the constraints g1, . . . , g20:

mon(f) = {(1, 2), (1, 3), (3, 5), (4, 5)}
mon(g1) = mon(g2) = {(1, 2), (1, 3)}

6The monomial sparsity graph augmented with the correlative sparsity induced by each constraint
is none other than the correlative sparsity graph, provided that the correlative sparsity induced by
the objective is included in the correlative sparsity induced by the constraints.
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monomial sparsity

<
1

2 3

4

correlative sparsity

1

2 3

4

Fig. 3. Two different notions of sparsity

mon(g3) = mon(g4) = {(1, 2), (2, 3), (2, 4)}
mon(g5) = mon(g6) = {(1, 3), (2, 3), (3, 5)}
mon(g7) = mon(g8) = {(2, 4), (4, 5)}

mon(g9) = mon(g10) = {(3, 5), (4, 5)}(6.5)

mon(g11) = . . . = mon(g20) = ∅

The monomial sparsity is empty when no two distinct variables appear in one mono-
mial, such as in g11(z, z̄) = z1z̄1 − 0.90. Otherwise, it corresponds to all the couples
of distinct variables that appear in one monomial, such as (z1, z2) and (z1, z3) in
g1(z, z̄) = 8.12z1z̄1−(2.06−4.64i)z2z̄1−(2.06+4.64i)z1z̄2−(2.00−4.00i)z3z̄1−(2.00+
4.00i)z1z̄3. The complex hierarchy with di = 1, ∀i ∈ {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16},
and di = 2, ∀i ∈ {7, 8, 9, 10, 17, 18, 19, 20}, yields a global solution. (Second-order
constraints are identified using the procedure described in the next section.) With this
choice of high order constraints, the relevant graph is illustrated in Figure 6.2. It
is already chordal and its maximal cliques are {1,2,3} and {2,3,4,5}. We can asso-
ciate the latter to all high order constraints since it contains their variables. The
globally optimal objective value thus obtained is 946.6 MW (in accordance with [])
with corresponding decision variable z = (1.0467 + 0.0000i, 0.9550− 0.0578i, 0.9485−
0.0533i, 0.7791 + 0.6011i, 0.7362 + 0.7487i)T .

1

3

5

2

4

Fig. 4. Monomial sparsity graph (solid lines) plus correlative sparsity of high order constraints
(dashed lines)
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6.2. Updating the relaxation order at each constraint. Consider a poly-
nomial optimization problem with 10,000 constraints, as encountered in Table. Say
that one has computed the first order Lasserre relaxation and that it does not yield
a global solution. How does one choose the constraints at which to augment the
relaxation order? Even if only 2 constraints require a high order, the combinatorial
difficulty is tremendous: there are 49,995,000 combinations to choose from. This sec-
tion provides one way to choose the high order constraints (there could be other ways
of course). We next present the approach when applied to polynomial optimization
in real numbers (i.e. infx∈Rn

∑
α fαx

α s.t.
∑
α gi,αx

α > 0, i = 1, . . . ,m), but it
also applies to complex numbers. We begin by computing a solution y to the moment
relaxation with the lowest possible order at each constraint. Next, we do the following:

Until a measure can be extracted from a solution y to the moment relaxation:

1. find a closest measure µ to y not necessarily supported on K:

(6.6) arg min
µ

∑
α

(
yα −

∫
Rn

xαdµ

)2

2. increment di = di + 1 at the largest mismatch, that is to say:

(6.7) arg max
16i6m

∣∣∣∣∣∑
α

gi,α

(
yα −

∫
Rn

xαdµ

)∣∣∣∣∣
3. compute a solution y to the moment relaxation of order (d1, . . . , dm).

The first step is a priori challenging computationally, so we use a proxy for it. For
each clique Ck, we have a set of pseudo-moments (yα+β)|α|,|β|=1 from which we can
extract an eigenvector of highest eigenvalue. This eigenvector uk is defined up to a
sign change when dealing with real numbers since (−uk)(−uk)T = uku

T
k (respectively

up to phase shift when dealing with complex numbers since (eiθuk)(eiθuk)∗ = uku
∗
k).

In order to synchronize the eigenvectors among the overlapping cliques, we must
therefore choose the signs (respectively phase shifts), which can be done approximately
via convex optimization. Next, we use a least-squares optimization to find a vector
x ∈ Rn (respectively z ∈ Cn) that best matches the signed eigenvectors on each clique
(respectively phased eigenvectors). This approximately provides a closest measure to
the pseudo-moments, namely the Dirac measure with atom equal to x (respectively
z) and weight equal to 1.

The second step depends on three parameters: a mismatch tolerance ε > 0; the
number h of largest mismatches considered at each iteration; and an upper bound
∆max

min on the difference between maximum and minimum relaxation orders. (In the
experiments of Table, we take ε = 1 MVA, h = 2, and ∆max

min = 2.) First, assume
that there are constraints with a mismatch greater than ε, i.e. |Ly(gi) − gi(x)| > ε
(respectively |Ly(gi) − gi(z, z̄)| > ε), and whose relaxation orders have not yet been
increased. Then increment the order at those that have the h largest mismatches and
consider a set of cliques which contain all their variables; increment also the order of
any constraint whose variables are included in those cliques. For all other constraints,
keep the same relaxation order unless the bound ∆max

min is violated, in which case
increment all those with the smallest order. Second, assume that all the constraints
with a mismatch greater than ε have already been augmented. Then, among those,
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consider the h largest mismatches, and repeat the above procedure. Third, if all the
mismatches are below ε, then the point x (respectively z) is feasible up to ε and
globally optimal.

7. Block diagonal Lasserre hierarchy. Finally, we exhibit a block diagonal
structure of the Lasserre hierarchy in the presence of symmetries. We begin by an
illustrative example.

Example 7.1. In [, WB2, V max
2 = 1.022 p.u.], an instance of the optimal power

flow is proposed. It yields the following complex polynomial optimization problem

inf
z1,z2∈C

8|z1 − z2|2

s.t.


0.9025 6 |z1|2 6 1.1025

0.9025 6 |z2|2 6 1.0568

(2 + 10i)z1z̄2 + (2− 10i)z2z̄1 − 4|z2|2 = 350

(−10 + 2i)z1z̄2 + (−10− 2i)z2z̄1 + 20|z2|2 = −350

Notice that if (z1, z2) is a feasible point, then so is (eiθz1, e
iθz2) for all θ ∈ R. When

converted to real numbers z1 := x1 + x3i and z2 := x2 + x4i, it yields

inf
x1,x2,x3,x4∈R

8(x1 − x2)2 + 8(x3 − x4)2

s.t.


0.9025 6 x21 + x23 6 1.1025

0.9025 6 x22 + x24 6 1.0568

4x1x2 + 4x3x4 + 20x1x4 − 20x3x2 − 4x22 + 4x24 = 350

−20x1x2 − 20x3x4 + 4x1x4 − 4x3x2 + 20x22 + 20x24 = −350

Notice that if (x1, x2, x3, x4) is a feasible point, then so is (−x1,−x2,−x3,−x4).

The above symmetries allow one to cancel many terms in the Lasserre hierarchy
at no loss of bound quality. We next illustrate this. The real and complex hierarchies
yield the same bounds at the first, second, and third orders (888.1, 894.3, and 905.7
MW respectively). This is in accordance with [, Table I] . The rank of the real and
complex moment matrices guarantee that global convergence is reached at the third
order. At that order, one can set to zero the following terms in the moment matrices
(the bullets represent potentially non-zero terms):

Complex moment matrix:

1 z̄
1

z̄
2

z̄
1
z̄
1

z̄
1
z̄
2

z̄
2
z̄
2

z̄
1
z̄
1
z̄
1

z̄
1
z̄
1
z̄
2

z̄
1
z̄
2
z̄
2

z̄
2
z̄
2
z̄
2

1 • 0 0 0 0 0 0 0 0 0

z1 0 • • 0 0 0 0 0 0 0

z2 0 • • 0 0 0 0 0 0 0

z1z1 0 0 0 • • • 0 0 0 0

z1z2 0 0 0 • • • 0 0 0 0

z2z2 0 0 0 • • • 0 0 0 0

z1z1z1 0 0 0 0 0 0 • • • •
z1z1z2 0 0 0 0 0 0 • • • •
z1z2z2 0 0 0 0 0 0 • • • •
z2z2z2 0 0 0 0 0 0 • • • •
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Real moment matrix:
1 x
1

x
2

x
3

x
4

x
1
x
1

x
1
x
2

x
1
x
3

x
1
x
4

x
2
x
2

x
2
x
3

x
2
x
4

x
3
x
3

x
3
x
4

x
4
x
4

x
1
x
1
x
1

x
1
x
1
x
2

x
1
x
1
x
3

x
1
x
1
x
4

x
1
x
2
x
2

x
1
x
2
x
3

x
1
x
2
x
4

x
1
x
3
x
3

x
1
x
3
x
4

x
1
x
4
x
4

x
2
x
2
x
2

x
2
x
2
x
3

x
2
x
2
x
4

x
2
x
3
x
3

x
2
x
3
x
4

x
2
x
4
x
4

x
3
x
3
x
3

x
3
x
3
x
4

x
3
x
4
x
4

x
4
x
4
x
4

1 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •

x1x1 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x2 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x3 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x4 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2x2 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2x3 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2x4 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3x3 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3x4 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x4x4 • 0 0 0 0 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1x1x1 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x1x2 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x1x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x1x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x2x2 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x2x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x2x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x3x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x3x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x1x4x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x2x2 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x2x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x2x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x3x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x3x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x2x4x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x3x3x3 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x3x3x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x3x4x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •
x4x4x4 0 • • • • 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • • • • • • •

Note that there are four diagonal blocks in the complex moment matrix, while there
are two diagonal blocks in the real moment matrix (after permutation).

The above example illustrates a block structure in the Lasserre hierarchy which
can be generalized. At order d, there are d+ 1 blocks in the complex moment matrix,
as opposed to 2 blocks in the real moment matrix (regardless of the relaxation order).
This can easily be deduced from the following considerations.

If σ(z, z̄) =
∑
α,β σα,βz

αz̄β is a Hermitian sum-of-squares, then its associated

balanced form, i.e.
∑
|α|=|β| σα,βz

αz̄β , is also a Hermitian sum-of-squares. This follows
readily from the homogeneous decomposition

(7.1)
∑
|α|=|β|

σα,βz
αz̄β =

d∑
h=0

∑
k

∣∣∣∣∣∣
∑
|α|=h

pk,αz
α

∣∣∣∣∣∣
2

where σ(z, z̄) =
∑
k

∣∣∣∑|α|6d pk,αzα∣∣∣2. The homogeneous decomposition becomes

relevant when the objective f and constraints g1, . . . , gm are themselves balanced
forms. Indeed, we then get the following property. If (σ0, . . . , σm) is a feasible point
of the relaxation of order d, that is to say f − λ = σ0 + σ1g1 + . . . + σmgm, then
the associated balanced forms also constitute a feasible point. In other words, the
non-balanced terms σα,βz

αz̄β , |α| 6= |β|, can be discarded. The homogeneous de-
composition accounts for the (d+ 1)-block diagonal structure of the complex Lasserre
hierarchy.
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Likewise, if σ(x) =
∑
α σαx

α is a real sum-of-squares, then its associated even
form, i.e.

∑
|α| even σαx

α, is also a real sum-of-squares. This follows readily from the

even/odd decomposition

(7.2)
∑
|α| even

σαx
α =

∑
k

 ∑
|α| even

pk,αx
α

2

+

 ∑
|α| odd

pk,αx
α

2

where σ(x) =
∑
k (
∑
α pk,αx

α)
2
. The even/odd decomposition becomes rele-

vant when the objective f and constraints g1, . . . , gm are themselves even forms. If
(σ0, . . . , σm) is a feasible point of the relaxation of order d, then the associated even
forms also constitute a feasible point. The even/odd decomposition accounts for the
2-block diagonal structure of the real Lasserre hierarchy.

We next analyse the above results via a dual perspective based on measure theory.
We illustrate it with Figure which we’ve generated with MATLAB and Paint.

Fig. 5. Invariant measure on the complex plane versus on the real line

On the left, we seek to minimize a function f(z) of one unconstrained complex
variable. The two bottom axis correspond to the real and imaginary parts of the
variable respectively. The objective function is invariant under the action of the
torus T (i.e. f(eiθz) = f(z)). Thus, one may seek a measure that is also invariant,
instead of looking for a Dirac measure. The cylinder represents an invariant measure
µ minimizing

∫
fdµ. Such an invariant measure satisfies

∫
zαz̄βdµ = 0 , if |α| 6= |β|.

In order to seek such a measure, one may therefore set the corresponding pseudo-
moments yα,β to zero in the complex moment matrix.

Seeking an invariant measure under the action of a finite group in the real Lasserre
hierarchy was proposed in []. Above, we applied this idea to the complex Lasserre
hierarchy for a compact group (the torus). We next apply it to the real Lasserre
hierarchy regarding a symmetry not considered in [], namely {−1,+1}. In partic-
ular, that work does not exhibit a block diagonal structure of the Lasserre hierarchy.
Note also that a general theory of invariance in sums of squares was developed in [].
However, the two symmetries that we consider are not studied.
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On the right of Figure, we seek to minimize a function f(x) of one unconstrained
real variable. It is invariant under the action of the symmetry group {−1,+1} (i.e.
f(−x) = f(x)). Thus one may seek a measure that is also invariant. The vertical
lines represent an invariant measure µ minimizing

∫
fdµ. Such an invariant measure

satisfies
∫
xαdµ = 0 , if |α| is odd. In order to seek such a measure, one may therefore

set the corresponding pseudo-moments yα to zero in the real moment matrix.

8. Conclusion. To summarize, we propose three notions to handle large scale
polynomial optimization problems: 1) a complex Lasserre hierarchy which generalizes
the theory of Lasserre to complex numbers; 2) a multi-ordered Lasserre hierarchy
to exploit sparsity in real or complex variables by associating a relaxation order to
each constraint; 3) a block diagonal Lasserre hierarchy to exploit symmetry in real
or complex variables. We apply the three notions to the optimal power flow problem
in electrical engineering. To the best of our knowledge, the Lasserre hierarchy was
previously limited to small scale problems, while we solve a large scale industrial
problem with thousands of variables and constraints to global optimality.
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Appendix A. Proof of Theorem.
(⇐=) The positive semidefinite moment matrix of rank r := rankMd+dK (y)

can be factorized in Grammian form as yα,β = x∗αxβ , for all |α|, |β| 6 d + dK ,
where xα ∈ Cr. This leads us to consider the finite dimensional Hilbert space
Cr = span(xα)|α|6d+dK = span(xα)|α|6d, the last equality being a consequence of
rankMd+dK (y) = rankMd(y).7 Since dK > 1, it is true in particular that Cr =
span(xα)|α|6d+dK−1. On this space, we define the shift operators T1, . . . , Tn as

(A.1)
Tk : Cr −→ Cr∑

|α|6d+dK−1
uαxα 7−→

∑
|α|6d+dK−1

uαxα+ek

where ek is the row vector of size n that contains only zeros apart from 1 in position
k. In order to make sure that the shifts are well-defined, we must check that each
element of Cr has a unique image by Tk. In other words, given two sets of coefficients
(uα)|α|6d+dK−1 and (vα)|α|6d+dK−1, if

∑
|α|6d+dK−1 uαxα =

∑
|α|6d+dK−1 vαxα, then

it must be that
∑
|α|6d+dK−1 uαxα+ek =

∑
|α|6d+dK−1 vαxα+ek . Indeed, this is true

because

(A.2)

∥∥∥∥∥∥
∑

|α|6d+dK−1

(uα − vα)xα+ek

∥∥∥∥∥∥ 6 R

∥∥∥∥∥∥
∑

|α|6d+dK−1

(uα − vα)xα

∥∥∥∥∥∥
7Indeed, consider d < |β| 6 d + dK . The column of Md+dK (y) indexed by β is a linear com-

bination of the columns of Md+dK (y) indexed by α with |α| 6 d. In other words, there exists
some complex numbers (cα)|α|6d such that yγ,β =

∑
|α|6d cαyγ,α, ∀|γ| 6 d + dK . As a result,

x∗γxβ =
∑
|α|6d cαx

∗
γxα, ∀|γ| 6 d+ dK . To conclude, xβ −

∑
|α|6d cαxα ∈

(
span(xα)|α|6d+dK

)⊥ ∩(
span(xα)|α|6d+dK

)
= {0}, where (·)⊥ stands for orthogonal.
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where ‖x‖ :=
√
x∗x denotes the 2-norm of a vector x ∈ Cr. We now explain why the

above inequality holds. Given some complex numbers (wα)|α|6d+dK−1, the positivity
of the localizing matrix associated to the ball constraint, i.e. Md+dK−1[(R2−|z1|2−
. . .−|zn|2)y] < 0, implies that

(A.3)

∥∥∥∥∥ ∑
|α|6d+dK−1

wαxα+ek

∥∥∥∥∥
2

=
∑

|α|,|β|6d+dK−1
wαwβ x

∗
α+ek

xβ+ek

=
∑

|α|,|β|6d+dK−1
wαwβ yα+ek,β+ek

6 R2
∑

|α|,|β|6d+dK−1
wαwβ yα+ek,β+ek

6 R2

∥∥∥∥∥ ∑
|α|6d+dK−1

wαxα+ek

∥∥∥∥∥
2

.

We now proceed to show that T1, . . . , Tn, T
∗
1 , . . . , T

∗
n commute pair-wise. When rankMd+dK (y) =

rankMd(y) = 1, this is trivial since T1, . . . , Tn are then a set of complex numbers. Oth-
erwise, we use that dK > 2 to prove that T1, . . . , Tn commute pair-wise. Indeed, for all
|α| 6 d 6 d+dK−2, it holds that TiTjxα = Tixα+ej = xα+ej+ei = xα+ei+ej = TjTixα.
As a result, given u ∈ Cr, say with decomposition u =

∑
|α|6d uαxα, we have that

(A.4) TiTju = TiTj

∑
|α|6d

uαxα

 =
∑
|α|6d

uαTiTjxα =
∑
|α|6d

uαTjTixα = TjTiu.

We go on to prove the stronger property that T1, . . . , Tn, T
∗
1 , . . . , T

∗
n commute pair-

wise. Consider u, v, w ∈ Cr admitting the following decompositions

(A.5)

u =
∑
|α|6d

uαxα , ~u := (uα)|α|6d

v =
∑
|α|6d

vαxα , ~v := (vα)|α|6d

w =
∑
|α|6d

wαxα , ~w := (wα)|α|6d

A simple computation (details below) yields that, for all 1 6 i < j 6 n,

(A.6)

uv
w

∗ I T ∗i T ∗j
Ti T ∗i Ti T ∗j Ti
Tj T ∗i Tj T ∗j Tj

uv
w

 = . . .

~u~v
~w

∗ Md(y) Md(ziy) Md(zjy)
Md(z̄iy) Md(|zi|2y) Md(zj z̄iy)
Md(z̄jy) Md(ziz̄jy) Md(|zj |2y)

~u~v
~w


The “joint hyponormality of the shifts” condition then implies that

(A.7)

 I T ∗i T ∗j
Ti T ∗i Ti T ∗i Tj
Tj T ∗i Tj T ∗j Tj

 < 0.
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We now dwell on the computational details. We will use the notation Tα := Tα1
1 . . . Tαn

n

for convenience. For any complex polynomial g ∈ C[z, z̄], it holds that u∗g(T ∗, T )v =
~u∗Md−dK (gy)~v since

(A.8)

u∗g(T ∗, T )v = u∗

(∑
γ,δ

gγ,δ(T
∗)γT δ

)
v

=
∑
γ,δ

gγ,δ (T γu)∗T δv

=
∑

α,β,γ,δ

uαvβ gγ,δ (T γxα)∗T δxβ

=
∑

α,β,γ,δ

uαvβ gγ,δ x
∗
α+γxβ+δ

=
∑
α,β

uαvβ

(∑
γ,δ

gγ,δ yα+γ,β+δ

)
= ~u∗Md(gy)~v.

Let’s pursue the proof: in accordance with Section, it holds that T1, . . . , Tn are
jointly hyponormal and that [Ti, Tj ] = T ∗i Tj − TiT

∗
j = 0. Together with the fact

that T1, . . . , Tn commute pair-wise, we deduce that T1, . . . , Tn, T
∗
1 , . . . , T

∗
n commute

pair-wise. The operators must then be simultaneously diagonalizable. In other words,
there exists a unitary matrix P such that Tk = PDkP

∗, k = 1, . . . , n, where Dk =
diag(dk1, . . . , dkr) is a diagonal matrix. For all |α|, |β| 6 d+ dK , we thus have

(A.9)

yα,β = x∗αxβ

= (Tαx0)∗(T βx0)

= x∗0(Tα)∗T βx0

= x∗0(PDαP ∗)∗PDβP ∗x0

= x∗0PD
α
P ∗PDβP ∗x0

= x∗0PD
α
DβP ∗x0

= x∗0

(
r∑
j=1

pjd
α

j d
β
j p
∗
j

)
x0

=
r∑
j=1

x∗0pjp
∗
jx0 d

α

j d
β
j

=
r∑
j=1

|x∗0pj |2 d
α

j d
β
j

where P =: (p1 . . . pr) denote the columns of P and dj := (d1j , . . . , dnj). As a result,
eigenvalues of the shift operators yield the support of a measure, and their eigenvectors
yield the weights of a measure. Precisely, the measure µ =

∑r
j=1 |x∗0pj |2 δdj satisfies

yα,β =
∫
Cn z

αz̄βdµ for all |α|, |β| 6 d + dK . In addition, the atoms are distinct and
the weights are positive because r = rankMd(y). Finally, the measure is supported
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on K because

gi(dj , dj) = p∗jpj
∑
γ,δ

gi,γ,δ d
γ

j d
δ
j (p∗jpj = 1)

=
∑
γ,δ

gi,γ,δ (dγj pj)
∗(dδjpj)

=
∑
γ,δ

gi,γ,δ (T γpj)
∗(T δpj)

(
let pj =:

∑
|α|6d

pαxα

)

=
∑

|α|,|β|6d
pαpβ

(∑
γ,δ

gi,γ,δ (T γxα)∗(T δxβ)

)

=
∑

|α|,|β|6d
pαpβ

(∑
γ,δ

gi,γ,δ x
∗
α+γxβ+δ

)

=
∑

|α|,|β|6d
pαpβ

(∑
γ,δ

gi,γ,δ yα+γ,β+δ

)
> 0.

The above inequality is a consequence of Md+dK−ki(giy) < 0 and d 6 d+ dK − ki.
(=⇒) Consider the natural extension given by yα,β =

∫
Cn z

αz̄βdµ for all d <
|α|, |β| 6 d+ dK . The positivity of the moment matrix follows from the positivity of
the weights of the atomic measure. The positivity of the localizing matrices follows
from the inclusion of the support of the measure in K. The rank is preserved because
the rank of the moment matrix cannot exceed the number of atoms. Finally, we have

(A.10)

~u~v
~w

∗ Md(y) Md(ziy) Md(zjy)
Md(z̄iy) Md(|zi|2y) Md(zj z̄iy)
Md(z̄jy) Md(ziz̄jy) Md(|zj |2y)

~u~v
~w

 = . . .

∫
Cn |u(z) + ziv(z) + zjw(z)|2 dµ > 0

where u(z) :=
∑
|α|6d

uαz
α, v(z) :=

∑
|α|6d

vαz
α, and w(z) :=

∑
|α|6d

wαz
α.

Appendix B. Proof of Theorem.
(=⇒) This part is identical to the proof of Theorem.
(⇐=) Just like in the proof of Theorem, it holds that T1, . . . , Tn are pair-

wise commuting. There are two points that need to be addressed: 1) the exis-
tence of the shift operators and 2) the pair-wise commutativity of the operators
T1, . . . , Tn, T

∗
1 , . . . , T

∗
n . To address them, we make use of well-known properties on

shift operators (namely unitary and self-adjoint, see [, p. 319] for instance).
• K contains the constraints |zk|2 = 1, k = 1, . . . , n: The localizing matrix

associated to |zk|2 = 1 is equal to zero, that is Md+dK−1[(1−|zk|2)y] = 0. As a result,
for all complex numbers (wα)|α|6d+dK−1, it holds that

(B.1)

∥∥∥∥∥∥
∑

|α|6d+dK−1

wαxα+ek

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

|α|6d+dK−1

wαxα

∥∥∥∥∥∥
The shifts are thus well-defined. In addition, for all |α|, |β| 6 d, we have that

(B.2) x∗αT
∗
kTkxβ = (Tkxα)∗(Tkxβ) = x∗α+ekxβ+ek = yα+ek,β+ek = yα,β = x∗αxβ .
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As a result, given u ∈ Cr, say with decomposition u =
∑
|α|6d uαxα, we have that

(B.3) u∗T ∗kTku =
∑

|α|,|β|6d

uαuβx
∗
αT
∗
kTkxβ =

∑
|α|,|β|6d

uαuβx
∗
αxβ = u∗u.

Hence T ∗kTk is the identity matrix; in other words, the shift operators are unitary.
This means that (T1, . . . , Tn, T

∗
1 , . . . , T

∗
n) = (T1, . . . , Tn, T

−1
1 , . . . , T−1n ) is a pair-wise

commuting tuple of operators. Indeed, if two invertible square matrices A and B
commute, so do A−1 and B−1 (since A−1B−1ABB−1A−1 = A−1B−1BAB−1A−1),
and so do A and B−1 (since B−1ABB−1 = B−1BAB−1).
•K contains the constraints izk−iz̄k = 0, k = 1, . . . , n: Consider two sets of com-

plex numbers (uα)|α|6d+dK−1 and (vα)|α|6d+dK−1 and assume that
∑
|α|6d+dK−1 uαxα =∑

|α|6d+dK−1 vαxα. We next demonstrate that
∑
|α|6d+dK−1 uαxα+ek =

∑
|α|6d+dK−1 vαxα+ek .

To do so, define wα := uα − vα for all |α| 6 d + dK − 1. For all |β| 6 d + dK − 1, it
holds that

(B.4)

x∗β

( ∑
|α|6d+dK−1

wαxα+ek

)
=

∑
|α|6d+dK−1

wα x
∗
βxα+ek

=
∑

|α|6d+dK−1
wα yβ,α+ek

=
∑

|α|6d+dK−1
wα yβ+ek,α

= x∗β+ek

( ∑
|α|6d+dK−1

wαxα

)
= 0

Since Cr = span(xα)|α|6d+dK−1, we conclude that
∑
|α|6d+dK−1 wαxα+ek = 0.

Moving on to the latter part of the proof, for all |α|, |β| 6 d, we have that

(B.5) x∗αT
∗
k xβ = (Tkxα)∗xβ = x∗α+ekxβ = yα+ek,β = yα,β+ek = x∗αxβ+ek = x∗αTkxβ .

Hence T ∗k = Tk; in other words, the shift operators are self-adjoint. This means that
(T1, . . . , Tn, T

∗
1 , . . . , T

∗
n) = (T1, . . . , Tn, T1, . . . , Tn) is pair-wise commuting.
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