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Abstract. We investigate an a posteriori error analysis of adaptive finite element approxima-
tions of linear-quadratic boundary optimal control problems under bilateral box constraints, which
act on a Neumann boundary control. We use a symmetric interior Galerkin method as discretization
technique. An efficient and reliable residual-type error estimator is introduced by invoking data os-
cillations. We then derive local upper and lower a posteriori error estimates for the boundary control
problem. Adaptive mesh refinement indicated by a posteriori error estimates is applied. Numerical
results are presented to illustrate the performance of the adaptive finite element approximation.
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1. Introduction. Many real-life applications such as the shape optimization of
technological devices [45], the identification of parameters in environmental processes,
and flow control problems [15, 18, 47] lead to optimization problems governed by par-
tial differential equations (PDEs). The complexity of such problems requires special
care in order to obtain efficient numerical approximations for the optimization prob-
lem. One particular method is the adaptive finite element method, which consists of
successive loops of the following sequence:

SOLVE → ESTIMATE → MARK → REFINE.(1.1)

The SOLVE step stands for the numerical solution of the optimization problem in a
finite dimensional space defined on the given mesh. The ESTIMATE step is the key
point of the adaptive finite element method. In this step, local error indicators are
computed in terms of the discrete solutions without knowledge of the exact solutions.
They are essential in designing algorithms for mesh adaptation, which equidistribute
the computational effort and optimize the computation. Based on the information of
the indicators, the MARK step selects a subset of elements subject to refinement.
The refinement is then executed in the final step REFINE of the adaptive loop.

Although the adaptive finite element method, it contributed to the pioneer work
of Babus̆ka and Rheinboldt [4], has become a popular approach for the efficient so-
lution of boundary and initial value problems for the PDEs, it has only quite re-
cently become popular for constrained optimal control problems, initiated by Liu
and Yan [43] and Becker, Kapp, and Rannacher [6]. In [43], the authors proposed a
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1102 PETER BENNER AND HAMDULLAH YÜCEL

residual-type a posteriori error estimator for optimal control problems, while in [6]
a dual-weighted goal-oriented adaptivity was proposed. We would like to refer to
[26, 29, 30, 32, 39, 51, 52, 54, 55] for residual-type estimators, [8, 23, 25, 50] for the
dual-weighted goal-oriented approach, and the references therein for more details of
recent advances. Further, in order to guarantee the success of the a posteriori error
estimator theoretically, some attempts have been made in [7, 20, 21, 37] to prove the
convergence of the adaptive finite element method for optimal control problems.

Adaptive mesh refinement is particularly attractive for the solution of optimal
control problems, which exhibit layers or singularities in certain regions of the mesh.
In this case, adaptivity allows local mesh refinement around the layers as needed,
thereby achieving a desired residual bound with as few degrees of freedom as possible.
The vast majority of the literature about the a posteriori error analysis of optimal
control problems is for distributed optimal control problems; see, e.g., [6, 25, 26, 29,
32, 39, 51, 52, 54, 50, 55]. However, there exists limited work on the numerical solution
of boundary optimal control problems. The residual-type error estimators are studied
in [19, 30, 36, 42, 44], whereas the hierarchical-type estimators are studied in [36].
They all use continuous finite element discretizations, except for [36]. In [36], Kohls,
Rösch, and Siebert use discontinuous finite elements to discretize the control. The
results in [38] show that discontinuous Galerkin methods enjoy a better convergence
behavior for optimal control problems exhibiting boundary layers. Optimal conver-
gence orders are obtained if the error is computed away from boundary or interior
layers. In addition, when discontinuous finite elements are used for the dicretiza-
tion of the control on the Neumann boundary, the computation of the projection
operator is more efficient due to the elementwise computation as described in [36, sec-
tion 4.1]. Discontinuous Galerkin methods have several advantages over other types
of finite element methods. For example, the state and test spaces are very easy to
construct; they can naturally handle inhomogeneous boundary conditions and curved
boundaries; and they have flexibility in handling nonmatching grids and in design-
ing hp-adaptive grid refinement. Though these methods have been known since the
1970s, much attention has been paid only in the past few years due to the availability
of cheap computing resources. We would like to refer to [3, 24, 31, 35, 33, 48] for
details about discontinuous Galerkin methods. Discontinuous Galerkin methods have
been studied in [38, 52, 53, 54, 55] for distributed optimal control problems. To the
best of our knowledge, there exists no work for boundary optimal control problems
with discontinuous Galerkin discretization.

In this paper, we derive reliable and efficient a posteriori error estimators for
boundary optimal control problems governed by elliptic equations, discretized by the
symmetric interior penalty Galerkin (SIPG) method. We choose the SIPG as a dis-
continuous Galerkin method due to its symmetric property. This implies that dis-
cretization and optimization commute; see, e.g., [53]. The a posteriori error analysis
of the boundary control problem includes the error in state, adjoint, control, and co-
control and also takes data oscillations into account, in order to consider the data of
the problem (coefficients of the equations, right-hand side, boundary conditions) in
the most general setting as possible. We note that data oscillations are also taken into
consideration in [2, 46] for single state equations, and in [30, 32] for optimal control
problems.

The remainder of the paper is organized as follows: In the next section, we in-
troduce the Neumann boundary optimal control problem governed by a second order
elliptic PDE with bilateral constraints on the control. The optimality conditions are
given in terms of the state, the adjoint, the control, and the cocontrol corresponding
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ADAPTIVE SIPG METHOD FOR BOUNDARY CONTROL 1103

to the Lagrangian multiplier for the control. Section 3 describes the SIPG discretiza-
tion of the boundary optimal control problem. A posteriori error estimators are given
in section 4. We use a residual-type error estimator for the global discretization errors
in all variables which consists of edge and element residuals. The data oscillations are
also used in the error analysis. We further derive local upper and lower a posteriori
error estimates for the boundary control problem. In section 5 we present some nu-
merical results to illustrate the performance of our adaptive mesh refinement strategy.
Finally, the paper ends with some conclusions.

2. The boundary control problem. We assume Ω to be an open, bounded
polygonal domain in R2 with boundary Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. We adopt
standard notation from Lebesgue and Sobolev space theory (see, e.g., [1]) and refer to
(·, ·)k,S and | · |k,S , ‖ · ‖k,S , k ∈ N, S ⊆ Ω, as the Hk(S)-inner product and associated
seminorm and norm, respectively. In addition, c or C denotes a general positive
constant.

We consider here the following boundary control problem governed by a linear-
quadratic elliptic equation with constrained controls on the part of the Neumann
boundary

(2.1) minimize
u∈Uad

1

2

∥∥y − yd∥∥2

0,Ω
+
ω

2

∥∥u− ud∥∥2

0,ΓN
+

∫
ΓN

rNy ds

subject to

−∆y + αy = f in Ω,(2.2a)

y = gD on ΓD,(2.2b)

∂y

∂n
= u+ gN on ΓN(2.2c)

with control constraints on a closed convex set Uad given by

Uad :=
{
v ∈ L2(ΓN ) : ua ≤ v(x) ≤ ub a.e. x ∈ ΓN

}
,(2.3)

where ua, ub ∈ L∞(ΓN ) with ua ≤ ub for almost all x ∈ ΓN . The function ud,
called desired control, is a guideline for the control; see, e.g., [14, 26]. Note that this
formulation also allows for the special and most common case, ud = 0, i.e., there is
no a priori information on the optimal control. Further, an extra coefficient rN is
added to the standard cost functional to ensure the boundary conditions of any given
adjoint function (2.7). We would like to refer to [12, 28, 36] and references therein for
similar cost functionals.

We make the following assumptions on the functions and parameters in the opti-
mal control problem (2.1)–(2.3) to show its well-posedness:

f, yd ∈ L2(Ω), gD ∈ H1/2(ΓD), ud, gN , rN ∈ L2(ΓN ), ω ∈ R+, α ∈ L∞(Ω),(2.4a)

and there is a constant α0 > 0 satisfying

α(x) ≥ α0 ≥ 0 a.e. in Ω.(2.4b)

Let us first consider the weak formulation of the state equation (2.2). If we define
the spaces of state and test functions by

Y =
{
y ∈ H1(Ω) : y|ΓD

= gD
}
, V =

{
v ∈ H1(Ω) : v|ΓD

= 0
}
,
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1104 PETER BENNER AND HAMDULLAH YÜCEL

and the bilinear form by

a(y, v) =

∫
Ω

(∇y · ∇v + αyv) dx,

then the weak form of the state equation (2.2) for a fixed u reads as follows: Find
y ∈ Y such that

(2.5) a(y, v) = (f, v)0,Ω +
(
u+ gN , v

)
0,ΓN

∀v ∈ V.

It is well known that under the above assumptions (2.4), the boundary control
problem (2.1)–(2.3) admits a unique solution (y, u) ∈ Y × Uad; see, e.g., [17, 40, 42].
The solution (y, u) is characterized by the existence of an adjoint p ∈ V such that

a(y, v) = (f, v)0,Ω +
(
u+ gN , v

)
0,ΓN

∀v ∈ V,(2.6a)

a(ψ, p) = −
(
y − yd, ψ

)
0,Ω

+
(
rN , v

)
0,ΓN

∀ψ ∈ V,(2.6b) (
ω
(
u− ud

)
− p, v − u

)
0,ΓN

≥ 0 ∀v ∈ Uad,(2.6c)

where the adjoint p is the solution of

−∆p+ αp = −
(
y − yd

)
in Ω,(2.7a)

p = 0 on ΓD,(2.7b)

∂p

∂n
= rN on ΓN .(2.7c)

By invoking a Lagrange multiplier σ ∈ L2(ΓN ) associated with the control constraints,
the optimality system (2.6) can be expressed as follows:

a(y, v) = (f, v)0,Ω +
(
u+ gN , v

)
0,ΓN

∀v ∈ V,(2.8a)

a(ψ, p) = −
(
y − yd, ψ

)
0,Ω

+
(
rN , v

)
0,ΓN

∀ψ ∈ V,(2.8b)

ω
(
u− ud

)
− p+ σ = 0 a.e. in ΓN ,(2.8c)

σ −max
{

0, σ + γ
(
u− ub

)}
+ min {0, σ − γ (ua − u)} = 0 a.e. in ΓN(2.8d)

for any γ > 0. Note that the equality (2.8d) is equivalent to the following pointwise
complementarity system with σ = σb − σa:

σb ≥ 0, u− ub ≤ 0, σb
(
u− ub

)
= 0,(2.9a)

σa ≥ 0, ua − u ≤ 0, σa (ua − u) = 0.(2.9b)

It is well known that (2.8) enjoys the Newton differentiability property [27], at
least for γ = ω. Therefore, we can apply a generalized (semismooth) Newton iteration.
However, the infinite-dimensional generalized differentiability concept of the max- and
min-functions requires a norm gap. In case of boundary controls, it is guaranteed by
applying a smooth mapping as done in [22, Remark 4.3]. Due to the structure of the
nonsmooth part (2.8d) the Newton iteration can be expressed in terms of an active
set strategy. For any Newton iteration step, the active sets are then determined by

Aa = {x ∈ ΓN : σ − γ(ua − u) < 0},(2.10a)

Ab = {x ∈ ΓN : σ + γ(u− ub) > 0},(2.10b)
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ADAPTIVE SIPG METHOD FOR BOUNDARY CONTROL 1105

and the inactive set is I = ΓN\{Aa ∪ Ab}. Then, the complementarity conditions in
(2.9) can be rewritten as

u = ua, σb = 0, σ ≤ 0 a.e. on Aa,(2.11a)

u = ub, σa = 0, σ ≥ 0 a.e. on Ab,(2.11b)

ua < u < ub, σa = σb = 0, σ = 0 a.e. on I.(2.11c)

3. SIPG method. We discretize our optimal control problem (2.1)–(2.3) using a
discontinuous Galerkin method, namely, the SIPG discretization due to the symmetry
property of its bilinear form, i.e., ah(y, v) = ah(v, y); see, e.g., [3].

We assume that the domain Ω is polygonal such that the boundary is exactly
represented by boundaries of triangles. We denote {Th}h as a family of shape-regular
simplicial triangulations of Ω. Each mesh Th consists of closed triangles such that
Ω =

⋃
K∈Th K holds. We assume that the mesh is regular in the following sense: For

different triangles Ki,Kj ∈ Th, i 6= j, the intersection Ki ∩Kj is either empty or a
vertex or an edge, i.e., hanging nodes are not allowed. The diameter of an element K
and the length of an edge E are denoted by hK and hE , respectively.

We split the set of all edges Eh into the set E0
h of interior edges, the set EDh

of Dirichlet boundary edges, and the set ENh of Neumann boundary edges so that
Eh = E0

h ∪ EBh with EBh = EDh ∪ ENh . Let the edge E be a common edge for two
elements K and Ke. For a piecewise continuous scalar function y, there are two
traces of y along E, denoted by y|E from inside K and ye|E from inside Ke. The
jump and average of y across the edge E are defined by

[[y]] = y|EnK + ye|EnKe , {{y}} =
1

2

(
y|E + ye|E

)
,(3.1)

where nK (resp., nKe) denotes the unit outward normal to ∂K (resp., ∂Ke).
Similarly, for a piecewise continuous vector field ∇y, the jump and average across

an edge E are given by

[[∇y]] = ∇y|E · nK +∇ye|E · nKe , {{∇y}} =
1

2

(
∇y|E +∇ye|E

)
.(3.2)

For a boundary edge E ∈ K ∩ Γ, we set {{∇y}} = ∇y and [[y]] = yn, where n is the
outward normal unit vector on Γ.

Recall that in discontinuous Galerkin methods, the state and test spaces consist of
discontinuous polynomials. That is, no continuity constraints are explicitly imposed
on the state and test functions across the element interfaces. As a consequence, weak
formulations must include jump terms across interfaces, and typically penalty terms
are added to control the jump terms. Then, we define the spaces of test functions,
the discrete states, and controls by

Vh = Yh =
{
y ∈ L2(Ω) : y |K∈ P1(K) ∀K ∈ Th

}
,(3.3a)

Uh,N =
{
u ∈ L2(ΓN ) : u |E∈ P1(E) ∀E ∈ ENh

}
,(3.3b)

respectively. P1(K) (resp., P1(E)) is the set of linear polynomials in K (resp., on
E). Note that the space Yh of discrete states and the space of test functions Vh are
identical due to the weak treatment of boundary conditions in discontinuous Galerkin
methods. We then introduce the following (bi)linear forms ∀(y, u, v) ∈ Yh×Uh,N ×Vh
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1106 PETER BENNER AND HAMDULLAH YÜCEL

according to

ah(y, v) =
∑
K∈Th

∫
K

(∇y · ∇v + αyv) dx(3.4a)

−
∑

E∈E0h∪E
D
h

∫
E

({{∇y}} · [[v]] + {{∇v}} · [[y]]) ds

+
∑

E∈E0h∪E
D
h

σ0

hE

∫
E

[[y]] · [[v]] ds,

bh(u, v) =
∑
E∈ENh

∫
E

uv ds,(3.4b)

lh(v) =
∑
K∈Th

∫
K

fv dx+
∑
E∈EDh

∫
E

gD
(
σ0

hE
nE · [[v]]− {{∇v}}

)
ds(3.4c)

+
∑
E∈ENh

∫
E

gNv ds,

where the parameter σ0 ∈ R+
0 is called the penalty parameter, which should be

sufficiently large to ensure the stability of the discontinuous Galerkin discretization,
independent of the mesh size h. However, it depends on the position of the edge E.
As a threshold, the value of the penalty parameter σ on the boundary edges E ∈ EB
is twice the one on the interior edges E ∈ E0 [48, section 2.7.1]. Further, large
penalty parameters decrease the jumps across element interfaces, which can affect
the numerical approximation. The discontinuous Galerkin approximation converges
to the continuous Galerkin approximation as the penalty parameter goes to infinity
(see, e.g., [11] for details).

Now, we mention some results, obtained by the (bi)linear forms (3.4). The bilinear
form ah(·, ·) is consistent with the state equation (2.2) for a fixed given control u in
the following sense: If y satisfies (2.2), then

ah(y, v) = (f, v)0,Ω + (u+ gN , v)0,ΓN
+
∑
E∈EDh

(
y,
σ0

hE
nE · [[v]]− {{∇v}}

)
0,E

(3.5)

+
∑
E∈ENh

(nE · ∇y, v)0,E ∀v ∈ Vh.

We then define the SIPG approximation yh of the solution y of the state system (2.2)
for a fixed given control uh = u such that

(3.6) ah(yh, v) = lh(v) + bh(uh, v) ∀v ∈ Vh.

Thus, we have the following orthogonality relation:

(3.7) ah(y − yh, v) = 0 ∀v ∈ Vh.

We need the following trace and inverse inequalities, which will be used frequently
in the a posteriori error analysis (see, e.g., [10, 34]):

‖v‖0,∂S ≤ ctr‖v‖1,S ∀v ∈ H1(S),(3.8a)

‖v‖0,∂S ≤ ctr
(
h−1
S ‖v‖

2
0,S + hS‖∇v‖20,S

)1/2 ∀v ∈ H1(S),(3.8b)
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ADAPTIVE SIPG METHOD FOR BOUNDARY CONTROL 1107

and

(3.9) |v|j,S ≤ cinvhi−jS |v|i,S ∀v ∈ Pk(S), 0 ≤ i ≤ j ≤ 2,

where S is a bounded domain with a sufficiently smooth (or polygonal) boundary ∂S.
Note that the constants ctr in (3.8) are different for both trace inequalities. To ease
the notation, they are denoted by the same notation. We can now state the continuity
and coercivity of the bilinear form ah(·, ·) in the following lemma [35, Lemma 3.1].

Lemma 3.1. For ah(·, ·) as in (3.4a), the following holds.
(i)

(3.10) |ah(y, v)| ≤ 2‖|y|‖‖|v|‖ ∀y, v ∈ Yh.

(ii) There exists a positive constant ca such that

(3.11) ah(v, v) ≥ ca‖|v|‖2 ∀v ∈ V + Vh

with the following mesh-dependent energy norm

‖|v|‖ :=

( ∑
K∈Th

(
‖∇v‖20,K + α‖v‖20,K

)
(3.12)

+
∑

E∈E0h∪E
D
h

(
hE‖{{∇v}}‖20,E +

σ0

hE
‖[[v]]‖20,E

)1/2

.

The proof of (i) is an application of the Cauchy–Schwarz inequality, while the
proof of (ii) is obtained by applying the trace (3.8b) and inverse (3.9) inequalities.

In the a posteriori error analysis, we invoke data oscillations, since we do not
assume any regularity of the data. Then, the data of the problem (coefficients of the
equation, right-hand side, boundary conditions) are approximated by using the finite
element ansatz functions on the underlying triangulation. Let

fh, y
d
h, αh ∈ Vh, udh, g

N
h , r

N
h , u

a
h, u

b
h ∈ Uh,N

denote approximations to the right-hand side f , the desired state yd, the reaction
term α, the desired control ud, the Neumann boundary conditions gN , rN , the lower
bound ua, and the upper bound ub, respectively. Similarly, the Dirichlet boundary
condition is approximated by gDh ∈ Uh,D = {y ∈ L2(ΓD) : y |E∈ P1(E) ∀E ∈ EDh }.

Then, the SIPG discretization of the boundary control problem (2.1)–(2.2) is
given as follows:

minimize J(yh, uh) :=
1

2

∑
K∈Th

‖yh − ydh‖20,K

+
∑
E∈ENh

ω

2
‖uh − udh‖20,E +

∑
E∈ENh

∫
E

rNh yh ds(3.13a)

over (yh, uh) ∈ Yh × Uadh ,(3.13b)

subject to ah(yh, vh) = lh(vh) + bh(uh, vh), vh ∈ Vh,(3.13c)

D
ow

nl
oa

de
d 

07
/1

7/
17

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1108 PETER BENNER AND HAMDULLAH YÜCEL

with the discrete constraint set for the boundary controls

Uadh =
{
uh ∈ Uh,N : uah ≤ uh ≤ ubh

}
.(3.13d)

The optimality conditions of the disretized optimization problem (3.13) involve the
existence of a discrete ph ∈ Vh such that

ah(yh, vh) = lh(vh) + bh(uh, vh) ∀vh ∈ Vh,(3.14a)

ah(ψh, ph) = −
(
yh − ydh, ψh

)
0,Ω

+
(
rNh , ψh

)
0,ΓN

∀ψh ∈ Vh,(3.14b) (
ω
(
uh − udh

)
− ph, vh − uh

)
0,ΓN

≥ 0 ∀vh ∈ Uadh .(3.14c)

As in the continuous setting, the discrete optimality system (3.14c) can be rewritten
by invoking the discrete cocontrol σh ∈ Uh,N :

ω
(
uh − udh

)
− ph + σh = 0,(3.15a)

σh −max
{

0, σh + γ
(
uh − ubh

)}
+ min{0, σh − γ(uah − uh)} = 0.(3.15b)

Note that the equality (3.15b) is equivalent to the following discrete complementarity
system with σh = σbh − σah:

σbh ≥ 0, uh − ubh ≤ 0, σbh
(
uh − ubh

)
= 0,(3.16a)

σah ≥ 0, uah − uh ≤ 0, σah
(
uah − uh

)
= 0.(3.16b)

We then define the discrete active sets as

Aa,h =
⋃{

x ∈ E | σh(x)− γ(uah(x)− uh(x)) < 0, ∀E ∈ ENh
}
,(3.17a)

Ab,h =
⋃{

x ∈ E | σh(x) + γ(uh(x)− ubh(x)) > 0, ∀E ∈ ENh
}
,(3.17b)

and the inactive set is Ih = ENh \{Aa,h ∪ Ab,h}. Further, the complementarity condi-
tions in (3.16) can be rewritten as in the continuous setting

uh = uah, σbh = 0, σh ≤ 0 on Aa,h,(3.18a)

uh = ubh, σah = 0, σh ≥ 0 on Ab,h,(3.18b)

uah < uh < ub, σah = σbh = 0, σh = 0 on Ih.(3.18c)

4. The residual-type a posteriori error estimator. We here introduce a
residual-type error estimator for the optimal control problem (2.1)–(2.3), consisting of
easily computable element and edge residuals with respect to the SIPG approximation.
The errors in the state y and adjoint p are measured by the energy norm ‖| · |‖, which
is defined in (3.12), while the errors in the control u and cocontrol σ are measured by
the L2-norm on the Neumann boundary ΓN .

The residual-type error estimator η for the SIPG approximation of the boundary
control problem (2.1)–(2.3) is

(4.1) η =
(
η2
y + η2

p + η2
u

)1/2

,
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where the state, the adjoint, and the control estimators are defined according to

ηy =

( ∑
K∈Th

η2
y,K +

∑
E0∈E0h

η2
y,E0 +

∑
ED∈EDh

η2
y,ED +

∑
EN∈ENh

η2
y,EN

)1/2

,(4.2a)

ηp =

( ∑
K∈Th

η2
p,K +

∑
E0∈E0h

η2
p,E0 +

∑
ED∈EDh

η2
p,ED +

∑
EN∈ENh

η2
p,EN

)1/2

,(4.2b)

ηu =

( ∑
EN∈ENh

η2
u,EN

)1/2

,(4.2c)

respectively. The element residuals ηy,K , ηp,K are given by

ηy,K = hK‖fh + ∆yh − αhyh‖0,K , K ∈ Th,(4.3a)

ηp,K = hK
∥∥− (yh − ydh)+ ∆ph − αhph

∥∥
0,K

, K ∈ Th.(4.3b)

The edge residuals ηy,E0 , ηp,E0 associated with the interior edges E0 ∈ E0 are

ηy,E0 = h
1/2
E0 ‖[[∇yh]]‖0,E0 + σ0h

−1/2
E0 ‖[[yh]]‖0,E0 , E0 ∈ E0

h,(4.4a)

ηp,E0 = h
1/2
E0 ‖[[∇ph]]‖0,E0 + σ0h

−1/2
E0 ‖[[ph]]‖0,E0 , E0 ∈ E0

h,(4.4b)

and the boundary edge residuals ηy,ED , ηp,ED and ηy,EN , ηp,EN , ηu,EN with respect to
the Dirichlet boundary edges ED ∈ ED and Neumann boundary edges EN ∈ EN are

ηy,ED = σ0h
−1/2

ED

∥∥gDh − yh∥∥0,ED for ED ∈ EDh ,(4.5a)

ηp,ED = σ0h
−1/2

ED ‖ph‖0,ED for ED ∈ EDh ,(4.5b)

ηy,EN = h
1/2

EN

∥∥uh + gNh − nEN · ∇yh
∥∥

0,EN for EN ∈ ENh ,(4.5c)

ηp,EN = h
1/2

EN

∥∥rNh − nEN · ∇ph
∥∥

0,EN for EN ∈ ENh ,(4.5d)

ηu,EN = hEN

∥∥nEN · ∇
(
ω
(
uh − udh

)
− ph

)∥∥
0,EN for EN ∈ ENh .(4.5e)

We further invoke data oscillations in the error analysis

θ =
(
θ2
y + θ2

p + θ2
u

)1/2
,(4.6)

where

θ2
y =

∑
K∈Th

h2
K

(
‖f − fh‖20,K + ‖(α− αh)yh‖20,K

)︸ ︷︷ ︸
θ2y,K

+
∑
E∈EDh

h−1
E σ0‖gD − gDh ‖20,E︸ ︷︷ ︸

θ2
y,ED

(4.7a)

+
∑
E∈ENh

hE‖gN − gNh ‖20,E︸ ︷︷ ︸
θ2
y,EN

,

θ2
p =

∑
K∈Th

h2
K

(
‖yd − ydh‖20,K + ‖(α− αh)ph‖20,K

)︸ ︷︷ ︸
θ2p,K

+
∑
E∈ENh

hE‖rN − rNh ‖20,E︸ ︷︷ ︸
θ2
p,EN

,(4.7b)

θ2
u =

∑
E∈ENh

(
ω‖ud − udh‖20,E + ‖ua − uah‖20,E + ‖ub − ubh‖20,E

)
︸ ︷︷ ︸

θ2
u,EN

.(4.7c)D
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1110 PETER BENNER AND HAMDULLAH YÜCEL

4.1. Reliability of the error estimator. In this section, we derive an upper
bound for the discretization errors of the state, the adjoint, the control, and the
cocontrol. The reliability means that up to data oscillations (4.6), the discretization
errors can be bounded by the residual-type error estimator η (4.1).

To prove our reliability result, we need the auxiliary solutions y[uh] ∈ Y and
p[uh] ∈ V , which solve the following system

a(y[uh], v) = (f, v)0,Ω +
(
uh + gN , v

)
0,ΓN

∀v ∈ V,(4.8a)

a(q, p[uh]) = −
(
yh − ydh, q

)
0,Ω

+
(
rNh , q

)
0,ΓN

∀q ∈ V.(4.8b)

By (2.6) and (4.8), we obtain

a(y − y[uh], v) = (u− uh, v)0,ΓN
,

a(q, p− p[uh]) = (yh − y, q)0,Ω +
(
yd − ydh, q

)
0,Ω

+
(
rN − rNh , q

)
0,ΓN

.

Then, by using Lemma 3.1 with the trace inequality (3.8a), we obtain the following
relations

‖|y − y[uh]|‖ ≤ ctrc0c−1
a ‖u− uh‖0,ΓN

,(4.9a)

‖|p− p[uh]|‖ ≤ c0c−1
a

(
‖y − yh‖0,Ω +

∥∥yd − ydh∥∥0,Ω
+ ctr

∥∥rN − rNh ∥∥0,ΓN

)
,(4.9b)

where c0 = min(α, α−1).
We now find a bound, up to the control estimator ηu and the data oscillation

θu for the discretization errors in terms of the auxiliary state y[uh] and the auxiliary
adjoint p[uh].

Lemma 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let the cocontrol σ and the discrete cocontrol σh be defined in (2.8)
and (3.15), respectively. Assume that Uadh ⊂ Uad, (ω(uh − udh) − ph)|E∈ENh ∈ H

1(E)

and that there is a vh ∈ Uadh such that [42]

(4.10)
∥∥(ω (uh − udh)− ph, vh − u)∥∥0,ΓN

≤ C
∑
E∈ENh

hE
∥∥nE · ∇ (ω (uh − udh)− ph)∥∥0,E

‖u− uh‖0,E .

Then, there exist positive constants Ci, 1 ≤ i ≤ 5, depending on the regularization
parameter ω, the coercivity constant ca, and Ω, such that

‖u− uh‖0,ΓN
+‖σ − σh‖0,ΓN

+ ‖|y − yh|‖+ ‖|p− ph|‖(4.11)

≤ C1ηu + C2θu + C3θp + C4‖|p[uh]− ph|‖+ C5‖|y[uh]− yh|‖.

Proof. In view of the definition of ‖| · |‖ in (3.12), the inequalities (4.9) and the
trace inequality (3.8a), we have

‖|y − yh|‖ ≤ ctrc0c−1
a ‖u− uh‖0,ΓN

+ ‖|y[uh]− yh|‖,(4.12a)

‖|p− ph|‖ ≤ c0c−1
a

(
‖y − yh‖0,Ω +

∥∥yd − ydh∥∥0,Ω
+ ctr

∥∥rN − rNh ∥∥0,ΓN

)
(4.12b)

+ ‖|p[uh]− ph|‖
≤ ctrc30c−2

a ‖u− uh‖0,ΓN
+ c20c

−1
a ‖|y[uh]− yh|‖+ c0c

−1
a

∥∥yd − ydh∥∥0,Ω

+ c0c
−1
a ctr

∥∥rN − rNh ∥∥0,ΓN
+ ‖|p[uh]− ph|‖.
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By the equalities (2.8c) and (3.15a), the inequalities (4.12), and an application of the
trace inequality (3.8a), we find

‖σ − σh‖0,ΓN
≤ ω‖uh − u‖0,ΓN

+ ω
∥∥ud − udh∥∥0,ΓN

+ ‖p− ph‖0,ΓN

≤
(
ω + c2trc

−2
a c40

)
‖uh − u‖0,ΓN

+ ω
∥∥ud − udh∥∥0,ΓN

+ ctrc0‖|p[uh]− ph|‖+ ctrc
−1
a c30‖|y[uh]− yh|‖

+ ctrc
−1
a c20

∥∥yd − ydh∥∥0,Ω
+ c2trc

−1
a c20

∥∥rN − rNh ∥∥0,ΓN
.(4.13)

By the optimality inequalities (2.6c) and (3.14c), we obtain

ω‖u− uh‖20,ΓN
= (ωu, u− uh)0,ΓN

− (ωuh, u− uh)0,ΓN

≤
(
ωud + p, u− uh

)
0,ΓN

− (ωuh, u− uh)0,ΓN

= −
(
ω
(
uh − udh

)
− ph, u− uh

)
0,ΓN

+ (p− ph, u− uh)0,ΓN

+ ω
(
ud − udh, u− uh

)
0,ΓN

≤
(
ω
(
uh − udh

)
− ph, vh − u

)
0,ΓN

+ (p− ph, u− uh)0,ΓN

+ ω
(
ud − udh, u− uh

)
0,ΓN

.(4.14)

For the first term on the right-hand side of (4.14), in view of the assumption in (4.10),
and an application of Young’s inequality, we obtain(

ω
(
uh − udh

)
− ph, vh − u

)
0,ΓN

≤ 2

ω
C
∑
E∈ENh

h2
E

∥∥nE · ∇ (ω (uh − udh)− ph)∥∥2

0,E
+
Cω

8
‖u− uh‖20,ΓN

.(4.15)

Next, we split the second term on the right-hand side of (4.14) into two parts:

(4.16) (u− uh, p− ph)0,ΓN
= (u− uh, p− p[uh])0,ΓN︸ ︷︷ ︸

M1

+ (u− uh, p[uh]− ph)0,ΓN︸ ︷︷ ︸
M2

.

Then the equations (2.8) and (4.8) yield

M1 = a(y − y[uh], p)− a(y − y[uh], p[uh])

=
(
yd − ydh, y − y[uh]

)
0,Ω

+ (yh − y, y − y[uh])0,Ω +
(
rN − rNh , y − y[uh]

)
0,ΓN

=
(
yd − ydh, y − y[uh]

)
0,Ω

+ (yh − y[uh], y − y[uh])0,Ω

+ (y[uh]− y, y − y[uh])0,Ω︸ ︷︷ ︸
≤0

+
(
rN − rNh , y − y[uh]

)
0,ΓN

≤
(
yd − ydh, y − y[uh]

)
0,Ω

+ (yh − y[uh], y − y[uh])0,Ω

+
(
rN − rNh , y − y[uh]

)
0,ΓN

.(4.17)

In view of the definition of ‖| · |‖ in (3.12), Young’s inequality, the trace inequality
(3.8a), and the inequality (4.9a), we obtain(

yd − ydh, y − y[uh]
)

0,Ω
≤ ωc2ac

−2
tr c
−4
0

8
‖y − y[uh]‖20,Ω +

2c−2
a c2trc

4
0

ω

∥∥yd − ydh∥∥2

0,Ω

≤ ωc2ac
−2
tr c
−2
0

8
‖|y − y[uh]|‖2 +

2c−2
a c2trc

4
0

ω

∥∥yd − ydh∥∥2

0,Ω

≤ ω

8
‖u− uh‖20,ΓN

+
2c−2
a c2trc

4
0

ω

∥∥yd − ydh∥∥2

0,Ω
,(4.18)
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(
rN − rNh , y − y[uh]

)
0,ΓN

≤ ωc2ac
−4
tr c
−4
0

8
‖y − y[uh]‖20,ΓN

+
2c−2
a c4trc

4
0

ω

∥∥rN − rNh ∥∥2

0,ΓN

≤ ωc2ac
−2
tr c
−2
0

8
‖|y − y[uh]|‖2 +

2c−2
a c4trc

4
0

ω

∥∥rN − rNh ∥∥2

0,ΓN

≤ ω

8
‖u− uh‖20,ΓN

+
2c−2
a c4trc

4
0

ω

∥∥rN − rNh ∥∥2

0,ΓN
,(4.19)

(yh − y[uh], y − y[uh])0,Ω ≤
ωc2ac

−2
tr c
−4
0

8
‖y − y[uh]‖20,Ω +

2c−2
a c2trc

4
0

ω
‖yh − y[uh]‖20,Ω

≤ ωc2ac
−2
tr c
−2
0

8
‖|y − y[uh]|‖2 +

2c−2
a c4trc

6
0

ω
‖|yh − y[uh]|‖2

≤ ω

8
‖u− uh‖20,ΓN

+
2c−2
a c4trc

6
0

ω
‖|yh − y[uh]|‖2.(4.20)

For the second term on the right of (4.16), we obtain the following estimate by the
trace inequality (3.8a) and the definition of ‖| · |‖ in (3.12):

M2 ≤
ω

8
‖u− uh‖20,ΓN

+
2

ω
‖p[uh]− ph‖20,ΓN

≤ ω

8
‖u− uh‖20,ΓN

+
2c2trc

2
0

ω
‖|p[uh]− ph|‖2.(4.21)

Combining (4.17)–(4.21), we obtain

(u− uh, p− ph)0,ΓN
≤ ω

2
‖u− uh‖20,ΓN

+
2c−2
a c2trc

4
0

ω

∥∥yd − ydh∥∥2

0,Ω
+

2c−2
a c4trc

4
0

ω

∥∥rN − rNh ∥∥2

0,ΓN

+
2c−2
a c2trc

6
0

ω
‖|yh − y[uh]|‖2 +

2c2trc
2
0

ω
‖|p[uh]− ph|‖2.(4.22)

The last term on the right-hand side of (4.14) can be estimated by invoking Young’s
inequality again, such that

ω
(
ud − udh, u− uh

)
0,ΓN

≤ ω

8
‖u− uh‖20,ΓN

+
2

ω

∥∥ω (ud − udh)∥∥2

0,ΓN
.(4.23)

Then, using (4.15), (4.22), and (4.23), we end up with

‖u− uh‖20,ΓN

≤ 16

(3− C)ω2

(∥∥ω (ud − udh)∥∥2

0,ΓN
+ c−2

a c2trc
4
0

∥∥yd − ydh∥∥2

0,Ω

+ c−2
a c2trc

6
0‖|y[uh]− yh|‖2 + c−2

a c4trc
4
0

∥∥rN − rNh ∥∥2

0,ΓN

)
+ c2trc

2
0‖|p[uh]− ph|‖2 + C

∑
E∈ENh

h2
E

∥∥nE · ∇ (ω (uh − udh)− ph)∥∥2

0,E

)
.(4.24)

Finally, combining (4.12), (4.13), and (4.24), the desired result is obtained.

It follows from Lemma 4.1 that we need to find bounds on ‖|p[uh]− ph|‖ and
‖|y[uh]− yh|‖. Now, we derive an upper bound for the errors between auxiliary solu-
tions and discrete solutions in terms of the error estimators and data oscillations.
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Lemma 4.2. If (y[uh], p[uh]) and (yh, ph) are the solutions of (4.8) and (3.14),
respectively, then

‖|p[uh]− ph|‖2 ≤ C
(
η2
p + θ2

p

)
,(4.25a)

‖|y[uh]− yh|‖2 ≤ C
(
η2
y + θ2

y

)
.(4.25b)

Proof. Let ep = p[uh]− ph and ψ = ep − vh, with vh ∈ Vh the piecewise constant
on Th. By using the coercivity result (3.11), and an orthogonality relation between
p[uh]− ph, i.e., ah(vh, ep) = 0, we obtain

ca‖|ep|‖2 ≤ ah(ep, ep)− ah(vh, ep) = ah(ψ, ep)

=
(
ydh − yh, ψ

)
0,Ω
−

( ∑
K∈Th

(
∇ψ,∇ph)0,K + α(ψ, ph)0,K

)

+
∑

E∈E0h∪E
D
h

[
({{∇ψ}}, [[ph]])0,E + ({{∇ph}}, [[ψ]])0,E −

σ0

hE
([[ψ]], [[ph]])0,E

]
+
∑
E∈ENh

(
rNh , ψ

)
.(4.26)

Integrating by parts, we see that∑
K∈Th

(
∇ph,∇ψ)0,K

=
∑
K∈Th

(−∆ph, ψ)0,K +
∑
E∈E0h

[
({{∇ph}}, [[ψ]])0,E + ([[∇ph]], {{ψ}})0,E

]
+
∑
E∈EDh

(nE · ∇ph, ψ)0,E +
∑
E∈ENh

(nE · ∇ph, ψ)0,E .(4.27)

Now, using (4.27) in (4.26) with the addition and subtraction of the given data, we
obtain

ca‖|ep|‖2 ≤
∑
K∈Th

[(
ydh − yh + ∆ph − αhph, ψ

)
0,K

+ ((αh − α)ph, ψ)0,K

]
+
∑
E∈EDh

(
nE · ∇ψ −

σ0

hE
ψ, ph

)
+
∑
E∈ENh

(
rNh − nE · ∇ph, ψ

)
0,E

+
∑
E∈E0h

[
({{∇ψ}}, [[ph]])0,E −

σ0

hE
([[ψ]], [[ph]])0,E − ([[∇ph]], {{ψ}})0,E

]
.(4.28)

For all ζ ∈ Vh ∩H1(Ω) with ζ|ΓD
= 0, the orthogonality relation gives us

0 = ah(ep, ph − ζ) =
∑
K∈Th

[
(∇ep,∇(ph − ζ))0,K + α(ep, ph − ζ)0,K

]
−
∑
E∈E0h

({{∇(ph − ζ)}}, [[ep]])0,E −
∑
E∈EDh

(nE · ∇(ph − ζ), ep)0,E

−
∑
E∈E0h

({{∇ep}}, [[ph]])0,E −
∑
E∈EDh

(nE · ∇ep, ph)0,E

+
∑
E∈E0h

σ0

hE
([[ep]], [[ph]])0,E −

∑
E∈EDh

σ0

hE
(ph, ph)0,E .(4.29)

By using the definition of ψ = ep − vh, where vh is piecewise constant on Th, and
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1114 PETER BENNER AND HAMDULLAH YÜCEL

applying (4.29) in (4.28), we obtain

ca‖|ep|‖2 ≤
∑
K∈Th

[(
ydh − yh + ∆ph − αhph, ψ

)
0,K

+ ((αh − α)ph, ψ)0,K

]
−
∑
E∈E0h

[
σ0

hE
([[ph]], [[ψ]])0,E + ([[∇ph]], {{ψ}})0,E

]
−
∑
E∈EDh

σ0

hE
(ψ, ph)0,E +

∑
E∈ENh

(rNh − nE · ∇ph, ψ)0,E

+
∑
K∈Th

[
(∇ep,∇(ph − ζ))0,K + α(ep, ph − ζ)0,K

]
−
∑
E∈E0h

({{∇(ph − ζ)}}, [[ep]])0,E −
∑
E∈EDh

(nE · ∇(ph − ζ), ep)0,E

−
∑
E∈E0h

σ0

hE
([[ph]], [[ph]])0,E −

∑
E∈EDh

σ0

hE
(ph, ph)0,E .(4.30)

We now obtain bounds for the terms on the right-hand side of (4.30). The terms
containing ψ are bounded by

1

λ1

(
h2
K

∑
K∈Th

‖ydh − yh + ∆ph − αhph‖20,K + ‖(αh − α)ph‖20,K
)

(4.31)

+
1

λ2

∑
E∈E0h

hE‖[[∇ph]]‖20,E +
1

λ3

∑
E∈E0h

σ0h
−1
E ‖[[ph]]‖20,E

+
1

λ4

∑
E∈EDh

σ0h
−1
E ‖ph‖

2
0,E +

1

λ5

∑
E∈ENh

hE‖rNh − nE · ∇ph‖20,E

+ λ1

∑
K∈Th

h−2
K ‖ψ‖

2
0,K + λ2

∑
E∈E0h

h−1
E ‖{{ψ}}‖

2
0,E + λ3

∑
E∈E0h

σ0h
−1
E ‖[[ψ]]‖20,E

+ λ4

∑
E∈EDh

σ0h
−1
E ‖ψ‖

2
0,E + λ5

∑
E∈ENh

h−1
E ‖ψ‖

2
0,E

for any λi > 0, i = 1, 2, 3, 4, 5. To estimate the terms containing ψ in (4.31), we choose
vh as the best piecewise constant approximation of ep. Then, using an approximation
result of [5]

‖ψ‖0,K ≤ chK‖∇ep‖0,K , K ∈ Th,

with the trace inequality (3.8b), we obtain∑
K∈Th

h−2
K ‖ψ‖

2
0,K ≤ c

∑
K∈Th

‖∇ep‖20,K ,(4.32a)∑
E∈E0h

h−1
E

(
‖{{ψ}}‖20,E + ‖[[ψ]]‖20,E

)
≤ c

∑
E∈E0h

∑
K; E∈∂K

h−1
E

(
h−1
K ‖ψ‖

2
0,K + hK‖∇ψ‖20,K

)
≤ c

∑
K∈Th

‖∇ep‖20,K ,(4.32b) ∑
E∈EBh

h−1
E ‖ψ‖

2
0,E ≤ c

∑
E∈EBh

∑
K; E∈∂K

h−1
E

(
h−1
K ‖ψ‖

2
0,K + hK‖∇ψ‖20,K

)
≤ c

∑
K∈Th

‖∇ep‖20,K .(4.32c)
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ADAPTIVE SIPG METHOD FOR BOUNDARY CONTROL 1115

Note that here we use h−1
E hK ≤ 1, which holds by the shape regularity of the mesh.

The terms containing ph − ζ on the right-hand side of (4.30) are also bounded by

λ6

∑
K∈Th

‖∇ep‖20,K +
1

λ6

∑
K∈Th

‖∇(ph − ζ)‖20,K + λ7

∑
K∈Th

α‖ep‖20,K(4.33)

+
1

λ7

∑
K∈Th

‖ph − ζ‖20,K +
∑
E∈E0

hE‖{{∇(ph − ζ)}}‖20,E +
∑
E∈E0

h−1
E ‖[[ph]]‖20,E

+
∑
E∈ED

hE‖nE · ∇(ph − ζ)‖20,E +
∑
E∈ED

h−1
E ‖ph‖

2
0,E .

The terms containing ∇(ph − ζ) in (4.33) are bounded by
∑
K∈Th ‖∇(ph − ζ)‖20,K

by using the trace and inverse inequalities. Further, the latter is bounded by∑
E∈E0 h

−1
E ‖[[ph]]‖20,E +

∑
E∈ED h

−1
E ‖ph‖20,E , in view of the estimate in [35, Thm. 2.1].

Likewise, the term
∑
K∈Th ‖ph − ζ‖20,K is also bounded by

∑
E∈E0 hE‖[[ph]]‖20,E +∑

E∈ED hE‖ph‖20,E .
Finally, combining the bounds in (4.31) and (4.33) with ‖∇ep‖0,K ≤ ‖|ep|‖ and

α‖ep‖0,K ≤ ‖|ep|‖ provided that λi, i = 1, . . . , 7 are sufficiently small, the desired result
(4.25a) is obtained.

The proof of (4.25b) is carried out in a similar way.

Combining Lemmas 4.1 and 4.2, we obtain the following reliability estimate.

Theorem 4.3. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let the cocontrol σ and the discrete cocontrol σh be defined in (2.8)
and (3.15), respectively. Assume that all the conditions in Lemma 4.1 hold. Then,

(4.34) ‖u− uh‖0,ΓN
+ ‖σ − σh‖0,ΓN

+ ‖|y − yh|‖+ ‖|p− ph|‖ ≤ C
(
η + θ

)
.

Remark 4.4. We note that our reliability estimate Theorem 4.3 is proven un-
der the assumptions Uadh ⊂ Uad and, hence, the inequality (4.10), as done in [42,
Lemma 3.1]. If Uadh ⊂ Uad is not true, we need to find bounds for some extra terms;
see, e.g., [42, Remark 3.2].

4.2. Efficiency of the error estimator. Here we provide a lower bound, up to
data oscillations, for the discretization errors in terms of the error estimator as given in
(4.1). We will show that the local error estimators can be bounded from above by the
local constituents of the error, associated data oscillations, and the active part of the
control. We use bubble functions as done in [35, 49]. The element bubble functions,
denoted by bK , are defined by using the barycentric coordinates λj , j = 1, 2, 3, of the
triangle K,

bK = 27λ1λ2λ3.(4.35)

On the other hand, the edge bubble functions, denoted by bE , are defined by

bE |K = 4λ1λ2, bE |Ke = 4λe1λ
e
2,(4.36)

where λ1, λ2 (or λe1, λ
e
2) are the barycentric functions of the triangle K (or Ke) on the

edge E ∈ K ∩Ke. Further, the bubble functions satisfy the following equalities:

‖bK‖∞,K = max
K

bK = 1, bK ∈ H1
0 (K) and ‖bE‖∞,E = max

ωE

bE = 1, bE ∈ H1
0 (ωE),

(4.37)D
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1116 PETER BENNER AND HAMDULLAH YÜCEL

where ωE is the union of the two elements that share E as a common edge. We
recall from [49] that there exist constants, depending on the shape regularity of the
triangulation Th and polynomial degree, such that

‖v‖20,K ≤ c1(v, vbK)0,K , K ∈ Th,(4.38a)

‖vbK‖0,K ≤ c2‖v‖0,K , K ∈ Th,(4.38b)

|vbK |1,K ≤ c3h−1
K ‖v‖0,K , K ∈ Th,(4.38c)

‖w‖20,E ≤ c4(w,wbE)0,E , E ∈ Eh,(4.38d)

‖wbE‖0,E ≤ c5‖w‖0,E , E ∈ Eh,(4.38e)

‖wbE‖0,ωE
≤ c6h1/2

E ‖w‖0,E , ωE = K ∪Ke, E = K ∩Ke,(4.38f)

|wbE |1,ωE
≤ c7h−1/2

E ‖w‖0,E , ωE = K ∪Ke, E = K ∩Ke,(4.38g)

for any element K ∈ Th, edge E ∈ Eh, and polynomials v and w defined on the
elements and the patch ωE , respectively.

In the following, for a set of elements S, we denote by ‖| · |‖S the local energy
norm

‖|v|‖S =

∑
K∈S

(
‖∇v‖20,K + α‖v‖20,K

)

+
∑

E∈E0h∪E
D
h ; E∈∂K,K⊂S

(
hE‖{{∇v}}‖20,E +

σ0

hE
‖[[v]]‖20,E

)1/2

.

Lemma 4.5. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let the error estimators ηy,K , ηp,K and the data oscillations θy,K , θp,K
be given by (4.3) and (4.7), respectively. Then, we have

η2
y,K ≤ C

(
‖|y − yh|‖2K + θ2

y,K

)
,(4.39a)

η2
p,K ≤ C

(
‖|p− ph|‖2K + θ2

p,K + h2
K‖y − yh‖20,K

)
.(4.39b)

Proof. We define the residual R = fh + ∆yh−αhyh, and set W = h2
KRbK , where

bK is the bubble function defined in (4.35). By the inequality (4.38a),

h2
K‖R‖20,K ≤ c1(R,W )0,K = c1

(
(f + ∆yh − αhyh,W )0,K + (fh − f,W )0,K

)
.

Since the exact solution satisfies (f + ∆y − αy)|K = 0, we obtain, using integration
by parts and addition and substraction of the exact data, that

h2
K‖R‖20,K ≤ c1

(
(∇(y − yh),∇W )0,K + (fh − f,W )0,K + ((α− αh)yh,W )0,K

)
.

Here, we also used that W |∂K = 0. By the inequalities (4.38b), (4.38c), and an
application of Young’s inequality, we obtain

h2
K‖R‖20,K ≤ C

(
‖∇(y − yh)‖20,K + h2

K‖f − fh‖20,K + h2
K‖(α− αh)yh‖20,K

)
+Cδ‖R‖20,K ,

which is the desired result (4.39a) for sufficiently small δ. The inequality (4.39b) can
be proven analogously.
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Lemma 4.6. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let the error estimators ηy,K , ηp,K and the data oscillations θy,K , θp,K
be given by (4.3) and (4.7), respectively. In addition, let ωE = K ∪Ke be the union
of any two elements, i.e., K,Ke with E = K ∩Ke. Then, we have

hE‖[[∇yh]]‖20,E

≤ C

(
‖|y − yh|‖2ωE

+
∑

K=K,Ke

η2
y,K +

∑
K=K,Ke

θ2
y,K

)
,(4.40a)

hE‖[[∇ph]]‖20,E

≤ C

(
‖|p− ph|‖2ωE

+ ‖y − yh‖20,ωE
+

∑
K=K,Ke

η2
p,K +

∑
K=K,Ke

θ2
p,K

)
.(4.40b)

Proof. We set W = [[∇yh]]bE , where bE is the bubble edge function on ωE defined
in (4.36). By using the inequality (4.38d) and the fact that [[∇y]] = 0 on the interior
edges, we obtain

hE‖[[∇yh]]‖20,E ≤ c4hE
(
[[∇yh]],W

)
0,E

= c4hE
(
[[∇(yh − y)]],W

)
0,E

.

After integration by parts over each of the two elements of ωE = K ∪Ke, we have(
[[∇(yh − y)]],W

)
0,E

=
(
∆(yh − y),W

)
0,ωE

+
(
∇(yh − y),∇W

)
0,ωE

.

Using the differential equation −∆y+αy = f and approximating the data, we obtain

hE‖[[∇yh]]‖20,E
≤ c4hE

((
fh + ∆yh − αhyh,W

)
0,ωE

+ (f − fh,W )0,ωE
+
(
(αh − α)yh,W

)
0,ωE

)
+ c4hE

((
α(yh − y),W

)
0,ωE

+
(
∇(yh − y),∇W

)
0,ωE

)
.

Then, the inequalities (4.38f) and (4.38g) yield

hE‖[[∇yh]]‖20,E

≤ Ch1/2
E ‖[[∇yh]]‖0,E

(
‖|y − yh|‖ωE

+

( ∑
K=K,Ke

η2
y,K

)1/2

+

( ∑
K=K,Ke

θ2
y,K

)1/2)
,

which gives the desired result (4.40a) after an application of Young’s inequality and
the shape regularity of the mesh, i.e., hE ≤ γhK with γ > 1. The proof of (4.40b) is
carried out in a similar way.

Lemma 4.7. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let ηy,EN , ηp,EN and the data oscillations θy,K , θy,EN , θp,K be given
by (4.5) and (4.7), respectively, for any EN ∈ ∂K,K ∈ Th. Then, we have

η2
y,EN ≤ C

(
‖|y − yh|‖2K + η2

y,K + θ2
y,K + θ2

y,EN + ‖u− uh‖20,E
)
,(4.41a)

η2
p,EN ≤ C

(
‖|p− ph|‖2K + ‖y − yh‖20,K + η2

p,K + θ2
p,K + θ2

p,EN

)
.(4.41b)
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1118 PETER BENNER AND HAMDULLAH YÜCEL

Proof. We set W = (nE ·∇yh−uh−gNh )bE , where bE is the bubble edge function.
By using the inequality (4.38d) and the fact that nE · ∇y = u+ gN on the Neumann
boundary edges, we obtain

η2
y,EN = hE

∥∥uh + gNh − nE · ∇yh
∥∥2

0,E

≤ c4hE
(
nE · ∇yh − uh − gNh ,W

)
0,E

= c4hE

(
(nE · ∇(yh − y),W )0,E + (u− uh,W )0,E +

(
gN − gNh ,W

)
0,E

)
.

Using integration by parts on the element K ⊃ E, the differential equation −∆y +
αy = f , and approximating the data, we obtain

η2
y,EN ≤ c4hE

(
(fh + ∆yh − αhyh,W )0,K + (f − fh,W )0,K + ((αh − α)yh,W )0,K

)
+ c4hE

(
(α(yh − y),W )0,K + (∇(yh − y),∇W )0,K

)
+ c4hE

(
(u− uh,W )0,E +

(
gN − gNh ,W

)
0,E

)
.

Then, the inequalities (4.38e)–(4.38g) yield

η2
y,EN ≤ Ch1/2

E ‖uh+gNh −nE ·∇yh‖0,E
(
‖|y − yh|‖K+ηy,K+θy,K+θy,EN +‖u−uh‖0,E

)
.

Finally, by applying Young’s inequality, we obtain the desired result (4.41a). The
proof of (4.41b) can be verified by using the same arguments.

What is now left is to bound the estimator for the discretization error in the
controls.

Lemma 4.8. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and let ηu,EN and θu be given by (4.5) and (4.7), respectively. Assume
that all the conditions in Lemma 4.1 hold. Then, we have

η2
u,EN ≤ C

(
‖u− uh‖20,ΓN

+ ‖|p− ph|‖2K + θ2
u(4.42)

+ hE‖
(
nE · ∇

(
ω(uh − udh)− ph

))
χAh
‖20,E

)
,

where Ah is the union of the active sets Aa,h and Ab,h.

Proof. We have that (ω(u−ud)−p)χI = 0 from (2.11). It follows from the inverse
inequality (3.9) that

η2
u,EN = hE

∥∥nE · ∇ (ω (uh − udh)− ph)∥∥2

0,E

≤ C
∥∥(ω(uh − udh)− ph

)
χIh

∥∥2

0,E
+ hE

∥∥(nE · ∇ (ω (uh − udh)− ph))χAh

∥∥2

0,E

= C
∥∥(ω (uh − udh)− ph − ω (u− ud)+ p

)
χIh

∥∥2

0,E

+hE
∥∥(nE · ∇ (ω (uh − udh)− ph))χAh

∥∥2

0,E

≤ C
(
ω‖u− uh‖20,E + ω

∥∥ud − udh∥∥2

0,E
+ ‖p− ph‖20,E

)
+hE

∥∥(nE · ∇ (ω (uh − udh)− ph))χAh

∥∥2

0,E
.

This is the desired inequality.
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Now, we derive an upper bound consisting of the local constituents of the error,
associated data oscillations, and the active part of the control, for the local error
estimators. We state the efficiency estimate in the following theorem.

Theorem 4.9. Let (y, p, u) and (yh, ph, uh) be the solutions of (2.6) and (3.14),
respectively, and the error estimator η and data oscillation θ be given as in (4.2) and
(4.6), respectively. Assume that all the conditions in Lemma 4.1 hold. Then, it holds

η ≤ C

(
‖u− uh‖0,ΓN

+ ‖|y − yh|‖+ ‖|p− ph|‖+ θ(4.43)

+
∑
E∈ENh

hE
∥∥(nE · ∇ (ω (uh − udh)− ph))χAh

∥∥
0,E

)
.

Proof. By the definition of the energy norm defined in (3.12), and the fact that
[[y]] = 0 on the interior edges and y = gD on the Dirichlet boundary edges, we can
easily derive

(4.44)
∑
E∈E0h

σ2
0

hE
‖[[yh]]‖20,E +

∑
E∈EDh

σ2
0

hE

∥∥gDh − yh∥∥2

0,E

≤ C

(
‖|y − yh|‖2 +

∑
E∈EDh

h−1
E

∥∥gD − gDh ∥∥2

0,E

)
.

Analogously, we obtain

(4.45)
∑
E∈E0h

σ2
0

hE
‖[[ph]]‖20,E +

∑
E∈EDh

σ2
0

hE
‖ph‖20,E ≤ C‖|p− ph|‖

2
.

Then, the combination of the results in Lemmas 4.5–4.8 with the inequalities (4.44)–
(4.45) gives the assertion (4.43).

Remark 4.10. In Theorems 4.3 and 4.9, we show the reliability and efficiency of
our estimator η. However, the estimator ηu contributed from the approximation error
of the control cannot lead to a localization of refinement of the inactive set in some
notable cases. In this case, this key step should be improved numerically. Therefore,
in our numerical experiments, we use

(4.46) η̃u =
∑
E∈ENh

hE
∥∥(nE · ∇ (ω (uh − udh)− ph))χIh∥∥0,E

as an indicator of the control instead of ηu (4.2c). The same problem is also observed
for the control indicators proposed in [30, 36, 42].

In computing, we further approximate the characteristic function χIh by

χIh =
(uh − uah)(ubh − uh)

hµ + (uh − uah)(ubh − uh)
,

where µ > 0 as done in [41].
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5. Numerical experiments.

5.1. The adaptive loop. An adaptive procedure for the SIPG discretization of
the optimization problem (2.1)–(2.3) consists of successive loops of the sequence given
in (1.1). The SOLVE step is the numerical solution of the optimal control problem
with respect to the given triangulation Th using the SIPG discretization. By using
the primal dual active set algorithm as a semismooth Newton step (see, e.g., [9]), we
solve the following discrete linear system

M · KT ·
· ωMB −M MB

K −MB · ·
· γχAh

· χIh




yh
uh
ph
σh

 =


Mydh

ωMBu
d
h

F
γ
(
χAa,h

uah + χAb,h
ubh
)
 ,(5.1)

where Ah = Aa,h ∪Ab,h. χAa,h
, χAb,h

, and χAh
denote the characteristic functions of

Aa,h, Ab,h, and Ah, respectively, defined on the Neumann boundary ENh . M andMB

are mass matrices on the domain and boundary, respectively. K and F correspond to
the bilinear form ah(yh, vh) and the linear form lh(vh) defined in (3.4), respectively.

For the ESTIMATE step, the residual error estimators ηy, ηp, and ηu defined
in section 4 are used. In the MARK step of the adaptive loop, the edges and
elements for the refinement are specified by using the a posteriori error estimator and
by choosing subsets MK ⊂ Th and ME ⊂ Eh such that the following bulk criterion
[16] is satisfied for a given marking parameter Θ with 0 < Θ < 1:

Θ
∑
K∈Th

(ηyK)2 + (ηpK)2 ≤
∑

K∈MK

(ηyK)2 + (ηpK)2,(5.2a)

Θ
∑
E∈Eh

(ηyE)2 + (ηpE)2 + (ηuE)2 ≤
∑

E∈ME

(ηyE)2 + (ηpE)2 + (ηuE)2.(5.2b)

Bigger values for the parameter Θ will result in more refinement of triangles in one
loop and smaller Θ will result in a more optimal grid but more refinement loops. We
note that the data oscillations may be included in the bulk criterion as done for the
estimator η in (5.2). Finally, in the REFINE step, the marked elements are refined
by longest edge bisection, whereas the elements of the marked edges are refined by
bisection [13]. The adaptive procedure ends after a sequence of mesh refinements up
to attaining a solution with an estimated error within a prescribed tolerance.

5.2. Numerical results. We now present several numerical results in order to
examine the quality of the derived estimators in section 4 and the performance of the
adaptive loop introduced in section 5.1. We use piecewise linear polynomials for the
approximation of the state, the adjoint, the control, and the cocontrol. The penalty
parameter σ0 in the SIPG is chosen as σ0 = 6 on the interior edges and 12 on the
boundary edges. The parameter γ used in the definition of the active and inactive
sets is chosen as equal to the regularization parameter ω. The effectivity index is
calculated according to

effectivity index =
ηy + ηp + ηu

‖|y − yh|‖+ ‖|p− ph|‖+ ‖u− uh‖0,ΓN
+ ‖σ − σh‖0,ΓN

.(5.3)

We finally define the projection of the control such that

Projua,ub(v) = max
{
ua,min

{
ub, v

}}
.(5.4)
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Fig. 1. Example 5.2.1: L-shaped domain.

5.2.1. Example 1. We use an example on the L-shaped domain, which is given
by Ω = (−1, 1)2\

(
[0, 1]×(−1, 0]

)
with Γ = ΓN ; see Figure 1. The control is defined on

the whole boundary. The box constraints are given by ua = −0.5 and ub = 0.5. The
reaction term α and the regularization parameter ω are taken as α = 1 and ω = 1,
respectively. The remaining data of the problem are defined in polar coordinates
(r, θ):

f(r, θ) = 0, ud(r, θ) = 0, gN (r, θ) = −Projua,ub

(
r2/3 sin

(
2

3
θ

))
,

yd(r, θ) = r2/3 sin

(
2

3
θ

)
,

rN (r, θ) =

(
2
3r
−1/3 cos(θ) sin(2

3θ)−
2
3r
−1/3 sin(θ) cos( 2

3θ)
2
3r
−1/3 sin(θ) sin(2

3θ) + 2
3r
−1/3 cos(θ) cos( 2

3θ)

)
· nΓN

,

where r =
√
x2

1 + x2
2 ∀(x1, x2) ∈ Ω and θ =

{
atan2(x1,x2), atan2(x1,x2)≥0,

atan2(x1,x2)+2π, atan2(x1,x2)<0
with the

function atan2(x1, x2), i.e., the four-quadrant inverse tangent (arctangent) of x1 and
x2. Note that the function atan2(x1, x2) is defined in MATLAB.

The analytical solutions of the state, adjoint, control, and cocontrol are given by

y(r, θ) = 0,

p(r, θ) = r2/3 sin

(
2

3
θ

)
,

u(r, θ) = Projua,ub

(
r2/3 sin

(
2

3
θ

))
,

σ(r, θ) = r2/3 sin

(
2

3
θ

)
− Projua,ub

(
r2/3 sin

(
2

3
θ

))
,

respectively.
The adjoint exhibits a typical singularity at the reentrant corner of the domain Ω;

see Figure 2. Figure 3 displays the computed control u and the computed cocontrol
σ on the Neumann boundary. We observe that the inactive set is equal to

(5.5) I = [−0.78, 0]× {−1} ∪ [0, 1]× {0} ∪ {0} × [−1, 0] ∪ {1} × [0, 0.78].

The initial mesh is generated by starting first by dividing Ω into uniform squares
and then dividing each square into two triangles. It should be emphasized that we
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Fig. 2. Example 5.2.1: Computed solution of the adjoint p.
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(a) Γ1 = [−1, 0]× {−1} ∪ [0, 1]× {0}
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(c) Γ3 = [−1, 1]× {1}
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(d) Γ4 = {−1} × [−1, 1]

Fig. 3. Example 5.2.1: The computed control u and the computed cocontrol σ on the Neumann
boundary regions.

are working with a single mesh for all variables. Consequently, the mesh reflects
regions of substantial change in the variables. Figure 4 shows the adaptively generated
triangulations after seven refinement steps with Θ = 0.50 in the bulk criterion. Most
refinements occur around the reentrant corner, where the adjoint has the singularity,
and on the boundary, where the inactive set I is defined, as we expected.

Figure 5 displays the performance of the error estimator proposed in section 4
in terms of the number of vertices for the marking parameter Θ = 0.5. The left
plot shows the effectivity index of the estimator, which is the ratio between the error
measured in the ‖| · |‖-norm for the state and adjoint, and the L2-norm for the control
and cocontrol and the estimator, defined in (5.3). In order to obtain a constant ratio,
a few more adaptive steps are still necessary. The middle plot displays that the error
and estimator η decay with a rate close to the optimal rate N−1/2, where N is the
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Fig. 4. Example 5.2.1: Adaptively generated mesh after 7 refinement steps with Θ = 0.50 in
the bulk criterion.

10
2

10
3

10
4

10
5

0.8

1

1.2

1.4

1.6

1.8

Number of vertices

 

 

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Number of vertices

 

 

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

Number of vertices

 

 

effectivity index

η estimator

error

C*N
−1/2

ηy
ηp

η̃u

θy

θp

Fig. 5. Example 5.2.1: The left plot shows the effectivity index. The middle plot shows the
decay of the total error and estimator. The right plot shows the components of the error estimator
and data oscillation. The marking parameter is Θ = 0.50 in the bulk criterion.

number of vertices. Last, the right plot shows the actual sizes of the state, adjoint,
and control related components of the error estimator and data oscillation. As can be
expected, the adjoint component of the estimator is dominant due to the singularity at
the reentrant corner of Ω. Since the desired control ud and the bounds of the control,
i.e., ua, ub, are constants, the data oscillation of the control θu is equal to zero.

We next have a closer look at the convergence of the state, adjoint, control, and
cocontrol variables. Figure 6 illustrates the errors of the state and adjoint in the ‖| · |‖
and L2-norms, and of the control and cocontrol in the L2-norm on adaptively and
uniformly refined meshes with various marking parameters Θ = 0.3, 0.5, 0.8. For all
cases, the adaptive refinements lead to better approximate solutions than the uniform
refinements. Although the smaller Θ requires more refinement loops, it produces more
accurate results due to the obtained optimal mesh.

5.2.2. Example 2. This example is taken from [36]. Kohls, Rösch, and Siebert
have solved this example by using a hierarchical estimator, discretized by a continuous
finite element approximation for the state and adjoint, and by a discontinuous finite
element approximation for the control. We let Ω = [0, 3]2 with Γ = ΓN . However,
the boundary control is only considered on {0} × [1, 2]. The reaction term α and the
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Fig. 6. Example 5.2.1: The global errors of the state, adjoint in ‖| · |‖ and L2-norms (top), and
of the control and cocontrol in L2-norm on adaptively and uniformly refined meshes with various
marking parameters Θ = 0.3, 0.5, 0.8 in the bulk criterion.

regularization parameter ω are taken as α = 1 and ω = 1, respectively. The remaining
setup of the problem is as follows:

f(x1, x2) = e−10(x2
1+x2

2)(41− 400(x2
1 + x2

2)),

ud(x1, x2) = 0,

gN (x1, x2) =
−Projua,ub

(
Z
2n

(
(2n+ 1)

(
2
3x2 − 1

)
−
(

2
3x2 − 1

)2n+1
))

, (x1, x2) ∈ {0} × [1, 2],

−60e−10(9+y2), x1 = 3,

−60e−10(x2+9), x2 = 3,
0, otherwise,

yd(x1, x2) =

e−10(x2
1+x2

2) + Z

(
2n+ 1

2n

(
2

3
x2 − 1

)
+

8n+ 4

9

(
2

3
x2 − 1

)2n−1

−
(

2

3
x2 − 1

)2n+1
)
,

rN (x1, x2) = 0.
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Fig. 7. Example 5.2.2: Computed solutions of the state y (left) and the adjoint (right).

The analytical solutions of the state, adjoint, control, and cocontrol are given by

y(x1, x2) = e−10(x2
1+x2

2),

p(x1, x2) =
Z

2n

(
(2n+ 1)

(
2

3
x2 − 1

)
−
(

2

3
x2 − 1

)2n+1
)
,

u(x1, x2) = Projua,ub

(
Z

2n

(
(2n+ 1)

(
2

3
x2 − 1

)
−
(

2

3
x2 − 1

)2n+1
))

,

σ(x1, x2) =
Z

2n

(
(2n+ 1)

(
2

3
x2 − 1

)
−
(

2

3
x2 − 1

)2n+1
)

− Projua,ub

(
Z

2n

(
(2n+ 1)

(
2

3
x2 − 1

)
−
(

2

3
x2 − 1

)2n+1
))

,

respectively, with Z = 10, n = 20. The components of the error estimator exhibit
local refinements in different regions of the domain due to the particular features of
the state, the adjoint, and the control. The state y needs more refinement around
the origin due to the shape of the narrow exponential peak. The adjoint p displays a
boundary layer close to x2 = 0 and x2 = 3. These features can be observed in Figure 7.

To observe the sensitivity of the adaptive algorithm with respect to the changes
of the active and inactive sets, we test the example with different box constraints:

Inactive case: We first consider the control constraints as

ua = −5 and ub = 5.

Figure 8 reveals the adaptively refined mesh (left) and the computed control (right)
for the inactive case. We observe that the control is between the lower bound and
the upper bound, i.e., ua < u < ub. Therefore, the inactive set I is equal to all of
the control boundary, i.e., I = {0} × [1, 2]. In the adaptive refinement, our error
indicator η̃u (4.46) catches the inactive set well (see Figure 8 (left)), after 13 adaptive
refinement steps with Θ = 0.5 in the bulk criterion. Further, the resolution of the
state and the adjoint occur as expected.

Mixed case I: The control constraints are now considered as

ua = −2 and ub = 0.
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Fig. 8. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps with
Θ = 0.5, and the computed control u (right) for the inactive case.
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Fig. 9. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps with
Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case I.
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Fig. 10. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps
with Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case II.
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Fig. 11. Example 5.2.2: The left plot shows the effectivity index. The middle plot shows the
decay of the total error and estimator. The right plot shows the components of the error estimator
and the data oscillation. The results are obtained for the inactive case with Θ = 0.50 in the bulk
criterion.

Fig. 9. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps with
Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case I.

Now, the value of the control varies between the lower bound and the upper bound:

u = ua for x2 ∈ [1, 1.2] and u = ub for x2 ∈ [1.4, 2].

Therefore, the inactive set is I = {0} × [1.2, 1.4]. Figure 9 reveals that the inactive
set of the mixed case I is picked out well in the adaptive refinement.

Mixed case II: We finally consider the control constraints as

ua = 0 and ub = 2.

Now, the value of the control varies between the lower bound and the upper bound
as in the previous case:

u = ua for x2 ∈ [1, 1.5] and u = ub for x2 ∈ [1.8, 2].

Therefore, the inactive set is I = {0} × [1.5, 1.8]. As in the previous cases, the
inactive set of the mixed case II is picked out well in the adaptive refinement; see
Figure 10 (left).

We next have a closer look at some properties of the proposed estimator for the
inactive case. Figure 11 (left) displays the ratio between the error and the estimator,
called the effectivity index for the inactive case with the marking parameter Θ = 0.50.
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Fig. 9. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps with
Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case I.
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Fig. 10. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps
with Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case II.
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decay of the total error and estimator. The right plot shows the components of the error estimator
and the data oscillation. The results are obtained for the inactive case with Θ = 0.50 in the bulk
criterion.

Fig. 10. Example 5.2.2: Adaptively generated mesh (left) after 13 adaptive refinement steps
with Θ = 0.5, and the computed control u (middle) and cocontrol σ (right) for the mixed case II.
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Fig. 11. Example 5.2.2: The left plot shows the effectivity index. The middle plot shows the
decay of the total error and estimator. The right plot shows the components of the error estimator
and the data oscillation. The results are obtained for the inactive case with Θ = 0.50 in the bulk
criterion.

The ratio converges to a constant after a few iterations. The middle plot in Figure 11
shows the decay of the error and estimator versus the number of vertices for the
adaptive refinement. The estimator underestimates the error by an almost constant
factor. We observe that the behavior of the error and the estimator is similar to
the results obtained in [36]. The right plot in Figure 11 shows the actual size of
the state, adjoint, and control related components of the error estimator and the
data oscillations for the inactive case. The refinement process is dominated by the
contribution of the adjoint.

Figure 12 illustrates the errors of the state and adjoint in the ‖| · |‖ and L2-norms,
and of the control in the L2-norm on adaptively and uniformly refined meshes with
various marking parameters Θ = 0.3, 0.5, 0.8. The adaptive refinements lead to better
approximate solutions than uniform refinements.

Last, we make a comparison of the control estimators ηu, η̃u for the mixed cases
I and II. The left sides of Figures 13 and 14 show the meshes generated by ηu. As
we mentioned in Remark 4.10, the estimator ηu contributed from the approximation
error of the control does not lead to a localization of refinement of the inactive set; cf.
Figures 13 and 14. Also, the convergence of the estimator ηu is worse than the control
estimator η̃u; see Figures 13 and 14 (right). Therefore, in our numerical computations,
we use η̃u as a control estimator. This numerical computation is also mentioned in
[36, Remark 6.1].

D
ow

nl
oa

de
d 

07
/1

7/
17

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1128 PETER BENNER AND HAMDULLAH YÜCEL
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Fig. 12. Example 5.2.2: Errors of the state y (left) and adjoint p (middle) in ‖| · |‖ and L2-
norms, and the control u (right) in L2-norm on adaptively and uniformly refined meshes for the
inactive case with various marking parameters Θ = 0.3, 0.5, 0.8 in the bulk criterion.

Fig. 13. Example 5.2.2: Adaptively generated mesh (left) by using ηu after 13 adaptive refine-
ment steps with Θ = 0.5, and convergence of the error estimators ηu and η̃u (right) for the mixed
case I.

5.2.3. Example 3. We use the example considered in [19]. Gaevskaya et al.
have solved this example by using a residual-type error estimator, discretized by a
continuous finite element approximation. In this example, we use nonconstant lower
and upper bounds for the control, which are highly oscillating constraints. The data
of the problem are

Ω = (0, 1)2, ΓN = (0, 1)× {0}, ΓD = ∂\ΓN , α(x1, x2) = 1,

ω = 10−3, ud(x1, x2) = 0,

yd(x1, x2) =

 0, x1 ≤ 0.5,
1, 0.5 < x1 < 0.75,
−1, 0.75 < x1,

f(x1, x2) = 0, gD(x1, x2) = 0, gN (x1, x2) = 0,

hN (x1, x2) = 0, ua = sin(8πx1), ub = 2 + cos(π/2 + 8x1).

Figures 15 and 16 show the computed solutions of the state y, the adjoint p,
the control u, and the cocontrol σ, respectively. The control switches from the lower
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Fig. 14. Example 5.2.2: Adaptively generated mesh (left) by using ηu after 13 adaptive refine-
ment steps with Θ = 0.5, and convergence of the error estimators ηu and η̃u (right) for the mixed
case II.

Fig. 15. Example 5.2.3: Computed solutions of the state y (left) and of the adjoint p (right).

to the upper bound and back again to the lower bound on ΓN . This is an almost
“bang-bang”-type optimal control.

The initial mesh is generated by starting by first dividing Ω into 8 × 8 uniform
squares and then dividing each square into two triangles as in the previous examples.
Adaptively generated meshes after six (left) and eight (right) refinements are displayed
in Figure 17 with Θ = 0.45 in the bulk criterion. More refinements occur on the
boundary, where the inactive set I is defined and on the right side of the mesh, i.e.,
(0.5, 1)× (0, 1).

The components of the residual-type a posteriori error estimator and data oscil-
lations are presented in Table 1 on the mesh hierarchy with Θ = 0.45 in the bulk
criterion. We observe that the dominating contributions such as the state estimator
ηy, the adjoint estimator ηp, and the control oscillation θu are smaller than those
obtained in [19] for approximately the same number of vertices.
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Fig. 16. Example 5.2.3: Computed solutions of the control u (left) and of the cocontrol σ
(right). The lower and upper bounds on the control, i.e., ua and ub, are shown as “dashed (blue)”
and “dotted (red)” lines, respectively.

Fig. 17. Example 5.2.3: Adaptively generated meshes after 6 (left) and 8 (right) refinement
steps with Θ = 0.45 in the bulk criterion.

Table 1
Example 5.2.3: Components of the error estimator and data oscillation for Θ = 0.45.

# vertices ηy ηp η̃u θp θu
81 4.83e-01 1.20e-01 5.30e-06 8.07e-02 1.00e+00
167 3.70e-01 8.03e-02 2.84e-06 3.93e-02 6.35e-01
332 2.80e-01 5.81e-02 9.21e-07 2.37e-02 3.89e-01
582 2.49e-01 4.42e-02 5.52e-07 1.39e-02 1.37e-01
1174 1.83e-01 3.26e-02 2.60e-07 9.51e-03 7.30e-02
2116 1.32e-01 2.46e-02 1.23e-07 6.02e-03 3.91e-02
4055 9.57e-02 1.90e-02 5.96e-08 3.80e-03 1.75e-02
7234 6.92e-02 1.44e-02 2.97e-08 2.11e-03 9.76e-03

6. Conclusions. In this paper, we have studied a posteriori error analysis of
the SIPG method for boundary optimal control problems governed by elliptic PDEs
with bilateral control constraints. Piecewise linear polynomials are used to discretize
the unknown variables. Lower and upper error estimates are derived to show the
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efficiency and reliability of the proposed error estimator by invoking data oscillations.
The numerical results show that the adaptive refinements are superior to uniform re-
finements. Future work will include the extension of our results to Dirichlet boundary
optimal control problems and convection-diffusion problems.
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the referees for their most valuable suggestions.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, Orlando, FL, 1975.
[2] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element ap-

proximation, SIAM J. Numer. Anal., 45 (2007), pp. 1777–1798.
[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous

Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.
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