Downloaded 07/19/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. CONTROL OPTIM. (© 2016 Society for Industrial and Applied Mathematics
Vol. 54, No. 5, pp. 2274-2308

OPEN-LOOP AND CLOSED-LOOP SOLVABILITIES FOR
STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL
PROBLEMS*

JINGRUI SUNT, XUN LI, AND JIONGMIN YONGH#

Abstract. This paper is concerned with a stochastic linear quadratic (LQ) optimal control prob-
lem. The notions of open-loop and closed-loop solvabilities are introduced. A simple example shows
that these two solvabilities are different. Closed-loop solvability is established by means of solvability
of the corresponding Riccati equation, which is implied by the uniform convexity of the quadratic
cost functional. Conditions ensuring the convexity of the cost functional are discussed, including the
issue of how negative the control weighting matrix-valued function R(-) can be. Finiteness of the LQ
problem is characterized by the convergence of the solutions to a family of Riccati equations. Then,
a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem,
is constructed. Finally, some illustrative examples are presented.
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1. Introduction. Let (2, F,F,P) be a complete filtered probability space on
which a standard one-dimensional Brownian motion W = {W(¢);0 < ¢t < oo} is
defined, where F = {F;}+>0 is the natural filtration of W augmented by all the P-
null sets in F [16, 30]. Consider the following controlled linear stochastic differential
equation (SDE) on a finite horizon [t, T':

dX(s) = [A(s)X(s) + B(s)u(s) + b(s)]ds
(1.1) + [C(s)X (s) + D(s)u(s) + a(s)|dW (s), se€ [t,T],
X(t) ==,

where A(+), B(:), C(-), D(:) are given deterministic matrix-valued functions of proper
dimensions, and b(-), () are vector-valued F-progressively measurable processes. In
the above, X(-), valued in R™, is the state process, and u(-), valued in R™, is the
control process. For any t € [0,T), we introduce the following Hilbert space:

Ui, T) = {u :[t, T] x @ — R™ | u(-) is F-progressively measurable,

E/tT lu(s)|?ds < oo}.
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Any u(-) € U[t,T] is called an admissible control (on [t,T]). Under some mild condi-
tions on the coefficients, for any initial pair (t,x) € [0,T) x R™ and admissible control
u(-) € U[t, T), (1.1) admits a unique strong solution X () = X(-;¢,z,u(-)). Next we
introduce the following cost functional:

J(t,z;u(-) £ {(GX( ), X (1)) +2{g,X(T))
2 LG ) CED- G
~2{(0) () oot
(

where G is a symmetric matrix, and Q(-), S(-), R(-) are deterministic matrix-valued
functions of proper dimensions with Q(-)" = Q(-), R(-)T = R(:); g is allowed to
be an Fr-measurable random variable, and q( ), p(+) are allowed to be vector-valued
F-progressively measurable processes. The classical stochastic linear quadratic (LQ)
optimal control problem can be stated as follows.

Problem (SLQ). For any given initial pair (¢,2z) € [0,7) x R", find a u*(-) €
Ult, T, such that

* : (D)) &
(1.3) J(t, z;u*(r)) = u(-)lelg[uT] J(t, z;u()) = V().

It is well accepted that any uw*(-) € U[t,T] satisfying (1.3) is called an op-
timal control of Problem (SLQ) for the initial pair (¢,z), and the corresponding
X*(-) = X(-;t,z,u*(-)) is called an optimal state process; the pair (X*(-),u*(-))
is called an optimal pair. The function V'(-,-) is called the value function of Prob-
lem (SLQ). When b(-),0(-),g,¢(-),p(-) = 0, we denote the corresponding Problem
(SLQ) by Problem (SLQ)°. The corresponding cost functional and value function are
denoted by JO(t,z;u(-)) and VO(¢, ), respectively.

When the stochastic part is absent, with b(-), g, ¢(-), and p(-) being deterministic,
Problem (SLQ) is reduced to a deterministic LQ optimal control problem, called
Problem (DLQ). Hence, Problem (DLQ) can be regarded as a special case of Problem
(SLQ). The history of Problem (DLQ) can be traced back to the work of Bellman,
Glicksberg, and Gross [4] in 1958, Kalman [15] in 1960, and Letov [18] in 1961.
In the deterministic case, it is well known that R(s) > 0 is necessary for Problem
(DLQ) to be finite (meaning that the infimum of the cost functional is finite). When
the control weighting matrix R(s) in the cost function is uniformly positive definite,
under some mild additional conditions on the other weighting coefficients, the problem
can be solved elegantly via the Riccati equation; see [3] for a thorough study of the
Riccati equation approach (see also [30]). Stochastic LQ problems were first studied
by Wonham [26] in 1968 and were later studied by several researchers (see [11, 5]
for examples). In those works, the assumption that R(s) > 0 was taken for granted.
More precisely, under the standard conditions

(1.4) G >0, R(s)>=6I, Q(s)—S(s)"R(s)7'S(s) >0 ae. sc[0,T],

for some & > 0, the corresponding Riccati equation is uniquely solvable and Problem
(SLQ) admits a unique optimal control which has a linear state feedback representa-
tion (see [30, Chapter 6] or [9]). In 1998, Chen, Li, and Zhou [6] found that Problem
(SLQ) might still be solvable even if R(s) is not positive semidefinite. See also some
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follow-up works of Lim and Zhou [19], Chen and Zhou [9], and Chen and Yong [8], as
well as the works of Hu and Zhou [13] and Qian and Zhou [22] on the study of solv-
ability of indefinite Riccati equations (under certain technical conditions). In 2001,
Ait Rami, Moore, and Zhou [1] introduced a generalized Riccati equation involving
the pseudoinverse of a matrix and an additional algebraic constraint; see also Ait
Rami, Zhou, and Moore [2] for stochastic LQ optimal control problems on [0, 00), and
a follow-up work of Wu and Zhou [27]. Recently, based on the work of Yong [28],
Huang, Li, and Yong [14] studied a mean-field LQ optimal control problem on [0, 00).
For stochastic LQ optimal control problems with random coefficients, we further refer
the reader to the works of Chen and Yong [7], Tang [24, 25], Du [12], and Kohlmann
and Tang [17].

Most recently, Sun and Yong [23] established that the existence of open-loop
optimal controls is equivalent to the solvability of the corresponding optimality system
which is a forward-backward SDE (FBSDE), and the existence of closed-loop optimal
strategies is equivalent to the existence of a regular solution to the corresponding
Riccati equation. From this point of view, this paper can be regarded as a continuation
of [23], in a certain sense. Inspired by a result found in [29], we are able to cook up
an example for which open-loop optimal controls exist but the closed-loop optimal
strategy does not exist. Because of this, it is necessary to distinguish open-loop and
closed-loop solvabilities of Problem (SLQ). Next, having the equivalence between the
solvability of the Riccati equation and the closed-loop solvability of Problem (SLQ),
it is natural to seek conditions under which the Riccati equation is solvable, and the
sought conditions are expected to be more general than (1.4) so that they could include
some (although perhaps not all) cases in which R(-) is allowed to be not positive semi-
definite. One of our main results in this paper is to establish the equivalence between
the strongly regular solvability of the Riccati equation (see below for a definition)
and the uniform convexity of the cost functional. Note that the uniform convexity
condition is much weaker than (1.4) and is different from conditions imposed in [22].

The finiteness of Problem (SLQ) (meaning that the infimum of the cost functional
is finite) is another important issue. The notion was introduced in [30] (see also
[7, 8]). Some investigations were carried out in [20]. In this paper, due to the perfect
structure of Problem (SLQ)?, its finiteness will be characterized by the convergence
of the solutions to a family of Riccati equations. As a byproduct, we will construct
minimizing sequences of Problem (SLQ) in a very natural way, and the convergence
of the sequences will lead to the open-loop solvability of Problem (SLQ).

Among other things, we find several interesting facts which are listed below:

Fact 1. The value function V(¢,z) is not necessarily continuous in ¢ even if
Problem (SLQ) admits a continuous open-loop optimal control at all initial pairs
(t,x) €10,T) x R™.

Fact 2. If Problem (SLQ)" is finite at ¢, then it is finite at any ¢ > ¢.

Fact 3. For Problem (SLQ) with D(-) = 0, under the assumption that R(-) is
uniformly positive definite, without assuming the nonnegativity of Q(-) and G, the
finiteness and the unique closed-loop solvability of Problem (SLQ) are equivalent, and
they are also equivalent to the uniform convexity of the cost functional.

Fact 4. The existence of a regular solution to the Riccati equation implies the
open-loop solvability of Problem (SLQ). However, it may happen that for any initial
pair (¢t,z) € [0,7) x R™, Problem (SLQ) admits a continuous open-loop optimal
control, while the Riccati equation does not admit a regular solution. This corrects
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an incorrect result found in [1] (see section 4 for details).

The rest of the paper is organized as follows. Section 2 collects some preliminary
results. In section 3, we study the cost functional from a Hilbert space viewpoint and
represent it as a quadratic functional of u(-). Section 4 is devoted to the strongly
regular solvability of the Riccati equation under the uniform convexity of the cost
functional. In section 5, we discuss the finiteness of Problem (SLQ) as well as the
convexity of the cost functional. In section 6, we characterize the open-loop solvabil-
ity of Problem (SLQ) by means of the convergence of minimizing sequences. Some
examples are presented in section 7 to illustrate some relevant results obtained.

2. Preliminaries. We recall that R™ is the n-dimensional Euclidean space,
R™*™ ig the space of all (n x m) matrices, endowed with the inner product (M, N)
tr [M T N] and the norm |M| = /tr [MTM], S® C R™ ™ is the set of all (n x n)
symmetric matrices, and S7 C S™ is the set of all (n x n) positive-definite matrices.
When there is no confusion, we shall use (-, -) for inner products in possibly different
Hilbert spaces. Also, M stands for the (Moore-Penrose) pseudoinverse of the matrix
M [21], and R(M) stands for the range of the matrix M. Let T > 0 be a fixed time
horizon. For any t € [0,7] and Euclidean space H, we let LP(¢,T;H) (1 < p < o0)
be the space of all H-valued functions that are LP-integrable on [¢, T and C([t, T]; H)
be the space of all H-valued continuous functions on [¢t,T]. Next, we introduce the
following spaces:

L% (O;H) = {g £ Q - H | € is Fr-measurable, E|¢[? < oo},

L(t,T;H) = {cp :[t, T] x @ — H | ¢(:) is F-progressively measurable,

E [ () Pds < oo},

LA(O;C([t, T); 1)) = {cp :[t, T] x Q — H | ¢(-) is F-adapted, continuous,

E( sup |<P(S)|2> <oo},
t<s<T

{(p :[t,T] x Q — H | ¢(-) is F-progressively measurable,

E(/tTlso(s)lds)g <o},

For an S"-valued function F(-) on [t,T], we use the notation F'(-) > 0 to indicate
that F'(-) is uniformly positive definite on [t,T], i.e., there exists a constant § > 0
such that

L L (¢, T H)

F(s) 20l ae.seltT).

The following standard assumptions will be in force throughout this paper.
(H1) The coefficients of the state equation satisfy the following:

A() € LY0,T;R™™),  B() € L*(0,T;R™™),  b(-) € L3(; L} (0, T;R™)),
C(-) € L*(0,T;R™ ™), D(-) € L=(0,T;R™™), o(-) € L0, T;R").
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(H2) The weighting coefficients in the cost functional satisfy the following:

Q(-) € L*0,T;S™), S(-) € L0, T;R™ ™), R(-) € L>=(0,T;S™),
q(-) € L&(; L0, T3 R™), p(-) € L3(0,T;R™),  GeS", ge L% (SR").

By [23, Proposition 2.1], under (H1)-(H2), for any (t,z) € [0,7) x R™ and
u(-) € U[t,T)], the state equation (1.1) admits a unique strong solution X(-) =
X(-;t,z,u(-)), and the cost functional (1.2) is well defined. Then Problem (SLQ)
makes sense. It is worth pointing out that in (H2), we do not impose any positive-
definiteness/nonnegativeness conditions on the weighting matrix/matrix-valued func-
tions G, Q(-) and R(-). We now introduce the following definition.

DEFINITION 2.1. (i) Problem (SLQ) is said to be finite at initial pair (t,z) €
[0,T] x R™ if

(2.1) V(t,z) > —o0.

Problem (SLQ) is said to be finite at t € [0,T] if (2.1) holds for all x € R™, and
Problem (SLQ) is said to be finite if (2.1) holds for all (t,z) € [0,T] x R™.

(ii) An element u*(-) € U[t,T] is called an open-loop optimal control of Problem
(SLQ) for the initial pair (t,x) € [0,T] x R™ if

(2.2) J(t,xyu () < J(tzult) Yu(l) € U[t, T

If an open-loop optimal control (uniquely) exists for (t,z) € [0,T] x R™, Problem
(SLQ) is said to be (uniquely) open-loop solvable at (t,x) € [0,T] x R™. Problem
(SLQ) is said to be (uniquely) open-loop solvable at t € [0,T) if for the given t, (2.2)
holds for all x € R™, and Problem (SLQ) is said to be (uniquely) open-loop solvable
(on [0, T) x R™) if it is (uniquely) open-loop solvable at all (t,z) € [0,T) x R™.

(iii) A pair (©*(-),v*()) € L?(t, T; R™*™) x U[t, T] is called a closed-loop optimal
strategy of Problem (SLQ) on [t,T] if

(2.3) J(t, ;0 ()X () + 0 (1) < J(t,x;u(r)) Yo e R, Yu(-) € U[t, T,
where X*(+) is the strong solution to the following closed-loop system:

dX*(s) = { [A(s) + B(s)0"(s)] X*(s) + B(s)v"(s) + b(s)}ds
(24) +{[C(s) + D(5)0" (5)] X" (s) + D(s)0" (s) + r(s) W (s),
X*(t) ==

If a closed-loop optimal strategy (uniquely) exists on [t,T], Problem (SLQ) is said to
be (uniquely) closed-loop solvable on [t,T]. Problem (SLQ) is said to be (uniquely)
closed-loop solvable if it is (uniquely) closed-loop solvable on any [t,T).

We emphasize that for given initial time ¢ € [0,7"), an open-loop optimal control
is allowed to depend on the initial state x, whereas a closed-loop optimal strategy is
required to be independent of the initial state z. One sees that if (©*(-),v*(-)) is a
closed-loop optimal strategy of Problem (SLQ) on [¢,T], then the outcome u*(-) =
O* () X*(-)4+v*() is an open-loop optimal control of Problem (SLQ) for the initial pair
(t, X*(t)). Hence, the existence of closed-loop optimal strategies implies the existence
of open-loop optimal controls. But the existence of open-loop optimal controls does
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not necessarily imply the existence of a closed-loop optimal strategy (see Example
7.1). Due to the above-indicated situation, unlike in [23] and in classical literature
on LQ problems, we distinguish the notions of open-loop and closed-loop solvabilities
for Problem (SLQ). Because of the nature of closed-loop strategies, we define the
finiteness of Problem (SLQ) only in terms of open-loop controls.

To conclude this section, we present some lemmas which will be used frequently
in what follows.

LEMMA 2.2. Let (H1)-(H2) hold, and let ©(-) € L2*(0,T;R™*™). Let P(-) €
C(]0,T];S™) be the solution to the following Lyapunov equation:

P+ P(A+BO)+ (A+BO) P+ (C+DO)'P(C+ DO)
(2.5) +0"RO+STO+0'S+Q=0 ae sc[0,T],
P(T)=G.
Then for any (t,z) € [0,T) x R"™ and u(-) € U[t,T], we have

0 . . . D)) = ’ T
JO(t, 2 0()X () + u()) = (P(t)x,x>+IE/t {{(R+ D" PDyu,u)
+2([BTP+DTPC+S+ (R+ DT PD)O] X, u) jds.

Proof. For any (t,z) € [0,T) x R™ and u(-) € U[t,T], let X(-) be the solution of

{ dX(s) = [(A+ BO)X + Bulds + [(C + DO)X + Du]dW (s), s € [t,T),
X(t) =z

Applying 1td’s formula to s — (P(s)X (s), X(s)), we have
Tt 0()X () + u(-))

:E{<GX(T),X(T)>+/tT<<§ 5;) <@XX+ u) ’ <®XX+ u)>d8}

T
= (P(t)z,z) + ]E/ {( [P+ P(A+BO)+(A+ BO)' P+ (C+DO)"P(C + DO)
+Q+0'S+S5"0+06"ROJX,X)+ ((R+ D" PD)u,u)
+2([BTP+DTPC+ S+ (R+ DT PD)O]X, u) bds

= (P(t)z,2) + E /tT {2( [BTP+D'PC+ S+ (R+D'"PD)O|X,u)

+{((R+ D" PD)u, u>}ds

This completes the proof. a
LEMMA 2.3. For any u(-) € U[t, T], let X(W(-) be the solution of
dX™(s) = [A(s)X ™ (s) + B(s)u(s)]ds
(2.6) + [C()X ™ (s) + D(s)u(s)]dW (s), s € [t,T],

X® () =o.
Then for any ©(-) € L?(t, T;R™*"), there exists a constant vy > 0 such that

T T
2.7) ]E/t lu(s) — ©(5) X (s)[2ds > WE/t lu(s)?ds Vu() € Ut, T).
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Proof. Let O(-) € L?(t, T; R™*™). Define a bounded linear operator £ : U[t, T| —
Ult, T) by
fu=u—0X"W,

Then £ is bijective, and its inverse £ is given by
£ lu=u+ @)?("),

where X () (.) is the solution of

dX ) (s) = { [A(s) + B(s)0(s)] X (s) + B(s)u(s)}ds
+{[C(s) + D()0()] X (5) + D(s)uls) bW (s), s € [t,T],
X® (1) =o0.

By the bounded inverse theorem, £~ is bounded with norm ||£71|| > 0. Thus,

T

T T
E / ju(s) Pds = E / (8 ) (s)[2ds < £ E / [(2u)(s)Pds
T
= |\£71|\E/t |u(s) — @(S)X(“)(S)|2ds Yu() € U[t, T,

which implies (2.7) with v = || €71 ~L. O

3. Representation of the cost functional. In this section, we will present a
representation of the cost functional for Problem (SLQ), from which we will obtain
some basic conditions ensuring the convexity of the cost functional. Convexity of the
cost functional will play a crucial role in the study of finiteness and open-loop/closed-
loop solvability of Problem (SLQ). The following proposition is a summary of some
relevant results found in [30].

ProOPOSITION 3.1. Let (H1)—(H2) hold. For any t € [0,T), there exist a bounded
self-adjoint linear operator Ma(t) : U[t, T] — U[t, T], a bounded linear operator M (t) :
R™ — U[t, T], an Mo(t) € S”, and v,(-) € U[t, T],y: € R™, ¢, € R such that

J(t,330()) = (Ma(t)u, u) + 2(Mi (8)z, u) + (Mo(t)z, )
+ 2(u, 1) + 2{x, ye) + ¢,

JO(t, 2 u(-) = (Ma(t)u, u) + 2(My(t)z, u) + (Mo(t)z, )
V(z,u(-)) € R" xU[t, T).

(3.1)

Moreover, let (Xo(-),Y (-),Z(-)) be the adapted solution of the following (decoupled)
linear FBSDE:

dXo(s) = [A(s)Xo(s) + B(s)u(s)]ds + [C(s)Xo(s) + D(s)u(s)|dW (s),
dY (s) = —[A(s) Y (s) + C(s) " Z(s) + Q(s)Xo(s) + S(s) "u(s)]ds + Z(s)dW (s),
Xo(t) =0,  Y(T)=GXo(T).

Then

(My(t)u(-))(s) = B(S)TY(S) + D(S)TZ(S) + 5(8)Xo(s) + R(s)u(s), set,T].
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Let (Xo(-),Y (), Z()) be the adapted solution to the following (decoupled) FBSDE:

(s)Xo(s)ds + C(s)Xo(s)dW (s),
dy (s) = —[A(s) 'Y (s) + CL(S)TZ(S) + Q(s)Xo(s)]ds + Z(s)dW (s),

Then
{ (My(H)x)(s) = B(s)TY (s) + D(s)T Z(s) + S(s)Xo(s), s € [t,T),

Also, let (Xo(-),Y (-), Z(-)) be the adapted solution to the following (decoupled) FB-
SDE:

(8)+Q( ) o(s ) q( )}d8+Z( )AW (s),

Then
vi(s) = B(s) Y (s) + D(s) " Z(s) + S(s)Xo(s) + p(s), s € [t,T).

Finally, My(-) solves the following Lyapunov equation on [0,T]:

(3.2) Mo(t) + Mo(t)A(t) + A(t) T Mo(t) + C(t) " Mo(t)C(t) + Q(t) =
' MO(T) = Ga

and it admits the following representation:

where ®(-) is the solution to the following SDE for an R™*"-valued process:

d®(s) = A(s)®(s)ds + C(s)®(s)dW(s), s=0,
o(0) = I.

Remark 3.2. The operator Ms(t) also admits the following representation (see
[30, Chapter 6]):

(3.3) My(t) = LiGLy + LIQL; + SLy + LIST + R,
where the operators
Le :U[t,T] = L2(t, T;R™), LU, T] — L%, (9;R™)

are defined as follows:

(Lw)() = B() { / B() "V [B(r) - C(r)D()] ulr)dr + / | @(r)lD(r)u(r)dW(m} ,

Lyu = (Lyu)(T),

and L} and E;‘ are the adjoint operators of L; and Et, respectively.
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From the representation of the cost functional, we have the following simple corol-
lary.

COROLLARY 3.3. Let (H1)—(H2) hold and t € [0,T) be given. For any x € R™,
A €R, and u(-),v(-) € U[t, T), the following holds:

J(t, zyu(-) + () = J(t, x5 u(-) + A2J0(t,0;0(-))
T
(3.4 + 2/\E/ 8)+D(s)" Z(s)+5(s)X (s)+R(s)u(s)+p(s),v(s))ds,

where (X (+),Y(+), Z(+)) is the adapted solution to the following (decoupled) linear FB-
SDE:

s)u(s) + a(s)]dW (s), s € [t,T],
(35) { dY(s)=—[A(s) Y (s) + C(s)" Z(s) + Q(s)X (5) + S(s) "uls) + q(s)]ds
+ Z(s)dW (s), s €t T,
X(t) =z, Y(T)=GX(T)+yg.

Consequently, the map u(-) — J(t,z;u(-)) is Fréchet differentiable with the Fréchet
derivative given by

DJ(t, z;u(-))(s) =2[B(s) 'Y (s) + D(s) " Z(s) + S(s) X (s) + R(s)u(s) + p(s)],

and (3.4) can also be written as
T
J(t,zu(-) + () = J(t,zu(-) + A2T0(t, 0;0(+)) —l—)\IE/t (DJ(t, z;u(-))(s),v(s))ds.

Proof. From Proposition 3.1, we have

Jt,xu(-) + Av(r)) = (Ma(t)(u + ), u + Av) + 2(M1(t)z, u + Av)
+ (Mo(t)x, ) + 2{u+ I, ve) + 2{z, y) + ¢
= J(t,z;u(-) + N2JO(t,0;0(-)) + 2N Ma(t)u + My (t)x + vy, v).

From the representation of M (t), Ma(t), and v, in Proposition 3.1, we see that
(

(Ma(t)u)(s) + (My(t)x)(s) + vi(s)
B(s)"Y(s) + D(s)" Z(s) + S(s) X (s) + R(s)u(s) + p(s), s € [t,T),
with (X(+),Y (), Z(-)) being the adapted solution to the FBSDE (3.5). The rest of
the proof is clear. a

Note that if u(-) happens to be an open-loop optimal control of Problem (SLQ),
then the following stationarity condition holds:

(3.6) DJ(t,z;u(-)) = 2[B(S)TY(S) +D(s)" Z(s)+ S(s)X(s) + R(s)u(s) —I—p(s)] =0,

which brings a coupling into the FBSDE (3.5). We call (3.5), together with the
stationarity condition (3.6), the optimality system for the open-loop optimal control
of Problem (SLQ).

The following concerns the convexity of the cost functional, whose proof is straight-
forward by making use of the representation (3.1) of the cost functional.
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COROLLARY 3.4. Let (H1)-(H2) hold, and let t € [0,T) be given. Then the fol-
lowing are equivalent:
i) u(-) — J(t, z;u(-)) is convex for some x € R™.

)
i) w(-) — J(t, z;u(-)) is convex for any x € R™.
(iii) u(-) = JO(t, z;u(-)) is convex for some x € R™.
()
0

(.
. (.(
i — JO(t, z;u()) is conver for any v € R™.

(t,0;u(-)) = 0 for all u(-) € U[t,T).
(vi) Ma(t) > 0.

Similar to the above, we have that u(-) — J(¢, z;u(-)) is uniformly convex if and
only if

T
(3.7) Jo(t,O;u(-))>)\E/t lu(s)|?ds Vu(-) € U]t, T,

for some A > 0. This is also equivalent to the following:

(3.8) Ms(t) > M

for some A > 0. Further, it is obvious that if the standard conditions (1.4) hold, then
Ms(t) = LiGL; + L; (Q — STR™YS) L, + (L;STR™ + R*) (R™2SLy + R%) > 0,

which means that the functional u(-) = J9(¢,0,u(-)) is convex. The following result
tells us that under (1.4), one actually has the uniform convexity of the cost functional.

PROPOSITION 3.5. Let (H1)—-(H2) and (1.4) hold. Then for any t € [0,T), the
map u(-) — JO(t,0;u(-)) is uniformly conver.

Proof. For any u(-) € U[t, T, let X (-) be the solution of

dX®(s) = [A(s)X ™ (s) + B(s)u(s)]ds + [C(s)X ™ (s) + D(s)u(s)]dW s),
X®(t) =o.

Then by Lemma 2.3 (taking O(-) = —R(-)71S(-)), we have

JOt,05u(-))

T
= ]E/ [((Q ~STRS)X™, XY 4+ (R(u+R'SX™),u+ R—15X<“>>]ds
t
T
> 6IE/ lu+ RTISX ™ P ds
' T
257]143/ lu(s)2ds Vu() € U, T,
t

for some v > 0. This completes the proof. a
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4. Solvabilities of Problem (SLQ), uniform convexity of the cost func-
tional, and the Riccati equation. We begin with a simple result concerning the
open-loop solvability of Problem (SLQ).

PROPOSITION 4.1. Let (H1)-(H2) hold. Suppose the map u(-) — J°(0,0;u(-))
is uniformly convex. Then Problem (SLQ) is uniquely open-loop solvable, and there
exists a constant o € R such that

(4.1) VO(t,x) = alz|* V(t,z) €[0,T] x R™.
Note that in the above, the constant « does not have to be nonnegative.

Proof. First, by the uniform convexity of u(-) — J%(0,0;u(-)), we may assume
that

T
(4.2) JO(O,O;u(-))>A1E/O lu(s)|?ds  Yu(-) € U[0,T],

for some A > 0. Now, for any t € [0,7) and any u(-) € U[t,T], we define the zero-
extension of u(-) as follows:

0, s €10,1),

(43) [0 & uC(s) = { u(s), s€ LT

Then v(-) = 0p,4y ® u(-) € U[0,T], and due to the initial state being 0, the solution
X(s) of
dX(s) = [A(S)X(s) + B(s)v(s)} ds + [O(S)X(S) + D(S)v(s)]dW(s), s €10,T],
X(0)=0

satisfies X (s) =0, s € [0,t]. Hence,
T ) T
JO(t,0;u()) = J°(0,0; 0y Bu(-)) > A]E/ |[0Tj0.0y ()] ()| s = A]E/ fu(s)|2ds.
0 t
Thus, u(-) = JO(t,z;u(-)) is uniformly convex for any given (¢,z) € [0,T) x R™. By
Corollary 3.3, we have for any u(-) € U[t, T

T
J(t,z;u(-)) = J(t,2;0) + JO(t,0;u(-)) + E/t (DJ(t,2;0)(s), u(s))ds

T T
(44) > J(ta:0) + JOL 0 u(-)) — %E/ lu(s)|2ds — 2—1/\E/ DI, 2:0)(s)[2ds

AT ) 17 )
> -E lu(s)|“ds + J(t,z;0) — —E [DJ(t,z;0)(s)|“ds.

2 t ZA t

Consequently, by a standard argument involving minimizing sequence and locally
weak compactness of Hilbert spaces, we see that for any given initial pair (¢,z) €
[0,T) x R™, Problem (SLQ) admits a unique open-loop optimal control. Moreover,
when b(-),0(-),9,q(-), p(-) = 0, (4.4) implies that

T
(4.5) VO(t,z) = JO(t, 2;0) — %E/ IDJO(t, 2;0)(s)|*ds.
t

Note that the functions on the right-hand side of (4.5) are quadratic in 2 and contin-
uous in ¢. Inequality (4.1) follows immediately. O
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Now, we introduce the following Riccati equation associated with Problem (SLQ):

P(s) + P(s)A(s) + A(s) T P(s) + C(s) T P(s)C(s) + Q(s)
— [P(S)B(S) + O(S)TP(S)D(S) + S(S)T} [R(s) + D(S)TP(S)D(S)}T
~[B(3)TP(S) + D(s) " P(s)C(s) + S(s)] =0 ae.s€[0,T],
P(T)=G.

(4.6)

A solution P(-) € C([0,T];S™) of (4.6) is said to be regular if

R(B(s)" P(s) + D(s) " P(s)C(s) + S(s)) € R(R(s) + D(s) " P(s)D(s))

(4.7) a.e. s € (0,71,
(4.8) (R+DTPD)(BTP+DTPC +S) € L*(0, T; R™*™),

(4.9) R(s) +D(s)"P(s)D(s) >0 a.e.s€[0,T].

A solution P(-) of (4.6) is said to be strongly regular if

(4.10) R(s) + D(s) " P(s)D(s) > X[ a.e. s €[0,T],

for some A > 0. The Riccati equation (4.6) is said to be (strongly) regularly solvable,
if it admits a (strongly) regular solution. Clearly, condition (4.10) implies (4.7)-(4.9).
Thus, a strongly regular solution P(-) must be regular. Moreover, it was shown in
[23] that if a regular solution of (4.6) exists, it must be unique.

In [1], it was shown that for Problem (SLQ)?, the existence of a continuous
open-loop optimal control for any initial pair (¢,z) € [0,7] x R™ is equivalent to
the solvability of the corresponding Riccati equation (4.6) with constraints (4.7) and
(4.9). More precisely, their result can be stated as follows (in terms of our notation
and equation numbers).

THEOREM 4.2. Suppose that B(-), C(-), D(:), Q(-), R(-) are continuous and
S(:) = 0. Then Problem (SLQ)° has a continuous open-loop optimal control for any
initial pair (t,z) € [0,T] x R™ if and only if the Riccati equation (4.6) has a solution
P(-) such that (4.7) and (4.9) hold.

This result is incorrect. We will present two counterexamples in section 7.

Instead of Theorem 4.2, in [23], the following were proved, which establishes the
equivalence between the closed-loop solvability of Problem (SLQ) and the regular
solvability of the Riccati equation (4.6).

THEOREM 4.3. Let (H1)—(H2) hold. Then Problem (SLQ) is closed-loop solvable
on [0,T] if and only if the Riccati equation (4.6) admits a regular solution P(-) €
C(]0,T); S™) and the adapted solution (n(-),((+)) of the backward stochastic differential
equation (BSDE)

dn(s) = — { [AT—(PB+CTPD+ST)(R+D"PD)BT]y
+[CT—(PB+C"PD+ST)(R+D'PD)'DT|¢
+[CT—(PB+C"PD+ST)(R+D"PD)'D"|Po
—(PB+CTPD+ST)R+DT"PD)p+ Pb+ q}ds
+¢dW(s), se€[0,T],

(4.11)

n(T) =g,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2286 JINGRUI SUN, XUN LI, AND JIONGMIN YONG

satisfies

(4.12) { B'n+D"(+D"Po+pcR(R+D"PD) ae. as.

(R+D"PD)(B"n+D"¢(+ D" Po+p) € LE0,T;R™).
In this case, Problem (SLQ) is closed-loop solvable on any [t,T], and the closed-loop
optimal strategy (0*(-),v*(:)) admits the representation
0*=—(R+D"PD)Y(B"P+D"PC+5)
+[I - (R+D"PD)(R+DTPD)]LL,
v* = —(R+D'"PD)(B"n+D"¢+D"Po+p)
+[I-(R+D"PD)'(R+D"PD)Jv

(4.13)

for some I1(-) € L2(t, T;R™*™) and v(-) € L&(t,T;R™), and the value function is
given by

T
V(t,z) = E{(P(t)x,x) +20n(t), @) +/ [(PU, ) +2(n,b) + 2(C, o)
(4.14) t
— ((R+D"PD) (BTn+D'¢+D Po+p), BTn+DTg+DTPa+p>] ds}.

From the above theorem, we see that the existence of a strongly regular solution
to the Riccati equation (4.6) implies the unique closed-loop solvability of Problem
(SLQ), which, by the remark right after Definition 2.1, implies the unique open-
loop solvability of Problem (SLQ). Particularly, when b(-),o(), g,q(:), p(-) = 0, the
adapted solution of (4.11) is (0,0), and (4.12) holds automatically. Thus, the existence
of a regular solution to the Riccati equation (4.6) is equivalent to the closed-loop
solvability of Problem (SLQ)°, which implies the open-loop solvability of Problem
(SLQ)°. However, as we mentioned earlier, the inverse is false (see section 7 for
further details). On the other hand, it is known that under the standard conditions
(1.4), the Riccati equation (4.6) admits a unique positive semidefinite solution P(-),
and Problem (SLQ) admits a unique open-loop optimal control which has a state
feedback form, represented via the solution of the Riccati equation (see [30, 9]). To
summarize, we have the following diagram:

G>0, R>0, Q—STR'S>0

. I
u(-) = JO(t, 25 u(+)) RE strongly N RE
uniformly convex regularly solvable regularly solvable
4 4 T
(SLQ) uniquely - (SLQ) uniquely N (SLQ)°
open-loop solvable closed-loop solvable closed-loop solvable

where “RE” stands for the Riccati equation (4.6). It is clear that the uniform convexity
of the map u(-) + JO(¢,z;u(-)) does not imply the standard conditions (1.4), which
will be even clearer by the results of section 5 below. Therefore, we desire to establish
the following:

‘ u(-) — JO(t, z;u(-)) uniformly convex‘ — ‘ RE strongly regularly solvable‘
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This is our next goal. To achieve this, we first present the following proposition, which
plays a key technical role in this section.

PROPOSITION 4.4. Let (H1)—(H2) and (4.2) hold. Then for any O(-) € L*(0,T;
R™>™) the solution P(-) € C([0,T];S™) to the Lyapunov equation

P+ P(A+BO)+ (A+BO)'P+(C+DO)'P(C + DO)
(4.15) +0"RO+STO+0'S+Q=0 ae sc[0,T]
P(T) =G

satisfies
(4.16)  R(t)+D(@)"P(t)D(t) > M a.e. t € [0,T], and P(t) > ol Vt € [0,T],

where a € R is the constant appearing in (4.1).

Proof. Let O(:) € L?(0,T;R™*"), and let P(-) be the solution to (4.15). For any
u(+) € U[0,T], let Xo(-) be the solution of

dXo(s) = [(A+ BO)Xy + Bulds + [(C + DO)Xq + DuldW (s), s€[0,T],
Xo(0) = 0.

By (4.2) and Lemma 2.2, we have
T
AB [ 10(s)Xa(s) + u(s) Pds < J°(0,0:0()Xo() + u(-)
0
T
= E/ {2( [BTP+D'PC + S+ (R+D'PD)®|Xo,u) + ((R+ D'PD)u, u>}ds.
0
Hence, for any u(-) € U[0, T, the following holds:

T
IE/ {2( [BTP+D"PC+ S+ (R+D"PD—\)0]Xo,u)
(4.17) 0 .
(R + DTPD —~ Myu,u) }ds = )\]E/ 10(5) Xo(s)[2ds > 0.
0

Now, fix any ug € R™, and take u(s) = ol 44)(s), with 0 <t <t+h <T. Then
{d[EXo(s)} = {[A(s) + B(s)O(s)|EXo(s) + B(s)uoljs 14 (s)}ds, s € 0,77,
EX,(0) = 0.

Hence,
0, s € 10,1,
EXo(s) = sA(t+h)
@(s)/ @(r)*lB(r)uodr, s et T,
t

where ®(-) is the solution of the following R™"*"-valued ordinary differential equation:

@(s) = [A(s) + B(S)@(S)]‘b(s), s €[0,TY],
®(0)=1.
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Consequently, (4.17) becomes
t+h s
/ {2< [BTP+D'PC + S+ (R+D'PD — AI)O]d(s) / ®(r)~ ' B(r)ugdr, u0>
t t
+{((R+D'PD - /\I)uo,u0>}ds > 0.

Dividing both sides of the above by h and letting h — 0, we obtain
([R(t) + D(t)" P(t)D(t) — Aug,uo) >0 ae. t € [0,T], Vuo € R™.

The first inequality in (4.16) follows. To prove the second, for any (¢, z) € [0,7) x R™
and u(-) € U[t,T], let X(-) be the solution of

{ dX(s) = [(A+ BO)X + Bulds + [(C + DO)X + Du]dW (s), s € [t,T),
X(t) ==

By Proposition 4.1 and Lemma 2.2, we have

alzl* < VO(t,2) < J0(t2;0()X () + u()

= (P(t)x,x) + ]E/tT {2( [BTP+D"PC+ S+ (R+D'PD)O]X,u)

+{(R+ D" PD)u, u>}ds
In particular, by taking u(-) = 0 in the above, we obtain
(P(t)z,z) > alz[* VY(t,x) €[0,T] x R",
and the second inequality therefore follows. d

Now we state the main result of this section.

THEOREM 4.5. Let (H1)-(H2) hold. Then the following statements are equivalent:
(i) The map u(-) — JO(0,0;u(-)) is uniformly convez; i.e., there exists a A > 0
such that (4.2) holds.
(ii) The Riccati equation (4.6) admits a strongly regular solution P(-).

Proof. (i) = (ii) Let Py be the solution of

(418) { Po+ P A+ A TPy +CTPC+Q=0 ae. sel0,T]
Py(T) =G.
Applying Proposition 4.4 with © = 0, we obtain that
R(t)+ D) Po(t)D(t) = N, Py(t) = al, ae.tel0,T].
Next, inductively, for : =0,1,2,..., we set

©,=—(R+D"'PDYYB"P,+D"PC+S
(419) { (B + ) NBTP A+ +5),

Ai:A—FB@i, C; =C+ D0O;,
and let P; 1 be the solution of

P+ P A+ APy +CTPL1Ci+ 0] RO+ ST, +0] S +Q =0,
Pi+]_(T) = G
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By Proposition 4.4, we see that

(4.20) R(t)+ D)  Piy1(t)D(t) = A, Piya(t) = al
' ae. s€[0,T], i=0,1,2,....
We now claim that {P;}$°, converges uniformly in C([0,T];S™). To show this, let
Ai 2P —Pyy, NE2O;_1—0; i>1
Then for ¢ > 1, we have
-A;=PA_1+A L\ P+Cl PC,_1+0] |RO;_1+570;_1+06],S
— P A - APy -C P Ci -0 RO; —STO, —0] S
=NA; + A A+ CTAC + P(Aiy — A) + (A — A) TR,
+C,PC; 1 —C/PC; +©] |RO; 1 —0]RO; + STA; + A S.

(4.21)

By (4.19), we have the following:

Ai—1 — A; = BA;, Ci—1 — C; = DAy,
(4.22) Cl PCiy —CPC;=A D"P.DA; 4+ C] P,DA; + A] DT P,C;,
0] |RO; 1 —©] RO; = A] RA; + A] RO; + O] RA,.
Note that
B'"P,+D"PC;+ RO, +S=B"P,+D"PC+S+(R+D'PD)O, =0.
Thus, plugging (4.22) into (4.21) yields
—(Ai+ AA + AT A+ CT A
= P,BA; + A/ B"P;+ A] DTP.DA; + C] P.DA; + A/ D" P,C;
+A/RA;+ A RO; +O RA; +STA; +A]S
=A] (R+D"PD)A; + (P,B+C] P,D+©] R+ ST)A;
+A/(B"P,+ D"P,C; + RO; + S)
=A] (R+D"PD)A; >0,

(4.23)

which, together with A;(T) = 0, implies A;(-) > 0. Also, noting (4.20), we obtain
Pi(s) 2 Pi(s) 2 Piy1(s) 2z al Vse0,T], Vi>1.

Therefore, the sequence {P;}$2; is uniformly bounded. Consequently, there exists a
constant K > 0 such that (noting (4.20))

(4.24)
|P;(s)], |Ri(s)] < K,
10:(5)| < K(1B(s)| + |C(s)| + [S(s)]). 3 Z.
44(5)] < JAG)+ KB (1Bs)| +C(s)] +s(s))), o * € OTLVi=0,
1Ci(s)] < 1C(s)] + K (IB(s)] +1C(5)] + [S(s)]),

where R;(s) £ R(s) + DT (s)P;(s)D(s). Observe that
(4.25) Aj = R;'D'A; DR (B"P,+ D'PC +S) -~ R, (B'A,_1 + D'A,_,0).
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Thus, noting (4.24), one has

o [Ai(5) " Ri()Ai(s)] < (1©4(5)] +105-1(5)]) |Ri<s>|2 1©:-1(s) — ©i(s)|
< K(IB(s)| +1C()| + 1S()]) [Ai-1(5)]:

Equation (4.23), together with A;(T") = 0, implies that
T
Ai(s) = / (DA + AT A+ CF A Oy + A RN dr.
Making use of (4.26) and still noting (4.24), we get
T
i)l < [ elai]+1ama@l|ar s e 0.T), iz L

where ¢(-) is a nonnegative integrable function independent of A;(-). By Gronwall’s
inequality,

. T T
|Ai(s)] < eo SWW/ o(r)|Ai—1(r)]dr = C/ o(r)|Ai—1(r)|dr.

Set a = maxg<s<r |Ao(s)]. By induction, we deduce that

1Ai(s)] < ac—i(/; Mdr)i vs € [0, 7],

il

which implies the uniform convergence of {P;}2,. We denote P the limit of {P;}°4;
then (noting (4.20))

R(s) 4+ D(s) " P(s)D(s) = lim R(s) + D(s) " Pi(s)D(s) > X a.e. s € [0,T],

1— 00

and as i — oo,

©;—+—(R+D"PD)"Y(BTP+D"PC+S)=0 in L2
A1—>A+B@ inLl, CZ—>C+D@ in L2.

Therefore, P(-) satisfies the following equation:

P+ P(A+BO)+ (A4 BO)'P+(C+DO)"P(C + DO)
+0"RO+STO+OTS+Q =0 ae sc0,7T],
P(T) = G,

which is equivalent to (4.6).
(ii) = (i) Let P(:) be the strongly regular solution of (4.6). Then there exists a
A > 0 such that

(4.27) R(s) + D(s) " P(s)D(s) > X a.e. s €[0,T].

Set
04 —(R—FDTPD)fl(BTP_'_DTPO_'_S) c LZ(O,T;]RmXTL).
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For any u(-) € U[0,T], let X(“(-) be the solution of
dX™ (s) = [A(s) X (s) + B(s)u(s)]ds + [C(s) X (s) + D(s)u(s)]dW (s),
X(0) = 0.

Applying Itd’s formula to s — (P(s)X () (s), X(*)(s)), we have

ey =s{loxeimaem - (3 5) (7). () )

= E/OT [((P+ PA+ATP+CTPC+Q)X™, x™)
+2((BTP+DTPC+8)X",u) + ((R+ D"PD)u,u)|ds
- E/OT (67 (R+DTPD)OX™, X™) —2((R+ DTPD)OX ™), u)
+((R+ DT PD)u,u)|ds
- E/OT ((R+DTPD)(u—0X™),u— 0X®)ds.
Noting (4.27) and making use of Lemma 2.3, we obtain that

J(0,05u()) = E/T ((R+D"PD)(u—-0X™),u—6X")ds
0

T
> /\'yE/O lu(s)|*ds Yu(-) € U0, T,

for some v > 0. Then (i) holds. O

Remark 4.6. From the first part of the proof of Theorem 4.5, we see that if (4.2)
holds, then the strongly regular solution of (4.6) satisfies (4.10) with the same constant
A>0.

Combining Theorems 4.3 and 4.5, we obtain the following corollary.

COROLLARY 4.7. Let (H1)-(H2) and (4.2) hold. Then Problem (SLQ) is uniquely
open-loop solvable at any (t,x) € [0,T) x R™ with the open-loop optimal control u*(-)

being of a state feedback form:
(4.28) w'()=—-(R+D"PD)"Y(B"P+D"PC+S)X*
' ~(R+D"PD)"Y B+ D¢+ D" Po+p),

where P(-) is the unique strongly regular solution of (4.6) with (n(-),((:)) being the
adapted solution of (4.11) and X*(-) being the solution of the following closed-loop
system:

dX*(s) = { [A—B(R+D'"PD)"Y(B"P+D"PC + 5)| X*
—~B(R+D"PD)"YB"n+D"¢(+D"Po+p)+ b}ds
+{[c~D(R+DTPD)"{(BTP+DTPC+5)] X"
—D(R+D"PD)y" (B n+DT¢+D"Po+p)+ U}dW(s), se[t,T),
X*(t) = z.
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Proof. By Theorem 4.5, the Riccati equation (4.6) admits a unique strongly reg-
ular solution P(-) € C([0,T];S™). Hence, the adapted solution (n(-),{(-)) of (4.11)
satisfies (4.12) automatically. Now applying Theorem 4.3 and noting the remark right
after Definition 2.1, we get the desired result. 0

Remark 4.8. Under the assumptions of Corollary 4.7, when b(-), o(-), g, ¢(-),
p(-) = 0, the adapted solution of (4.11) is (n(-),¢(-)) = (0,0). Thus, for Problem
(SLQ)?, the unique optimal control u*(-) at initial pair (¢,x) € [0,T) x R™ is given by

u*()=—(R+D"PD)"(B"P+D"PC + S)X",

with P(-) being the unique strongly regular solution of (4.6) and X*(-) being the
solution of the following closed-loop system:

dX*(s)=[A—B(R+D'PD)"Y(BTP+D"PC + 5)|X*ds
+[C—DR+D"PD)"(B'"P+D"PC+8)|X*dW(s), sc¢€[tT],
X*(t) = .

Moreover, by (4.14), the value function of Problem (SLQ)" is given by
VO(t,z) = (P(t)x,z), (t,z) €[0,T] x R™.

5. Finiteness of Problem (SLQ) and convexity of cost functional. We
have seen that the uniform convexity of the cost functional implies the open-loop and
closed-loop solvabilities of Problem (SLQ). We expect that the finiteness of Problem
(SLQ) should be closely related to the convexity of the cost functional. A main pur-
pose of this section is to make this clear. Other relevant issues will also be discussed.
First, we introduce the following:

As,P()) = P(s)+P(s)A(s)+A(s) T P(s)+C(s) T P(s)C(5)+Q(s)  P(s)B(s)+C(s) T P(s)D(s)+S(s)
7 B(s) " P(s)+D(s) " P(s)C(s)+5(s) R(s)+D(s) " P(s)D(s)

for any P(-) € AC(t,T;S™) which is the set of all absolutely continuous functions
P:[t,T] — S™. Let

Plt, T) = {P(-) € AC(t,T;S") | P(T) < G, A(s, P(-)) > 0 ae. s € [t,T]}.

We have the following result.

PROPOSITION 5.1. Let (H1)-(H2) hold, and let t € [0,T) be given. Among the
following statements,
(i) Problem (SLQ) is finite at t,
(ii) Problem (SLQ)° is finite at t,
(iii) there exists a P(t) € S™ such that

(5.1) VO(t,2) = (P(t)x,z) VaeR™,
(iv) the map u(-) — J(t,z;u(-)) is convex for any x € R™,
(v) P[t,T] # 0,

the following implications hold:

(i) = (i) = (iii) = (iv); (v) = (ii).
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Proof. (i) = (ii) By Proposition 3.1, for any = € R™ and u(-) € U]t,T], we have
=2 {<M2(t)u,u> + 2(My (t)z, u) + (Mo(t)z, ) + ct]
= 2] 7t 3 u()) + e,
which implies (ii).
(ii) = (iii) This part of the proof can be shown by a simple adoption of the
well-known result in the deterministic case (see [10, 3]).

(iii) = (iv) By Corollary 3.4, if u(-) — J(¢,x;u(:)) is not convex, then for some
u(-) € UL, T), JO(t,0;u(-)) < 0. By Corollary 3.3, we have for all A € R"

JO(t, s du(+) = JO(t, 2;0) + A2 J0(t, 05 u(t)) + AE /T (DJO(t,2;0)(s), u(s))ds.

Letting A — oo, we obtain

VO(t,z) < lim JO(t, @3 Mu()) = —oo,

A—00

which is a contradiction.
(v) = (i) For any (¢,z) € [0,T) xR™, u(-) € U[t,T], and any P(-) € AC(t,T;S"),
one has
E(P(T)X(T), X(T)) — (P(t)z, x)
T
= IE/ {((P +PA+ATP+CTPC)X, X)
t

+2((B"P+ D"PC)X,u)+ (D" PDu, u>}ds.

Hence, if P[t, T]| # 0, then by taking P(-) € P[t,T], one has

Tt 25 u(-)) = E{<GX(T),X(T)>+[<(§ 5;) (f) , <f)>ds}

— (P(hea) + E{<[G ~ P)X (1), X (1))
)

> (P(t)z,z) Yu(-) € U[t,T.
This implies that the corresponding Problem (SLQ)° is finite at ¢. |

It is worth pointing out that the convexity of the map u(-) — JO(¢,x;u(-)) is not
sufficient for the finiteness of Problem (SLQ)?. We present the following example (see
also [20] for an example of a quadratic functional in Hilbert space).

Example 5.2. Consider the one-dimensional controlled SDE

{ dX(s) = u(s)ds + X (s)dW (s), s € [t,1],

(5.2) X6«

and the cost functional

(5.3) JO(t, z;u(-) =R [—X(1)2 + /tl elsu(s)2d5] .
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We claim that

(5.4) J0,0;u(-)) =0 Vu(-) €U[0,T],

which, by Corollary 3.4, is equivalent to the convexity of u(-) — J°(0, z;u(-)), but
(5.5) V90,z2) = —c0  Va #0.

To show the above, let u(-) € U[0,T] and X(-) = X(-;0,2,u(-)) be the solution of
(5.2) with ¢t = 0. By the variation of constants formula,

X(S) _ iEeW(S)*%S + eW(S)fés/ e%r7W(T)u(,r.)d,r.7 S € [O, ].]
0

(W(1)-W(r)

Taking « = 0 and noting that e? 1=(1=7) is independent of F,, we have

2

1 1
]E[X(1)2] =F [/ eW(l)W(r)é(lr)u(T)dT:| < E/ 62[W(1)7W(T)],(1,T)u(r)2dr
0 0
1

1
:/ Ee2[W(1)*W(T)]*(lfr)E[u(r)Z]dr:E/ el u(r)?dr,
0 0

and hence
J%0,0;u(-)) =E [—X(l)2 + /1 el_su(s)QdS] >0 Vu()eU[0,T].
0

On the other hand, taking = # 0 and u(s) = /\eW(S)*%S, A € R, we have
X(1) = (xz+ /\)ew(l)_%.

Therefore,
JO0,z5u(r)) = E [—X(l)2 —l—/o elsu(s)zds}

1
_ —E[(x + /\)262W(1)—1] i )\ZIE/ el=5p2W(s)=s g
0
= —(z4+N?e+ Ne = —(22 + 2\x)e.

Letting |[A| = oo, with Az > 0, in the above, we obtain V°(0,z) = —oco. This proves
our claim.

The above example tells us that, besides the convexity of u(-) — JO(¢, z; u(+)), one
needs some additional condition(s) in order to get the finiteness of Problem (SLQ)°
at ¢t. To find such a condition, let us make some observations. Suppose u(-) —
J%(0, z;u(-)) is convex, which, by Corollary 3.4, is equivalent to the following:

(5.6) J2(0,0;u(-)) =0 Vu(-) €U[0,T).

Then for any € > 0, consider state equation (1.1) (with b(-), o(-) = 0) and the following
cost functional:

Lot zu() 2 E {<GX(T>,X<T>> + ' <(§ Rfd) (fj) | (fj)>d}

T
= JO(t, x5 u(")) +6E/t lu(s)|*ds.
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Denote the corresponding optimal control problem and value function by Problem
(SLQ)? and VO(-,-), respectively. By Corollary 3.4 and the convexity of u(:)
J°(0,0;u(-)), one has

T T
J20,0:u() = J°0,05u()) + B [ [u(s)Pds > B [ Ju(s)Pds Vu() € U.T)
0 0

ie., u(-) = J2(0,0;u(-)) is uniformly convex. Hence, it follows from Theorem 4.5 that
the Riccati equation

P.+P.A+ATP.+CTP.C+Q
(5.7 § —(P.B+C'P.D+S")R+eI+D'P.D)"Y(B"P. + DTP.C +§) =0,
P(T)=G

admits a unique strongly regular solution P.(-) € C([0,7];S™) such that (noting
Remark 4.6)

(5.8) R(t) + el +D(t)" P.(t)D(t) > el a.e. t € [0,T).

Now, we are ready to state and prove the following result, which is a characterization
of the finiteness of Problem (SLQ)°.

THEOREM 5.3. Let (H1)-(H2) and (5.6) hold. For any e > 0, let P.(:) be the
unique strongly regular solution of the Riccati equation (5.7). Then Problem (SLQ)°
is finite if and only if {P.(0)}c>0 is bounded from below. In this case, the limit

(5.9) lim P.(t) = P(t) Vte€[0,T)

e—0

exists, and (5.1) holds. Moreover,

(5.10) R(t)+D(t)"P(#t)D(t) >0 a.e.t€0,T],
and
(5.11) N(t) < P(t) < Mo(t) Vtel0,T),

where Mo(+) is the solution to the Lyapunov equation (3.2), and

N(t) = [@at)T]" {P(O) - /O t Da(s)" [C(s)TMo(s>C(s>+Q(s>} <I>A<s)ds} Da(t),
with ® 4(+) being the solution to the following:

(5.12)
In particular, if Problem (SLQ)° is finite at t = 0, then it is finite.

Proof. Necessity. Suppose Problem (SLQ)° is finite, and let P : [0,T] — S™ such
that (5.1) holds. For any €2 > €1 > 0, we have

JE (txyu() = IO (¢ zsu() = JO(tzu(l) V() € [0,T] x R™, Vu(-) € U, T).
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Hence (noting Remark 4.8),

= 0 = i 0 . . > i 0 N .
(Po(ra) = VA(La)= it JO(Lasu() > inf TS ()

= VI (t,x) = T, in 0t 2o u()) = VOt x
= Vo, () = (P, (t)z, >>u(_)euf[t7T]J (t,z;u(-)) = VO(t,z)
= (P(t)z,z) V(t,x) € [0,T] x R™

Thus {P(t)}c>0 is a nondecreasing sequence with lower bound P(t) and therefore has
a limit P(t) with

(5.13) P(t) = lim P.(t) > P(t) Vt€[0,T).

e—0

On the other hand, for any ¢ > 0, we can find a u’(-) € U[t, T}, such that
T T
VOt ) < IOt sl () + sIE/ [ (5)Pds < VOt 2) + 6 + sIE/ [ (5) P ds.
t t

Letting € — 0, we obtain that

(P(t)z,z) = im(P.(t)z,x) = Ehi% VOt,x) < VO(tz) + 6 = (P(t)x,z) + 6,

e—0

from which we see that

(5.14) (P(t)x,z) < (P(t)x,x) V(t,xz)€[0,T] x R™.

Combining (5.13)—(5.14), we obtain (5.9) with P(-) satisfying (5.1). Moreover, letting
e — 0 in (5.8), we obtain (5.10).
Sufficiency. Suppose there exists a 8 € R such that
P.(0) > BI Ve > 0;

then for any z € R™ and u(-) € U[0,T], we have
T
JO(0, 25 u()) + £IE/ lu(s)|*ds > V2(0,z) = (P.(0)z,2) > Blz|* Ve > 0.
0

Letting € — 0 in the above, we obtain
JO0, z;u(-)) = Blz[* Vo € R™, Yu(-) € U[0,T],

which implies the finiteness of Problem (SLQ)? at ¢ = 0.
Now, let P(0) € S™ such that V°(0,z) = (P(0)z, x) for all x € R™. Then

(5.15) P(0) < P.(0) Ve>O0.
Also, by Remark 4.8 and Proposition 3.1,

(P.(t)z,x) = VO(t,x) < JO(t, 2;0) = JO(t,2;0) = (Mp(t)x,2) Vo € R™
This leads to

(5.16) P.(t) < My(t), te]0,T], Ve >0.
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On the other hand, let ® 4(-) be the solution of (5.12), and set
I. 2(P.B+C"P.D+S")(R.+D"P.D)""(B"P.+ D"P.C +S) > 0.

Then, combining (5.15)—(5.16), we have
A1) TP(1)®A(t) = P.(0) + /0 Ba(s)" [Ha(s) —C(s)TP(s)C(s) — Q(s)}@A(s)ds
> P(0) — /O D4(5)[C(9)T Mo(5)C(5) + Qs)| @ a(s)ds.

Thus,

P.(t) > [@a(t)"] ‘1{P<0> - /0 t Da(s)" [C(s)TMo(s>C(s>+Q(s>} %(s)ds} Da(t)”"
=N(t), tel0,T].
Then, using the same argument as in the previous paragraph, we can show that
(5.17) JO(t, z;u()) = (N(t)z,z) V() e [0,T] x R™, Yu(-) € U[t, T,

which implies the finiteness of Problem (SLQ)°. Moreover, let P : [0,T] — S™ such
that (5.1) holds; then

(N (b)) < IOt @ u() = (P(t)z, z)

inf
u(-)EUt,T]
< JO(t,2;0) = (My(t)x,z) V(t,z) €[0,T] x R",
and (5.11) follows.

Finally, if Problem (SLQ)? is finite at ¢t = 0, then (5.15) holds, and the finiteness
of Problem (SLQ)° therefore follows. 0

The following is another sufficient condition for the finiteness of Problem (SLQ)°,
which is a corollary of Theorem 5.3 and Proposition 5.1, (v) = (ii).

COROLLARY 5.4. Let (H1)—~(H2) hold. If there exists a A(-) € L*(0,T;S%) such
that

(5.18) R+D'PD > (B"P+D"PC+S8)A " (PB+C"PD+5") ae. s€0,T],
where P(-) is the solution of the following Lyapunov equation:

P(s) + P(s)A(s) + A(s) TP(s) + C(s) T P(s)C(s) + Q(s) = A(s) a.e. s €[0,T],
P(T) <G.

Then Problem (SLQ)° is finite.

Proof. Under our condition, one has for a.e. s € [0,T]

A(s) P<s>B<s>+c<s>TP<s>D<s>+s<s>T) >0
()7 P(s)+D() T P(s)C()45(3) R(s)+D(s) P(s)D(s) -

Mo PO =

Hence, P(:) € P[0,T], and Problem (SLQ)? is finite at ¢t = 0. Then the finiteness of
Problem (SLQ)° follows from Theorem 5.3 immediately. 0
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We now return to the study of convexity of the map u(-) — JO(t,0;u(-)). First,
from the representation of Ma(t) (see (3.3)), we see that Ms(t) > 0 if and only if

(5.19) R() > — (E;Git +LIQLy + SLy + L;ST),

with the right-hand side possibly being nonpositive. Thus, unlike the well-known
situation for the deterministic LQ problems (for which R(-) > 0 is necessary for
Ms(t) = 0 [30]), R(-) does not have to be positive semidefinite. Actually, as shown by
examples in [6, 30], R(-) could even be negative definite to some extent. Let us now
take a closer look at this issue.

Note that when u(-) — J%(0,0;u(-)) is convex, for any € > 0, the unique strongly
regular solution P.(-) to the Riccati equation (5.7) satisfies (5.8) and (5.16). Hence,

(5.20) R(t)+ D(t)" Mo(t)D(t) =0 a.e. t < [0,T],
or, equivalently,

R() + D(t)TE{ o)1) GloT)D) ]
(5.21)

T T
+/t [@(s)®(t) "] Q(s)[q>(s)<1>(t)1}ds}[)(t)>o ae. t€[0,T].

This is another necessary condition for the finiteness of Problem (SLQ)?, which is
easier to check. From (5.21), we see that if R(-) happens to be negative definite, then
in order for u(-) +— J°(0,0;u(-)) to be convex, it is necessary that D(-) be injective,
and either G or Q(-) (or both) has to be positive enough to compensate. Note that
D(s) was assumed to be invertible in [22]. Therefore, in some sense, our result justifies
the assumption of [22].

The following gives a little improvement when more restrictive conditions are
assumed.

PROPOSITION 5.5. Let (H1)—(H2) hold. Suppose that
(5.22) B(-) =0, Cc()=0, S()=0.

Then the map u(-) — J°(0,0;u(-)) is convex if and only if (5.21) holds. In this case,
Problem (SLQ)° is closed-loop solvable.

Proof. Tt suffices to prove the sufficiency. Note that in the current case, the
corresponding Riccati equation becomes

P(s)+ P(s)A(s) + A(s) "P(s) + Q(s) =0 a.e. s € [0,T],
P(T) =G,

whose solution is My(-). If (5.21) holds, then it is easy to verify that My(-) is regular.
Consequently, by Theorem 4.3, Problem (SLQ)° is closed-loop solvable, and hence
u(-) = J°(0,0;u(-)) is convex. 0

Note that in the case of (5.22), we have
Mo(t) = [®a(T)D A1) "] G[BA(T)Da(t)]

T T
+/t [@A(s)Pa(t)'] Q(s)[Pals)Pa(t)"]ds,
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with ®4(-) being the solution of (5.12). Hence, (5.21) can also be written as

R(t) + D(t)T{ [@A(T)Pa(t)""] TG[<1>A(T)<1>A(t)—1]

T

T
+/ [@a(s)Palt)”"] Q(s)[@A(s)m(t)—l}ds}p(t)>0 a.e. t€0,7).

From Remarks 4.6 and 4.8, we see that if the uniformly convex condition (4.2)
holds, then Problem (SLQ)" is finite and

(5.23) R(s)+ D(s)"P(s)D(s) > A\ a.e. s € [0,T],
where P : [0,T] — S™ is the function such that (5.1) holds. The following result shows

that the converse is also true.

THEOREM 5.6. Let (H1)—(H2) hold. Suppose Problem (SLQ)° is finite, and let
P :[0,T] — S™ such that (5.1) holds. If (5.23) holds for some X\ > 0, then P(-) solves
the Riccati equation (4.6). Consequently, the map u(-) — J°(0,0;u(-)) is uniformly
convez.

Proof. For any ¢ > 0, let P-(-) be the unique strongly regular solution of (5.7).
By Theorem 5.3,
P.(t) N\ P(t) ase\,0, Vt€[0,T].

Note that P-(-) < Mp(+) for alle > 0 and by (5.11), P(-) is bounded. Thus, {P-(t)}:>0
is uniformly bounded. Also, we have

R(s) 4+ D(s) " P.(s)D(s) = R(s) + D(s) " P(s)D(s) = A\ a.e. s € [0,T], Ve > 0.
Then it follows from the dominated convergence theorem that
P.A+A'P.+C"P.C+Q
—(P.B+C"P.D+S")R+el+D"P.D)""(B"P.+ D" P.C +S) = A,
converges to
PA+ATP+CTPC+Q
—(PB+C"PD+S")YR+D"PD)"Y(B"P+D"PC+S)=A

in L' as ¢ — 0. Therefore,

T T
P(t) = lim P.(t) = G + lim Ac(s)ds =G +/ A(s)ds,
t

e—0 e—0 J;

which, together with (5.23), implies that P(-) is a strongly regular solution of (4.6).
Consequently, by Theorem 4.5, u(-) + J°(0,0;u(+)) is uniformly convex. O

We now look at the following case:
(5.24) D(-)=0, R(-) > 0.

Note that although D(:) = 0, since C(+) is not necessarily zero, our state equation is
still an SDE. For such a case, the above results can be restated as follows.

THEOREM 5.7. Let (H1)-(H2) and (5.24) hold. Then the following statements
are equivalent:
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) Problem (SLQ) is finite at t = 0;

(i) Problem (SLQ)° is finite at t = 0;

iii) the map u(-) — J°(0,0;u(-)) is uniformly convez;
) the Riccati equation

P+PA+ATP+CTPC+Q
(5.25) —(PB+STRYB"P+S)=0 ae. sc[0,7T],
P(T) =G

admits a unique solution P(-) € C([0,T];S™);
(v) Problem (SLQ) is uniquely closed-loop solvable;
(vi) Problem (SLQ) is uniquely open-loop solvable.

Proof. (i) = (ii) This part of the proof follows from Proposition 5.1.

(ii) = (iii) By Theorem 5.3, Problem (SLQ)° is finite. Since D(-) =0, R(-) > 0,
(5.23) holds for some A > 0, and the result follows from Theorem 5.6.

(i) < (iv) In the case of (5.24), the corresponding Riccati equation becomes
(5.25). If P(-) € C([0,T];S™) is a solution of (5.25), then it is automatically strongly
regular. Thus, by Theorem 4.5, we obtain the equivalence of (iii) and (iv).

(iii) = (vi) This part of the proof follows from Proposition 4.1, and (iv) = (v)
follows from Theorem 4.3.

Finally, (v) = (i) and (vi) = (i) are trivial. 0

An interesting point of the above is that under condition (5.24), finiteness of
Problem (SLQ) implies the closed-loop solvability of Problem (SLQ). In the deter-
ministic case, such a fact was first revealed in [31] for two-person zero-sum differential
games and was proved in [29] for deterministic LQ problems by means of Fredholm
operators.

6. Minimizing sequences and open-loop solvabilities. In section 4, we
showed that under the uniform convexity condition (4.2), Problem (SLQ) is open-loop
solvable and the open-loop optimal control has a linear state feedback representation.
In this section, we study the open-loop solvability of Problem (SLQ) without the
uniform convexity condition.

First we construct a minimizing sequence for Problem (SLQ) when it is finite.

THEOREM 6.1. Let (H1)—(H2) hold. Suppose Problem (SLQ) is finite. For any
e > 0, let P-(-) be the unique strongly regular solution to the Riccati equation (5.7).
Further, let :(-),C((+)) and X () = Xc(-;t,z) be the (adapted) solutions to the
following BSDE and closed-loop system, respectively:

dne(s) = —[(A+ BGE)TUE +(C+ DGE)TCE
+(C+DO.) Po— 0l p+Pbt q} ds +C.dW(s), se[0,T],

n(T) =g,
dX.(s) = {(A + BO.)X. + Bu. + b} ds

+[(C+ DO)X. + Do, + | dW(s), s ltT],
X (t) = =,
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6.1) 6. = —(R+el+DTP.D) " (BTP.+ DTP.C +5),
' ve = —(R+el+DTP.D) ' (BTn. + D¢+ D P.o +p).

(6.2) ue(1) £ 0:() X (1) +ve (), €>0,
is a minimizing sequence of u(-) — J(t,z;u(:)):

. lim J(¢, 2;uc(-)) =  inf toziu()) = V(¢ x).
(63) It aue() = inf | J(au() = Vi)

Proof. For any € > 0, consider state equation (1.1) and the following cost func-
tional:

T
(6.4) Jo(t,zyu(r)) = Itz u(-) + aE/t lu(s)|*ds.

Denote the above problem by Problem (SLQ). and the corresponding value function
by V(-,-). By Corollary 4.7, u.(-) defined by (6.2) is the unique optimal control of
Problem (SLQ), at (t,x) € [0,T") x R™. Note that

T
EE/t lue(s)2ds = J.(t,z;u(?)) — J(t, x5 u (")) = Ve(t,z) — J(t, z;u ("))
< Ve(t,z) = V(t,z) >0 ase—0.

Thus,
T
lim J(t, z;u:(-)) = lim {Vs(t,x) — 8E/ |u5(8)|2d8:| =V(t, x).
e—0 e—0 t
The proof is completed. O

Using the minimizing sequence constructed in Theorem 6.1, the open-loop solv-
ability of Problem (SLQ) can be characterized as follows.

THEOREM 6.2. Let (H1)-(H2) hold. Suppose u(-) — J°(0,0;u(-)) is conver. Let
(t,x) € [0,T)xR™ and {us(-)}e>0 be the sequence defined by (6.2). Then the following
statements are equivalent:

(i) Problem (SLQ) is open-loop solvable at (t,x);
(ii) the sequence {uc(-)}eso admits a weakly convergent subsequence;

(iii) the sequence {uc(-)}eso admits a strongly convergent subsequence.

In this case, the weak (strong) limit of any weakly (strongly) convergent subsequence
of {ue(+) }e>o0 s an open-loop optimal control of Problem (SLQ) at (¢,z).

To prove Theorem 6.2, we need the following lemma whose proof is straightfor-
ward.

LEMMA 6.3. Let H be a Hilbert space with norm ||-|| and 0,60, € H,n=1,2,....
(i) If 0,, — 0 weakly, then ||0]] < liminf, . ||0x]-
(ii) 6, — 0 strongly if and only if

6]l — 1|10l and 6, — 0 weakly.
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Proof of Theorem 6.2. (i) = (ii) and (i) = (iii) Let v*(+) be an open-loop optimal

control of Problem (SLQ) at (¢,z). By Corollary 4.7, for any ¢ > 0, uc(-) defined by
(6.2) is the unique optimal control of Problem (SLQ), at (t,x) and

T
(6.5) Ve(t,x) = Jo(t, m;ue(r)) =2 V(t,x) + 8E/ luc(s)|?ds.
t
Also, we have
T
(6.6) Ve(t,x) < Jo(t, z;0" (1) =V (t, z) + 8E/ |v* (s)|ds.
t
Combining (6.5)—(6.6), we have
Ve(t,x) = V(t, )

T T
(6.7) E/ luc(s)2ds < . < IE/ |v*(s)[?ds Ve > 0.
t t

Thus, {uc(-)}e>0 is bounded in the Hilbert space U[t,T] = L2(t,T;R™) and hence
admits a weakly convergent subsequence {u., (-)}k>1. Let u*(-) be the weak limit of
{te, ()} i>1. Since u(-) — J(t,z;u(-)) is convex and continuous, it is hence sequen-
tially weakly lower semicontinuous. Thus (noting (6.3)),

Vt,z) < J(t,xu (7)) < likminf J(t, xue, () = V(t,x),
— 00

which implies that u*(-) is also an open-loop optimal control of Problem (SLQ) at
(t,x). Now replacing v*(-) with «*(-) in (6.7), we have

T T
(6.8) E/ (o (s)[2ds < ]E/ lu* (s)|ds Ve > 0.
t t
Also, by Lemma 6.3(i),
T T
(6.9) E/ |u*(s)|?ds < 1imianE/ luz, (s)*ds.
+ k— o0 +

Combining (6.8)—(6.9), we see that

T T
E/ |u*(s)|*ds = lim IE/ luc, (s)]?ds.
t k—o0 t

Then it follows from Lemma 6.3(ii) that {u., (-)}r>1 converges to u*(-) strongly.

(iii) = (ii) This part of the proof is obvious.

(ii) = (i) Let {ue, (1) }x>1 be a weakly convergent subsequence of {us()}eso with
weak limit u*(-). Then {u., (-)}x>1 is bounded in U[t,T] = L2Z(¢t,T;R™). For any
u(-) € U[t, T, we have

T T
J(t,x;u(-) + akE/ lu(s)|?ds = V., (t,x) = J(t, x5 ue, (1) + akIE/ ue, (s)]?ds.
t t

Note that u(-) — J(t,z;u(-)) is sequentially weakly lower semicontinuous. Letting
k — oo in the above, we obtain

J(t, a0 ()) < N inf J(t, 250, () < T(6z5u() V() € Ut T)

Hence, u*(+) is an open-loop optimal control of Problem (SLQ) at (¢, z). O
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From the proof of Theorem 6.2, we see that the open-loop solvability of Prob-
lem (SLQ) at (t,z) is also equivalent to the L?-boundedness of {u.(-)}c>0. In par-
ticular, the open-loop solvability of Problem (SLQ)° at (¢,7) is equivalent to the
L2-boundedness of {O.(-)X.(+)}e>o with X.(-) being the solution of

dX.(s) = (A+ BO.)X.ds + (C + DO.)X.dW(s), se][tT],
X:(t) = .

Since the L(Q; C([t, T]; R™))-norm of X.(-) is dominated by the L?-norm of ©(-), we

conjecture that the L2-boundedness of {O. () }<~¢ will lead to the open-loop solvability
of Problem (SLQ)° at (¢,x). Actually, we have the following result.

PROPOSITION 6.4. Let (H1)—(H2) hold. Suppose u(-) — J°(0,0;u(-)) is convez,
and let {O()}e>0 be the sequence defined by (6.1). If

T
(6.10) sup/ |9c(s)2ds < o0,
e>0.J0

then the Riccati equation (4.6) admits a regular solution P(-) € C([0,T];S™). Conse-
quently, Problem (SLQ)° is closed-loop solvable.

Proof. For any z € R™ and € > 0, let X.(-) be the solution of

{ dX.(s) = [A(s) + B(s)O:(s)| Xc(s)ds + [C(s) + D(s)O:(s)] X(s)dW (s),
X:(0) =z

By It6’s formula, we have
t
E|X. () = |2]? + IE/ [1(C+ DOXP +2((A+ BO)X., Xo)|ds
0
t
<z + / (|O + DO > +2|A + B@E|)E|X5|2ds vt € [0,7).
0

Thus, by Gronwall’s inequality,

T
E|X. (1) < [2f* exp { / [1C(5) + D(5)0.(s) [ +2|A(s) + B(s)@(s)@ds}

T
<|x|2eXp{K <1+/ |@5(s)|2ds>} vt € [0, 7],
0

where K > 0 is some constant depending only on A(-), B(-), C(-), D(-). Hence,

T

T
E / 0.()X.(s) 2ds < / 10.(5)PE|X. (s) [*ds

T T
< |x|2exp{K (14—/0 |@5(s)|2d5>}/0 |9.(s)|ds,

which, together with (6.10), implies the L?-boundedness of {©.(s)X.(s)}c>0. Thus,
by Theorem 6.2, Problem (SLQ)° is open-loop solvable at ¢ = 0, and by Theorem 5.3,
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Problem (SLQ)° is finite. Now let P : [0,7] — S™ such that (5.1) holds. Then by
Theorem 5.3,

(6.11) R+D'PD>0 ae.

Let {O.,(-)} be a weakly convergent subsequence of {©.(-)} with weak limit O(-).
Since
R+el+D'P.D—-R+D'PD asec—0

and {R(-) + el + D(:) T P-(-)D(-) }o<e<1 is uniformly bounded, we have
B'P., +D'P.,C+S=—(R+eI+D"P,D)O,, ——(R+D'"PD)O
weakly in L2. Also, note that
B'P.,, +D'P,C+S—B'P+D'PC+S
strongly in L2. Thus,
—(R+D'"PD)©=B'"P+D'"PC + 5.
This implies
(6.12) R(B'P+D'PC+S)CR(R+D"PD) ae.
Since
(R+D"PD){(BTP+D'PC+5S)=—(R+D'PD) (R+ D' PD)®©
and (R + DTPD)T(R + DTPD) is an orthogonal projection, we have
(6.13) (R+D"PD)(B"P+ D"PC +S) € L*(0,T; R™*"),
and
©=—(R+D'"PD)(B"P+D"PC+8S)+[I-(R+D'"PD)"(R+D"PD)|IL

for some I1(-) € L?(0,T; R™*"). Finally, letting k — oo, we have

T
P(t) = lim P.,(t) =G+ lim [PEkA +ATP, +CTP.C+Q

k—oo Ji

Y (P,B+CTP, D+ ST)@EJ ds

PA+ATP+CTPC+Q

T
G+/ [PA+ATP+CTPC+Q+(PB+CTPD+ST)@]ds
t
T
v
Al

—(PB+CTPD+ST)(R+D'PD)(BTP+D"PC+ S)} ds,

which, together with (6.11)—(6.13), implies P(+) is a regular solution of (4.6). O
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7. Examples. In this section we present two examples to illustrate some results
we obtained. In the first example, the stochastic LQ problem admits a continuous
open-loop optimal control at all (¢,2) € [0,T) x R™, and hence it is open-loop solvable,
while the value function is not continuous in ¢; the corresponding Riccati equation has
a unique solution P(-), which does not satisfy the range condition (4.7) and therefore
is not regular. Thus, the problem is not closed-loop solvable on any [t,T]. This
example also tells us that the necessity part of Theorem 4.2 (a result from [1]) does
not hold.

Ezample 7.1. Consider the following Problem (SLQ)° with one-dimensional state
equation:

(7.1) { dX(s) = [U1(S) + UQ(S)} ds + [ul(s) - uz(s)} dW(s), se [t 1],

X(t)==z
and cost functional
(7.2) JO(t, zyu() = EX(1)2

In this example, u(-) = (Ul(')aUQ('))T and

A=0, B=(1,1), C=0, D= (1,-1),
B B B . (0 0
G=1, Q=0, S =(0,0T, R—(O 0).

The corresponding Riccati equation reads

(7.3) P=pP.) (—PP _PP)T G) B %1’1) (—11 _11> G) -0
P(1) =1.

Obviously, (7.3) has a unique solution P(-) =1, and
R(B(S)TP(S) + D(s)TP(s)C(s) + S(s)) = R((1, 1)T) = {(a, a)' ac R},
R(R(s) + D(s)T P(s)D(s)) = R (( Y ‘11>> = {(a,—a)T :a R}

Thus, the range condition (4.7) does not hold, and hence P(-) is not regular. By
Theorem 4.3, the problem is not closed-loop solvable on any [¢, 1].
Now for any € > 0, consider state equation (7.1) and the cost functional

T
(7.4) 2t z;u() =R lX(l)2 + 6/ |u(s)|2dsl .
t
The Riccati equation for the above problem reads
-1
: + P, —P, 1 2
bo=pPx1,1)(° "¢ : =Ip?
(75) ¢ s(’ )(_Pa 5+P5) <1> IS e’
P.(1) =1,

whose solution is given by

(7.6) Pe(t)
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Letting € — 0, we have

(7.7) Po(t) 2 lim P.(t) =

e—0

0, 0<t<l,
1, t=1.

Thus, by Theorem 5.3, the original Problem (SLQ)? is finite with value function
(7.8) VOt,x) =0, 0<t<1; Vo(1,z) =2 VzeR.

Next, set

P
0.2 (R+el+D'P.D)YB'P.+D"P.C+8) = —f G) .

Then the solution of

dX.(s) = [A(s) + B(s)O:(s)] Xc(s)ds + [C(s) + D(s)Oc(s)] X-(s)dW (s)

2P,
= - ;XE(S)ds, s€tT],

X:(t) =z
is given by
(7.9) X (s) = xexp{—/ts ZPz(r) dr} = %x, t<s<1,
and hence
x x T
(7.10) ua(s)éGE(s)XE(s):—<6+2_2t,8+2_2t> , t<s< 1.

Note that for ¢ € [0,1),

-
x x . g
ue(+) — (2—2t’2—2t) in L ase — 0.

Thus, by Theorem 6.2, the original Problem (SLQ)" is open-loop solvable at any
(t,x) € [0,T) x R with an open-loop optimal control

T
% N x X

which is continuous in s € [t, 1].

The following example shows that the sufficiency part of Theorem 4.2 does not
hold either.

Ezxample 7.2. Consider the following deterministic one-dimensional state equa-
tion:
dX(s) =u(s)ds, se€lt1],
X(t) ==,

and cost functional .

J(t, z;u(-) = X(1)? +/ s2u(s)?ds.

t
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The Riccati equation for the above problem reads

P(t)?
t2

(7.12) Loy(t) ae. tel0,1],

It is easy to see that P(t) = ¢ is the unique solution of (7.12), satisfying (4.7) and
(4.9). Now, we claim that this problem does not admit an open-loop optimal control
for initial pair (0,2) with  # 0. In fact, if for some x # 0 there exists an open-
loop optimal control u*(-) € U[0,T], then, by the maximum principle, the solution
(X*(-),Y*(-)) of the (decoupled) forward-backward differential equation

{X*(s): “(s), Y*(s)=0, sel0,1],

(7.13) X*0) =z Y*(1)=X*(1)

must satisfy
(7.14) Y*(s) + s*u*(s) =0 a.e. s € [0, 1].
Observe that the solution (X*(-),Y™*(-)) of (7.13) is given by

X*(s) za:—l—/osu*(r)dr, Y*(s) = X*(1), s €[0,1].

Hence,
u*(s) = a.e. s € (0,1].

Noting that w*(-) is square-integrable, we must have X*(1) = 0, and hence u*(-) = 0.
Consequently,

which is a contradiction.

8. Conclusion. In this paper, we have studied the open-loop and closed-loop
solvabilities for a general class of stochastic LQ problems with deterministic coeffi-
cients. It is observed that these two solvabilities are essentially different. A crucial
result that makes our approach work is the equivalence of the strongly regular solv-
ability of the Riccati equation and the uniform convexity of the cost functional. Such
a result brings new insights into the internal structure of the LQ problem and explains
the fundamental reason the weighting matrices in the cost functional could be indef-
inite. We expect that a theory could also be established for problems with random
coefficients. For that case, the Riccati equation (4.6) would become a nonlinear BSDE
whose solvability is very challenging. We hope to report some relevant results along
this line in our future publications.
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