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SYNTHETIC APERTURE IMAGING OF DIRECTION AND
FREQUENCY DEPENDENT REFLECTIVITIES

LILIANA BORCEA⇤, MIGUEL MOSCOSO † , GEORGE PAPANICOLAOU‡ , AND

CHRYSOULA TSOGKA§

Abstract. We introduce a synthetic aperture imaging framework that takes into consideration
directional dependence of the reflectivity that is to be imaged, as well as its frequency dependence.
We use an `1 minimization approach that is coordinated with data segmentation so as to fuse
information from multiple sub-apertures and frequency sub-bands. We analyze this approach from
first principles and assess its performance with numerical simulations in an X-band radar regime.

Key words. synthetic aperture imaging, reflectivity, minimal support optimization.

1. Introduction. In synthetic aperture imaging a moving receive-transmit plat-
form probes a remote region with signals f(t) and records the scattered waves. A
schematic of this setup is in Figure 1.1. It is motivated by the application of synthetic
aperture radar (SAR) imaging. The recordings u(s, t) depend on two time variables:
the slow time s and the fast time t. The slow time parametrizes the trajectory of the
platform, and it is discretized in uniform steps h

s

, called the pulse repetition rate.
At time s the platform is at location ~r(s). It emits the signal f(t) and receives the
backscattered returns u(s, t). The fast time t runs between consecutive signal emis-
sions t 2 (0, h

s

), and we assume a separation of time scales: The duration of f(t)
is smaller than the round trip travel time of the waves between the sensor and the
imaging region, and the latter is smaller than h

s

.
In the usual synthetic aperture image formulation the reflectivity is modeled as a

two dimensional function of location ~y on a surface of known topography, say flat for
simplicity. The assumption is that each point on the surface reflects the waves the
same way in all directions, independent of the direction and frequency of the incident
waves. This simplifies the imaging process and makes the inverse problem formally
determined: the data are two-dimensional and so is the unknown reflectivity function.

The reflectivity can be reconstructed by the reverse time migration formula [20,
10, 15, 7]

I(~y) =
X

j

Z

dt u(s
j

, t)f
�

t� 2⌧(s
j

, ~y)
�

. (1.1)

Here s
j

are the slow time emission-recording instants, spaced by h
s

, and the im-
age is formed by superposing over the platform trajectory the data u(s

j

, t), match-
filtered with the time reversed emitted signal f(t), delayed by the roundtrip travel
time 2⌧(s

j

, ~y) = 2|~r(s
j

) � ~y|/c between the platform location ~r(s
j

) and the imaging
point ~y. The bar denotes complex conjugate and c is the wave speed in the medium
which is assumed homogeneous.
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Fig. 1.1. Setup for imaging with a synthetic aperture.

The assumption of an isotropic reflectivity may not always be justified in applica-
tions. Backscatter reflectivities are in general functions of five variables: the location
~y on the known (flat) surface, the two angles of incidence and the frequency. Thus,
the inverse problem is underdetermined and we cannot expect a reconstruction of the
five dimensional reflectivity with a migration approach. Direct application of (1.1)
will produce low-resolution images of some e↵ective, position-dependent reflectivity,
and there will be no information about the directivity and frequency dependence of
the actual reflectivity.

The reconstruction of frequency dependent reflectivities with synthetic aperture
radar has been considered in [8], where Doppler e↵ects are shown to be useful in
inversion, and in [21, 11], where data are segmented over frequency sub-bands, and
then images are formed separately, for each data subset. Data segmentation is a
natural idea, and we show here how to use it for reconstructing both frequency and
direction dependent reflectivities.

The main result in this paper is the introduction and analysis of an algorithm for
imaging direction and frequency dependent reflectivities of strong, localized scatterers.
This algorithm is based on `1 optimization. It reconstructs reflectivities of localized
scatterers by seeking among all those that fit the data model the ones with minimal
spatial support. Array imaging algorithms based on `1 optimization are proposed and
analyzed in [1, 18, 5, 4, 14, 13, 2]. They consider only isotropic, frequency independent
reflectivities.

A direct extension of `1 optimization methods to imaging direction and frequency
dependent reflectivities amounts to solving a grand optimization problem for a very
long vector ⇢ of unknowns, the discretized reflectivity over spatial locations on the
imaging grid, the angles of incidence/backscatter and the frequency. It has consider-
able computational complexity because of the high dimension of the space in which
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the discretized reflectivity vector lies. It also does not take into account the fact that
many unknowns are tied to the same spatial location points within the discretized
image window.

The synthetic aperture imaging algorithm introduced in this paper is designed to
reconstruct e�ciently direction and frequency dependent reflectivities by combining
two main ideas: The first is to divide the data over carefully calibrated sub-apertures
and frequency sub-bands, and solve an `1 optimization problem to estimate the re-
flectivity for each data subset. The point is that the reflectivity is expected to change
continuously with the direction of probing and frequency, and we can freeze this de-
pendence for each data subset while searching for the location of the strong scatterers
in the image window. That is to say, for each data subset the unknown vector ⇢ is
the discretized reflectivity over the image window, at the direction determined by the
center location of the platform in the sub-aperture and at the central frequency in the
sub-band. The size of the sub-apertures and sub-bands determine the resolution of
the reconstruction. The larger they are, the better the expected spatial resolution of
the reflectivity. But the resolution is worse over direction and frequency dependence.
The calibration of the data segmentation over sub-apertures and sub-bands reflects
this trade-o↵. The second idea combines the `1 optimizations by seeking reflectivities
that have common spatial support. Instead of a single vector ⇢, the unknown is a ma-
trix with columns of spatially discretized reflectivities. Each column corresponds to a
direction of probing from a sub-aperture and a central frequency in a sub-band. The
values of the entries in the columns are di↵erent, but they are zero (negligible) in the
same rows. Moreover, the forward model, which is derived here from first principles,
maps each column of the reflectivity matrix to the entries in the data subsets via one
common reflectivity-to-data model matrix. The optimization can then be carried out
within the multiple measurement vector (MMV) formalism described in [16, 9, 23, 22].

The MMV formalism is used for solving matrix-matrix equations for an unknown
matrix variable whose columns share the same support but have possibly di↵erent
nonzero values. We show in this paper how to reduce the synthetic aperture imaging
problem to an MMV format. The columns of the unknown matrix are associated
with the discretized spatial reflectivities for di↵erent directions and frequencies. The
solution of the MMV problem can be obtained with a matrix (2,1)-norm minimization
where one seeks to minimize the `1 norm of the vector formed by the `2 norms of the
rows of the unknown reflectivity matrix. The solutions obtained this way preserve
the common support of the columns of the unknown matrix.

This paper is organized as follows. We begin in section 2 with the formulation
of the imaging problem. We derive the data model, describe the complexity of the
inverse problem, and motivate our imaging approach. The foundation of this approach
is in section 3, where we show how to reduce the imaging problem to an MMV format.
The imaging algorithm is described in section 4 and its performance is assessed with
numerical simulations in section 5. The presentation in sections 2-5 uses the so-called
start stop approximation, which neglects the motion of the receive-transmit platform
over the duration of the fast time data recording window. This is for simplicity
and also because the approximation holds in the X-band radar regime used in the
numerical simulations. However, the imaging algorithm can include Doppler e↵ects
due to the motion of the receive-transmit platform, as explained in section 6. We end
with a summary in section 7.

2. Formulation of the imaging problem. The data model is described in
section 2.1. Then, we review briefly imaging of isotropic reflectivity functions via
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migration and `1 optimization in section 2.2. The formulation of the problem for
direction and frequency dependent reflectivities is in section 2.3

2.1. Synthetic aperture data model. In synthetic aperture imaging we usu-
ally assume that the data u(s, t), depending on the slow time s and the fast time t, can
be modeled with the single scattering approximation. For an isotropic and frequency
independent reflectivity function ⇢ = ⇢(~y) we have

u(s, t) =

Z

d!

2⇡
bu(s,!)e�i!t, (2.1)

with Fourier transform bu(s,!) given by

bu(s,!) ⇡ k2 bf(!)

Z

⌦
d~y ⇢(~y)

exp
⇥

2i!⌧(s, ~y)
⇤

(4⇡|~r(s)� ~y|)2 . (2.2)

Here k = !/c is the wavenumber and the integral is over points ~y in ⌦, the support
of ⇢. The model (2.2) uses the so-called start-stop approximation, where the platform
is assumed stationary over the duration of the fast time recording window. We use
this approximation throughout most of the paper for simplicity, and because it holds
in the X-band radar regime considered in the numerical simulations. However, the
results extend to other regimes, where Doppler e↵ects may be important, as explained
in section 6.

The inverse problem is to invert relation (2.2) and thus estimate ⇢(~y), given
u(s

j

, t) at the slow time samples s
j

= (j�1)h
s

, for j = 1, . . . , N
s

. Here h
s

is the slow
time sample spacing. The inversion is usually done by discretizing (2.2), to obtain
a linear system of equations for the unknown vector ⇢ of discretized reflectivities.
The support ⌦ in (2.2) is not known, so the inversion is done in a bounded search
domain Y on the imaging surface, assumed flat. We call Y the image window. The
reconstruction of ⇢ in Y is a solution of the linear system, as we review briefly in
section 2.2.

The discretization of Y is adjusted so that it is comensurate with the expected
resolution of the image in range and cross-range. The range direction is the projection
on the imaging plane of the unit vector pointing from the imaging location ~y 2 Y to
the platform location. The cross-range direction is orthogonal to range. The range
resolution is determined by the temporal support of the signal f(t), which determines
the accuracy of travel time estimation. Thus, from the point of view of range resolution
it is best to have a short pulse f(t) whose support is of order 1/B, where B is the
bandwidth. The range resolution with such pulses is of order c/B. The cross-range
resolution is proportional to the central wavelength, which is why the emitted signals
are typically modulated by high carrier frequencies !

o

/(2⇡). If L is a typical distance
between the platform and the imaging window and A is the length of the flight path,
then the cross-range resolution is of the order �

o

L/A, where �
o

= 2⇡c/!
o

is the
carrier wavelength. We assume that !

o

� B, which is usually the case in radar.
In synthetic aperture imaging applications like SAR, the platform emits relatively

long signals f(t) so as to carry su�cient energy to generate strong scatter returns,
and thus high signal to noise ratios. Examples of such signals are chirps, whose fre-
quency changes over time in an interval centered at the carrier frequency !

o

/(2⇡).
To improve the precision of travel time estimation, and therefore range resolution,
the returns u(s

j

, t) are compressed in time via match-filtering with the time reversed
emitted signal [20]. Moreover, to remove the large phases and therefore avoid un-
necessarily high sampling rates for the returns, the data are migrated via travel time
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delays calculated with respect to a reference point ~y
o

in the imaging window. The
combination of these two data pre-processing steps is called down-ramping.

For the purposes of this paper it su�ces to assume that f(t) is a linear chirp,

in which case the Fourier transform | bf(!)|2 of the compressed signal may have the
simple form

| bf(!)| ⇡ | bf(!
o

)|1[!
o

�⇡B,!

o

+⇡B](!), (2.3)

where 1[!1,!2](!) denotes the indicator function of the frequency interval [!1,!2]. The
down-ramped returns are

Z

dt0 u
⇣

s, t� t0 + 2⌧(s, ~y
o

)
⌘

f(�t0) =

Z

d!

2⇡
bf(!)bu(s,!)e�i!

⇥

t+2⌧(s,~y
o

)
⇤

, (2.4)

and we let d be the vector of the samples of its Fourier transform

d = (d(s
j

,!
l

))
j=1,...N

s

,l=1,...,N
!

, d(s,!) = bf(!)bu(s,!)e�2i!⌧(s,~y
o

). (2.5)

The size of the vector d is N
s

N
!

.
The linear relation between the unknown reflectivity vector ⇢ and the down-

ramped data vector d follows from (2.5) and (2.2). We write it as

A⇢ = d, (2.6)

where the entries in ⇢ 2 CQ are proportional to ⇢(~y
q

), with ~y
q

the Q discretization
points of the image window Y, and with the constant of proportionality taken to be
the area of a grid cell. The reflectivity ⇢ is mapped by the reflectivity-to-data matrix
A 2 CN

S

N

!

⇥Q to the data d. The assumption of frequency independent reflectivity
leads to a set of decoupled systems of equations A(!

l

)⇢ = d(!
l

) indexed by the
frequency !

l

, where the entries of the N
s

⇥Q matrices A(!
l

) are

A
j,q

(!
l

) =
k2
l

| bf(!
l

)|2

(4⇡|~r(s
j

)� ~y
q

|)2 e
2i!

l

⇥

⌧(s
j

,~y
q

)�⌧(s
j

,~y
o

)
⇤

. (2.7)

Here k
l

= !
l

/c, l = 1, . . . , N
!

, j = 1, . . . , N
s

, and q = 1, . . . , Q.

2.2. Imaging isotropic reflectivities. Imaging of the isotropic reflectivities
amounts to inverting the linear system (2.6). When this system is underdetermined,
there are two frequently used choices for picking a solution: either minimize the
Euclidian norm of ⇢ or its `1 norm. The first choice gives

⇢ = A†d, (2.8)

where A† is the pseudo-inverse of A. If A is full row rank, A† = A⇤(AA⇤)�1. The
inversion formula (2.8) also applies to overdetermined problems, where ⇢ is the least
squares solution and A† = (A⇤A)�1A⇤, for full column rank A. The choice of the
imaging window Y and its discretization is an essential part of the imaging process
and, depending on the objectives and available prior information, we may be able to
control whether the system (2.6) is overdetermined or not. We explain in Appendix B
that by discretizing Y in steps commensurate with expected resolution limits we can
make the columns of A nearly orthogonal. This means that in the overdetermined
case A⇤A is close to a diagonal matrix. We also shown in Appendix B that in the
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underdetermined case, for coarse enough sampling of the slow time s and frequency !,
the rows of A are nearly orthogonal, and therefore AA? is close to a diagonal matrix.
Thus, in both cases, A† is approximately A? up to multiplicative factors, and we can
therefore image the support of ⇢ with A⇤d. This is in fact the migration formula
(1.1) written in the Fourier domain, up to a geometrical factor, since the amplitude
in (2.7) is approximately constant for platform trajectories that are shorter than the
imaging distance and for bandwidths B ⌧ !

o

.
If we know that the imaging scene consists of a few strong, localized scatterers,

as we assume here, a better estimate of ⇢ is given by the optimization

min k⇢k1 such that kA⇢� dk2  ✏. (2.9)

Here ✏ is an error tolerance, commensurate with the noise level in the data, and k · k1
and k ·k2 are the `1 and the Euclidian norm, respectively. We refer to [1, 18, 4, 14, 13]
for studies of imaging with `1 optimization. The main result in this context is that
when there is no noise so that ✏ = 0, the reflectivities are recovered exactly provided
that the inner products of the normalized columns of A are su�ciently small. An
extension of the optimization to nonlinear data models that account for multiple
scattering e↵ects in Y, is considered in [5]. A resolution study of imaging with `1
optimization is in [2].

2.3. Imaging direction and frequency dependent reflectivities. In gen-
eral, backscatter reflectivities are functions of five variables: the location ~y 2 Y, the
unit direction vector ~m and the frequency !. Hence,

⇢ = ⇢(~y, ~m,!). (2.10)

This means that the down-ramped data model is more complicated than assumed
in equations (2.2) and (2.4) or, equivalently, after discretization, in (2.5)-(2.7). In
integral form it is given by

d(s,!) = bf(!)bu(s,!)e�2i!⌧(s,~y
o

)

= k2| bf(!)|2
Z

⌦
d~y ⇢(~y, ~m(s, ~y),!)

exp
h

2i!
⇥

⌧(s, ~y)� ⌧(s, ~y
o

)
⇤

i

�

4⇡|~r(s)� ~y|
�2 , (2.11)

where ~m(s, ~y) is the unit vector pointing from the platform location ~r(s) to ~y in the
image window Y. In discretized form we still have a linear system like (2.6), except
that now ⇢ is a vector of QN

s

N
!

unknowns, the discretized values of ⇢ in the image
window Y.

Extending the inversion approaches described in the previous section to this model
means inverting approximately the matrix A with a very large number of columns.
We cannot expect the migration formula (1.1) to give an accurate estimate of the
reflectivity as a function of five variables, as pointed out in the introduction. The
`1 optimization approach works, but it becomes impractical for the large number
QN

s

N
!

of unknowns. Moreover, it does not take into account the fact that the
entries in ⇢ indexed by the slow time and frequency pairs (j, l), with j = 1, . . . , N

s

and l = 1, . . . , N
!

, refer to the same locations ~y
q

on the imaging grid.
The imaging approach introduced in this paper gives an e�cient way of estimating

direction and frequency dependent reflectivity functions of strong localized scatterers
in Y. It uses an approximation of the model (2.11), motivated by the expectation
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~y
o

~m
↵

~t
↵

~r(s?
↵

)

Fig. 3.1. Scematic of the geometry for one sub-aperture centered at the location ~
r(s?q) of the

receive-transmit platform.

that the backscatter reflectivity should not change dramatically from one platform
location to the next and from one frequency to another. Instead of discretizing ⇢
over all five variables at once, we discretize it only with respect to the location in
the image window Y, for one probing direction and frequency at a time. To do so,
we separate the data over subsets defined by carefully callibrated sub-apertures and
sub-bands, and freeze the direction and frequency dependence of the reflectivity for
each subset. The grand optimization is divided this way into smaller optimizations
for Q unknowns, which are then coupled by requiring that the unknown vectors share
the same spatial support in the imaging window Y.

3. Reduction to the Multiple Measurement Vector framework. We present
here an analysis of how we can write the linear relation between the direction and
frequency dependent reflectivity and the data as a linear matrix system

AX = D, (3.1)

where the unknown is the matrix X with Q rows. The entries in the rows correspond
to the discretization of this reflectivity at the Q grid points ~y

q

in Y. Each column of
X depends on the reflectivity at the backscattered direction defined by the center of
a sub-aperture and the center frequency of a sub-band. The data are segmented over
N

↵

sub-apertures and N
�

sub-bands and are grouped in the matrix D. The objective
of this section is to describe the data segmentation and derive the linear system (3.1),
which can be inverted with the MMV approach as explained in section 4.

We begin in section 3.2 with a single sub-aperture and sub-band. We show in
Lemma 3.1 that with proper callibration of the sub-aperture and sub-band size, the
reflectivity-to-data matrix has a simple approximate form. Its entries have nearly
constant amplitudes while the phases depend linearly on the slow time and frequency
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parametrizing the data subset. This simplification allows us to transform the linear
system via coordinate rotation to a reference one, for all data subsets, as shown in
section 3.3. The matrix A in (3.1) corresponds to the reference sub-aperture and
sub-band, and the statement of the result is in Proposition 3.2.

3.1. The sub-aperture and sub-band segmentation. We enumerate the
sub-apertures by ↵ = 1, . . . ,N

↵

, and denote by s?
↵

the slow time that corresponds to
their center location ~r(s?

↵

). The choice of the sub-aperture size a is important, and
we address it in the next section. For now it su�ces to say that it is small enough so
that we can approximate it by a line segment, as illustrated in Figure 3.1. The unit
tangent vector along the trajectory, at the center of the sub-aperture, is denoted by
~t
↵

, and the platform motion will be assumed uniform, at speed V~t
↵

. The unit vector
from the reference location ~y

o

in the image window to ~r(s?
↵

) is ~m
↵

. We call it the
range vector for the ↵ sub-aperture. The range (distance) to the imaging window is

L
↵

= |~r(s?
↵

)� ~y
o

|. (3.2)

Each sub-aperture is parametrized by the slow time o↵set from s?
↵

, denoted by

�s = s� s?
↵

2
h

� a

2V
,
a

2V

i

. (3.3)

We do not index it by ↵ because it belongs to the same interval for each sub-aperture.
The discretization of �s is at the slow time sample spacing h

s

, and there are

n
s

=
a

V h
s

+ 1

sample points, where a/(V h
s

) is rounded to an integer. Similarly, we divide the
bandwidth in N

�

sub-bands of support b  B, centered at !?

�

, and let �! be the
frequency o↵set

�! = ! � !?

�

2
h

� ⇡b,⇡b
i

. (3.4)

We sample the sub-band with n
!

points.
The reflectivity dependence on the direction and frequency is denoted by the

superscript pair (↵,�), and by discretizing it with the Q points in Y we obtain the
vector of unknowns ⇢(↵,�) 2 CQ. It is mapped to the data vector d(↵,�) with entries
given by the samples of d(s?

↵

+ �s,!?

�

+ �!). The mapping is via the n
s

n
!

⇥ Q

reflectivity-to-data matrix A(↵,�) described in Lemma 3.1.

3.2. Reflectivity-to-data model for a single sub-aperture and sub-band.
Here we explain how we can choose the size of the sub-apertures and frequency sub-
bands so that we can simplify the reflectivity-to-data matrix. The calibration depends
on the size of the imaging window Y, which is quantified with two length scales

Y
↵

= max
q=1,...Q

|(~y
q

� ~y
o

) · ~m
↵

|, (3.5)

and

Y ?
↵

= max
q=1,...Q

|P
↵

(~y
q

� ~y
o

)|. (3.6)

Here P
↵

= I � ~m
↵

~mT

↵

is the projection on the cross-range plane orthogonal to ~m
↵

,
and I is the identity matrix. The length scale Y

↵

gives the size of Y viewed from the
range direction ~m

↵

, and Y ?
↵

is the cross-range size.
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The first constraints on the aperture a and the cross-range size Y ?
↵

of the imaging
window state that they are not too small, and thus imaging with adequate resolution
can be done with the data subset. Explicitly, we ask that for all ↵ = 1, . . . ,N

↵

,

a2

�
o

L
↵

& aY ?
↵

�
o

L
↵

& (Y ?
↵

)2

�
o

L
↵

& 1. (3.7)

The three inequalities on the left involve di↵erent Fresnel numbers. They are larger
than one so that the waves striking the aperture and the imaging region do not appear
planar. The cross-range resolution is �

o

L
↵

/a, and naturally, the middle inequality
in (3.7) says that the image window is larger than the resolution limit. In the range
direction we suppose that

Y
↵

& c

b
� �

o

, (3.8)

where c/b is the range resolution for the sub-bands, and we used that b  B ⌧ !
o

.
While we would like to have a and b large so as to get good spatial resolution

of the unknown reflectivity, we recall that ⇢ is frozen in our discretization at the
backscattered direction to the center of the aperture and at the central frequency
!
�

. Thus, the larger a and b are, the coarser the estimation of the direction and
frequency dependence of ⇢. The calibration of the sub-aperture and sub-band size
deals with this resolution trade-o↵. There is also a trade-o↵ between resolution and
the complexity of the inversion algorithm. By constraining a and b so that

b

!
o

Y ?
↵

�
o

L
↵

/a
⌧ 1, (3.9)

and

a2Y
↵

�
o

L2
↵

⌧ 1,
a2Y ?

↵

�
o

L2
↵

⌧ 1, (3.10)

we can simplify the mapping between the reflectivity and the data subset, as stated
in Lemma 3.1. This simplification allows us to use the e�cient MMV framework to
solve the large optimization problem for the entire data set, by considering jointly the
smaller problems for the segmented data in an automatic way. The key observation
here is that the unknown reflectivities for each data subset share the same spatial
support. This is what the MMV formalism is designed to capture.

The next lemma gives the form of the reflectivity-to-data matrix in the linear
system

A(↵,�)⇢↵,� = d(↵,�), (3.11)

for the (↵,�) data subset. It is an approximation of the system (2.6) restricted to the
rows indexed by the n

s

slow times in the ↵�aperture and the n
!

frequencies in the
��band. The expression of A(↵,�) is derived in appendix A.

Lemma 3.1. Under the assumptions (3.7)-(3.10), and with the pulse model (2.3),

the matrix A(↵,�)
consists of n

!

blocks A(↵,�)(�!
l

) indexed by the frequency o↵set

�!
l

, for l = 1, . . . , n
!

. Each block is an n
s

⇥Q matrix with entries defined by

A(↵,�)
j,q

(�!
l

) =
k2
o

| bf(!
o

)|2

(4⇡L
↵

)2
exp

n

� 2i(k
�

+�!
l

/c) ~m
↵

· ~y
q

�2ik
�

V�s
j

~t
↵

· P
↵

�~y
q

L
↵

+ ik
�

�~y
q

· P
↵

�~y
q

L
↵

o

, (3.12)

where k
�

= !?

�

/c, and �~y
q

= ~y
q

� ~y
o

.
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3.3. Multiple sub-aperture and sub-band model as an MMV system.
It remains to show how to write equations (3.11) in the matrix form (3.1) with a
reflectivity-to-data matrix independent of the sub-apertures and sub-bands. This is
accomplished via a rotation, that brings all the sub-apertures to a single reference
sub-aperture. But to do this, we need to know that each data subset has a similar
view of the image window. Mathematically, this is expressed by the following two
additional constraints on a and b

max
1↵N

↵

,1qQ

b

c

�

�( ~m
↵

� ~m1) ·�~y
q

�

� ⌧ 1, (3.13)

and

max
1↵N

↵

,1�N
�

,1qQ

�

�

�

⇣ak
�

L
↵

~t
↵

· P
↵

� ak1
L1

~t1 · P1

⌘

�~y
q

�

�

�

⌧ 1, (3.14)

The constraint (3.13) states that the imaging points remain within the range resolution
limit b/c for all the apertures. The constraint (3.14) states that the imaging points
remain within the cross-range resolution limits, as well.

The derivation of the linear system (3.1) is in appendix A and the result is stated
in the next proposition.

Proposition 3.2. Under the same assumption as in Lemma 3.1 and in addition,

supposing that conditions (3.13) and (3.14) hold, we can combine the linear systems

(3.11) in the matrix equation (3.1). The reference sub-aperture and sub-band are

indexed by ↵ = 1 and � = 1. The unknown matrix X has Q rows and N
↵

N
�

columns

indexed by (↵,�). Its entries are

X(↵,�)
q

= ⇢(↵,�)
q

exp
h

� 2ik
�

~m
↵

·�~y
q

+ ik
�

�~y
q

· P
↵

�~y
q

L
↵

i

, (3.15)

where

⇢(↵,�)
q

= ⇢(~y
q

, ~m
↵

,!?

�

), ~m
↵

=
~r(s?

↵

)� ~y
o

|~r(s?
↵

)� ~y
o

| . (3.16)

The data matrix D has n
s

n
!

rows and N
↵

N
�

columns indexed by (↵,�). We organize

the equations in blocks indexed by the frequency �!
l

, for l = 1, . . . , n
!

. The entries

of D are defined in terms of the down-ramped data vectors d(↵,�)
as

D(↵,�)
j

(�!
l

) =
(4⇡L

↵

)2

k2
o

| bf(!
o

)|2
d(↵,�)(�s

j

,�!
l

), (3.17)

where we recall that

d(↵,�)(�s
j

,�!
l

) = d
�

s?
↵

+�s
j

,!?

�

+�!
l

�

, (3.18)

and d(s,!) is defined in (2.5). The reflectivity to data matrix A has n
!

blocks indexed

by �!
l

, denoted by A(�!
l

). Each block is an n
s

⇥Q matrix with entries

A
j,q

(�!
l

) = exp
h

� 2i
�!

l

c
~m1 ·�~y

q

� 2ik1
V�s

j

L1

~t1 · P1�~y
q

i

. (3.19)

Note that the product of the reflectivity-to-data matrix A with each column of X
can be interpreted, up to a constant multiplicative factor, as a Fourier transform with
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respect to the range o↵set ~m1 ·�~y and cross-range o↵set ~t1 · P1�~y in Y. Equation
(3.15) shows that the columns of X di↵er from each other by a linear phase factor
in �~y, which amounts to a rotation of the coordinate system of the ↵ sub-aperture,
and a quadratic factor which corrects for Fresnel di↵raction e↵ects. Thus, the linear
system (3.1) gives roughly the Fourier transform of the reflectivity ⇢ for di↵erent range
direction views, and the imaging problem is to invert it to estimate ⇢.

4. Inversion algorithm. Here we describe the algorithm that estimates the
reflectivity by inverting the linear system (3.1). By construction, the columns of the
Q⇥N

↵

N
�

unknown matrix X have the same spatial support, because they represent
the same spatial reflectivity function. Thus, we formulate the inversion as a common
support recovery problem for unknown matrices with relatively few nonzero rows
[19, 6, 9, 12]. This Multiple Measurement Vector (MMV) formulation has been studied
in [12, 6, 19] and has been used successfully for source localization with passive arrays
of sensors in [16] and for imaging strong scattering scenes, where multiple scattering
e↵ects cannot be neglected, in [5].

In the MMV framework the support of the unknown matrix X is quantified by
the number of nonzero rows, that is the row-wise `0 norm of X. If we define the set

rowsupp(X) = {q = 1, . . . , Q s.t. keT
q

Xk
`2 6= 0}, (4.1)

where eT
q

X is the q�th row of X and e
q

is the vector with entry 1 in the q�th row
and zeros elsewhere, then the row-wise `0 norm of X is the cardinality of rowsupp(X),

⌅0(X) = | rowsupp(X)|.

To estimate X we must to solve the optimization problem

min⌅0(X) s.t. AX = D, (4.2)

but this is an NP hard problem. We solve instead the convex problem

min J2,1(X) s.t. AX = D, (4.3)

which gives, under certain conditions on the model matrix A [12, 5], the same solution
as (4.2). In (4.3) J2,1 denotes the (2, 1)-norm

J2,1(X) =
m

X

q=1

keT
q

Xk
`2 , (4.4)

which is the `1 norm of the vector formed by the `2 norms of the rows of X. Fur-
thermore, because data are noisy in practice, we replace the equality constraint in
(4.3) by kAX � Dk

F

< ✏, where k · k
F

is the Frobenius norm and ✏ is a tolerance
commensurate with the noise level of the data.

There are di↵erent algorithms for solving (4.3) or its reformulation for noisy data.
We use an extension of an iterative shrinkage-thresholding algorithm, called GeLMA,
proposed in [17] for matrix-vector equations. This algorithm is very e�cient for solving
`1-minimization problems, and has the advantage that the solution does not depend
on the regularization parameter used to promote minimal support solutions, see [17]
for details.

After estimating X with Algorithm 1, we recover the discretized direction and
frequency dependent reflectivity using equation (3.15),

⇢(↵,�)
q

= X(↵,�)
q

exp
h

2ik
�

~m
↵

·�~y
q

� ik
�

�~y
q

· P
↵

�~y
q

L
↵

i

, (4.5)
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Algorithm 1 GeLMA-MMV

Require: Set X = 0, Z = 0, and pick the step size µ and the regularization param-
eter �.
repeat
Compute the residual E = D� AX
X ( X+ µA⇤(Z + E)
eT
q

X ( sign(keT
q

Xk
`2 � µ�)

keT

q

Xk
`2�µ�

keT

q

Xk
`2

eT
q

X, q = 1, . . . , Q

Z ( Z + �E
until Convergence

for the imaging points ~y
q

= ~y
o

+ �~y
q

indexed by q = 1, . . . , Q, the sub-apertures
indexed by ↵ = 1, . . . ,N

↵

and frequency sub-bands indexed by � = 1, . . . ,N
�

.

5. Numerical simulations. We begin in section 5.1 with the numerical setup,
which is in the regime of the GOTCHA Volumetric data set [3] for X-band persistent
surveillance SAR. Then we present in sections 5.2 and 5.3 the simulation results.

5.1. Imaging in the X-band (GOTCHA) SAR regime. The numerical
simulations generate the data with the model (2.2), for various scattering scenes. The
regime of parameters is that of the GOTCHA data set, where the platform trajectory
is circular at height H = 7.3km, with radius R = 7.1km and speed V = 70m/s.
The signal f(t) is sent every 1.05m along the trajectory, which gives a slow time
spacing h

s

= 0.015s. The carrier frequency is !
o

/(2⇡) = 9.6GHz and the bandwidth
is B = 622MHz. The waves propagate at electromagnetic speed c = 3 ·108m/s, so the
wavelength is �

o

= 3.12cm. The image window Y is at the ground level, below the
center of the flight trajectory, and the distance from the platform to its center ~y

o

is
L = 10.18km. It is a square, with side length Y = Y ? of the order of 40m. The size
of the sub-apertures is a = 42m and the width of each sub-band is b = B/15.

Given these parameters, the nominal resolution limits are

�
o

L/a = 7.56m, c/b = 7.23m.

The image window Y is discretized in uniform steps h = 2m in range and h? = 1m
in cross-range. The reflectivity is modeled as piecewise constant on the imaging grid.

The results presented in the next sections compare the images obtained with
reverse time migration and the algorithm proposed in this paper, hereby referred to
as the MMV algorithm. The migration image is computed with the formula

I(~y) = (4⇡)2

k2
o

| bf(!
o

)|2n
s

n
!

hh?

n

s

X

j=1

n

!

X

l=1

d(s
j

,!
l

)|~r(s
j

)� ~y|2e�2i!
l

⇥

⌧(s
j

,~y)�⌧(s
j

,~y
o

)
⇤

, (5.1)

which is a weighted version of (1.1), where the weights are chosen so as to provide
a quantitative estimate of the unknown ⇢. That is to say, when we substitute the
data model in (5.1), under the assumption of an isotropic and frequency independent
reflectivity we get that I(~y) peaks at the true location of the scatterers and its value
at the peaks equals the true reflectivity there.

Let us verify the assumptions (3.7)-(3.10) with the GOTCHA parameters. The
Fresnel numbers are larger than one, as stated in (3.7),

a2

�
o

L
= 5.55 and

(Y ?)2

�
o

L
= 5.04.
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Fig. 5.1. Estimation of an isotropic, frequency independent reflectivity as a function of cross-
range, using N↵ = 8 consecutive, non-overlapping apertures. The exact reflectivity is shown with
the full green line, the migration result with the blue line and the MMV inversion result with the
broken line. The abscissa is cross-range in meters.

The size of the imaging region and the range resolution satisfy (3.8). Moreover,

b

!
o

Y ?

�
o

L/a
= 0.0036,

which is consistent with (3.9), and (3.10) is satisfied as well,

a2Y ?

�
o

L2
=

a2Y

�
o

L2
= 0.022.

5.2. Single frequency results. We begin with imaging results at the carrier
frequency, where we assume we know the range of the scatterers and seek to recon-
struct their reflectivity as a function of cross-range and direction. The image window
extends over 120m in cross-range, and it is sampled in steps h? = 1m, where we recall
that �

o

L/a = 7.56m.
The first result displayed in Figure 5.1 is for an isotropic, frequency independent

reflectivity of 11 scatterers, N
↵

= 8 consecutive, non-overlapping apertures and noise-
less data. We display in green the true reflectivity, in blue the reflectivity estimated
with formula (5.1), and with broken line the result of the MMV inversion algorithm.
In the legend we abbreviate the migration formula result with the letters KM, stand-
ing for Kirchho↵ Migration. The figure shows that the MMV algorithm reconstructs
exactly the reflectivity, and that the weighted migration formula (5.1) does indeed
give quantitative estimates of the reflectivity. However, the migration estimates de-
teriorate when the reflectivity is anisotropic and frequency dependent, as illustrated
next.

The results displayed in Figure 5.2 are obtained with N
↵

= 10 consecutive, non-
overlapping apertures. The reflectivity depends on two variables: the cross-range
location and the scattering direction, parameterized by the slow time s?

↵

, for ↵ =
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Fig. 5.2. Estimation of the reflectivity as a function of direction and cross-range location for a
scene with 6 scatterers. The top plots show the reflectivity as a function of cross-range (the abscissa
in meters), for the peak directions. The left plot is for noiseless data and the right plot is for data
contaminated with 10% additive noise. The green line is the exact peak value and the broken line
the one obtained with MMV. The blue line is obtained with migration. The bottom plots display the
reflectivity of each scatterer as a function of sub-aperture i.e., the slow time index ↵ = 1, . . . , 10,
where 10 is the number of sub-apertures. The left plot is for the true reflectivity, the middle plot is
for the noiseless reconstruction and the right plot is for the noisy reconstruction.

1, . . . , 10. In discretized form it gives a matrix Rtrue with row index corresponding
to the pixel location in the image window, and column index corresponding to the sub-
aperture. The reconstruction of this matrix is denoted by R. The green and broken
lines in the top plots in the figure display the true and reconstructed reflectivity at the
peak direction, vs. cross-range. Explicitly, for each pixel in the image i.e., each row q
in Rtrue or R, we display the maximal entry. The migration image of the reflectors is
independent of the direction and is plotted with the blue line. The results show that
we have 6 small scatterers, which are well estimated by the MMV algorithm even for
noisy data. The migration method identifies correctly the locations of the 6 scatterers,
but the reflectivity value is no longer accurate because only a few sub-apertures see
each reflector, as we infer from the bottom plots described next. This also implies
a deterioration in the cross-range resolution which is more visible in the next set of
results in Figure 5.3. Naturally, the migration image gives no information about the
direction dependence of the reflectivity.

In the bottom plots in Figure 5.2 we show the value of the reflectivity of each
scatterer as a function of direction, parameterized by the slow time s?

↵

. That is to say,
we identify first the row indexes q in Rtrue or R at which we have a strong scatterer
(see top plots) and then display those rows. The left plot is for the true reflectivity, the
middle is for the noiseless reconstruction, and the right is for the noisy reconstruction.
We observe that the MMV method reconstructs the direction dependent reflectivity
exactly in the noiseless case, and very well in the noisy case.

In Figure 5.3 we illustrate the e↵ect of the anisotropy of the reflectivity on the
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Fig. 5.3. Imaging results for anisotropic reflectivities, N↵ = 10 sub-apertures and data con-
taminated with 10% additive noise. From top to bottom we decrease the anisotropy. This can be
seen from the right column plots which show the reflectivity of each scatterer for each sub-aperture.
The middle column shows the reconstructed reflectivity as a function of direction with the MMV
algorithm.

imaging process. We display the results the same way as in in the previous figure.
The point is to notice that while the MMV method estimates accurately the direction
dependent reflectivity in all cases, the migration method performs poorly when the
anisotropy is strong, meaning that each scatterer is seen only by one sub-aperture at
a time (top plots). The resolution is not that corresponding to the actual aperture of
10a = 420m, but that for a single sub-aperture of a = 42m. The middle and bottom
row plots show how migration images improve when the anisotropy of the reflectivity
is weaker and more sub-apertures see each scatterer.

5.3. Multiple frequency results. Now we consider multiple frequencies and
thus seek to estimate the reflectivity as a function of range, cross-range, direction
and frequency. We have N

!

sub-bands of width b, and we sample each of them at
n
!

= 15 frequencies. The number of sub-apertures is N
↵

= 8. The imaging region
is a square of side 40m and it is sampled in cross-range in steps h? = 1m and in
range in steps h = 2m. We denote, as before, by Rtrue the true matrix of discretized
reflectivities and by R the reconstructed ones. These are matrices of size Q⇥N

↵

N
!

and we display them in the image window Y as follows: For each pixel in the image
window i.e., a row q in Rtrue or R, we display the maximum entry, the peak value
of the reflectivity at point ~y

q

over directions and frequencies. Once we identify the
location of the scatterers from these images, i.e., determine their associated rows, we
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Fig. 5.4. Results for a single frequency sub-band and N↵ = 8 consecutive, non-overlapping sub-
apertures. On the top we show the true reflectivity as a function of location (middle) and direction
(right). On the bottom we show the reconstructed reflectivity with 20% additive noise. Left plot is
the migration image, middle plot is the MMV image and the right plot is the directional dependence
of the reflectivity reconstructed with the MMV algorithm. The axes in the left images are cross-range
and range in meters. The abscissa in the right plots are sub-aperture index ↵ = 1, . . . ,N↵ and the
ordinate is the index of the scatterer (from 1 to 4).

display the entries in these rows, to illustrate the direction and frequency dependence
of their reflectivity. These are the middle and right plots in the figures.

We begin in Figure 5.4 with a single frequency sub-band (N
!

= 1), N
↵

= 8
consecutive, non-overlapping sub-apertures and data contaminated with 20% additive
noise. The anisotropic reflectivity model has four scatterers, as illustrated in the top
plots. Each scatterer is seen by a single sub-aperture. The reconstructed reflectivity
is shown in the bottom plots. On the left we show the migration image, which is
blurry and is unable to locate the weaker scatterers. The MMV algorithm gives an
excellent reconstruction as shown in the middle and right plots.

The results in Figures 5.5 and 5.6 are for N
!

= 8 consecutive, non-overlapping
frequency bands and N

↵

= 8 consecutive, non-overlapping sub-apertures. The di↵er-
ence between the figures is the strength of the scatterers and their anisotropy. The
results in Figure 5.5 show that the MMV algorithm reconstructs well the location of
the scatterers and the direction dependence of their reflectivity. The frequency de-
pendence of the weaker scatterers is not that accurate, likely because the bandwidth
is small and all frequencies are similar to the carrier. As in Figure 5.4, the migration
image is blurrier and does not locate the weak scatterers. Figure 5.6 shows that the
migration image improves when all scatterers are of approximately the same strength
and they have weaker anisotropy.

6. Doppler e↵ects. All the results up to now use the start-stop approxima-
tion of the data model, which neglects the motion of the platform over the fast time
recording window. Here we extend them to regimes where Doppler e↵ects are im-
portant. We begin in section 6.1 with the derivation of the generalized data model
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Fig. 5.5. Results with N! = 8 frequency intervals, N↵ = 8 apertures and data contaminated
with 20% noise. On the top we show the true reflectivity as a function of location (left) and direction
(middle), and frequency (right). In the middle row we show the reconstructed reflectivity with the
MMV algorithm. The plot in the bottom row is the migration image. The axes in the left images are
cross-range and range in meters. The abscissa in the right plots are sub-aperture index ↵ = 1, . . . ,N↵

and the ordinate is the index of the scatterer (from 1 to 4).

that includes Doppler e↵ects, and an assessment of the validity of the start-stop ap-
proximation. Then we explain in section 6.2 how to incorporate these e↵ects in our
imaging algorithm.

6.1. Data model with Doppler e↵ects. For simplicity we first derive the data
model for an isotropic reflectivity ⇢ = ⇢(~y). Then we extend it in the obvious way to
direction and frequency dependent reflectivities in a sub-aperture indexed by ↵ and
sub-band indexed by �, with reflectivity ⇢(↵,�)(~y).

The scattered wave u(s, t) recorded at the transmit-receive platform is given by

u(s, t) = �
Z

⌦
d~y

⇢(~y)

c2

Z

t

0
dt1

Z

t1

0
dt2 f

00(t2)G(t1 � t2,~r(s+ t2), ~y)G(t� t1, ~y,~r(s+ t)),

= � 1

c2

Z

⌦
d~y⇢(~y)

f 00�t2(t)
�

(4⇡)2|~r
�

s+ t2(t)
�

� ~y||~r(s+ t)� ~y|
(6.1)

where t2(t) is the solution of the equation

t2 +
|~r(s+ t2)� ~y|

c
= t� |~r(s+ t)� ~y|

c
, (6.2)
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Fig. 5.6. Results with N! = 8 frequency intervals, N↵ = 8 apertures and data contaminated
with 20% noise. On the top we show the true reflectivity as a function of location (left), direction
(middle), and frequency (right). In the middle row we show the reconstructed reflectivity with the
MMV algorithm. The plot in the bottom row is the migration image. The axes in the left images
are cross-range and range in meters. The abscissa in the right plots is the sub-aperture index
↵ = 1, . . . ,N↵ and the ordinate is the index of the scatterer (from 1 to 4).

and we used the expression of the Green’s function of the wave equation

G(t,~r, ~y) =
�
⇥

t� |~r� ~y|/c
⇤

4⇡|~r� ~y| ,

and the single scattering approximation. The expression (6.1) is simply the spherical
wave emitted from ~r(s+ t2), over the duration t2 of the pulse, scattered isotropically
at ~y, and then recorded at ~r(t + s). Up to the single scattering approximation, this
is an exact formula. Expanding with respect to t the arguments in (6.1) and (6.2) we
obtain

u(s, t) = � 1

c2

Z

⌦
d~y⇢(~y)

1

(4⇡|~r(s)� ~y|)2
�

1 +O(V t/L)
�⇥

f 00
h⇣

t
⇣

1� �(s, ~y) +O
⇣V

c

V t

R

⌘⌘

� 2⌧(s, ~y)
⌘

/
⇣

1 + �(s, ~y) +O
⇣V

c

V t

R

⌘⌘i

, (6.3)

where we introduced the Doppler factor � defined by

�(s, ~y) =
~r0(s)

c
· ~m(s, ~y), ~m(s, ~y) =

~r(s)� ~y

|~r(s)�~r(y)| . (6.4)
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We assume that the platform is moving at constant speed V along a trajectory with
unit tangent denoted by ~t(s), and with radius of curvature R assumed comparable to
the range L. Thus,

�(s, ~y) = O
⇣V

c

⌘

⌧ 1,

because the platform speed is typically much smaller than c, the wave speed, and
we can neglect the residual in (6.3) which is even smaller than �, because over the
duration of the fast time window the platform travels a small distance compared with
the radius of curvature V t ⌧ R ⇠ L. We have thus the data model

u(s, t) ⇡ � 1

c2

Z

⌦
d~y⇢(~y)

f 00
h

t
�

1� 2�(s, ~y)
�

� 2⌧(s, ~y)
�

1� �(s, ~y)
�

i

(4⇡|~r(s)� ~y|)2 , (6.5)

which includes first order Doppler e↵ects.
The start-stop approximation is valid when the Doppler factor in the argument

of f 00 in (6.5) is negligible. Altough � is small, f 00 oscillates at the carrier frequency
!
o

which is large and, depending on the scale of the fast time t, the Doppler factor
may play a role. Recall that t is limited by the slow time spacing h

s

. In practice the
duration of the fast time window may be much smaller than h

s

, although it must be
large enough so that the platform can receive the echoes delayed by the travel time,
2⌧(s, ~y). Explicitly,

t = O(L/c) +O(1/B),

where L/c is the scale of the travel time and 1/B is the scale of the duration of the
signal.

We conclude that the start stop approximation holds when

!
o

t�(s, ~y) = O
⇣!

o

L

c

V

c

⌘

+O
⇣!

o

B

V

c

⌘

⌧ 1.

In the GOTCHA regime, considered in the numerical simulations in section 5, we
have

!
o

L

c

V

c
= 0.469,

!
o

B

V

c
= 2.3 · 10�5,

so !
o

t�(s, ~y) is slightly less than one. We may include it in the data model, but it
amounts to a constant additive phase that has no e↵ect in imaging. To see this, let
us take the Fourier transform with respect to t in (6.5)

bu(s,!) ⇡ k2
Z

⌦
d~y⇢(~y) bf

h

!
�

1 + 2�(s, ~y)
�

iexp
⇥

2i!
�

1 + �(s, ~y)
�

⌧(s, ~y)
⇤

(4⇡|~r(s)� ~y|)2 , (6.6)

and expand the arguments over the slow time s and imaging point ~y. We use the
approximation

~r0(s) ⇡ V
h

~t(s?)� ~n(s?)
V�s

R

i

, (6.7)

where �s is the slow time o↵set from the center s? of the aperture, and ~t(s?) is the
unit tangent to the trajectory of the platform at the center point. The second term in
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(6.7) accounts for the curved platform trajectory, with unit vector ~n(s?) orthogonal to
~t, in the plane defined by ~t and the center of curvature, and R the radius of curvature.
We also have

| ~m(s, ~y)� ~m(s?, ~y
o

)| = O
⇣V |�s|

L

⌘

+O
⇣ |Y ?|

L

⌘

,

and

!
o

⌧(s, ~y) = !
o

⌧(s?, ~y
o

) +O(k
o

V�s) + +O(k
o

�y).

Substituting in (6.6) and using the parameters of the GOTCHA regime, we see that,
indeed, the Doppler e↵ect amounts to a constant phase term 2!

o

�(s?, ~y
o

)⌧(s?, ~y
o

).

6.2. Imaging algorithm with Doppler e↵ects. The model of the down-
ramped data with the Doppler correction follows from (6.6),

d(s,!) = bf
⇥

!
�

1 + 2�(s, ~y
o

)
�⇤

bu(s,!) exp
⇥

� 2i!
�

1 + �(s, ~y
o

)
�

⌧(s, ~y
o

)
⇤

⇡ k2 bf
⇥

!
�

1 + 2�(s, ~y
o

)
�⇤

Z

⌦
d~y bf

⇥

!
�

1 + 2�(s, ~y)
�⇤

⇢(~y)⇥

exp
⇥

2i!
�

1 + �(s, ~y)
�

⌧(s, ~y)� 2i!
�

1 + �(s, ~y
o

)
�

⌧(s, ~y
o

)
⇤

�

4⇡|~r(s)� ~y|
�2 . (6.8)

We are interested in direction and frequency dependent reflectivities, so to use formula
(6.8), we consider next the ↵�th sub-aperture and the ��th sub-band, where we can
replace ⇢ by ⇢(↵,�)(~y). The data is denoted by d(↵,�)(�s,�!), where �s = s�s?

↵

and
�! = ! � !?

�

. The goal of the section is to include Doppler e↵ects in the statements
of Lemma 3.1 and Proposition 3.2, which are the basis of our imaging algorithm.

We begin with the observation that

!�(s, ~y)⌧(s, ~y) =
!

c

~r0(s)

c
· (~r(s)� ~y) = !�(s, ~y

o

)⌧(s, ~y
o

)� !

c

~r0(s)

c
·�~y, (6.9)

where �~y = ~y � ~y
o

, and ~r0(s) is given by (6.7), and assume henceforth that

V

c

Y ?
↵

L
↵

⌧ b

!
o

⌧ 1. (6.10)

This is consistent with our previous assumptions because Y ?
↵

⌧ L
↵

and V ⌧ c, and
allows us to approximate the Doppler factor in the argument of the Fourier transform
of the signal in (6.8) by its value at the reference point. Then, using equation (2.3)
and noting also that

|~r(s)� ~y| = L
↵

h

1 +O
⇣ a

L
↵

⌘

+O
⇣Y ?

↵

L
↵

⌘i

, k = k
o

h

1 +O
⇣ b

!
o

⌘i

,

we can simplify the amplitude factor in (6.8) as

k2 bf
⇥

!
�

1 + 2�(s, ~y
o

)
�⇤

bf
⇥

!
�

1 + 2�(s, ~y)
�⇤

(4⇡|~r(s)� ~y|)2 ⇡ k2
o

| bf(!
o

)|2

(4⇡L
↵

)2
, (6.11)
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and obtain

d(↵,�)(�s,�!) ⇡ k2
o

| bf(!
o

)|2

(4⇡L
↵

)2

Q

X

q=1

⇢(↵,�)
q

exp
h

� 2i(k
�

+�k)
~r0(s?

↵

+�s)

c
·�~y

q

+

2i(!?

�

+�!)
⇥

⌧(s?
↵

+�s, ~y
o

+�~y
q

)� ⌧(s?
↵

+�s, ~y
o

)
⇤

i

.

(6.12)

Here we have used that k = k
�

+�k, with center wavenumber k
�

= !?

�

/c and o↵set
�k = �!/c.

The di↵erence between the travel times in the phase in (6.12) is approximated
in the proof of Lemma 3.1 in appendix A. It remains to expand the first term in the
phase, which is due to the Doppler factor. We use (6.7) and obtain

(k
�

+�k)
~r0(s?

↵

+�s)

c
·�~y

q

= k
�

V

c

h

~t
↵

·�~y
q

� V�s

R
~n
↵

·�~y
i

+�k
V

c
~t
↵

·�~y
q

+

O
⇣V

c

a

R

~n
↵

·�~y
q

c/b

⌘

,

with negligible residual under the assumption

V

c

a

R

Y
↵

c/b
⌧ 1. (6.13)

Recall that c/b is the range resolution, and although we want Y
↵

� c/b, the inequality
(6.13) is easily satisfied because a ⌧ R ⇠ L

↵

and V ⌧ c.
The generalization of the result in Lemma 3.1 is as follows. We have the linear

system of equations

A(↵,�)⇢(↵,�) = d(↵,�), (6.14)

where the reflectivity vector ⇢(↵,�) with entries ⇢(↵,�)
q

is mapped to the data vector
d(↵,�) with entries d(↵,�)(�s

j

,�!
l

) by the refelectivity-to-data matrix A(↵,�). The
entries of A(↵,�) are given by

A(↵,�)
j,q

(�!
l

) =
k2
o

| bf(!
o

)|2

(4⇡L
↵

)2
exp

n

� 2i(k
�

+�!
l

/c)
h

~m
↵

·�~y
q

+
V

c
~t
↵

·�~y
q

i

�2i
k
�

V�s

L
↵

h

~t
↵

· P
↵

�~y
q

� L
↵

R

V

c
~n
↵

·�~y
q

i

+ ik
�

�~y
q

· P
↵

�~y
q

L
↵

o

. (6.15)

The di↵erence between this reflectivity-to-data matrix and the one given by (3.12) in
Lemma 3.1 comes from the V dependent terms in the square brackets in the phase,
due to the Doppler e↵ect.

We extend next the statement of Proposition 3.2. We proceed as in appendix A,
and show that the matrix-matrix equation (3.1), AX = D, still applies, with the same
definition (3.17) of the data matrix D,

D(↵,�)
j

(�!
l

) =
(4⇡L

↵

)2

k2
o

| bf(!
o

)|2
d(↵,�)(�s

j

,�!
l

),

and with the unknown matrix

X(↵,�)
q

= ⇢(↵,�)
q

exp
n

� 2ik
�

hV

c
~t
↵

·�~y
q

+ ~m
↵

·�~y
q

i

+ ik
�

�~y
q

· P
↵

�~y
q

L
↵

o

. (6.16)
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This is under the assumptions that

max
1↵N

↵

,1qQ

V

c

b

c

�

�

�

[~t
↵

�~t1] ·�~y
q

�

�

�

⌧ 1, (6.17)

max
1↵N

↵

,1qQ

V

c

a

�
o

R

�

�(~n
↵

� ~n1) ·�~y
q

�

� ⌧ 1, (6.18)

which are similar to (3.13)-(3.14), and easier to satisfy for smaller V . The expression
of the entries of the reflectivity-to-data matrix is a simple modification of that in
equation (3.19),

A
j,q

(�!
l

) = exp
h

� 2i
�!

l

c

⇣

~m1 ·�~y
q

+
V

c
~t1 ·�~y

q

⌘

� 2ik1
V�s

j

L1

⇣

~t1 · P1�~y
q

� L1

R

V

c
~n1 ·�~y

q

⌘i

. (6.19)

Thus, the problem can be solved with the MMV approach, as described in section
4. The Doppler correction has two e↵ects: It gives an extra rotation in the cross-range
direction of the imaging window (the first phase term in (6.16), involving V ), and two
extra phase factors (involving V inside the parentheses) in the reflectivity-to-data
matrix A in (6.19).

7. Summary. We have introduced and analyzed from first principles a synthetic
aperture imaging approach for reconstructing direction and frequency dependent re-
flectivities of localized scatterers. It is based on two main ideas: The first one is
to segment the data over subsets defined by carefully calibrated sub-apertures and
frequency sub-bands, and formulate the reflectivity reconstruction for each subset
as an `1 optimization problem. The direction and frequency dependence of the re-
constructed reflectivity is frozen for each data subset but varies from one subset to
another. The second idea is to fuse the sub-aperture and sub-band optimizations by
seeking simultaneously from data subsets those reconstructions of the reflectivity that
share the same spatial support in the image window. This is done with the multi-
ple measurement vector (MMV) formalism, which leads to a matrix `1 optimization
problem. The main result of this paper is showing that synthetic aperture imag-
ing of direction and frequency dependent reflectivities can be formulated and solved
e�ciently as an MMV problem.

Data segmentation is a natural idea that has been used before for synthetic aper-
ture imaging of frequency dependent reflectivities [21, 11]. Here we use it for es-
timating the direction dependence of the reflectivity, as well. We analyze how the
size of the sub-apertures and frequency sub-bands in the data segmentation a↵ects
the resolution of the reconstructions as well as the computational complexity of the
inversion. There is a trade-o↵ in resolution in this approach: On one hand we want
to have large sub-apertures and frequency sub-bands to get good spatial, range and
cross-range, resolution of the reconstructed reflectivity. But on the other hand we also
want to have small sub-apertures and frequency sub-bands to resolve well the direction
and frequency dependence of the reflectivity. Small sub-apertures are also desirable
so as to get images e�ciently using Fourier transforms. The MMV formalism that we
have introduced in this paper, and the associated algorithm for its implementation,
deal well with these issues, as indicated by the numerical simulations.

Nearly all synthetic aperture imaging is done with reverse time migration algo-
rithms, without regard to whether the reflectivities that are to be imaged are direction
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dependent or not. If the reflectivities are isotropic, then the spatial resolution of the
reconstruction improves as the aperture increases. But this is not the case with
direction dependent reflectivities as only part of the synthetic aperture will sense
reflectivities from particular locations. This means that segmenting the data over
sub-apertures is natural. The MMV-based imaging algorithm introduced in this pa-
per handles automatically signals received by sub-apertures that are coming from
directional reflectivities located in the image window.
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Appendix A. Derivation of the reflectivity to data model. Here we show

that the expression of A
j,q

(!
l

) in (2.7) can be approximated by A(↵,�)
j,q

(�!
l

) given in
Lemma 3.1, for !

l

= !?

�

+�!
l

and s
j

= s?
↵

+�s
j

. For simplicity of notation we drop
the indexes j and l of the frequency and slowtime.

It is easy to see from (2.3) and the assumptions !
o

� b and L
↵

� a & Y
↵

that

k2| bf(!)|2
�

4⇡|~r(s)� ~y|
�2 ⇡ k2

o

| bf(!
o

)|2

(4⇡L
↵

)2
, (A.1)

for k = !/c and k
o

= !
o

/c. It remains to show the phase approximation

2!
⇥

⌧(s, ~y)� ⌧(s, ~y
o

)
⇤

⇡ �2k ~m
↵

· ~y � 2k
�

V�s
~t
↵

· P
↵

�~y

L
↵

+ k
�

�~y · P
↵

�~y

L
↵

, (A.2)

where ! = !?

�

+�! lies in the frequency sub-band of width b, s = s?
↵

+�s is in the
sub-aperture of size a and ~y = ~y

o

+�~y is in Y.
We begin by expanding the travel time in �~y,

� = 2!
⇥

⌧(s, ~y)� ⌧(s, ~y
o

)
⇤

= �2k ~m(s, ~y
o

) ·�~y +
k

|~r(s)� ~y
o

|�
~y ·

⇥

I � ~m(s, ~y
o

) ~mT (s, ~y
o

)
⇤

�~y + E1,

with small residual

E1 = O
⇣Y ?

↵

2
Y
↵

�
o

L2
↵

⌘

⌧ 1,

by assumption (3.10) and Y ?
↵

. a, inferred from (3.7). Here we used the expression
of the gradient

r
~y|~r(s)� ~y| = �

~r(s)� ~y

|~r(s)� ~y| = � ~m(s, ~y),

the Hessian

r
~y ⌦r

~y|~r(s)� ~y| = 1

|~r(s)� ~y|

h

I � ~m(s, ~y) ~mT (s, ~y)
i

,
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and

3
X

i,j,q=1

�y
i

�y
j

�y
q

@3
y

i
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j

,y

q

|~r(s)� ~y| = 3 ~m
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·�~y
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⇥

|�~y|2 �
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~m
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·�~y
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.

Next, we expand in �! = ! � !?

�

and obtain
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The last estimate is by assumption (3.9). Finally, we expand in �s = s � s?
↵

, and
recalling the notation in section 3.1, we get
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The residual is the sum of four terms

E = E2 + E3 + E4 + E5,

with E2 given above. The term E3 comes from the quadratic part of the expansion of
k
�

~m(s, ~y
o

) ·�~y,
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Here ⇠ denotes order of magnitude, and the primes denote derivative with respect to
s. The unit vector ~n

↵

is normal to ~t
↵

, in the plane defined by ~t
↵

and the center of
curvature of the trajectory of the platform. It enters the definition

~t0
↵

= �V ~n
↵

R
, (A.4)

where R ⇠ L
↵

is the radius of curvature. Moreover
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. (A.5)

We conclude that
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where the inequality is by assumption (3.10).
The term E4 in the residual is
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by assumption (3.9), and the last term E5 comes from the expansion of the quadratic
term in �~y in the expression of �. We estimate it as

E5 = O
⇣aY

↵

Y ?
↵

�
o

L2
↵

⌘

⌧ 1,

where we used assumption (3.10). The statement of Lemma 3.1 follows from (A.1)
and (A.3). ⇤

Proposition 3.2 follows easily from the expression (3.1) of A(↵,�)
j,q

and assumptions
(3.13) and (3.14). Writing the linear system (3.11) componentwise we get
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),

with X(↵,�)
q

given in (3.15) and D(↵,�)
j

defined in (3.17). The result (3.19) follows
from this equation and assumptions (3.13) and (3.14). ⇤

Appendix B. Inner products for rows and columns of the reflectivity-
to-data matrix.

Here we analyze the relation between the discretization of the imaging window
Y and the linear independence of the columns of the reflectivity to data matrix.
This is done by computing inner products of of normalized rows and columns of the
reflectivity-to-data matrix. If the column inner products multiplied by the number
of elements in the support of the reflectivities are below a threshold then the MMV
algorithm will give an exact reconstruction, in the noiseless case [5].

We consider the restriction to a data subset, defined by a sub-aperture and fre-
quency sub-band satisfying the assumptions in section 3. Thus, we work with matrices
A(↵,�), but to simplify notation we drop the indexes (↵,�).

Let us denote by a
q

the q�th column of matrix A and calculate the inner product
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Using Lemma 3.1 we get
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where we normalized the columns by their Euclidian norm. The sums can be approxi-
mated by integrals over the frequency band and aperture, as long as they are sampled
at intervals h

!

and h
s
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We obtain after taking absolute values that
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This is small for q 6= q0 when we sample the imaging window Y in steps that are larger
than the resolution limits c/b in range and �

o

L/a in cross-range.
A similar calculation can be done for the rows of A, denoted by a(j,l). We have
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and using Lemma 3.1 we get
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Furthermore, for discretizations of the imaging window in steps h in range and h? in
cross-range, satisfying
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we can approximate the sum over q by an integral over the imaging window and obtain

�

�

�

�

⌧

a(j0,l0)
ka(j0,l0)k

,
a(j0,l0)
ka(j0,l0)k

�

�

�

�

�

⇡
�

�

�

�

sinc
⇣ (!

l

0 � !
l

)Y
↵

c

⌘

sinc
⇣k

o

V (s
j

0 � s
j

)Y ?
↵

L
↵

⌘

�

�

�

�

.

This result shows that the inner product of the rows is small when the frequency is
sampled in steps larger than Y

↵

/c and the slow time is sampled in steps larger than
(1/V )/(�

o

Y ?
↵

/L
↵

).
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