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Abstract
We study the parameterized complexity of the directed variant of the classical Steiner Tree problem
on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree para-
meterized by the number of terminals is well understood, not much is known about the parameterization
by the number of non-terminals in the solution tree. All that is known for this parameterization is that
both the directed and the undirected versions are W[2]-hard on general graphs, and hence unlikely to be
fixed parameter tractable (FPT). The undirected Steiner Tree problem becomes FPT when restricted
to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down
on directed planar graphs.

In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on sparse
graphs parameterized by the number of non-terminals in the solution tree. Specifically, we show that the
problem is fixed parameter tractable on graphs excluding a topological minor, but becomes W[2]-hard on
graphs of degeneracy 2. On the other hand we show that if the subgraph induced by the terminals is
required to be acyclic then the problem becomes FPT on graphs of bounded degeneracy.

We further show that our algorithm achieves the best possible running time dependence on the solution
size and degeneracy of the input graph, under standard complexity theoretic assumptions. Using the ideas
developed for DST, we also obtain improved algorithms for Dominating Set on sparse undirected graphs.
These algorithms are asymptotically optimal.
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1 Introduction

In the Steiner Tree problem we are given as input a n-vertex graph G = (V,E) and a set T ⊆ V

of terminals. The objective is to find a subtree ST of G spanning T that minimizes the number of
vertices in ST . Steiner Tree is one of the most intensively studied graph problems in Computer
Science. Steiner trees are important in various applications such as VLSI routings [28], phylogenetic
tree reconstruction [26] and network routing [31]. We refer to the book of Prömel and Steger [38] for
an overview of the results on, and applications of the Steiner Tree problem. The Steiner Tree
problem is known to be NP-hard [20], and remains hard even on planar graphs [19]. The minimum
number of non-terminals can be approximated to within O(logn), but cannot be approximated to
o(log t), where t is the number of terminals, unless P ⊆ DTIME[npolylog n] (see [29]). Furthermore
the weighted variant of Steiner Tree remains APX-complete, even when the graph is complete and
all edge costs are either 1 or 2 (see [3]).

In this paper we study a natural generalization of Steiner Tree to directed graphs, from the
perspective of parameterized complexity. The goal of parameterized complexity is to find ways of
solving NP-hard problems more efficiently than by brute force. The aim is to restrict the combinatorial
explosion in the running time to a parameter that is much smaller than the input size for many input
instances occurring in practice. Formally, a parameterization of a problem is the assignment of an
integer k to each input instance and we say that a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem in time f(k) · |I|O(1), where |I| is the size of the
input instance and f is an arbitrary computable function depending only on the parameter k. Above
FPT, there exists a hierarchy of complexity classes, known as the W-hierarchy. Just as NP-hardness
is used as an evidence that a problem is probably not polynomial time solvable, showing that a
parameterized problem is hard for one of these classes gives evidence that the problem is unlikely to
be fixed-parameter tractable. The main classes in this hierarchy are:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1]. In particular, this means
that an FPT algorithm for any W[1]-hard problem would yield a O(f(k)nc) time algorithm for every
problem in the class W[1]. XP is the class of all problems that are solvable in time O(ng(k)). Here, g
is some (usually computable) function. For more background on parameterized complexity the reader
is referred to the monographs [13, 16, 36]. We consider the following directed variant of Steiner
Tree.

Directed Steiner Tree (DST) Parameter: k

Input: A directed graph D = (V,A), a root vertex r ∈ V , a set T ⊆ V \ {r} of terminals and an
integer k ∈ N.
Question: Is there a set S ⊆ V \(T∪{r}) of at most k vertices such that the digraphD[S∪T∪{r}]
contains a directed path from r to every terminal t ∈ T?

The DST problem is well studied in approximation algorithms, as the problem generalizes several
important connectivity and domination problems on undirected as well as directed graphs [6, 12, 23,
25, 39, 40]. These include Group Steiner Tree, Node Weighted Steiner Tree, TSP and
Connected Dominating Set. However, this problem has so far largely been ignored in the realm
of parameterized complexity. The aim of this paper is to fill this gap.

It follows from the reduction presented in [34] that DST is W[2]-hard on general digraphs. Hence
we do not expect FPT algorithms to exist for these problems, and so we turn our attention to classes
of sparse digraphs. Our results give a nearly complete picture of the parameterized complexity of
DST on sparse digraphs. Specifically, we prove the following results. We use the O∗ notation to
suppress factors polynomial in the input size.
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Figure 1 A summary of the main results in the paper

1. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as a minor1. Here Kh

is a clique on h vertices.
2. There is a O∗(f(h)k)-time algorithm for DST on digraphs excluding Kh as a topological minor.
3. There is a O∗(2O(hk))-time algorithm for DST on digraphs excluding Kh as a topological minor

if the graph induced on terminals is acyclic.
4. DST is W[2]-hard on 2-degenerated digraphs if the graph induced on terminals is allowed to

contain directed cycles.
5. There is a O∗(2O(dk))-time algorithm for DST on d-degenerated graphs if the graph induced on

terminals is acyclic, implying that DST is FPT parameterized by k on o(logn)-degenerated graph
classes. This yields the first FPT algorithm for Steiner Tree on undirected d-degenerate graphs.

6. For any constant c > 0, there is no f(k)no( k
log k )-time algorithm on graphs of degeneracy c logn

even if the graph induced on terminals is acyclic, unless the Exponential Time Hypothesis [27]
(ETH) fails.

Our algorithms for DST hinge on a novel branching which exploits the domination-like nature
of the DST problem. The branching is based on a new measure which seems useful for various
connectivity and domination problems on both directed and undirected graphs of bounded degeneracy.
We demonstrate the versatility of the new branching by applying it to the Dominating Set problem
on graphs excluding a topological minor and more generally, graphs of bounded degeneracy. The
well-known Dominating Set problem is defined as follows.

Dominating Set Parameter: k

Input: An undirected graph G = (V,E), and an integer k ∈ N.
Question: Is there a set S ⊆ V of at most k vertices such that every vertex in G is either in S
or adjacent to a vertex in S?

Our O∗(2O(dk))-time algorithm for Dominating Set on d-degenerated graphs improves over the
O∗(kO(dk)) time algorithm by Alon and Gutner [2]. It turns out that our algorithm is essentially
optimal – we show that assuming the ETH, the running time dependence of our algorithm on the
degeneracy of the input graph and solution size k can not be significantly improved. Using these
ideas we also obtain a polynomial time O(d2) factor approximation algorithm for Dominating Set
on d-degenerate graphs. We give survey of existing literature on Dominating Set and the results
for it in Section 4. We believe that our new branching and corresponding measure will turn out to
be useful for several other problems on sparse (di)graphs.

1 When we say that a digraph excludes a fixed (undirected) graph as a minor or a topological minor, or that the
digraph has degeneracy d we mean that the statement is true for the underlying undirected graph.
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Related Results. Though the parameterized complexity of DST has so far been largely ignored, it
has not been left completely unexplored. In particular the classical dynamic programming algorithm
by Dreyfus and Wagner [14] from 1972 solves Steiner Tree in time O∗(3t) where t is the number
of terminals in the input graph. The algorithm can also be used to solve DST within the same
running time, and may be viewed as a FPT algorithm for Steiner Tree and DST if the number
of terminals in the instance is the parameter. Fuchs et al. [18] improved the algorithm of Dreyfus
and Wagner and obtained an algorithm with running time O∗((2 + ε)t), for any constant ε > 0.
More recently, Björklund, Husfeldt, Kaski, and Koivisto [4] obtained an O∗(2t) time algorithm for
the cardinality version of Steiner Tree. Finally, Nederlof [35] obtained an algorithm running in
O∗(2t) and polynomial space. All of these algorithms can also be modified to work for DST.

For most hard problems, the most frequently studied parameter in parameterized complexity is
the size or quality of the solution. For Steiner Tree and DST, however, this is not the case.
The non-standard parameterization of the problem by the number of terminals is well-studied, while
the standard parameterization by the number of non-terminals in the solution tree has been left
unexplored, aside from the simple W[2]-hardness proofs [34]. Steiner-type problems in directed graphs
from parameterized perspective were studied in [24] in arc-weighted setting, but the paper focuses
more on problems in which the required connectivity among the terminals is more complicated than
just a tree.

For Steiner Tree parameterized by the solution size k, there is a simple (folklore) FPT algorithm
on planar graphs. The algorithm is based on the fact that planar graphs have the diameter-treewidth
property [15], the fact that Steiner Tree can be solved in polynomial time on graphs of bounded
treewidth [9] along with a simple preprocessing step. In this step, one contracts adjacent terminals
to single vertices and removes all vertices at distance at least k + 1 from any terminal. For DST,
however, this preprocessing step breaks down. Thus, previous to this work, nothing is known about
the standard parameterization of DST aside from the W[2]-hardness result on general graphs.

2 Preliminaries

Given a digraph D = (V,A), for each vertex v ∈ V , we define N+(v) = {w ∈ V |(v, w) ∈ A} and
N−(v) = {w ∈ H|(w, v) ∈ A}. In other words, the sets N+(v) and N−(v) are the set of out-neighbors
and in-neighbors of v, respectively.

Degeneracy of an undirected graph G = (V,E) is defined as the least number d such that every
subgraph of G contains a vertex of degree at most d. Degeneracy of a digraph is defined to be
the degeneracy of the underlying undirected graph. We say that a class of (di)graphs C is o(logn)-
degenerated if there is a function f(n) = o(logn) such that every (di)graph G ∈ C is f(|V (G)|)-
degenerated.

In a directed graph, we say that a vertex u dominates a vertex v if there is an arc (u, v) and in an
undirected graph, we say that a vertex u dominates a vertex v if there is an edge (u, v) in the graph.

Given a vertex v in a directed graph D, we define the operation of short-circuiting across v as
follows. We add an arc from every vertex in N−(v) to every vertex in N+(v) and delete v.

For a set of vertices X ⊆ V (G) such that G[X] is connected we denote by G/X the graph obtained
by contracting edges of a spanning tree of G[X] in G.

Given an instance (D, r, T, k) of DST, we say that a set S ⊆ V \ (T ∪ {r}) of at most k vertices
is a solution to this instance if in the digraph D[S ∪ T ∪ {r}] there is a directed path from r to every
terminal t ∈ T .
Minors and Topological Minors. For a graph G = (V,E), a graph H is a minor of G if H can be
obtained from G by deleting vertices, deleting edges, and contracting edges. We denote that H is a
minor of G by H � G. A mapping ϕ : V (H)→ 2V (G) is a model of H in G if for every u, v ∈ V (H)
with u 6= v we have ϕ(u) ∩ ϕ(v) = ∅, G[ϕ(u)] is connected, and, if {u, v} is an edge of H, then there
are u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G). It is known, that H � G iff H has a model in
G.
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A subdivision of a graph H is obtained by replacing each edge of H by a non-trivial path. We say
that H is a topological minor of G if some subgraph of G is isomorphic to a subdivision of H and
denote it by H �T G. In this paper, whenever we make a statement about a directed graph having
(or being) a minor of another graph, we mean the underlying undirected graph. A graph G excludes
graph H as a (topological) minor if H is not a (topological) minor of G. We say that a class of graphs
C excludes o(logn)-sized (topological) minors if there is a function f(n) = o(logn) such that for every
graph G ∈ C we have that Kf(|V (G)|) is not a (topological) minor of G.
Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair (M,β) where M is a
rooted tree and β : V (M)→ 2V , such that :

1.
⋃
t∈V (M) β(t) = V .

2. For each edge (u, v) ∈ E, there is a t ∈ V (M) such that both u and v belong to β(t).
3. For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a connected subtree of M .

The following notations are the same as that in [22]. Given a tree decomposition of graph G = (V,E),
we define mappings σ, γ, α : V (M)→ 2V by letting for all t ∈ V (M),

σ(t) =
{
∅ if t is the root of M
β(t) ∩ β(s) if s is the parent of t in M

γ(t) =
⋃
u is a descendant of t β(u)

α(t) = γ(t) \ σ(t).

Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is min{|β(t)| − 1 | t ∈ V (M)},
and the adhesion of the tree decomposition is max{|σ(t)| | t ∈ V (M)}. For every node t ∈ V (M),
the torso at t is the graph

τ(t) := G[β(t)] ∪ E(K[σ(t)]) ∪
⋃
u child of tE(K[σ(u)]).

Again, by a tree decomposition of a directed graph, we mean a tree decomposition for the under-
lying undirected graph.

3 DST on sparse graphs

In this section, we introduce our main idea and use it to design algorithms for the Directed Steiner
Tree problem on classes of sparse graphs. We begin by giving a O∗(2O(hk)) algorithm for DST on
Kh-minor free graphs. Following that, we give a O∗(f(h)k) algorithm for DST on Kh-topological
minor free graphs for some f . Then, we show that in general, even in 2 degenerated graphs, we
cannot expect to have an FPT algorithm for DST parameterized by the solution size. Finally, we
show that when the graph induced on the terminals is acyclic, then our ideas are applicable and we
can give a O∗(2O(hk)) algorithm on Kh-topological minor free graphs and a O∗(2O(dk)) algorithm on
d-degenerated graphs.

3.1 DST on minor free graphs
We begin with a polynomial time preprocessing which will allow us to identify a special subset of the
terminals with the property that it is enough for us to find an arborescence from the root to these
terminals.
I Rule 1. Given an instance (D, r, T, k) of DST, let C be a strongly connected component with at
least 2 vertices in the graph D[T ]. Then, contract C to a single vertex c, to obtain the graph D′ and
return the instance (D′, r, T ′ = (T \ C) ∪ {c}, k).
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Correctness. Suppose S is a solution to (D, r, T, k). Then there is a directed path from r to every
terminal t ∈ T in the digraph D[S ∪ T ∪ {r}]. Contracting the vertices of C will preserve this path.
Hence, S is also a solution for (D′, r, T ′, k).

Conversely, suppose S is a solution for (D′, r, T ′, k). If the path P from r to some t ∈ T ′ \ C in
D′[S ∪ T ′ ∪ {r}] contains c, then there must be a path from r to some vertex x of C and a path
(possibly trivial) from some vertex y ∈ C to t in D[S ∪ T ∪ {r}]. As there is a path between any x
and y in D[C], concatenating these three paths results in a path from r to t in D[S∪T ∪{r}]. Hence,
S is also a solution to (D, r, T, k).
I Proposition 1. Given an undirected graph G = (V,E) which excludes Kh as a minor for some h,
and a vertex subset X ⊆ V inducing a connected subgraph of G, the graph G/X also excludes Kh as
a minor.
We call an instance reduced if Rule 1 cannot be applied to it. Given an instance (D, r, T, k), we first
apply Rule 1 exhaustively to obtain a reduced instance. Since the resulting graph still excludes Kh

as a minor (by Proposition 1), we have not changed the problem and hence, for ease of presentation,
we denote the reduced instance also by (D, r, T, k). We call a terminal vertex t ∈ T a source-terminal
if it has no in-neighbors in D[T ]. We use T0 to denote the set of all source-terminals. Since for every
terminal, the graph D[T ] contains a path from some source terminal to this terminal, we have the
following observation.
I Observation 1. Let (D, r, T, k) be a reduced instance and let S ⊆ V . Then the digraph D[S∪T ∪{r}]
contains a directed path from r to every terminal t ∈ T if and only if it contains a directed path from
r to every source-terminal t ∈ T0.

The following is an important subroutine of our algorithm.

I Lemma 2. Let D be a digraph, r ∈ V (D), T ⊆ V (D) \ {r} and T0 ⊆ T . There is an algorithm
which can find a minimum size set S ⊆ V (D) such that there is path from r to every t ∈ T0 in
D[T ∪ {r} ∪ S] in time O∗(2|T0|).

Proof. Nederlof [35] gave an algorithm to solve the Steiner Tree problem on undirected graphs in
time O∗(2t) where t is the number of terminals. Misra et al. [33] observed that the same algorithm
can be easily modified to solve the DST problem in time O∗(2t) with t being the number of terminals.
In our case, we create an instance of the DST problem by taking the same graph, defining the set
of terminals as T0 and for every vertex t ∈ T \ T0, short-circuiting across this vertex. Clearly, a
k-sized solution to this instance gives a k-sized solution to the original problem. To actually find
the set of minimum size, we can first find its size by a binary search and then delete one by one the
non-terminals, if their deletion does not increase the size of the minimum solution. J

We call the algorithm from Lemma 2, Nederlof(D, r, T, T0).
We also need the following structural claim regarding the existence of low degree vertices in graphs
excluding Kh as a topological minor.

I Lemma 3. Let G = (V,E) be an undirected graph excluding Kh as a topological minor and let
X,Y ⊆ V be two disjoint vertex sets. If every vertex in X has at least h − 1 neighbors in Y , then
there is a vertex in Y with at most ch4 neighbors in X ∪ Y for some constant c.

Proof. It was proved in [5, 30], that there is a constant a such that any graph that does not contain
Kh as a topological minor is d = ah2-degenerated. Consider the graph H0 = G[X ∪ Y ] \ E(X).
We construct a sequence of graphs H0, . . . ,Hl, starting from H0 and repeating an operation which
ensures that any graph in the sequence excludes Kh as a topological minor. The operation is defined
as follows. In graph Hi, pick a vertex x ∈ X. As it has degree at least h− 1 in Y and there is no Kh

topological minor in Hi, it has two neighbors y1 and y2 in Y , which are non-adjacent. Remove x from
H and add the edge (y1, y2) to obtain the graph Hi+1. By repeating this operation, we finally obtain
a graph Hl where the set X is empty. As the graph Hl still excludes Kh as a topological minor, it
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is d-degenerated, and hence it has at most d|Y | edges. In the sequence of operations, every time we
remove a vertex from X, we added an edge between two vertices of Y . Hence, the number of vertices
in X in H0 is bounded by the number of edges within Y in Hl, which is at most d|Y |. As H0 is also
d-degenerated, it has at most d(|X| + |Y |) = d(d + 1)|Y | edges. Therefore, there is a vertex in Y

incident on at most 2d(d+ 1) = 2ah2(ah2 + 1) ≤ ch4 edges where c = 4a2. This concludes the proof
of the lemma. J

The following proposition allows us to apply Lemma 3 in the case of graphs excluding Kh as a minor.

I Proposition 2. If a graph G exludes Kh as a minor, it also excludes Kh as a topological minor.

Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T be a set of non-terminals representing
a partial solution and db be some fixed positive integer. We define the following sets of vertices (see
Fig. 2).

T1 = T1(Y ) is the set of source terminals dominated by Y .
Bh = Bh(Y, db) is the set of non-terminals which dominate at least db + 1 terminals in T0 \ T1.
Bl = Bl(Y, db) is the set of non-terminals which dominate at most db terminals in T0 \ T1.
Wh = Wh(Y, db) is the set of terminals in T0 \ T1 which are dominated by Bh.
Wl = Wl(Y, db) = T0 \ (T1 ∪Wh) is the set of source terminals which are not dominated by Y or
Bh.

Note that the sets are pairwise disjoint. The constant db is introduced to describe the algorithm in a
more general way so that we can use it in further sections of the paper. Throughout this section, we
will have db = h− 2.

I Lemma 4. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N, and T1, Bh, Bl, Wh,
and Wl as defined above. If |Wl| > db(k − |Y |), then the given instance does not admit a solution
containing Y .

Proof. This follows from the fact that any non-terminal from V \ (Bh ∪ Y ) in the solution, which
dominates a vertex in Wl can dominate at most db of these vertices. Since the solution contains
at most k − |Y | such non-terminals, at most db(k − |Y |) of these vertices can be dominated. This
completes the proof. J

I Lemma 5. Let (D, r, T, k) be a reduced instance of DST, Y ⊆ V \ T , db ∈ N, and T1, Bh, Bl, Wh,
and Wl as defined above. If Bh is empty, then there is an algorithm which can test if this instance
has a solution containing Y in time O∗(2db(k−|Y |)+|Y |).

Proof. We use Lemma 2 and test whether |Nederlof(D, r, T ∪ Y ,Y ∪ (T0 \ T1))| ≤ k. We know
that |Y | ≤ k and, by Lemma 4, we can assume that |T0 \ T1| ≤ db(k − |Y |). Therefore, the size of
Y ∪ (T0 \ T1) is bounded by |Y |+ db(k − |Y |), implying that we can solve the DST problem on this
instance in time O∗(2db(k−|Y |)+|Y |). This completes the proof of the lemma. J

We now proceed to the main algorithm of this subsection.

I Theorem 6. DST can be solved in time O∗(3hk+o(hk)) on graphs excluding Kh as a minor.

Proof. Let T0 be the set of source terminals of this instance. The algorithm we describe takes as
input a reduced instance (D, r, T, k), a vertex set Y and a positive integer db and returns a smallest
solution for the instance which contains Y if such a solution exists. If there is no solution, then the
algorithm returns a dummy symbol S∞. To simplify the description, we assume that |S∞| =∞. The
algorithm is a recursive algorithm and at any stage of the recursion, the corresponding recursive step
returns the smallest set found in the recursions initiated in this step. We start with Y being the
empty set.

By Lemma 4, if |Wl| > db(k−|Y |), then there is no solution containing Y and hence we return S∞
(see Algorithm 3.1). If Bh is empty, then we apply Lemma 5 to solve the problem in time O∗(2dbk).
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Input : An instance (D, r, T, k) of DST, degree bound db, set Y
Output: A smallest solution of size at most k and containing Y for the instance (D, r, T, k) if

it exists and S∞ otherwise
1 Compute the sets Bh, Bl, Y , Wh, Wl

2 if |Wl| > d(k − |Y |) then return S∞
3 else if Bh = ∅ then
4 S ← Nederlof(D, r, T ∪ Y,Wl ∪ Y ).
5 if |S| > k then S ← S∞
6 return S

7 end
8 else
9 S ← S∞

10 Find vertex v ∈Wh with the least in-neighbors in Bh.
11 for u ∈ Bh ∩N−(v) do
12 Y ′ ← Y ∪ {u},
13 S′ ← DST-solve((D, r, T, k), db, Y ).
14 if |S′| < |S| then S ← S′

15 end
16 D′ ← D \ (Bh ∩N−(v))
17 S′ ← DST-solve((D′, r, T, k), db, Y ).
18 if |S′| < |S| then S ← S′

19 return S

20 end

Algorithm 3.1: Algorithm DST-solve for DST on graphs excluding Kh as a minor

If Bh is non-empty, then we find a vertex v ∈ Wh with the least in-neighbors in Bh. Suppose it has
dw of them.

We then branch into dw+1 branches described as follows. In the first dw branches, we move a ver-
tex u of Bh which is an in-neighbor of v, to the set Y . Each of these branches is equivalent to picking
one of the in-neighbors of v from Bh in the solution. We then recurse on the resulting instance. In the
last of the dw+1 branches, we delete from the instance non-terminals in Bh which dominate v and re-
curse on the resulting instance. Note that in the resulting instance of this branch, we have v inWl(Y ).

Correctness. At each node of the recursion tree, we define a measure µ(I) = db(k − |Y |) − |Wl|.
We prove the correctness of the algorithm by induction on this measure. In the base case, when
db(k − |Y |) − |Wl| < 0, then the algorithm is correct (by Lemma 4). Now, we assume as induction
hypothesis that the algorithm is correct on instances with measure less than some µ ≥ 0. Consider
an instance I such that µ(I) = µ. Since the branching is exhaustive, it is sufficient to show that the
algorithm is correct on each of the child instances. To show this, it is sufficient to show that for each
child instance I ′, µ(I ′) < µ(I). In the first dw branches, the size of the set Y increases by 1, and the
size of the set Wl does not decrease. Hence, in each of these branches, µ(I ′) ≤ µ(I)− db. In the final
branch, though the size of the set Y remains the same, the size of the set Wl increases by at least
1. Hence, in this branch, µ(I ′) ≤ µ(I) − 1. Thus, we have shown that in each branch, the measure
drops, hence completing the proof of correctness of the algorithm.

Analysis. Since D exludes Kh as a minor, Lemma 3, combined with the fact that we set db = h− 2,
implies that dmax

w = ch4, for some c, is an upper bound on the maximum dw which can appear during
the execution of the algorithm. We first bound the number of leaves of the recursion tree as follows.
The number of leaves is bounded by

∑dbk
i=0
(
dbk
i

)
(dmax
w )k−

i
db . To see this, observe that each branch of
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Figure 2 An illustration of the sets defined in Theorem 6

the recursion tree can be described by a length-dbk vector as shown in the correctness paragraph. We
then select i positions of this vector on which the last branch was taken. Finally for k − i

db
of the

remaining positions, we describe which of the first at most dmax
w branches was taken. Any of the first

dmaxw branches can be taken at most k − i
db

times if the last branch is taken i times.
The time taken along each root to leaf path in the recursion tree is polynomial, while the time

taken at a leaf for which the last branch was taken i times is O∗(2db(k−(k− i
db

))+k− i
db ) = O∗(2i+k) (see

Lemmata 4 and 5). Hence, the running time of the algorithm is

O∗

(
dbk∑
i=0

(
dbk

i

)
(dmax
w )k−

i
db · 2i+k

)
= O∗

(
(2dmax

w )k ·
dbk∑
i=0

(
dbk

i

)
· 2i
)

= O∗
(
(2dmax

w )k · 3dbk
)
.

For db = h− 2 and dmax
w = ch4 this is O∗(3hk+o(hk)). This completes the proof of the theorem. J

I Lemma 7. For every function g(n) = o(logn), there is a function f(k) such that for every k and
n we have 2g(n)k ≤ f(k) · n.

Proof. We know that there is a function f ′(k) such that for every n > f ′(k) we have g(n) < (logn)/k.
Now let f(k) be the function defined as f(k) = max1≤n≤f ′(k){2g(n)k}. Then, for every k if n ≤ f ′(k)
then 2g(n)k ≤ max1≤n≤f ′(k){2g(n)k} = f(k) while for n > f ′(k) we have 2g(n)k ≤ 2(logn/k)·k = 2logn =
n. Hence, indeed, 2g(n)k ≤ f(k) · n for every n and k.

J

Theorem 6 along with Lemma 7 has the following corollary.

I Corollary 8. If C is a class of digraphs excluding o(logn)-sized minors, then DST parameterized
by k is FPT on C.

3.2 DST on graphs excluding topological minors
We begin by observing that on graphs excluding Kh as a topological minor, we cannot apply Rule 1
since contractions may create new topological minors. Hence, we do not have the notion of a source
terminal, which was crucial in designing the algorithm for this problem on graphs excluding minors.
However, we will use a decomposition theorem of Grohe and Marx ([22], Theorem 4.1) to obtain
a number of subproblems where we will be able to apply all the ideas developed in the previous
subsection, and finally use a dynamic programming approach over this decomposition to combine the
solutions to the subproblems.

I Theorem 9. (Global Structure Theorem, [22]) For every h ∈ N, there exists constants a(h), b(h),
c(h), d(h), e(h), such that the following holds. Let H be a graph on h vertices. Then, for every
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graph G with H 6�T G, there is a tree decomposition (M,β) of adhesion at most a(h) such that for
all t ∈ V (M), one of the following three conditions is satisfied:
1. |β(t)| ≤ b(h).
2. τ(t) has at most c(h) vertices of degree larger than d(h).
3. Ke(h) 6� τ(t).
Furthermore, there is an algorithm that, given graphs G, H of sizes n, h, respectively, in time
f(h)nO(1) for some computable function f , computes either such a decomposition (M,β) or a subdi-
vision of H in G.

Let (M,β) a tree decomposition given by the above theorem. Without loss of generality we assume,
that for every t ∈ V (M) we have r ∈ β(t). This might increase a(h), b(h), c(h), and e(h) by at most
one. For the rest of this subsection we work with this tree decomposition.

I Theorem 10. DST can be solved in time O∗(f(h)k) on graphs excluding Kh as a topological minor.

Proof. Our algorithm is based on dynamic programming over the tree decomposition (M,β). For
t ∈ V (M) let Tσ(t) = (T ∪ {r}) ∩ σ(t) and Tγ(t) = (T ∪ {r}) ∩ γ(t). For every t ∈ V (M) we have one
table Tabt indexed by (R,F ), where Tσ(t) ⊆ R ⊆ σ(t) and F is a set of arcs on R. The index of a
table represents the way a possible solution tree can cross the cut-set σ(t). More precisely, we look
for a set S ⊆ α(t) such that in the digraph D[Tγ(t) ∪ R ∪ S] ∪ F there is a directed path from r to
every t′ ∈ Tγ(t) ∪R. In such a case we say that S is good for t, R, F .

For each index R,F we store in Tabt(R,F ) one good set S of minimum size. If no such set exists,
or |S| > k for any such set, we set |Tabt(R,F )| = ∞ and use the dummy symbol S∞ in place of
the set. Naturally, S∞ ∪ S = S∞ for any set S. Furthermore, if Tabt(R,F ) = S 6= S∞ we let
κt(R,F ) be the set of arcs on R such that (u, v) ∈ κt(R,F ) iff there is a directed path from u to v in
D[Tγ(t) ∪ R ∪ Tabt(R,F )]. Note also, that if |Tabt(R,F )| = 0 then κt(R,F ) only depends on R, not
on F . As σ of the root node of M is ∅, the only entry of Tab for root is an optimal Steiner tree in D.
Let us denote by g(h) the maximum number of entries of the table Tabt over t ∈ V (M). It is easy to
see that g(h) ≤ 2a(h)+a(h)2 .

The algorithm to fill the tables proceeds bottom-up along the tree decomposition and we assume
that by the time we start filling the table for t, the tables for all its proper descendants have already
been already filled. We now describe the algorithm to fill the table for t, distinguishing three cases,
based on the type of node t (see Theorem 9).

3.2.1 Case 1: τ(t) has at most c(h) vertices of degree larger than d(h).
In this case we use Algorithm 3.2. For each R and F it first removes the irrelevant parts of the
graph and then branches on the non-terminal vertices of high degree. Following that, it invokes
Algorithm 3.3. Note that, since t can have an unbounded number of children in M we cannot afford
to guess the solution for each of them. Hence SatisfyChildrenSD only branches on the solution
which is taken from the children which need at least one private vertex of the solution. After a
solution is selected for all such children, it uses Rule 1 and unless the number of obtained source
terminals is too big, in which case there is no solution for the branch, it uses the modified algorithm
of Nederlof as described in Lemma 5.

For the proof of the correctness of the algorithm, we need several observations and lemmas.
I Observation 11. Let (D, r, T, k) be an instance of DST. For every x in V \ (T ∪ {r}) we have that
S is a solution for (D, r, T ∪ {x}, k − 1) if and only if S ∪ {x} is a solution for (D, r, T, k) and x is
reachable from r in D[T ∪ S ∪ {r, x}]. In particular, if S ∪ {x} is a minimal solution for (D, r, T, k),
then S is a minimal solution for (D, r, T ∪ {x}, k − 1).

I Lemma 12. Let (D′, r, T ′, k) be an instance of DST andM,β be a tree decomposition for D rooted at
t. Let s be a child of t for which the condition on line 2 of Algorithm 3.3 is satisfied. Let (D′′, r, T ′′, k′)
be the instance as formed by lines 7–10 of the algortihm on s for some R′ and F ′. If S is a solution
for (D′′, r, T ′′, k′) then S′ = S ∪ Tabs(R′, F ′) ∪ (R′ \ T ′σ(s)) is a solution for (D′, r, T ′, k).
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1 foreach R with Tσ(t) ⊆ R ⊆ σ(t) do
2 foreach F ⊆ R2 do
3 D′ ← D[α(t) ∪R] ∪ F .
4 S ← S∞.
5 B ← {v | v ∈ (β(t) ∩ V (D′)) \ (T ∪R)& degτ(t)(v) > d(h)}.
6 foreach Y ⊆ B with |Y | ≤ k do
7 D′′ ← D′ \ (B \ Y ).
8 M ′ ← subtree of M rooted at t.
9 Let β′ : V (M ′)→ 2V (D′′) be such that β′(s) = β(s) ∩ V (D′′) for every s in V (M ′).

10 S′ ← SatifyChildrenSD(D′′, r, T ∪ Y ∪R \ {r}, k − |Y |,M ′, β′) ∪ Y .
11 if |S′| < |S| then S ← S′

12 end
13 Tabt(R,F )← S.
14 end

Algorithm 3.2: Algorithm SmallDeg to fill Tabt if all but few vertices of the bag have small
degrees.

Input : An instance (D′, r, T ′, k) of DST, a tree decomposition (M,β) rooted at t
Output: A smallest solution to the instance or S∞ if all solutions are larger than k

1 if k < 0 then return S∞
2 if ∃s child of t such that |Tabs(T ′σ(s), {r} × (T ′ ∩ σ(s))| > 0 then
3 S ← S∞.
4 foreach R′ s.t. T ′σ(s) ⊆ R

′ ⊆ σ(s) do
5 foreach F ′ ⊆ (R′)2 do
6 if |Tabs(R′, F ′) ∪ (R′ \ T ′σ(s))| ≤ k then
7 D̂ ← D′ \ (γ(s) \R′).
8 D′′ ← D̂ ∪ κs(R′, F ′).
9 T ′′ ← (T ′ ∩ V (D′′)) ∪ (R′ \ T ′σ(s)).

10 k′ ← k − |Tabs(R′, F ′)| − |R′ \ T ′σ(s)|.
11 M ′ ←M with the subtree rooted at s removed.
12 Let β′ : V (M ′)→ 2V (D′′) be such that β′(s) = β(s) ∩ V (D′′) for every s in V (M ′).
13 S′ ← SatisfyChildrenSD (D′′, r, T ′′, k′,M ′, β′, Y ′) ∪ Tabs(R′, F ′) ∪ (R′ \ T ′σ(s)).
14 if |S′| < |S| then S ← S′

15 end
16 else
17 Apply Rule 1 exhaustively to (D′, r, T ′, k) to obtain (D′′, r, T ′′, k).
18 Denote by T0 the source terminals in (D′′, r, T ′′, k).
19 if |T0| > k ·max{d(h), a(h)} then S ← S∞
20 else S ← Nederlof (D′′, r, T ′′, T0).
21 end
22 if |S| > k then S ← S∞
23 return S

Algorithm 3.3: Function SatisfyChildrenSD (D′, r, T ′, k,M, β) doing the main part of the
work of Algortihm 3.2.
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Proof. Obviously |S′| ≤ k. We have to show that every vertex t′ in T ′ is reachable from r in
D′[T ′ ∪{r}∪S′]. For a vertex t′ in T ′′ there is a path from r to t′ in D′′. If this path contains an arc
(u, v) in κ(R′, F ′), then there is a path from u to v in D[T ′γ(s)∪R

′∪Tabs(R′, F ′)], and we can replace
the arc (u, v) with this path, obtaining (possibly after shortcutting) a path in D′[T ′ ∪ {r} ∪ S′]. For
a vertex t′ in T ′ ∩ γ(s) there is a path P from r to t′ in D[T ′γ(s) ∪R

′ ∪Tabs(R′, F ′)] ∪ F ′ as the Tabs
was filled correctly. Let r′ be the last vertex of R′ on P . Replacing the part of P from r to r′ by a
path in D′[T ′ ∪ {r} ∪ S′] obtained in the previous step, we get (possibly after shortcutting) a path
from r to t′ in D′[T ′ ∪ {r} ∪ S′] as required. J

I Observation 13. If s is a child of t and there are some R′ and F ′ such that |Tabs(R′, F ′)| = 0 then
every vertex in T ′ ∩ γ(s) is reachable from some vertex in R′ in D′[R′ ∪ T ′γ(s)]. Furthermore, if there
is an F ′ such that |Tabs(R′, F ′)| = 0, then |Tabs(R′, {r} × (R′ \ {r})| = 0, and also |Tabs(R′′, {r} ×
(R′′ \ {r})| = 0 for every R′ ⊆ R′′ ⊆ σ(s).

Proof. The first statement follows from the definition of Tabs, as F ′ is a set of arcs on R′. The second
part is a direct consequence of the first. J

I Observation 14. Suppose the condition on line 2 of Algorithm 3.3 is not satisfied, (D′′, r, T ′′, k) is
obtained from (D′, r, T ′, k) by exhaustive application of Rule 1 and T0 is the set of source terminals.
Let t0 ∈ T0 be obtained by contracting a strongly connected component C of D′[T ′]. If there is a
vertex u ∈ C ∩ γ(s) for some child s of t, then there is a vertex v ∈ C ∩ σ(s).

Proof. Since the condition is not satisfied, it follows from Observation 13 that there is a path from
some v ∈ σ(s) to u in D′[T ′ ∪ {r}]. Since t0 is a source terminal, this path has to be fully contained
in C. J

I Lemma 15. Suppose the condition on line 2 of Algorithm 3.3 is not satisfied, (D′′, r, T ′′, k) is
obtained from (D′, r, T ′, k) by exhaustive application of Rule 1 and T0 is the set of source terminals.
A vertex x in α(s) \ (T ′ ∪ {r}) for some child s of t can dominate at most a(h) vertices of T0. A
vertex x in β(t) \ (T ′ ∪ {r}) can dominate at most degτ(t)(x) vertices of T0.

Proof. If x ∈ V (D′) \ T ′ dominates a vertex t0 ∈ T0, then t0 was obtained by contracting some
strongly connected component C of D′[T ′] and there is an y ∈ C ∩ N+

D′(x). If x is in α(s), then
N+
D′(x) ⊆ γ(s), C contains a vertex of σ(s) due to Observation 14, and, hence, there can be at most

a(h) such t0’s. If x is in β(t), then either y is also in β(t), in which case the edge xy is in τ(t), or
y is in α(s) for some child s of t. In this case x is in σ(s), C contains a vertex y′ of σ(s) due to
Observation 14, and we can account t0 to the edge xy′ of τ(t). J

I Lemma 16. Let (D′, r, T ′, k) be an instance of DST and (M,β) be a tree decomposition for D′
rooted at t. Let s be a child of t for which the condition on line 2 of Algorithm 3.3 is satisfied. Let S
be a solution for (D′, r, T ′, k), R′ = (T ′ ∪ S ∪ {r}) ∩ σ(s) and F ′ be the set of arcs (uv) on R such
that v is reachable from u in D′[(T ′ ∪ S ∪ {r}) \ α(s)]. Let (D′′, r, T ′′, k′) be the instance as formed
by lines 7–10 on s for R′ and F ′. Then S \ α(s) \ (R′ \ T ′σ(s)) is a solution for (D′′, r, T ′′, k′), while
(S ∩ α(s)) is good for s,R′, F ′.

Proof. We first show that every vertex of (T ′∪S)\α(s) is reachable from r in D′′ = D′[(T ′∪S∪{r})\
α(s)]∪κ(R′, F ′). For every vertex t′ ∈ R′ there is a path from r to t′ inD′[T ′γ(s)∪R

′∪Tabs(R′, F ′)]∪F ′
since Tabs is correctly filled. Replacing the parts of this path in α(s) by arcs of κ(R′, F ′) and arcs
of F ′ by paths in D′[(T ′ ∪ S ∪ {r}) \ α(s)] one obtains a path in D′′ to every vertex of R′. Now for
every vertex t′ in (T ′ ∪ S) \ α(s) there is a path P from r to t in D′[T ′ ∪ S ∪ {r}]. Let r′ be the last
vertex of P in R′. Then concatenating the path from r to r′ obtained in the previous step with the
part of P between r′ and t′ we get a path from r to t′ in D′′.

We have shown, that S \ α(s) is a solution for (D′′, r, T ′, k − |Tabs(R′, F ′)|). It remains to use
Observation 11 to show that S \ α(s) \ (R′ \ T ′σ(s)) is a solution for (D′′, r, T ′′, k′).The second claim
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follows from that there is a path from r to every t′ ∈ (T ′∪S)∩γ(s) ⊇ T ′γ(s)∪R
′\{r} in D′[T ′∪S∪{r}]

and the parts of it outside γ(s) can be replaced by arcs of F ′. J

I Lemma 17. Let (D′, r, T ′, k) be an instance of DST and let (M,β) be a tree decomposition for D′.
If there is a solution S of size at most k for (D′, r, T ′, k), then the invocation
SatisfyChildrenSD(D′, r, T ′, k,M, β) returns a set S′ not larger than S.

Proof. We prove the claim by induction on the depth of the recursion. Note that the depth is
bounded by the number of children of t in M . Suppose first that the condition on line 2 is not
satisfied and |T0| > k · max{d(h), a(h)}. As no vertex can dominate more than max{d(h), a(h)}
vertices of T0 by Lemma 15, there is a vertex of T0 not dominated by S, which is a contradiction. If
|T0| ≤ k · max{d(h), a(h)}, it follows from the optimality of the modified Nederlof’s algorithm (see
Lemma 2) and Observation 1 that |S′| ≤ |S|.

Now suppose that the condition on line 2 is satisfied for some s. Let R′, F ′ and (D′′, r, T ′′, k′) be
as in Lemma 16. Then S \ α(s) \ (R′ \ T ′σ(s)) is a solution for (D′′, r, T ′′, k′), while S ∩ α(s) is good
for s,R′, F ′. Therefore |S ∩α(s)| ≤ |Tabs(R′, F ′)| as Tabs is filled correctly by assumption. Moreover
SatisfyChildrenSD(D′′, r, T ′′, k′,M, β) will return a set S′ with |S′| ≤ |S \ α(s) \ (R′ \ T ′σ(s))| due
to the induction hypothesis. Together we get that |S′∪Tabs(R′, F ′)∪ (R′ \T ′σ(s))| ≤ |S| and therefore
also the set returned by SatisfyChildrenSD is not larger than S. J

Now we are ready to prove the correctness of the algorithm. We first show that if the algorithm
stores a set S 6= S∞ in Tabt(R,F ), then S ⊆ α(t) and in the digraph D[Tγ(t) ∪ R ∪ S] ∪ F there
is a directed path from r to every t′ ∈ Tγ(t) ∪ R. This will follow from Observation 11 if we prove
that SatisfyChildrenSD(D′, r, T ′, k,M, β) returning a set S 6= S∞ implies that S is a solution
for (D′, r, T ′, k). We prove this claim by induction on the depth of the recursion. If the condition
on line 2 is not satisfied (and hence there is no recursion) the claim follows from the correctness of
the modified version of Nederlof’s algorithm (see Lemma 2) and Observation 1. If the condition is
satisfied, then the claim follows from Lemma 12 and the induction hypothesis.

In order to prove that the set stored is minimal, assume that there is a set S ⊆ α(t) of size at
most k which is good for t, R, F . Let B = {v | v ∈ (β(t) ∩ V (D′)) \ (T ∪ R)& degτ(t)(v) > d(h)},
Y = S ∩ B and D′′ = D′ \ (B \ Y ). Without loss of generality we can assume that S is minimal
and, therefore, S \ Y is a solution for (D′′, r, T ∪ Y ∪ R \ {r}, k − |Y |) by Observation 11. Hence
SatifyChildrenSD(D′′, r, T ∪Y ∪R \{r}, k−|Y |,M ′, β′)∪Y returns a set S′ not larger than S \Y
due to Lemma 17 and the set stored in Tabt(R,F ) is not larger than |S′∪Y | = |S| finishing the proof
of correctness.

As for the time complexity, observe first, that the bottleneck of the running time of Algorithm 3.2
is the at most 2c(h) calls of Algorithm 3.3. Therefore, we focus our attention on the running time of
Algorithm 3.3. Note that in each recursive call of SatisfyChildrenSD, by Observation 13, as the
condition on line 2 is satisfied, either |Tabs(R′, F ′)| > 0 or |R′ \ T ′σ(s)| > 0 and thus, k′ < k. There
are at most g(h) recursive calls for one call of the function. The time spent by SatisfyChildrenSD
on instance with parameter k is at most the maximum of g(h) times the time spent on instances with
parameter k − 1 and the time spend by the modified algorithm of Nederlof on an instance with at
most k ·max{d(h), a(h)} source terminals. As the time spent for k < 0 is constant, we conclude that
the running time in Case 1 can be bounded by O∗((max{g(h), 2max{d(h),a(h)}})k).

3.2.2 Case 2: Ke(h) 6� τ(t).
The overall strategy in this case is similar to that in the previous case. Basically all the work
is done by Algorithm 3.4( SatisfyChildrenMF()), which is a slight modification of the function
SatisfyChildrenSD. The modification is limited to the else branch of the condition on line 2, that
is, to lines 17–20, where Algorithm 3.1 (developed in Section 3.1) is used instead of the modified
version of Nederlof’s algorithm. For every R and F we now simply store in |Tabt(R,F )| the result of
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SatisfyChildrenMF(D′, r, T ∪ R \ {r}, k,M ′, β′), where D′ = D[α(t) ∪ R] ∪ F , M ′ is the subtree
of M rooted at t and β′ : V (M ′)→ 2V (D′) is such that β′(s) = β(s) ∩ V (D′) for every s in V (M ′).

16 else
17 Apply Rule 1 exhaustively to (D′, r, T ′, k) to obtain (D′′, r, T ′′, k).
18 Denote by T0 the source terminals in (D′′, r, T ′′, k).
19 Bh ← non-terminals with degree at least max{e(h)− 1, a(h) + 1} in T0.
20 Bl ← non-terminals with degree at most max{e(h)− 2, a(h)} in T0.
21 Wh ← source terminals with an in-neighbor in Bh.
22 S ← DST-solve((D′′, r, T ′′, k),max{e(h)− 2, a(h)}, Bh, Bl, ∅,Wh, T0 \Wh).
23 end
24 return S

Algorithm 3.4: Part of the function SatisfyChildrenMF (D′, r, T ′, k,M, β) which differs
from the appropriate part of the function SatisfyChildrenSD.

For the analysis, we need most of the lemmata proved for Case 1. To prove a running time upper
bound we also need the following lemma.

I Lemma 18. Suppose the condition on line 2 of Algorithm 3.4 is not satisfied, (D′′, r, T ′′, k) is
obtained from (D′, r, T ′, k) by exhaustive application of Rule 1, T0 is the set of source terminals and
Bh and Wh are defined as on lines 19–21. Then D′′[Bh ∪Wh] � τ(t).

Proof. As proven in Lemma 15, the non-terminals in γ(t) \ β(t) can only dominate at most a(h)
vertices in T0. Therefore Bh ⊆ β(t). By Lemma 14, each vertex t′ in T0 was obtained by contracting
a strongly connected component C(t′) which contains at least one vertex of β(t). Finally, if b ∈ Bh
dominates w ∈Wh, but there is no edge between b and β(t)∩C(w) in D′, then there is a child s of t
such that b ∈ σ(s), C(w)∩α(s) 6= ∅, thus there is y ∈ C(w)∩σ(s) and by is an edge of τ(t) as σ(s) is
a clique in τ(t). By the same argument C(w)∩ τ(t) is connected for every w ∈Wh and D′′[Bh ∪Wh]
has a model in τ(t). J

The proof of correctness of the algorithm is similar to that in Case 1. By Observation 11, it
is enough to prove that if SatisfyChildrenMF(D′, r, T ′, k,M, β) returns a set S 6= S∞ then S is
a smallest solution for (D′, r, T ′, k). We prove this claim again by induction on the depth of the
recursion. If the condition on line 2 is not satisfied (and hence there is no recursion) the claim follows
from the correctness of the algorithm DST-solve proved in Section 3.1. If the condition is satisfied,
it follows from Lemma 12 and the induction hypothesis that the set returned is indeed a solution.
The minimality in this case is proved exactly the same way as in Lemma 17.

As for the time complexity, let us first find a bound dmax
w for DST-solve in the case the condition

on line 2 is not satisfied. Lemma 18 implies that Ke(h) 6� D′′[Bh ∪Wh] in this case. Using Lemma 3,
we can derive an upper bound dmax

w ≤ c · e(h)4 for some constant c. It follows then from the proof
in Section 3.1 that DST-solve runs in O∗((2O(db) · dmax

w )k) time and, as db = max{e(h) − 2, a(h)},
there is a constant g′(h), such that the running time of DST-solve can be bounded by O∗((g′(h))k).
From this, similarly as in Case 1, it is easy to conclude, that the running time of the overall algorithm
for Case 2 can be bounded by O∗((max{g(h), g′(h)})k).

3.2.3 Case 3: |β(t)| ≤ b(h).

If |β(t)| ≤ b(h), then no vertex in τ(t) has degree larger than b(h)−1, and Kb(h)+1 6� τ(t). Therefore,
in this case, either of the two approaches described above can be used. This completes the proof of
Theorem 10. J
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Figure 3 A instance of Set Cover reduced to an instance of DST. The red vertices are the terminals and
the green vertices are the non-terminals.

3.3 DST on d-degenerated graphs

Since DST has a O∗(f(k, h)) algorithm on graphs excluding minors and topological minors, a natural
question is if DST has a O∗(f(k, d)) algorithm on d-degenerated graphs. However, we show that in
general, we cannot expect an algorithm of this form even for an arbitrary 2-degenerated graph.

I Theorem 19. DST parameterized by k is W[2]-hard on 2-degenerated graphs.

Proof. The proof is by a parameterized reduction from Set Cover. Given an instance (U ,F =
{F1, . . . , Fm}, k) of Set Cover, we construct an instance of DST as follows. Corresponding to each
set Fi, we have a vertex fi and corresponding to each element u ∈ U , we add a directed cycle Cu of
length lu where lu is the number of sets in F which contain u (see Fig. 3). For each cycle Cu, we add
an arc from each of the sets containing u, to a unique vertex of Cu. Since Cu has lu vertices, this is
possible. Finally, we add another directed cycle C of length m+ 1 and for each vertex fi, we add an
arc from a unique vertex of C to fi. Again, since C has length m+ 1, this is possible. Finally, we set
as the root r, the only remaining vertex of C which does not have an arc to some fi and we set as
terminals all the vertices involved in a directed cycle Cu for some u and all the vertices in the cycle C
except the root r. It is easy to see that the resulting digraph has degeneracy 3. Finally, we subdivide
every edge which lies in a cycle Cu for some u, or on the cycle C and add the new vertices to the
terminal set. This results in a digraph D of degeneracy 2. Let T be the set of terminals as defined
above. This completes the construction. We claim that (U ,F , k) is a Yes instance of Set Cover iff
(D, r, T, k) is a Yes instance of DST.

Suppose that (U ,F , k) is a Yes instance and let F ⊆ F be a solution. Consider the set Fv =
{fi|Fi ∈ F}. Clearly, |F | ≤ k and F is a solution for the instance (D, r, T, k) as all the terminals are
reachable from r in D[F ∪ T ∪ {r}].

Conversely, suppose that Fv is a solution for (D, r, T, k). Since the only non-terminals are the
vertices corresponding to the sets in F , we define a set F ⊆ F as F = {Fi|fi ∈ Fv}. Clearly |F | ≤ k.
We claim that F is a solution for the Set Cover instance (U ,F , k). Since there are no edges between
the cycles Cu or C in the instance of DST, for every u, it must be the case that Fv contains some
vertex fi which has an arc to a vertex in the cycle Cu. But the corresponding set Fi will cover the
element u and we have defined F such that Fi ∈ F . Hence, F is indeed a solution for the instance
(U ,F , k). This completes the proof. J
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In the instance of DST obtained in the above reduction, it seems that the presence of directed cycles
in the subgraph induced by the terminals plays a major role in the hardness of this instance. We
formally show that this is indeed the case by presenting an FPT algorithm for DST for the case the
digraph induced by the terminals is acyclic.

I Theorem 20. DST can be solved in time O∗(2O(dk)) on d-degenerated graphs if the digraph induced
by the terminals is acyclic.

Proof. As the digraph induced by terminals is acyclic, Rule 1 does not apply and the instance is
reduced. Therefore we can directly execute the algorithm DST-solve on it. We set the degree
bound to db = d. Note that if the set Bh and Wh created by the algorithm fulfill the invariants,
then, as the digraph induced by Wh ∪ Bh is d-degenerated and the degree of every vertex in Bh
is at least db + 1 = d + 1, there must be a vertex v ∈ Wh with at most d (in-)neighbors in Bh.
Therefore we have dmax

w = d and according to the analysis from Section 3.1, the algorithm runs in
O∗((2O(db) · dmax

w )k) = O∗(2O(d)k) time. J

Theorem 20 combined with Lemma 7 results in the following corollary.

I Corollary 21. If C is an o(logn)-degenerated class of digraphs, then DST parameterized by k is
FPT on C if the digraph induced by terminals is acyclic.

Before concluding this section, we also observe that analogous to the algorithms in Theorems 6 and
20, we can show that in the case when the digraph induced by terminals is acyclic, the DST problem
admits an algorithm running in time O∗(2O(hk)) on graphs excluding Kh as a topological minor.

I Theorem 22. DST can be solved in time O∗(2O(hk)) on graphs excluding Kh as a topological minor
if the digraph induced by terminals is acyclic.

Combined with Lemma 7, Theorem 22 has the following corollary.

I Corollary 23. If C is a class of digraphs excluding o(logn)-sized topological minors, then DST
parameterized by k is FPT on C if the digraph induced by terminals is acyclic.

3.4 Hardness of DST
In this section, we show that the algorithm given in Theorem 20 is essentially the best possible with
respect to the dependency on the degeneracy of the graph and the solution size. We begin by proving
a lower bound on the time required by any algorithm for DST on graphs of degeneracy O(logn).
Our starting point is the known result for the following problem.

Partitioned Subgraph Isomorphism (PSI)
Input: Undirected graphs H = (VH , EH) and G = (VG = {g1, . . . , gl}, EG) and a

coloring function col : VH → [l].
Question: Is there an injection φ : VG → VH such that for every i ∈ [l], col(φ(gi)) = i and

for every (gi, gj) ∈ EG, (φ(gi), φ(gj)) ∈ EH?

We need the following lemma by Marx [32].

I Lemma 24. (Corollary 6.3, [32]) Partitioned Subgraph Isomorphism cannot be solved in
time f(k)no( k

log k ) where f is an arbitrary function and k = |EG| is the number of edges in the smaller
graph G unless ETH fails.

Using the above lemma, we will first prove a similar kind of hardness for a restricted version of Set
Cover (Lemma 25). Following that, we will reduce this problem to an instance of DST to prove the
hardness of the problem on graphs of degeneracy O(logn).
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Figure 4 An illustration of the sets in the reduced instance, corresponding to the graph G (on the left).
The blue sets at position (i, i) correspond to vertices of H with color i and the green sets at position (i, j)
correspond to edges of H between color classes i and j.

I Lemma 25. There is a constant γ such that Set Cover with size of each set bounded by γ logm
cannot be solved in time f(k)mo( k

log k ), unless ETH fails, where k is the size of the solution and m is
the size of the family of sets.

Proof. Let (H = (VH , EH), G = (VG, EG), col) be an instance of Partitioned Subgraph Iso-
morphism where |VG| = l and the function col : VH → [l] is a coloring (not necessarily proper) of the
vertices of H with colors from [l]. We call the set of vertices of H which have the same color, a color
class. We assume without loss of generality that there are no isolated vertices in G. Let n be the
number of vertices of H. For each vertex of color i in H, we assign a logn-sized subset of 2 logn. Since(2 logn

logn
)
≥ n, this is possible. Let this assignment be represented by the function id : VH → 2[2 logn].

Recall that the vertices of G are numbered g1, . . . , gl and we are looking for a colorful subgraph
of H isomorphic to G such that the vertex from color class i is mapped to the vertex gi.

We will list the sets of the Set Cover instance and then we will define the set of elements
contained in each set. For each pair (i, j) such that there is an edge between gi and gj , and for every
edge between vertices u and v in VH such that col(u) = i, col(v) = j, we have a set F ijuv. For each
i ∈ [l], for each v ∈ VH such that col(v) = i, we have a set F iivv. The notation is chosen is such way
that we can think of the sets as placed on a l× l grid, where the sets F ijuv for a fixed i and j are placed
at the position (i, j) (see Fig. 4). Observe that many sets can be placed at a position and it may also
be the case that some positions of the grid do not have a set placed on them. Let F be the family of
sets defined as above.

A position (i, j) which has a set placed on it is called non-empty and empty otherwise. Without
loss of generality, we assume that if there are i 6= j such that there is an edge between gi and gj
in G, then the position (i, j) is non-empty. Two non-empty positions (i, j) and (i′, j) are said to be
consecutive if there is no non-empty position (i′′, j) where i < i′′ < i′. Similarly, two non-empty
positions (i, j) and (i, j′) are said to be consecutive if there is no non-empty position (i, j′′) where
j < j′′ < j′. Note that consecutive positions are only defined along the same row or column.

We now define the universe U as follows. For every non-empty position (i, j), we have an element
s(i,j). For every (i1, j1) and (i2, j2) such that they are consecutive, we have a set U (i1,j1)(i2,j2) of 2 logn
elements {u(i1,j1)(i2,j2)

1 . . . , u
(i1,j1)(i2,j2)
2 logn }. An element u(i1,j1)(i2,j2)

a is said to correspond to id(u) for
some vertex u if a ∈ id(u).

We will now define the elements contained within each set. For each non-empty position (i, j),
add the element s(i,j) to every F ijuv for all (possible) u, v. Now, fix 1 ≤ i ≤ l. Let (i, j1) and (i, j2) be
consecutive positions where j1 < j2. For each set F ij1

uv , we add the elements {u(i,j1)(i,j2)
a |a /∈ id(u)}
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and for each set F ij2
uv , we add the the elements {u(i,j1)(i,j2)

a |a ∈ id(u)}.
Similarly, fix 1 ≤ j ≤ l. Let (i1, j) and (i2, j) be consecutive positions where that i1 < i2. For each

set F i1juv , we add the elements {u(i1,j)(i2,j)
a |a /∈ id(u)} and for each set F i2juv , we add the the elements

{u(i1,j)(i2,j)
a |a ∈ id(u)}.
This completes the construction of the Set Cover instance. We first prove the following lemma

regarding the constructed instance, which we will then use to show the correctness of the reduction.

I Lemma 26. Suppose (i, j1) and (i, j2) are two consecutive positions where j1 < j2 and (i1, j) and
(i2, j) are two consecutive positions where i1 < i2.
1. The elements in U (i,j1)(i,j2) can be covered by precisely one set from (i, j1) and one set from (i, j2)

iff the two sets are of the form F ij1
uv and F ij2

uv′ .
2. The elements in U (i1,j)(i2,j) can be covered by precisely one set from (i1, j) and one set from (i2, j)

iff the two sets are of the form F i1juv and F i2ju′v.

Proof. We prove the first statement. The proof of the second is analogous. Observe that, by the
construction, the only sets which can cover elements in U (i,j1)(i,j2) are sets from (i, j1) and (i, j2).

Suppose that the elements in U (i,j1)(i,j2) are covered by precisely one set from (i, j1) and one
from (i, j2) and the two sets are of the form F ij1

uv and F ij2
u′v′ where u 6= u′. By the construction,

the set F ij1
uv covers the elements of U (i,j1)(i,j2) which do not correspond to id(u) and the set F ij2

u′v′

covers the elements of U (i,j1)(i,j2) which correspond to id(u′). Since col(u) = col(u′) (implied by the
construction), id(u) 6= id(u′). Since |id(u)| = |id(u′)|, it must be the case that there is an element of
[2 logn], say x, which is in id(u) but not in id(u′). But then, it must be the case that the element
u

(i,j1)(i,j2)
x is left uncovered by both F ij1

uv and F ij2
u′v′ , a contradiction.

Conversely, consider two sets of the form F ij1
uv and F ij2

uv′ . We claim that these two sets together
cover the elements in U (i,j1)(i,j2). But this is true since F ij1

uv covers the elements of U (i,j1)(i,j2) which
do not correspond to id(u) and F ij2

uv′ covers the elements of U (i,j1)(i,j2) which do correspond to id(u).
This completes the proof of the lemma.

J

We claim the instance (H,G, col) is a Yes instance of PSI iff the instance (U ,F , k′) is a Yes instance
of Set Cover, where k′ = 2|EG|+ |VG|. Suppose that (H,G, col) is a Yes instance, φ is its solution,
and let vi = φ(gi). We claim that the sets F ijvivj

, where (i, j) is a non-empty position, form a solution
for the Set Cover instance. Since we have picked a set from every non-empty position (i, j), the
elements s(i,j) are all covered. But since the sets we picked from any two consecutive positions match
premise of Lemma 26, the elements corresponding to the consecutive positions are also covered.

Conversely, suppose that the Set Cover instance is a Yes instance and let F ′ be a solution.
Since we must pick at least one set from each non-empty position (we have to cover the vertices s(i,j)),
and the number of non-empty positions equals k′, we must have picked exactly one set from each
non-empty position. Let vi be the vertex corresponding to the set picked at position (i, i). We define
the function φ as φ(gi) = vi. Clearly, φ is an injection with col(φ(gi)) = i. It remains to show that for
every gi, gj , if (gi, gj) ∈ EG, then there is an edge between vi and vj . To show this, we need to show
that the set picked from position (i, j) has to be exactly F ijvivj

. By Lemma 26, the sets picked from
row i are of the form F ijvi,v, for any j and v and the sets picked from column j are of the form F ijv,vj

,
for any i and v. Hence, the set picked from position (i, j) can only be F ijvivj

. Thus, there is an edge
between vi and vj in H and φ is indeed a homomorphism. This completes the proof of equivalence
of the two instances.
Since G contains no isolated vertex, we have l = O(k) and, thus, k′ = Θ(k). Observe that the number
of sets m in the Set Cover instance is |VH |+ 2|EH |, that is, n ≤ m and m = O(n2). Observe that
each set contains at most 4 logn+ 1 elements, one of the form s(i,j) and logn for each of the at most
four consecutive positions the set can be a part of. Since the number of sets m is at least n, there
is a constant γ such that the number of elements in each set is bounded by γ logm. Finally, since
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m = O(n2), an algorithm for Set Cover of the form f(k)mo( k
log k ) implies an algorithm of the form

f(k)no( k
log k ) for PSI. This completes the proof of the lemma. J

Now we are ready to prove the main theorem of this section.

I Theorem 27. DST cannot be solved in time f(k)no( k
log k ) on c logn-degenerated graphs for any

constant c > 0 even if the digraph induced by terminals is acyclic, where k is the solution size and f
is an arbitrary function, unless ETH fails.

Proof. The proof is by a reduction from the restricted version of Set Cover shown to be hard in
Lemma 25. Fix a constant c > 0 and let (U = {u1, . . . , un},F = {F1, . . . , Fm}, k) be an instance
of Set Cover, where the size of any set is at most γ logm, for some constant γ. For each set Fi,
we have a vertex fi. For each element ui, we have a vertex xi. If an element ui is contained in set
Fj , then we add an arc (fj , xi). Further, we add another vertex r and add arcs (r, fi) for every i.
Finally, we add m2γ/c isolated vertices. This completes the construction of the digraph D. We set
T = {x1, . . . , xn} ∪ {r} as the set of terminals and r as the root.

We claim that (U ,F , k) is a Yes instance of Set Cover iff (D, r, T, k) is a Yes instance of DST.
Suppose that {F1, . . . , Fk} is a set cover for the given instance. It is easy to see that the vertices
{f1, . . . , fk} form a solution for the DST instance.

Conversely, suppose that {f1, . . . , fk} is a solution for the DST instance. Since the only way
that r can reach a vertex xi is through some fj , and the construction implies that ui ∈ Fj , the
sets {F1, . . . , Fk} form a set cover for (U ,F , k). This concludes the proof of equivalence of the two
instances.

We claim that the degeneracy of the graph D is c logn1 + 1. First, we show that the degeneracy
of the graph D is bounded by γ logm + 1. This follows from that each vertex fi has total degree
at most γ logm + 1 and if a subgraph contains none of these vertices, then it contains no edges.
Now, n1 is at least m2γ/c. Hence, logn1 ≥ (2γ/c) logm and the degeneracy of the graph is at most
γ logm+1 ≤ c · (2γ/c) logm ≤ c logn1. Finally, since each vertex fi is adjacent to at most γ logm+1
vertices, n1 = O(m logm + m2γ/c) and, thus, it is polynomial in m. Hence, an algorithm for DST
of the form f(k)no( k

log k )
1 implies an algorithm of the form f(k)mo( k

log k ) for the Set Cover instance.
This concludes the proof of Theorem 27. J

Combining the Theorem 27 with Lemma 7 we get the following corollary.

I Corollary 28. There are no two functions f and g such that g(d) = o(d) and there is an algorithm
for DST running in time O∗(2g(d)f(k)) unless ETH fails.

To examine the dependency on the solution size we utilize the following theorem.

I Theorem 29. ([27]) There is a constant c such that Dominating Set does not have an algorithm
running in time O∗(2o(n)) on graphs of maximum degree ≤ c unless ETH fails.

From Theorem 29, we can infer the following corollary.

I Corollary 30. There are no two functions f and g such that f(k) = o(k) and there is an algorithm
for DST running in time O∗(2g(d)f(k)), unless ETH fails.

Proof. We use the following standard reduction from Dominating Set to DST. Let (G = (V,E), k)
be an instance of Dominating Set with the maximum degree of G bounded by some constant c. We
can assume that the number of vertices n of the graph G is at most ck + k, since otherwise, it is a
trivial No instance. Let D = (V ′, A) be the digraph defined as follows. We set V ′ = V ×{1, 2}∪{r}.
There is an arc in A from (u, 1) to (v, 2) if either u = v or there is an edge between u and v in E.
Finally, there is an arc from r to (v, 1) for every v ∈ V . We let T = {(v, 2) | v ∈ V }.

It is easy to check that S ⊆ V is a solution to the instance (G, k) of Dominating Set if and only
if S × {1} is a solution to the instance (D, r, T, k) of DST. As the vertices (v, 2) have degree at most
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c + 1, D is c + 1-degenerated. Since the reduction is polynomial time, preserves k and k = Θ(n),
an algorithm for DST running in time O∗(2g(d)f(k)) for some f(k) = o(k) would solve Dominating
Set on graphs of maximum degree ≤ c in time O∗(2g(c+1)f(k)) = O∗(2o(n)), and, hence, ETH fails by
Theorem 29. J

4 Applications to Dominating Set

In this section, we adapt the ideas used in the algorithms for DST to design improved algorithms for
the Dominating Set problem and some variants of it in subclasses of degenerated graphs.

4.1 Introduction for Dominating Set
On general graphs Dominating Set is W[2]-complete [13]. However, there are many interesting
graph classes where FPT-algorithms exist for Dominating Set. The project of expanding the ho-
rizon where FPT algorithms exist for Dominating Set has produced a number of cutting-edge
techniques of parameterized algorithm design. This has made Dominating Set a cornerstone prob-
lem in parameterized complexity. For an example the initial study of parameterized subexponential
algorithms for Dominating Set, on planar graphs [1, 17] resulted in the development of bidimen-
sionality theory characterizing a broad range of graph problems that admit efficient approximation
schemes, subexponential time FPT algorithms and efficient polynomial time pre-processing (called
kernelization) on minor closed graph classes [10, 11]. Alon and Gutner [2] and Philip, Raman, and
Sikdar [37] showed that Dominating Set problem is FPT on graphs of bounded degeneracy and on
Ki,j-free graphs, respectively.

Numerous papers also concerned the approximability of Dominating Set. It follows from [7]
that Dominating Set on general graphs can approximated to within roughly ln(∆(G) + 1), where
∆(G) is the maximum degree in the graph G. On the other hand, it is NP-hard to approximate
Dominating Set in bipartite graphs of degree at most B within a factor of (lnB − c ln lnB), for
some absolute constant c [8]. Note that a graph of degree at most B excludes KB+2 as a topological
minor, and, hence, the hardness also applies to graphs excluding Kh as a topological minor. While
a polynomial time approximation scheme (PTAS) is known for Kh-minor-free graphs [21], we are
not aware of any constant factor approximation for Dominating Set on graphs excluding Kh as a
topological minor or d-degenerated graphs.

Based on the ideas from previous sections, we develop an algorithm for Dominating Set. Our
algorithm for Dominating Set on d-degenerated graphs improves over the O∗(kO(dk)) time algorithm
by Alon and Gutner [2]. In fact, it turns out that our algorithm is essentially optimal – we show
that, assuming the ETH, the running time dependence of our algorithm on the degeneracy of the
input graph and solution size k cannot be significantly improved. Furthermore, we also give a factor
O(d2) approximation algorithm for Dominating Set on d-degenerated graphs. A list of our results
for Dominating Set is given below.

1. There is a O∗(3hk+o(hk))-time algorithm for Dominating Set on graphs excluding Kh as a
topological minor.

2. There is a O∗(3dk+o(dk))-time algorithm for Dominating Set on d-degenerated graphs. This
implies that Dominating Set is FPT on o(logn)-degenerated classes of graphs.

3. For any constant c > 0, there is no f(k)no( k
log k )-time algorithm on graphs of degeneracy c logn

unless ETH fails.
4. There are no two functions f and g such that g(d) = o(d) and there is an algorithm for Domin-

ating Set running in time O∗(2g(d)f(k)), unless ETH fails.
5. There are no two functions f and g such that f(k) = o(k) and there is an algorithm for Domin-

ating Set running in time O∗(2g(d)f(k)), unless ETH fails.
6. There is a O(dn logn) time factor O(d2) approximation algorithm for Dominating Set on d-

degenerated graphs.
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4.2 Dominating Set on graphs of bounded degeneracy
We begin by giving an algorithm for Dominating Set running in time O∗(3hk+o(hk)) in graphs
excluding Kh as a topological minor. This improves over the O∗(2O(kh logh)) algorithm of [2]. Though
the algorithm we give here is mainly built on the ideas developed for the algorithm for DST, the
algorithm has to be modified slightly in certain places in order to fit this problem. We also stress
this an example of how these ideas, with some modifications, can be made to fit problems other than
DST. We begin by proving lemmata required for the correctness of the base cases of our algorithm.

I Lemma 31. Let (G, k) be an instance of Dominating Set. Let Y ⊆ V be a set of vertices and
let B be the set of vertices (other than Y ) dominated by Y . Let W be the set of vertices of G not
dominated by Y , Bh be the set of vertices of B which dominate at least d + 1 terminals in W for
some constant d, Bl be the rest of the vertices of B, Wh be the vertices of W which have neighbors in
Bh∪W . If |W \Wh| > d(k−|Y |), then the given instance does not admit a solution which contains Y .

Proof. Let W \Wh = Wl. Since any vertex in Wl does not have neighbors in Bh ∪W ∪ Y , G[Wl]
is an independent set, and the only vertices which can dominate a vertex in Wl are either itself, or a
vertex of Bl. Any vertex of Wl can only dominate itself (vertices of Bl are already dominated by Y )
and any vertex of Bl can dominate at most d vertices of W . Hence, if |Wl| > d(k − |Y |), Wl cannot
be dominated by adding k − |Y | vertices to Y . This completes the proof. J

I Lemma 32. Let (D, k) be an instance of Dominating Set. Let Y ⊆ V be a set of vertices and
let B be the set of vertices (other than Y ) dominated by Y . Let W be the set of vertices of G not
dominated by Y , Bh be the set of vertices of B which dominate at least d + 1 terminals in W for
some constant d, Bl be the rest of the vertices of B, Wh be the vertices of W which have neighbors
in Bh ∪W .

If Bh ∪ Wh is empty, then there is an algorithm which can test if this instance has a solution
containing Y in time O∗(2d(k−|Y |)).

Proof. The premises of the lemma imply that the only potentially non-empty sets are Y , Bl and
W = Wl. If W is empty, we are done. Suppose W is non-empty. We know that |Y | ≤ k and, by
Lemma 31, we can assume that |W | ≤ d(k − |Y |). Since W is an independent set, the only vertices
the vertices of W can dominate (except for vertices dominated by Y ), are themselves. Thus it is
never worse to take a neighbor of them in the solution if they have one. The isolated vertices from W

can be simply moved to Y , as we have to take them into the solution. Now, it remains to find a set
of vertices of Bl of the appropriate size such that they dominate the remaining vertices of W . But
in this case, we can reduce it to an instance of DST and apply the algorithm from Lemma 2. The
reduction is as follows. Consider the graph G[Bl ∪W ]. Remove all edges between vertices in Bl. Let
this graph be Gdst. Simply add a new vertex r and add directed edges from r to every vertex in Bl.
Also orient all edges between Bl andW , from Bl toW . Now, W is set as the terminal set. Now, since
|W | ≤ dk, it is easy to see that the algorithm Nederlof(Gdst, r,W,W ) runs in time O∗(2d(k−|Y |)).
This completes the proof of the lemma. J

I Theorem 33. Dominating Set can be solved in time O∗(3hk+o(hk)) on graphs excluding Kh as a
topological minor.

Proof. The algorithm we describe takes as input an instance (G, k), and vertex sets B,W,Bh, Bl,
Wh, Wl and Y and returns a smallest solution for the instance, which contains Y if such a solution
exists. If there is no such solution, then the algorithm returns a dummy symbol S∞. To simplify the
description, we assume that |S∞| = ∞. The algorithm is a recursive algorithm and at any stage of
recursion, the corresponding recursive step returns the smallest set found in the recursions initiated
in this step. For the purpose of this proof, we will always have db = h − 2. Initially, all the sets
mentioned above are empty.
At any point, while updating these sets, we will maintain the following invariants (see Fig. 5).
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Figure 5 An illustration of the sets defined in Theorem 33

The sets Bh, Bl, Wh, Wl and Y are pairwise disjoint.
The set Y has size at most k.
B is the set of vertices dominated by Y .
W is the set of vertices not dominated by Y .
Bh is the set of vertices of B which dominate at least db + 1 vertices of W .
Bl is the set of vertices of B which dominate at most db vertices of W .
Wh is the set of vertices of W which have a neighbor in Bh ∪W .
Wl are the remaining vertices of W .

Observe that the sets Bl, Wh and Wl correspond to the sets Bl, Wh and W \ Wh defined in
the statement of Lemma 31. Hence, by Lemma 31, if |Wl| > db(k − |Y |), then there is no solution
containing Y and hence we return S∞ (see Algorithm 4.1). If Bh ∪ Wh is empty, then we apply
Lemma 32 to solve the problem in time O∗(2db(k−|Y |)). If Bh ∪Wh is non-empty, then we find a
vertex v ∈ Wh with the least neighbors in Bh ∪Wh. Let N be the set of these neighbors and let
|N | = dw.

We then branch into dw + 2 branches described as follows. In the first dw + 1 branches, we move
a vertex u of N ∪ {v}, to the set Y , and perform the following updates. We move the vertices of W
which are adjacent to u, to B, and update the remaining sets in a way that maintains the invariants
mentioned above. More precisely, set Bh as the set of vertices of B which dominate at least db + 1
vertices of W , Bl as the set of vertices of B which dominate at most db vertices of W , Wh as the set
of vertices of W which have a neighbor in Bh ∪W , and Wl as the rest of the vertices of W . Finally,
we recurse on the resulting instance.

In the last of the dw + 2 branches, that is, the branch where we have guessed that none of the
vertices of N are in the dominating set, we move the vertex v to Wl, delete the vertices of N ∩Bh and
the edges from v to N ∩Wh, to obtain the graph G′. Starting from here, we then update all the sets
in a way that the invariants are maintained. More precisely, set B as the set of vertices dominated
by Y , W as the set of vertices not dominated by Y , set Bh as the set of vertices of B which dominate
at least db + 1 vertices of W , Bl as the set of vertices of B which dominate at most db vertices of W ,
Wh as the set of vertices of W which have a neighbor in Bh ∪W , and Wl as the rest of the vertices
of W . Finally, we recurse on the resulting instance.

Correctness. At each node of the recursion tree, we define a measure µ(I) = db(k − |Y |) − |Wl|.
We prove the correctness of the algorithm by induction on this measure. In the base case, when
db(k − |Y |) − |Wl| < 0, then the algorithm is correct (by Lemma 31). Now, we assume as induction
hypothesis that the algorithm is correct on instances with measure less than some µ ≥ 0. Consider
an instance I such that µ(I) = µ. Since the branching is exhaustive, it is sufficient to show that
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Input : An instance (G, k) of Dominating Set, degree bound db, sets Bh, Bl, Y , Wh, Wl

Output: A smallest solution of size at most k and containing Y for the instance (D, k) if it
exists and S∞ otherwise

1 if |Wl| > db(k − |Y |) then return S∞
2 else if Bh = ∅ then
3 S ← Nederlof(Gdst, r,W,W ).
4 if |S| > k then S ← S∞
5 return S

6 end
7 else
8 S ← S∞
9 Find vertex v ∈Wh with the least neighbors in Bh ∪Wh.

10 for u ∈ ((Bh ∪Wh) ∩N [v]) do
11 Y = Y ∪ {u}, perform updates to get B′h, B′l, W ′h, W ′l .
12 S′ ← DS-solve((G, k), db, B′h, B′l, Y,W ′h,W ′l ).
13 if |S′| < |S| then S ← S′

14 end
15 Wl ←Wl ∪ {v}, perform updates to get new graph G′ and sets B′h, B′l, W ′h,W ′l .
16 S′ ← DS-solve((G′, k), db, B′h, B′l, Y,W ′h,Wl).
17 if |S′| < |S| then S ← S′

18 return S

19 end

Algorithm 4.1: Algorithm DS-solve for Dominating Set

the algorithm is correct on each of the child instances. To show this, it is sufficient to show that for
each child instance I ′, µ(I ′) < µ(I). In the first dw + 1 branches, the size of the set Y increases by
1, and the size of the set Wl does not decrease (Wl has no neighbors in Bh ∪Wl). Hence, in each
of these branches, µ(I ′) ≤ µ(I) − db. In the final branch, though the size of the set Y remains the
same, the size of the set Wl increases by at least 1. Hence, in this branch, µ(I ′) ≤ µ(I) − 1. Thus,
we have shown that in each branch, the measure drops, hence completing the proof of correctness of
the algorithm.

Analysis. Since D exludes Kh as a topological minor, Lemma 3, combined with the fact that we set
db = h − 2, implies that dmax

w = ch4, for some c, is an upper bound on the maximum dw which can
appear during the execution of the algorithm. We first bound the number of leaves of the recursion tree
as follows. The number of leaves is bounded by

∑dbk
i=0
(
dbk
i

)
(dmax
w + 1)k−

i
db . To see this, observe that

each branch of the recursion tree can be described by a length-dbk vector as shown in the correctness
paragraph. We then select i positions of this vector on which the last branch was taken. Finally for
k − i

db
of the remaining positions, we describe which of the first at most (dmax

w + 1) branches was
taken. Any of the first dmaxw + 1 branches can be taken at most k − i

db
times if the last branch is

taken i times.
The time taken along each root to leaf path in the recursion tree is polynomial, while the time

taken at a leaf for which the last branch was taken i times is O∗(2db(k−(k− i
db

))) = O∗(2i+k) (see
Lemmata 31 and 32). Hence, the running time of the algorithm is

O∗

(
dbk∑
i=0

(
dbk

i

)
(dmax
w + 1)k−

i
db · 2i+k

)
= O∗

(
(2dmax

w + 2)k ·
dbk∑
i=0

(
dbk

i

)
· 2i
)

= O∗
(
(2dmax

w + 2)k · 3dbk
)
.

For db = h− 2 and dmax
w = ch4 this is O∗(3hk+o(hk)). This completes the proof of the theorem.

J

© M. Jones, D. Lokshtanov, M.S. Ramanujan, S. Saurabh, and O. Suchý;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Observe that, when Algorithm 4.1 is run on a graph of degeneracy d, setting db = d, combined with
the simple fact that dmaxw ≤ d gives us the following theorem.

I Theorem 34. Dominating Set can be solved in time O∗(3dk+o(dk)) on graphs of degeneracy d.

From the above two theorems and Lemma 7, we have the following corollary.

I Corollary 35. If C is a class of graphs excluding o(logn)-sized topological minors or an o(logn)-
degenerated class of graphs, then Dominating Set parameterized by k is FPT on C.

4.3 Hardness
I Theorem 36. Dominating Set cannot be solved in time f(k)no( k

log k ) on c logn-degenerated graphs
for any constant c > 0, where k is the solution size and f is an arbitrary function, unless ETH fails.

Proof. The proof is by a reduction from the restricted version of Set Cover shown to be hard in
Lemma 25. Fix a constant c > 0 and let (U = {u1, . . . , un},F = {F1, . . . , Fm}, k) be an instance of
Set Cover, where the size of any set is at most γ logm for some constant γ. For each set Fi, we
have a vertex fi. For each element ui, we have a vertex xi. If an element ui is contained in the set Fj ,
then we add an edge (fj , xi). Further, we add two vertices r and p and add edges (r, fi) for every i
and an edge (r, p). Finally, we add star of size m2γ/c centered in q disjoint from the rest of the graph.
This completes the construction of the graph G.

We claim that (U ,F , k) is a Yes instance of Set Cover iff (G, k + 2) is a Yes instance of
Dominating Set. Suppose that {F1, . . . , Fk} is a set cover for the given instance. It is easy to see
that the vertices q, r, f1, . . . , fk form a solution for the Dominating Set instance.

In the converse direction, since one of p and r and at least one vertex of the star must be in
any dominating set, we assume without loss of generality that r and q are contained in the minimum
dominating set. Also, since r dominates any vertex fi, we may also assume that the solution is disjoint
from the xi’s. This is because, if xi was in the solution, we can replace it with an adjacent fj to
get another solution of the same size. Hence, we suppose that {q, r, f1, . . . , fk} is a solution for the
Dominating Set instance. Since the only way that some vertex xi can be dominated is by some fj ,
and the construction implies that ui ∈ Fj , the sets {F1, . . . , Fk} form a set cover for (U ,F , k). This
concludes the proof of equivalence of the two instances.

We claim that the degeneracy of the graph G is bounded by c logn1, where n1 is the number
of vertices in the graph G. First, we claim that the degeneracy of the graph G is bounded by
γ logm + 1. This follows from that each vertex fi has total degree at most γ logm + 1, each leaf of
the star has degree 1 and if a subgraph contains none of these vertices, then it contains no edges.
Now, n1 is at least m2γ/c. Hence, logn1 ≥ (2γ/c) logm and the degeneracy of the graph is at
most γ logm + 1 ≤ c · (2γ/c) logm ≤ c logn1. Finally, since each vertex fi is incident to at most
γ logm+ 1 vertices, n1 = O(m logm+m2γ/c) and, thus, it is polynomial in m. Hence, an algorithm
for Dominating Set of the form f(k)no( k

log k )
1 implies an algorithm of the form f(k)mo( k

log k ) for the
Set Cover instance. This concludes the proof of the theorem. J

As a corollary of Theorem 36, and Lemma 7, we have the following corollary.

I Corollary 37. There are no two functions f and g such that g(d) = o(d) and there is an algorithm
for Dominating Set running in time O∗(2g(d)f(k)) unless ETH fails.

From Theorem 29, we can infer the following corollary.

I Corollary 38. There are no two functions f and g such that f(k) = o(k) and there is an algorithm
for Dominating Set running in time O∗(2g(d)f(k)), unless ETH fails.

Proof. Suppose that there were an algorithm for Dominating Set running in time O∗(2g(d)f(k)),
where f(k) = o(k). Consider an instance (G, k) of Dominating Set where G is a graph with
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Input : An Undirected graph G = (V,E) without isolated vertices
Output: A dominating set for G of size at most O(d2) times the size of a minimum

dominating set
1 Y ← ∅
2 Wh ← V

3 while Wh 6= ∅ do
4 Find vertex v ∈Wh with the least neighbors in Bh ∪Wh.
5 Y ← Y ∪ ((Bh ∪Wh) ∩N(v))
6 B ← vertices in V \ Y with a neighbor in Y
7 W ← V \ (Y ∪B)
8 Bh ← vertices in B with at least d+ 1 neighbors in W
9 Bl ← B \Bh

10 Wh ← vertices in W with a neighbor in Bh or W
11 Wl ←W \Wh

12 end
13 Y ← Y ∪Wl

14 return Y

Algorithm 4.2: Algorithm DS-approx for Dominating Set

maximum degree c. We can assume that the number of vertices of the graph is at most ck + k,
since otherwise, it is a trivial No instance. Hence, k = Θ(n) and thus, an algorithm running in time
O∗(2g(d)f(k)) will run in time O∗(2g(c)f(k)) = O∗(2o(n)), and, by Theorem 29, ETH fails. J

Thus, Corollaries 37 and 38 together show that, unless ETH fails, our algorithm for Dominating
Set has the best possible dependence on both the degeneracy and the solution size.

4.4 Approximating Dominating Set on graphs of bounded degeneracy
In this section, we adapt the ideas developed in the previous subsections, to design a polynomial-time
O(d2)-approximation algorithm for the Dominating Set problem on d-degenerated graphs.

I Theorem 39. There is a O(dn logn)-time d2- approximation algorithm for the Dominating Set
problem on d-degenerated graphs.

Proof. The approximation algorithm is based on our FPT algorithm, but whenever the branching
algorithm would branch, we take all candidates into the solution and cycle instead of recursing. During
the execution of the algorithm the partial solution is kept in the set Y and vertex sets B,W,Bh, Bl,
Wh, and Wl are updated with the same meaning as in the branching algorithm. In the base case, all
vertices of Wl are taken into the solution. This last step could be replaced by searching a dominating
set for the vertices in Wl by some approximation algorithm for Set Cover. While this would
probably improve the performance of the algorithm in practice, it does not improve the theoretical
worst case bound.
Correctness. It is easy to see that the set Y output by the algorithm is a dominating set for G.
Now let Q be an optimal dominating set for G. We want to show that |Y | is at most d2 times |Q|.
In particular, we want to account every vertex of Y to some vertex of Q, which “should have been
chosen instead to get the optimal set.” Before we do that let us first observe, how the vertices can
move around the sets during the execution of the algorithm. Once a vertex is added to Y it is never
removed. Hence, once a vertex is moved from W to B, it is never moved back. But then the vertices
in B are only losing neighbors in W , and once they get to Bl they are never moved anywhere else.
Thus, vertices in Wl can never get a new neighbor in W or Bh and they also stay in Wl until Step 13.
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The vertices of Bh can get to Y or Bl and the vertices of Wh can get to any other set during the
execution of the algorithm.

Now let v be the vertex found in Step 4 of Algorithm 4.2 and w be the vertex dominating it in
Q. As in the branching algorithm, we know that |(Bh ∪Wh) ∩ N(v)| ≤ d since the subgraph of G
induced by (Bh ∪Wh) is d-degenerated. Hence at most d vertices are added to Y in Step 5 of the
algorithm. We charge the vertex w for these at most d vertices and make the vertex v responsible
for that. Finally, in Step 13 let v ∈ Wl and w be a vertex which dominates it in Q. We charge w
for adding v to Y and make v responsible for it. Obviously, for each vertex added to Y , some vertex
is responsible and some vertex of Q is charged. It remains to count for how many vertices can be a
vertex of Q charged.

Observe that whenever a vertex is responsible for adding some vertices to Y , it is W and after
adding these vertices it becomes dominated and, hence, moved to B. Therefore, each vertex becomes
responsible for adding vertices only once and, thus, each vertex is responsible for adding at most d
vertices to Y . Now let us distinguish in which set a vertex w of Q is, when it is first charged. If w is
first charged in Step 5 of the algorithm, then a vertex v ∈Wh is responsible for that and w has to be
either in Wh, Bh, or Bl, as vertices in Wh do not have neighbors elsewhere. In the first two cases, if
w 6= v, then it is moved to Y and hence has no neighbors in W anymore. If v = w, then it is moved
to Bl, and it has no neighbors in W , as all of them are moved to Y . Thus, in these cases, after the
step is done, w has no neighbors in W and, hence, is never charged again. If w is in Bl, then it has
at most d neighbors in W and, as each of them is responsible for adding at most d vertices to Y , w
is charged for at most d2 vertices. If a vertex w is first charged in Step 13, then it is Bl or Wl, has
at most d neighbors in Wl, each of them being responsible for addition of exactly one vertex, so it is
charged for addition of at most d vertices. It follows, that every vertex of Q is charged for addition
of at most d2 to Y and, therefore, |Y | is at most d2 times |Q|.
Running time analysis. To see the running time, observe first that by the above argument, every
vertex is added to each of the sets at most once. Also a vertex is moved from one set to another
only if some of its neighbors is moved to some other set or it is selected in Step 4. Hence, we might
think of a vertex sending a signal to all its neighbor, once it is moved to another set. There are only
constantly many signals and each of them is sent at most once over each edge in each direction. Hence,
all the updations of the sets can be done in O(m) = O(dn)-time, as the graph is d-degenerate. Also
each vertex in Wh can keep its number of neighbors in Wh ∪ Bh and update it whenever it receives
a signal from some of its neighbors about being moved out of Wh ∪ Bh. We can keep a heap of the
vertices in Wh sorted by a degree in Wh ∪Bh and update it in O(logn) time whenever the degree of
some of the vertices change. This means O(dn logn) time to keep the heap through the algorithm.
Using the heap, the vertex v in Step 4 can be found in O(logn)-time in each iteration. As in each
iteration at least one vertex is added to Y , there are at most n iterations and the total running time
is O(dn logn). J

This algorithm can be also used for Kh-minor-free and Kh-topological-minor free graphs, yielding
O(h2 · log h)-approximation and O(h4)-approximation, as these graphs are O(h ·

√
log h) and O(h2)-

degenerated, respectively. As far as we know, this is also the first constant factor approximation
for dominating set in Kh-topological-minor free graphs. Although PTAS is known for Kh-minor-free
graphs [21], our algorithm can be still of interest due to its simplicity and competitive running time.

5 Conclusions

We gave the first FPT algorithms for the Steiner Tree problem on directed graphs excluding a
fixed graph as a (topological) minor, and then extended the results to directed graphs of bounded
degeneracy. We mention that the same approach also gives us FPT algorithms for Dominating Set
and some of its variants, for instance Connected Dominating Set and Total Dominating Set.
Finally, in the process of showing the optimality of our algorithm, we showed that for any constant c,
DST is not expected to have an algorithm of the form f(k)no( k

log k ) on o(logn)-degenerated graphs.
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It would be interesting to either improve this lower bound, or prove the tightness of this bound by
giving an algorithm with a matching running time.
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