

Delft University of Technology

Hybridization Number on Three Rooted Binary Trees is EPT

van Iersel, Leo; Kelk, Steven; Lekić, Nela; Whidden, Chris; Zeh, Norbert

DOI
10.1137/15M1036579
Publication date
2016
Document Version
Final published version
Published in
SIAM Journal on Discrete Mathematics

Citation (APA)
van Iersel, L., Kelk, S., Lekić, N., Whidden, C., & Zeh, N. (2016). Hybridization Number on Three Rooted
Binary Trees is EPT. SIAM Journal on Discrete Mathematics, 30(3), 1607-1631.
https://doi.org/10.1137/15M1036579

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1137/15M1036579
https://doi.org/10.1137/15M1036579

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 30, No. 3, pp. 1607–1631

HYBRIDIZATION NUMBER ON THREE ROOTED BINARY TREES
IS EPT∗

LEO VAN IERSEL† , STEVEN KELK‡ , NELA LEKIĆ‡ , CHRIS WHIDDEN§ , AND

NORBERT ZEH¶

Abstract. Phylogenetic networks are leaf-labeled directed acyclic graphs that are used to de-
scribe nontreelike evolutionary histories and are thus a generalization of phylogenetic trees. The
hybridization number of a phylogenetic network is the sum of all in-degrees minus the number of
nodes plus one. The hybridization number problem takes as input a collection of rooted binary
phylogenetic trees and asks to construct a phylogenetic network that contains an embedding of each
of the input trees and has the smallest possible hybridization number. We present an algorithm for
the hybridization number problem on three binary phylogenetic trees on n leaves that runs in time
O(ckpoly(n)) with k the hybridization number of an optimal network and c some (astronomical)
constant. For the case of two trees, an algorithm with running time O(3.18kn) was proposed before,
whereas an algorithm with running time O(ckpoly(n)), also called an EPT algorithm, had prior to
this article remained elusive for more than two trees. The algorithm for two trees uses the close con-
nection to acyclic agreement forests to achieve a linear exponent in the running time, while previous
algorithms for more than two trees (explicitly or implicitly) relied on a brute force search through
all possible underlying network topologies, leading to running times that are not O(ckpoly(n)) for
any c. The connection to acyclic agreement forests is much weaker for more than two trees, so
even given the right agreement forest, the reconstruction of the network poses major challenges. We
prove novel structural results that allow us to reconstruct a network without having to guess the
underlying topology. Our techniques generalize to more than three input trees with the exception
of one key lemma that maps nodes in the network to tree nodes in order to minimize the amount of
guessing involved in constructing the network. The main open problem therefore is to prove results
that establish such a mapping for more than three trees.

Key words. hybridization number, rooted phylogenetic tree, rooted phylogenetic network,
reticulate evolution, agreement forest, fixed parameter tractability

AMS subject classifications. 92D15, 05C85

DOI. 10.1137/15M1036579

1. Introduction. In computational biology the evolutionary history of a set of
contemporary species (or taxa) is often modeled as a rooted phylogenetic tree. In-
formally this is a rooted tree in which the leaves are bijectively labeled by the taxa

∗Received by the editors August 24, 2015; accepted for publication (in revised form) May 20,
2016; published electronically August 24, 2016.

http://www.siam.org/journals/sidma/30-3/M103657.html
Funding: The first and third authors were, respectively, funded by a Veni and a Vrije Competitie

grant from the Netherlands Organisation for Scientific Research (NWO). The first author was partly
funded by the 3TU Applied Mathematics Institute. The fourth author was supported by National
Science Foundation award 1223057. The fifth author’s research was funded in part by the Natural
Sciences and Engineering Research Council of Canada and the Canada Research Chairs programme.

†Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5, 2600 AA
Delft, the Netherlands (l.j.j.v.iersel@gmail.com).

‡Department of Knowledge Engineering (DKE), Maastricht University, P.O. Box 616, 6200 MD
Maastricht, the Netherlands (steven.kelk@maastrichtuniversity.nl, nela.lekic@maastrichtuniversity.
nl).

§Fred Hutchinson Cancer Research Center, Seattle, WA 98109 (whidden@cs.dal.ca). This author
is a Simons Foundation Fellow of the Life Sciences Research Foundation.

¶Faculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax, NS B3H 1W5,
Canada (nzeh@cs.dal.ca).

1607

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sidma/30-3/M103657.html
mailto:l.j.j.v.iersel@gmail.com
mailto:steven.kelk@maastrichtuniversity.nl
mailto:nela.lekic@maastrichtuniversity.nl
mailto:nela.lekic@maastrichtuniversity.nl
mailto:whidden@cs.dal.ca
mailto:nzeh@cs.dal.ca

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1608 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

and edges are directed away from the root, reflecting the direction of evolution [22].
Nodes of out-degree two or higher model the points in history at which a common
ancestor of a subset of the taxa differentiated into two or more sublineages. The
central problem in phylogenetics is to recover the topology of the “true” phylogenetic
tree, given only information about the taxa, often DNA data. This is a challeng-
ing computational problem and has been the topic of intensive research during the
last 40 years [9]. Recently our understanding of evolutionary mechanisms has deep-
ened, and there is growing awareness that evolution is not always treelike [1]. In
particular, due to reticulate phenomena such as hybridization and horizontal gene
transfer [19], the evolution of a set of species is sometimes better modeled as a rooted
phylogenetic network [10], essentially a generalization of phylogenetic trees to directed
acyclic graphs (DAGs). In such graphs, nodes with indegree two or higher, known as
reticulations, represent the points at which two or more lineages merge rather than
diversify.

The study of rooted phylogenetic networks is comparatively new and has given
rise to many novel and hard combinatorial optimization problems [10]. In this article
we focus on the hybridization number problem, originally introduced in [2, 3], which
is one of the most well-studied phylogenetic network problems to date. Here we are
given a set of rooted phylogenetic trees T , on the same set of taxa X , and the goal
is to construct a phylogenetic network—henceforth called a hybridization network—
that contains an image of each of the input trees, while minimizing the hybridization
number k of the network. If we restrict (without loss of generality) to networks with
maximum in-degree two, the hybridization number is simply equal to the number of
reticulation nodes. We defer exact definitions to the preliminaries. See Figure 1 for
an example of a hybridization network (with hybridization number three) for three
input trees.

The holy grail for this problem is to develop algorithms that can cope with
many input trees and nonbinary input trees [19] (and to take different causes of
incongruence into account, see, e.g., [25]). However, thus far most algorithmic re-
search has focused on the simplest possible case: |T | = 2, and both input trees
are binary. Unfortunately even this version of the problem is NP-hard and APX-
hard [5], with similar (in)approximability properties to the classical problem di-
rected feedback vertex set [17]. Fortunately the binary two-tree problem is fixed
parameter tractable (FPT) in k. (See [7, 20] for an introduction to fixed parame-
ter tractability.) This result was initially established via kernelization—the problem
has a quadratic kernel [4]—but the theoretical state of the art is an algorithm based
on bounded-search with running time O(3.18k · poly(n)) [23], where n = |X |. The
comparative tractability of the problem, both in theory and practice (see, e.g., [6]
for a fast implementation), stems from the essentially one-to-one relationship be-
tween solutions to the two-tree problem and the maximum acyclic agreement forest
(MAAF) problem. In the latter problem (originally introduced in [3]) one is re-
quired to cut the two input trees into common components so that the number of
components is minimized and there are no cyclical dependencies between compo-
nents. The MAAF abstraction gives a useful static characterization of the two-tree
hybridization number problem [5]. In particular, in the two-tree case the MAAF ab-
straction essentially allows us to bypass the problem of actually constructing the
hybridization network: it can easily be constructed in polynomial time from the
components of the MAAF. The MAAF abstraction, and related FPT results, also
hold in the case of two nonbinary trees, albeit with significant technical complica-
tions [18, 21].

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1609

Fig. 1. A hybridization network for three trees which contains an invisible component (inside
the dashed circle). It can be shown that any hybridization network for these trees contains an invisible
component. However, the single node inside this component can be identified beause it corresponds
to a node of the blue solid input tree.D

ow
nl

oa
de

d
01

/1
7/

17
 to

 1
31

.1
80

.1
30

.2
27

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1610 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

For |T | > 2 the situation becomes more complex, however, even when restricted
to binary trees1 and |T | = 3. The MAAF abstraction weakens significantly and
cannot (obviously) be used to generate optimal solutions to the hybridization number
problem. Without the MAAF abstraction it seems that we have to explicitly confront
the challenge of actually constructing the hybridization network itself. This is a
theoretically daunting challenge, since the space of DAGs is huge. The good news is
that for |T | > 2 the problem nevertheless remains FPT in k [13, 14]. The bad news is
that none of these results satisfactorily address the problem of actually constructing
the network. The FPT result in [13] gives a quadratic kernel but does not describe
a (good) algorithm for solving the kernel. The bounded-search FPT result in [14],
based on [15], does actually construct the network but has an astronomical running
time. The running time is so large because it brute forces over the space of all possible
generators, i.e., possible “backbone topologies” of the network [15, 16], a space which
is not known to be O(ck), and continues with a tower of guesses, which is not O(ck),
for each such generator. At present, therefore, the only FPT algorithms for the case
of three binary trees are either kernelizations or bounded-search algorithms with an
exponential dependency on k with a nonlinear exponent. Several exponential-time
algorithms do exist, such as [24] and the algorithm discussed in [13], but using them
to solve a kernelized hybridization number instance unfortunately does not help for
two reasons. First, the size of the best-known kernel (i.e., the number n of leaves of
a kernelized instance) is quadratic and not linear in k. Second, no previously known
exponential-time algorithm has an O(cn) running time. Therefore, the challenge is to
determine whether an algorithm with running time O(ck · poly(n)) exists for the case
of three binary trees. In other words, is the problem EPT [8]?

In this article we answer this challenge positively. Although the constant c that
we find is astronomical—1,609,891,840—it represents a significant development in our
understanding of the underlying combinatorial structure of the hybridization number
problem. We show that, although it is not clear how a MAAF can be pieced together
into an optimal solution to the hybridization number problem, it is still possible to
identify in O(ckpoly(n)) time a (not necessarily maximum) acyclic agreement forest
that does have this property. Having found the appropriate acyclic agreement forest,
we use deep insights into the structure of optimal hybridization networks to piece the
components of the forest together into a network. The difficulty of this step comes
from the fact that, unlike in the two-tree case, it is no longer possible to avoid having
nodes in the network that are separated from all leaves by hybridization edges and
that are hence not represented in the agreement forest. The main insight helping to
overcome this problem is that, in the case |T | = 3, there always exists an optimal
hybridization network such that each of its out-degree-2 nodes corresponds to nodes of
one or more of the input trees; see Figure 1. This enables us to keep the combinatorial
explosion in the number of possible network topologies under control.

Note that our algorithm can be viewed as a structural generalization of exist-
ing algorithms for two trees, which also separate the identification of the underlying
acyclic agreement forest and the construction of the network into two phases. In the
case of two trees the second phase is polynomial and it is comparatively easy to obtain
O(ckpoly(n)) running times for the first phase. In fact, although our overall result at
present only holds for the case |T | = 3, the results for the first phase hold without

1For the rest of the introduction we focus only on the case of binary trees—see [11] and [12] for
an overview of recent nonbinary results. The nonbinary case is a generalization of the binary case
and therefore inherits all the negative results, but not the positive results, of the binary problem.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1611

modification for the case |T | > 3. As we demonstrate, the only barrier to extending
our result is the fact that, for |T | > 3, the combinatorial insight mentioned in the
previous paragraph no longer holds. Indeed, there are two new challenges stemming
from this article: first, to adapt and generalize the combinatorial insight so that the
wider result can be extended to four or more trees, and second, to significantly op-
timize the constant c in our running time. How close can we get to the competitive
O(3.18k · poly(n)) running time achieved in the case of two trees?

The structure of the remainder of this article is as follows. In section 2, we present
the necessary definitions. Section 3 shows how we can guess the underlying acyclic
agreement forest of an optimal hybridization network in O(ckpoly(n)) time. Then
we define a notion of “tight” networks in section 4 (basically, networks where each
out-degree-2 node corresponds to a node of at least one of the input trees) and show
that we may restrict our attention to tight networks as long as there are at most three
trees in the input. Subsequently, section 5 shows how such a tight network can be
reconstructed from an acyclic agreement forest and the input trees in O(ckpoly(n))
time. Finally, we present our conclusions in section 6 and give an example of the
algorithm in the appendix.

2. Preliminaries. A rooted phylogenetic X-tree is a rooted tree with no nodes
with in-degree 1 and out-degree 1, a node with in-degree 0 and out-degree 1 (the root),
and leaves bijectively labeled with the elements of a finite set X . Such a tree is called
binary if all inner nodes except the root have in-degree 1 and out-degree 2. From now
on we will refer to a rooted binary phylogenetic X-tree as a tree for short, since we
only consider rooted binary trees that are all on the same set X . The convention that
roots have out-degree 1 is not essential but for technical convenience.

A rooted phylogenetic network (on X) is a DAG with no nodes with in-degree 1
and out-degree 1, a single in-degree-0 node (the root) with out-degree 1 and leaves
bijectively labeled with the elements of X . Rooted phylogenetic networks will be
called networks for short. We identify each leaf of a tree or network with its label
and call directed edges edges for short. We see the root of a tree or network as a leaf
and assume without loss of generality that it is labeled ρ. We call a network binary
if every nonleaf node has total degree 3 and all leaves have degree 1.

We call network nodes with in-degree 1 and out-degree at least 2 split nodes,
while nodes with in-degree at least 2 are called reticulation nodes, or reticulations for
short. The hybridization number (often also called reticulation number) of a binary
network N is defined as the number of reticulation nodes of N . For a general network
the hybridization number is given by the sum

∑
(d−(v) − 1) over all nodes v of N

with in-degree d−(v) at least 2. For a tree T and a set X ′ ⊆ X , we define T (X ′) as
the minimal subtree of T that contains all elements of X ′, and T |X ′ as the result of
suppressing all nodes of T (X ′) with in- and out-degree 1. The set of leaves of a tree T
is denoted L(T).

We say that a tree T is displayed by a network N if T can be obtained from a
subgraph of N by contracting edges. Given a set T of rooted phylogenetic trees, the
minimum hybridization problem asks to find a phylogenetic network N that displays
each tree in T such that the hybridization number ofN is minimized. We say thatN is
a hybridization network for a set T of input trees if N displays all T ∈ T . In addition,
we say that the hybridization number of a set of input trees T is the hybridization
number of a hybridization network for T that has the lowest hybridization number
over all hybridization networks for T . It is well known, and easy to see, that if there
exists a hybridization network for T , there also exists a binary hybridization network

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1612 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

for T with the same hybridization number (see, e.g., [14]). Therefore, all hybridization
networks are from now on assumed to be binary.

Let T be a rooted, binary phylogeneticX-tree and S a rooted, binary phylogenetic
X ′-tree for some X ′ ⊆ X . We say that S is a pendant subtree of T if it is a subtree
that can be detached from T by deleting a single edge. For a set T of phylogenetic
X-trees and X ′ ⊆ X , a common pendant subtree of T is a rooted phylogenetic X ′-
tree that is a pendant subtree of each tree in T . A common pendant subtree is called
trivial if it consists of a single leaf. Let T be a tree, let (x1, x2, . . . , xq) be a tuple
of elements of X with q ≥ 1, and let pi denote the parent of xi in T . We say that
the tuple (x1, x2, . . . , xq) is a chain of T if either (pq, pq−1, . . . , p1) is a directed path
in T , or (pq, pq−1, . . . , p2) is a directed path in T and p1 = p2. A common chain
of a set T of trees is a maximal tuple (x1, x2, . . . , xq) that is a chain of each tree
in T .

Related to the hybridization number problem is a concept of agreement forests.
A forest is a collection of trees, which we will call components rather than trees to
avoid confusion with the input trees. We say that a forest F is a forest for a tree T
if T |L(F) is isomorphic to F for all F ∈ F and the trees {T (L(F)) | F ∈ F} are
node-disjoint subtrees of T whose leaf-set union equals L(T). By this definition, if F
is a forest for some tree T , then {L(F) | F ∈ F} is a partition of the leaf set of T .
It will indeed sometimes be useful to see a forest as a partition of the leaves and
sometimes to see it as a collection of trees. If T is a set of trees, then a forest F is
an agreement forest of T if it is a forest for each T ∈ T . Note that these definitions
only apply to binary trees.

We define the inheritance graph IG(T ,F) of an agreement forest F of a set T of
trees as the directed graph whose node set is the set of components of F and whose
edge set contains an edge (F, F ′) precisely if there is a directed path from the root of
T (L(F)) to the root of T (L(F ′)) in at least one tree T ∈ T . An agreement forest F of
T is called an acyclic agreement forest (AAF) if the graph IG(T ,F) does not contain
any directed cycles.

The last definition we need is the notion of generators (see, e.g., [15]), which we use
to describe the underlying structure of networks without nontrivial pendant subtrees.
A (binary) r-reticulation generator is defined as an acyclic directed multigraph with
a single root with in-degree 0 and out-degree 1 and exactly r nodes with in-degree 2
and out-degree at most 1; all other nodes have in-degree 1 and out-degree 2. If N is
a network, then the underlying generator of N is the generator obtained from N by
deleting all leaves and suppressing all in-degree-1 out-degree-1 nodes. The sides of a
generator are its edges (the edge sides) and its nodes with in-degree 2 and outdegree 0
(the node sides). Thus, each leaf of a network N is on a certain side of its underlying
generator. See Figure 2 for an example.

3. Guessing the AAF. Let T be a collection of input trees. Without loss of
generality we will assume that T contains no nontrivial common pendant subtrees
(because each such subtree can be replaced by a single leaf). In this section, we show
how we can guess an AAF from which we can build an optimal hybridization network
for T . To make this precise, we define the deletion forest of a network N as the
forest obtained from N by deleting all the edges entering reticulation nodes, deleting
all resulting connected components that do not contain any taxa, and then taking
the partition of the taxa induced by the remaining connected components. Note that
for a given network the deletion forest is uniquely defined. We start by proving the
following lemma.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1613

Fig. 2. The graph G is the generator of the network N . It has 9 sides: 7 edge sides and 2 node
sides. The leaves b and d are on node sides while a, c, and e are on edge sides.

Lemma 1. Given a hybridization network N with hybridization number k for a
set T of input trees, the deletion forest of N is an AAF of T with at most k + 1
components.

Proof. We first show that the deletion forest contains at most k+ 1 components.
To see this, note that N contains exactly k reticulation nodes. For a reticulation
node r, let X(r) be the set of taxa that can be reached from r by directed paths that
start at r and which do not intersect with any reticulation apart from r. (Possibly,
X(r) = ∅.) By construction, none of the edges on these directed paths are deleted
when the deletion forest is created. Hence, all the taxa in X(r) will be in the same
connected component. Similarly, if X(ρ) denotes the set of taxa reachable by directed
paths that start at the root and which do not intersect with any reticulations, then
the taxa in X(ρ) will also be together in the same connected component. Note that
the deletion forest F of N (seeing it as a partition of the taxa) is the collection
containing X(ρ) if X(ρ) �= ∅ and X(r) for each reticulation r for which X(r) �= ∅.
Hence, the deletion forest contains at most k+1 components. Moreover, for each F ∈
F , each input tree must yield the same subtree when restricted to the subset of taxa
of F because N displays all the input trees. In addition, for each input tree T ∈ T ,
the subtrees {T (L(F)) | F ∈ F} are node-disjoint, again because N displays T . It
follows that the deletion forest F of N is indeed an agreement forest of the input
trees, with at most k+1 components. Moreover, it is clearly acyclic since the network
is acyclic.

As a consequence of Lemma 1, we will from now on refer to the deletion forest of
a network as its deletion AAF. Next we show how to guess the deletion AAF of some
optimal hybridization network for the input trees. More precisely, we show how to
construct a set of AAFs containing at least one AAF with this property. In sections 4
and 5 we will show how to determine from which AAF(s) in the set we can build an
optimal hybridization network.

Lemma 2. Let k be the hybridization number of the set T of input trees. Then,
in time O(ck · poly(n)), we can find a set of AAFs containing at least one deletion
AAF of some hybridization network for T with hybridization number k.

Proof. Consider an arbitrary input tree T ∈ T . Observe that an AAF of T
with k′ + 1 components can be obtained from T by deleting exactly k′ edges and

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1614 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

taking the partition of the taxa induced by the resulting connected components. By
Lemma 1, the deletion AAF of an optimal hybridization network for T has at most k+
1 components. The goal therefore is to locate the at most k edges that need to be
deleted from T in order to obtain the deletion AAF of some optimal hybridization
network for T .

Let N be a hybridization network for T with hybridization number k and consider
its underlying generator, which is a k-reticulation generator and hence has at most k
node sides and at most 4k− 1 edge sides [13]. It follows that there are at most 5k− 1
common chains of T , because any two taxa on the same edge side of N are in the
same common chain [13]. The set of common chains is unambiguously defined by the
set of input trees and can be computed in polynomial time, and no two chains can
share a taxon. Moreover, in [13] it is proved that if two or more taxa of a common
chain are on a single edge side of the underlying generator, the entire chain can safely
be moved onto that edge side. That is, the new network still displays the input trees
and has a hybridization number no higher than the old network.

This means that we can assume the existence of an optimal network N ′ such that
for each common chain there are exactly two possibilities: (1) the chain is on a single
side of the underlying generator, or (2) each taxon of the chain is on a different side of
the underlying generator. For each chain we can guess which of the two cases holds,
using at most 25k−1 guesses for the entire set of chains. Since, as mentioned before,
any two taxa that are on the same side belong to a common chain, it follows that each
side of (the underlying generator of) N ′ contains a complete case-1 chain, a single
taxon (which is either in a case-2 chain or a singleton-chain), or no taxa at all.

Now, assume that we have identified the correct set of guesses describing the
behavior of the common chains in N ′. It remains to show that we can identify the
correct set of edges to delete in T to obtain the deletion AAF corresponding to N ′.
Observe that for each case-1 chain it is not necessary to delete any of the internal
edges of the chain in T . This is because we have correctly identified that the entire
chain is attached to a single edge side of the generator and thus that it belongs to a
single component of the deletion AAF. For each of the other edges in T we simply
guess whether to delete it or not. Fortunately, there are not too many of these
edges. Specifically, recall that each side contains either a case-1 chain or a single
taxon and that the number of sides is at most 5k − 1. Hence, if we collapse each
case-1 chain C into a new taxon xC , which is permitted because we will never cut its
internal edges, there are in total at most 5k − 1 taxa left. A binary tree with 5k − 1
taxa has 10k − 4 edges. By guessing for each of these edges whether or not to delete
it, we observe that, in total, the deletion AAF of N ′ can be located in time at most
O(25k · 210k · poly(n)).

4. Tight networks. In this section we give the only lemma that is specific to
three trees. We describe a transformation from a hybridization network to a structure,
called a tight network with embedded trees, that has some desirable properties. We
prove that the transformation preserves the hybridization number, so we are allowed
to concentrate on tight networks in the case of three trees. For ease of notation, we
will sometimes identify a directed graph with its edge set.

A tight network with embedded trees (TNET) for a set T of phylogenetic trees
over a label set X is a pair H = (H, E) with the following properties:

(i) H is a DAG. We call its sources roots and its sinks leaves.
(ii) Every root of H has one child.
(iii) The leaves of H are labeled bijectively with the leaf labels in X .

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1615

Fig. 3. The first two steps of transforming a TNET into a hybridization network: expanding
nodes that are both reticulation and split nodes and refining reticulations.

(iv) E = {H(T) ⊆ H | T ∈ T } and, for all T ∈ T , H(T) is an image of T , that is,
T can be obtained from H(T) by suppressing degree-2 nodes.

(v) Every tree image H(T) ∈ E contains an edge incident to a root of H .
(vi) H =

⋃
T∈T H(T), that is, every edge of H belongs to at least one tree image

in E .
(vii) Every nonleaf nonroot node of H has exactly two children.
(viii) For every nonleaf nonroot node, there exists a tree image H(T) ∈ E that con-

tains both its child edges.
We represent the tree images in E by associating a unique color with each tree

T ∈ T and coloring every edge in H(T) with this color. We call the color associated
with tree T color T . We use C(e) to denote the color set of an edge e of H , that is,
the set of trees T ∈ T whose images H(T) ∈ E include e. A TNET for the input trees
in Figure 11 is shown in Figure 14. A corresponding hybridization network is shown
in Figure 15.

The hybridization network induced by a TNET (H ′, E) is the hybridization net-
work obtained by applying the following transformations to H ′:

• We replace every node x that is both a reticulation node and a split node
with two nodes xt and xb, change the bottom endpoints of x’s parent edges
to xt, change the top endpoints of x’s child edges to xb, and add an edge from
xt to xb.

• We replace every reticulation node with more than two parents with a chain
of binary reticulation nodes. See Figure 3 for an illustration of these first two
steps.

• As long as there are at least two roots, we choose two such roots r1 and r2,
change the top endpoint of r1’s child edge to r2, and add an edge from r1
to r2. This reduces the number of roots by one, so we eventually obtain a
network with a single root. See Figure 4.

• For every leaf x with more than one parent, we create a new node x′, change
the bottom endpoint of every parent edge of x to x′, and add an edge from
x′ to x.

The deletion AAF of a TNET (H, E) is defined to be the deletion AAF of the
hybridization network induced by (H, E). The hybridization number of a TNET (H, E)
is (as for networks) defined to be the sum

∑
(d−(v) − 1) over all nodes v of H with

indegree d−(v) at least 2.

Lemma 3. If |T | = 3, then there exists a hybridization network H with a hy-
bridization number k for T if and only if there exists a TNET H = (H ′, E) with a

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1616 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 4. The third step of transforming a TNET into a hybridization network: combining
multiple roots.

hybridization number k for T . Moreover, if such a network H exists, then there exists
such a TNET H with the same deletion AAF.

Proof. First suppose that there exists a TNET H = (H ′, E) with a hybridization
number k for T . Then the hybridization network H induced by H has the same
hybridization number as H ′, and it is easy to see that H displays the trees in T , given
that H ′ displays these trees. It follows directly from the definition of the deletion
AAF of a TNET that H and H have the same deletion AAF.

Now assume we are given a hybridization network H with hybridization number
k for T . Since H displays all trees in T , we can choose a tree image H(T) for every
tree T ∈ T that includes the root of H . Then we set H = (H, E). H satisfies
conditions (i)–(v) of a TNET but may violate the remaining three conditions. Next
we describe transformations that we apply to H to ensure it satisfies these remaining
conditions without introducing any violations of the conditions thatH already satisfies
and without increasing the hybridization number of H. Thus, after applying these
transformations, we obtain a TNET with hybridization number at most k for T .

Condition (vi). Deleting all edges of H that are not contained in
⋃

T∈T H(T)
does not violate conditions (i)–(v) and establishes condition (vi). Since it also does
not increase the hybridization number of H, we obtain a network with hybridization
number at most k that satisfies conditions (i)–(vi).

Condition (vii). As long as there is a nonsplitting nonroot node x, that is, a
nonroot node with only one child (which may arise after the modifications from the
previous paragraph), we contract the edge e between x and its child in H and in
every tree image H(T) ∈ E that includes e, and merge any parallel edges this may
create. Each such contraction reduces the number of nonsplitting nonroot nodes by
one, does not introduce any violations of conditions (i)–(vi), and does not increase the
hybridization number ofH. Thus, we eventually obtain a network with a hybridization
number at most k that satisfies conditions (i)–(vii).

Condition (viii). By condition (vii), every nonroot node of H is a split node. We
call it a true split node if it also satisfies condition (viii) and a fake split node otherwise.
We also call a true split node a T -split node if the tree image H(T) contains both its
child edges. The weight of a node x is the number of trees T ∈ T such that x is a
T -split node. The weight of a path is the sum of the weights of the nodes on the path.
Now we define the potential φx of a fake split node to be one plus the maximum weight

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1617

Fig. 5. Eliminating a fake split node x below a root y.

of a path from a root to x. All other nodes have potential 0. The potential of the
network is Φ :=

∑
x φx, where the sum is taken over all nodes of the network. Since

every fake split node has a positive potential, a network has potential Φ = 0 if and
only if it contains no fake split node, that is, if and only if it satisfies condition (viii).
Next we describe transformations that decrease the potential of the network without
increasing its hybridization number or introducing any violations of conditions (i)–
(vii). Thus, after repeating this transformation as often as possible, we obtain a
network with hybridization number at most k and which satisfies conditions (i)–(viii),
so it is a TNET with hybridization number at most k for T .

While the network contains fake split nodes, there exists such a node x all of whose
parents are true split nodes or roots. (Simply remove all roots, true split nodes, and
leaves from H and choose x to be an in-degree-0 node of the resulting subgraph of
H .) Since the color sets of x’s child edges are disjoint and x has two child edges, one
of these edges, e, must have exactly one color: C(e) = {T } for some T ∈ T .2 Let f
be x’s parent edge that has color T . By the choice of x, the top endpoint y of f is a
root or a true split node.

If y is a root (see Figure 5), we remove T from the color set of f , create a new
root node r, change e’s top endpoint to r, and remove f and its top endpoint y if
the color set of f is now empty and restore condition (vii). It is easily verified that
this does not introduce any violations of conditions (i)–(vi) and does not increase the
hybridization number of the network. It also does not increase the potential of any
node and reduces the number of fake split nodes by one. The potential of the network
therefore decreases.

If y is a true split node, we distinguish two cases. The first case is that y is a
T ′-split node for some T ′ �= T . This case is illustrated in Figure 6. Figure 6(a) depicts
the subcase when y is not also a T -split node, while Figure 6(b) depicts the subcase
when y is also a T -split node. Both cases can be handled in a similar way.

Let g be the parent edge of y whose color set includes T , and let f ′ be f ’s
sibling edge. We divide g into two edges gt and gb with gt above gb and denote their
common endpoint by z. We remove T from the color set of f , set C(gt) := C(g)
and C(gb) := C(g) \ {T } if T /∈ C(f ′) and C(gb) := C(g) if T ∈ C(f ′), change the
top endpoint of e to z, remove all edges whose color sets are now empty (this can
only be f and gb), and finally restore condition (vii). Again, it is easily verified that
this does not introduce any violations of conditions (i)–(vi) and does not increase the
hybridization number of the network. It also does not increase the potential of any

2This is the only place in the entire paper where we use that |T | = 3. All other arguments are
easily seen to generalize to more than 3 trees. Alas, this argument is crucial because our algorithm
does not work without condition (viii).

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1618 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 6. Eliminating a fake split node x below a split node y that is a T ′-split node with T ′ not
equal to the color T (red, dashed) of the monochromatic edge below x. (a) y is not a T -split node.
(b) y is a T -split node.

Fig. 7. Eliminating a fake split node x below a split node y that is not a T ′-split node for
any T ′ that is not equal to the color T (red, dashed) of the monochromatic edge below x.

node and eliminates x from the network (because x has only one child edge e′ after
changing e’s top endpoint and hence e′ is being contracted). The only new node is
z. If T ∈ C(f ′), then z is a true split node and its contribution to the network’s
potential is 0. Thus, since x is eliminated from the network, the network’s potential
decreases. If T /∈ C(f ′), then z is a fake split node. However, its potential φz is less
than φx because for every path from a root to z in the modified network, there exists
a corresponding path from this root to x in the original network that has a greater
weight because it contains the true split node y. Thus, once again, the potential of
the network decreases.

Finally, if y is not a T ′-split node for any T ′ �= T (see Figure 7), it must be a T -split
node. As before, let g be the parent edge of y whose color set includes T , and let f ′ be
f ’s sibling edge. We subdivide f ′ into f ′

t and f ′
b, where f

′
t is above f

′
b, and let z be the

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1619

newly created node. We change the top endpoint of e to z, remove T from the color set
of f , remove all edges whose color sets are now empty, and restore condition (vii). This
transformation maintains conditions (i)–(vi) and does not increase the hybridization
number of the network. It eliminates x from the network (because it has only one
child edge e′ after changing the top endpoint of e) and makes y a fake split node.
However, the potential of y in the modified network is less than the potential of x in
the original network. To see this, let P be a path of maximum weight from a root
to y. Then the potential of y in the modified network is one plus the weight of P . In
the original network, the path P extended by the edge (y, x) is then a path from a
root to x, and its weight is one higher than the weight of P because it contains the
true split node y. Hence, the potential of x in the original network is at least one
higher than the potential of y in the modified network. Since the potential of all other
nodes remains the same or decreases, the potential of the network decreases.

Let H = (H ′, E ′) be the TNET eventually obtained by the above transformations
and let H be the original hybridization network. It remains to show that H and H
have the same deletion AAF. To this end, observe that, if F is a component of the
deletion AAF of H and x, y are two taxa in F , then a network edge e belongs to the
path from x to y in the image H(T) of some tree T ∈ T if and only if it belongs to
the path from x to y in every image H(T ′), T ′ ∈ T . Now it suffices to verify that,
in each of the transformations in Figures 5–7, none of the edges that are destroyed
or created belongs to all three tree images, so each transformation leaves the deletion
AAF unchanged.

By Lemma 3, it is sufficient if our algorithm can construct a TNET of the three
input trees. In the next section, we show how to do this.

5. Reconstructing a tight network. Let H = (H, E) be a TNET for T , let F
be its deletion AAF, and let k be its hybridization number. For each tree T ∈ T , let
I(T) be the set of nodes in T that do not belong to any path between two leaves x
and y in the same AAF component (considering the root as a leaf). In a sense, these
nodes are “invisible” in F . The extended AAF F ∗ of T is defined as F ∪ I, where
I :=

⋃
T∈T I(T). We will refer to the elements of F ∗ as components. Let C be a

component of F ∗. Hence, C is either an AAF component or a node in I. If C is an
AAF component, then rC denotes the root of C. If C is a node of I, then rC is equal
to the node C. In either case, we will refer to rC as the root of C.

By the following lemma, the size of I is at most 3(k − 1) if T contains at most
three trees.

Lemma 4. For any T ∈ T , |I(T)| ≤ k − 1.

Proof. Let T ∈ T . Since the root of T is a leaf after omitting directions, we can
see T as an unrooted tree. Since F is an AAF of T and T ∈ T , we know that F can be
obtained by deleting a set E∗ of k edges from T and then taking the partition of the
leaves induced by the resulting connected components. Let C be the partition of the
nodes of I(T) induced by the connected components of the subgraph of T containing
the vertices of I(T) and all edges between them that are not in E∗. See Figure 8
for an example. For each C ∈ C, let δ(C) denote the set of edges with exactly one
endpoint in C. Then, at most one of the edges in δ(C) is not contained in E∗ because
otherwise at least one vertex of C would be on a path between two vertices in the
same AAF component, which is not possible by the definition of I(T). Hence, at
least |C| + 1 of the |C| + 2 edges in δ(C) are in E∗. Moreover, since T is a tree, at

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1620 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 8. Example for the proof of Lemma 4. The set E∗ consists of the k = 5 dashed edges. The
two elements of C are indicated by dashed circles.

most |C| − 1 edges can be in δ(C) ∩ δ(C′) for two different C,C′ ∈ C. Hence,

|E∗| ≥
∑

C∈C
(|C|+ 1)− (|C| − 1) = |I(T)|+ 1.

Since |E∗| = k, the lemma follows.

We will construct H from F ∗ and T with the help of a guess of the structure of H.
In particular we construct H by “gluing together” the components of F ∗. Our guess
concerns how this gluing is to be done. Under the embedding of T in H described
by E , the root rC of every component C ∈ F ∗ has a unique image H(rC) in H : If
C ∈ F , this is true because F is the deletion AAF of H. If rC = C ∈ I(T), for some
T ∈ T , rC is a split node of T and thus has a unique image H(rC) in H(T) which
is also a node of H . Our guess for rC defines the “wiring” of the in-edges of H(rC);
we call it the wiring guess for rC . Since the color sets of the parent edges of every
node in H are disjoint, H(rC) has between one and three parent edges. The first part
of the wiring guess for rC is the number of parent edges of H(rC). The second part
of the wiring guess for rC is which of these in-edges is included in which tree image.
Finally, observe that the top endpoint x of each parent edge of H(rC) must once again
be a T ′-split node for at least one T ′ ∈ T . The third part of the wiring guess for rC
determines such a tree T ′ for each parent edge of H(rC). We will assume without loss
of generality that any two nodes rC , rC′ for which H(rC) and H(rC′) have a common
parent x both guess the same tree T ′ as the tree for which x is a T ′-split node.

First consider a component root rC that is a node in I(T) for some T ∈ T . Note
that (i) at least one parent edge of H(rC) must have color T because H(rC) is a
nonroot node of H(T), and (ii) the top endpoint of a parent edge e of H(rC) can be a
T ′-split node only for trees T ′ such that T ′ ∈ C(e). This gives the 17 possible wiring
guesses for rC shown in Figure 9.

If rC is an AAF root, the set of possible wiring guesses is more restricted. Since
H(rC) is contained in every tree image, the only valid wiring guesses are the ones
where the union of the color sets of the parent edges of H(rC) contains all three
colors. This reduces the number of possible wiring guesses for AAF roots to 10 (see
again Figure 9). Finally note that, when rC is the root ρ of the trees, there is only a
single wiring guess.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1621

Fig. 9. The 17 possible wiring guesses for the root rC of a component C of the extended
AAF F ∗ that is a node in I(T), with T the red dashed tree. The guess of the split node at the top
of each edge is indicated by a dot. Valid guesses for a root rC of an AAF component are indicated
by dashed boxes around them.

Our guess G of the structure of H consists of the wiring guesses for all roots rC ,
C ∈ F ∗.

Since we have 17 wiring guesses to choose from for each component in I and
10 wiring guesses to choose from for each component in F that does not contain
the tree root ρ, there are 10|F |−1 · 17|I| possible guesses G. Since |F | ≤ k + 1 and
|I| ≤ 3(k − 1) by Lemma 4, the number of possible guesses G is bounded by 10k ·
173(k−1) = 49130k/4913.

Our algorithm considers each guess in G in turn and attempts to construct a
TNET H from (G, F ∗, T) in polynomial time. We call (G, F ∗, T) the TNET’s descrip-
tion. To establish our algorithm’s correctness, we prove that, given the description
(G, F ∗, T) of a TNET H for T , our algorithm succeeds in constructing a TNET H′

for T with description (G, F ∗, T) that differs from H only in insignificant details and
in particular has the same hybridization number as H. Our proof is divided into two
lemmas. The first one shows that two TNETs with the same description are essen-
tially the same. We make this precise below. The second one shows that, given the
description of a TNET, we can construct a TNET with this description in polynomial
time. Note that not every description (G, F ∗, T) is necessarily a valid description of
any TNET. If there is no TNET with the given description, then our algorithm will
determine this in polynomial time. The description of this algorithm is given in the
proofs of Lemmas 5 and 6 below. Appendix A provides an example of the operation
of the algorithm.

Given a TNET H = (H, E) for T , we obtain a DAG H̃ by contracting the image
of every component of the deletion AAF F of H into a single node, keeping parallel
edges this creates. We call H̃ the signature of H . For an example, see Figures 13
and 14 in the appendix. It is easy to see that the node set of H̃ is {H(rC) | C ∈ F ∗}
and that H̃ has the same hybridization number as H . Note that two nodes C ∈ I(T),
C′ ∈ I(T ′) might map to the same node H(rC) = H(r′C) of H̃. We label every node

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1622 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

x of H̃ with the set of roots rC , C ∈ F ∗, such that x = H(rC). We call roots that
label the same node of H̃ buddies (of each other). Note that roots of components of F
have no buddies.

We will use the following notion of the “attached subtrees” of an AAF compo-
nent C in a tree T . For each edge (u, v) of T for which u is contained in T (C) but v
is not contained in T (C), we say that the subtree of T induced by u, v and all nodes
reachable from v is a subtree of T attached to C.

In addition, we will use the following notion of the “pendant subtrees” represented
by an edge e = (H(rC), H(rC′)) of the signature H̃ . For each T ∈ C(e), the subtree
of T induced by rC′ , the parent of rC′ , and all nodes reachable from rC′ is said to be
a pendant subtree of T represented by the edge e of H̃ .

Lemma 5. The signature H̃ of a TNET H = (H, E) can be uniquely reconstructed
in polynomial time from the description (G, F ∗, T) of H.

Proof. We define a DAG D whose nodes are the roots of components of F ∗. There
is an edge from a root rC to a root rC′ if and only if there exists a tree T ∈ T such
that rC′ is an ancestor of rC in T and there exists no component root rC′′ that is an
ancestor of rC and a descendant of rC′ in T . If this is the case, we call rC a direct
descendant of rC′ in T . (Note that the edge in D is directed from the descendant to
the ancestor.) We incrementally construct a topological ordering of D, define Ui to
be the first i nodes in this topological ordering, define Di to be the subgraph of D
induced by Ui, and set Vi := {H(rC) | rC ∈ Ui}. D̄i is the subgraph of D induced
by all nodes of D not in Ui. Let the partial signature H̃i be the graph obtained as
follows from the subgraph of H̃ induced by Vi: For each parent edge e in H̃ of a
node H(rC) ∈ Vi whose top endpoint does not belong to Vi, we adding a new root
and an edge ẽ from this new root to H(rC) and give ẽ the same color set as e (which
is determined by the wiring guess for rC). For an example, see Figure 13 in the
appendix. We call an edge whose top endpoint is a root a root edge.

We assign these new roots colors, where the color of the top endpoint of edge ẽ
is T if the bottom endpoint of ẽ guesses that the top endpoint of e is a T -split node.

We will show that, from Di, H̃i, and G, we can determine a unique nonempty set
of nodes U ′ of D̄i, the set U+ of all buddies of nodes in U ′ and an extended partial
signature H̃j corresponding to the graph Dj induced by Uj := Ui ∪ U ′ ∪ U+.

Once Di = D, we thus obtain H̃i = H̃, that is, we are able to reconstruct the
signature H̃ only given the description of H.

We initialize the reconstruction by defining D0 and H̃0 to be empty digraphs.
Now consider an iteration with input digraph Di and partial signature H̃i. For an
in-degree-0 node rC of D̄i that belongs to I(T) for some T ∈ T , observe that both
child edges of H(rC) in H̃ have corresponding root edges in H̃i (by the construction
of H̃i). For such a node rC , we call rC free if the top endpoints of both of these root
edges are colored T . For an in-degree-0 node rC of D̄i that is a root of a component
of F , we say that rC is free if, for every in-edge e of rC in D, the corresponding root
edge ẽ of H̃i has the property that, for every T ∈ C(ẽ), the pendant subtree of T
represented by ẽ is attached to the AAF component C in T . All other nodes of D̄i

are nonfree. We claim that at least one of the nodes in D̄i is free and that every free
node can determine its buddies in H̃ and can augment the partial signature H̃i to H̃j .

Consider a node x of the signature H̃ that does not belong to H̃i and all of whose
children do belong to H̃i. Since H̃ is a DAG, such a node exists. Node x is a T -split
node for some T ∈ T and is thus the image H(rC) of the root rC of a component
in F ∪ I(T).

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1623

First consider the case that C ∈ F . Observe that, because H̃ is the signature of a
TNET H for T , the subtrees attached to C in all input trees are exactly the pendant
subtrees represented by the child edges of H(rC) in H̃. Since these child edges are
root edges of H̃i, rC is free. Node rC can trivially identify its set of buddies because
it has no buddies besides itself. We obtain Dj by adding rC to Di and obtain H̃j

from H̃i by locating the root edges of H̃i that correspond to child edges of H(rC) in
H̃ , merging the top endpoints of these root edges to a single node H(rC) and adding
new root edges entering H(rC) according to rC ’s wiring guess. This gives a new graph
Dj ⊃ Di and the corresponding graph H̃j .

Now consider the case that rC ∈ I(T). In this case, both child edges of rC in H̃
correspond to root edges of H̃i. Since these two edges have a common top endpoint in
H̃ , their top endpoints in H̃i must have the same color T ′. This implies that H(rC)
is a T ′-split node and is thus the image H(rC′) of a node rC′ ∈ I(T ′). Since the child
edges of H(rC′) in H̃ belong to H̃i, both in-neighbors of rC′ in D belong to Di. Thus,
rC′ is free. Since H(rC) = H(rC′), we may assume that rC′ = rC (because in at least
one set of guesses this is the case). We obtain H̃j from H̃i by locating the two root

edges of H̃i that correspond to child edges of H(rC) in H̃, merging the top endpoints
of these edges to a single node H(rC), and adding new root edges entering H(rC)
according to rC ’s wiring guess. Now consider the child edges of H(rC) in H̃j . For
each tree T ′ ∈ T such that these edges are both colored T ′, H(rC) is the imageH(rC′)
of a node in I(T ′). The nodes of D̄i that satisfy this condition are the buddies of rC ,
and we add them to Di along with rC to obtain Dj .

We have shown that every node H(rC) of H̃ whose children belong to H̃i corre-
sponds to a free node rC in D̄i and that rC can determine its set of buddies and can
construct the extended partial signature H̃j corresponding to the digraph Dj ⊃ Di

obtained by adding these buddies to Di. If rC is an AAF root, it has no buddies
besides itself. If rC ∈ I(T) for some T ∈ T , observe that none of its buddies is free
because it belongs to a tree T ′ �= T but the top endpoints of the child edges of H(rC)
have color T in H̃i. Thus, to prove that every free node can determine its set of
buddies and can construct H̃j from H̃i, it suffices to show that there is no free node

rC such that H(rC) has a child not in H̃i.
Assume there exists such a node rC . Then rC has in-degree 0 in D̄i because

otherwise it is not free. First assume rC is the root of a component in F . Let H(rC′)
be an in-neighbor of H(rC) in H̃ that does not belong to H̃i, and let T be an arbitrary
color T in the color set of the edge e between H(rC) and H(rC′) in H̃ . Since rC has
in-degree 0 in D̄i, the pendant subtree of T represented by e is also represented by
some root edge f of H̃i. Thus, H̃ contains a unique path from e to f and every node
on this path is a T ′-split node for some T ′ �= T . This implies in particular that the
top endpoint of edge f is a T ′-split node, T, T ′ ∈ C(f), and the pendant subtree of
T ′ represented by f is not a subtree attached to C in T ′. Thus, since f represents
the same in-edge of rC in D as e, rC is not free, a contradiction.

If rC ∈ I(T), for some tree T ∈ T , we choose an in-neighbor H(rC′) and a root
edge f of H̃i as in the case when rc ∈ F . Since the top endpoint of edge f is not a
T -split node, its color in H̃i must be T ′ �= T . Thus, since f is the root edge of H̃i

representing one of the in-edges of rC in D, rC is not free, again a contradiction.

By Lemma 5, it suffices to provide a polynomial-time algorithm that decides
whether there exists a TNET with description (G, F ∗, T) and, if so, construct any
such TNET. Our next lemma states that such an algorithm exists.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1624 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Lemma 6. Given a description (G, F ∗, T), it takes polynomial time to decide
whether there exists a TNET with this description and, if so, to construct such a
TNET.

Proof. By Lemma 5, there exists a polynomial-time algorithm for constructing the
signature H̃ of a TNETH = (H, E) with description (G, F ∗, T), if such a TNET exists.
This algorithm provides a first test that can be used to reject invalid descriptions: If
the algorithm reaches an iteration where D̄i is nonempty but none of its nodes is free,
then the description is invalid because the proof of Lemma 5 shows that, if (G, F ∗, T)
is the description of a TNET, then there exists a free node in each iteration. Thus,
the algorithm aborts and rejects the description. If the algorithm does not reject the
description, its output is a signature H̃ that respects all wiring guesses in G. However,
this signature may not correspond to a network H that displays all input trees. Next
we present a polynomial-time algorithm for constructing H = (H, E) from (H̃, F ∗, T)
or determining that no TNET H = (H, E) with description (G, F ∗, T) exists.

The nodes of H̃ are of two types: images of AAF roots and images of nodes in I.
To obtain a TNETH = (H, E) with description (G, F ∗, T) from H̃ , we letH initally be
equal to H̃ and replace each AAF root image with the AAF component it represents.
We process these AAF root images bottom-up, that is, in reverse topological order.3

Consider such an image H(rC) of the root rC of an AAF component C, and let E be
the set of child edges of H(rC) in H̃ . We remove the edges in E from H̃ and attach
C below rC , setting C(e) = T for every edge e of C. Our goal now is to reattach the
edges in E to edges of C so that, for all T ∈ T , the descendant edges of H(rC) with
color T form an image of the pendant subtree of T with root rC . For each tree T ,
observe that the edges in E colored T represent the subtrees attached to C in T . We
need to attach these edges to C in H so that each edge branches off the same edge of
C as in T and edges that branch off the same edge of C in T do so in the same order
as in T .

First we test every edge e ∈ E whether e branches off the same edge of C in
every tree T ∈ C(e). If this is the case for all edges e ∈ E, then we can partition
E into subsets Ef , one per edge f of C, such that all edges in Ef branch off edge
f . If there is an edge e that branches off some edge f in a tree T ∈ C(e) and off
a different edge f ′ in a tree T ′ ∈ C(e), it is impossible to attach this edge to C in
a way that satisfies both constraints. Since the edges of T and T ′ represented by e
are determined by H̃ , which in turn is uniquely defined by (G, F ∗, T), there is thus
no network H with description (G, F ∗, T), so the algorithm aborts and reports that
there is no such network.

Given the partition of E into subsets Ef such that the edges in Ef branch off edge
f , we need to attach the edges in each such set Ef in an ordering consistent with the
input trees. Let Ef,T be the subset of edges in Ef that have color T . Tree T determines
the ordering in which these edges need to be attached to f . We define a DAG Df

whose nodes represent the edges in Ef and which has an edge (g, g′) precisely if there
is a tree T such that g, g′ ∈ Ef,T and g branches off f in T above g′. There exists
an ordering in which to attach the edges of Ef to f so that the ordering constraints
imposed by all trees in T are satisfied if and only if Df is acyclic. Moreover, if Df is
indeed acyclic, then a topological ordering of Df provides a valid ordering in which
the edges can be attached. Thus, we can test whether such an ordering exists and, if
so, compute such an ordering in time O(|Ef |) per edge f . If no such ordering exists,

3This is not really essential, but it simplifies the description of the algorithm.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1625

the algorithm once again aborts and reports that there is no TNET with description
(G, F ∗, T). If we can find a correct ordering of the edges attached to each edge f
of C, then the replacement of rC with C in this manner results in a network where
all descendant edges of H(rC) with color T form an image of the pendant subtree
of T with root rC for all T ∈ T . Thus, after replacing each AAF root rC with its
corresponding component C in this fashion, we obtain a TNET H = (H, E) with
description (G, F ∗, T).

To summarize, the overall strategy for trying to reconstruct a hybridization net-
work H with hybridization number k for an input set T of three trees is as follows.
First, we guess the deletion AAF F of H in time O(25k · 210k · poly(n)). Then we
identify the set I of invisible nodes and add them to F , obtaining the extended
AAF F ∗, and guess G, the wiring of each component of F ∗. The total number of
possible guesses for G is 10k · 173(k−1) = 49130k/4913. For each possible descrip-
tion (G, F ∗, T), we try to construct the signature H̃ of a TNET with this description
using Lemma 5 in polynomial time. For each signature H̃ , we decide whether there
exists a TNET with this description (see Lemma 6), again in polynomial time. Once
a correct TNET has been found, it can be expanded to the hybridization network H
(see section 4). The overall running time is O(25k ·210k ·10k ·173(k−1) ·poly(n)), which
is O(1, 609, 891, 840k · poly(n)).

6. Conclusions. For two trees, a hybridization network can easily be constructed
in polynomial time once the AAF is known. No guessing is required since the AAF
carries all the necessary information. For more than two trees, it seemed natural
enough to try to guess the wiring structure that determines how the AAF compo-
nents need to be glued together into a network. For any constant number of trees,
there are only a constant number of choices for the wiring of the root of each compo-
nent, so with O(k) components, one would obtain an O(ck · poly(n))-time algorithm.
Unfortunately, guessing the wiring structure of AAF components turned out not to
be enough, even for three trees, because there are examples of three input trees such
that every optimal network displaying these trees contains an invisible component : a
group of nodes that are isolated from all taxa once all hybridization edges are deleted;
see Figure 1 in the introduction. We call these components invisible because they are
not represented in any form in the AAF.

Guessing the number and structure of these invisible components seems extremely
challenging. In this paper, we showed that one can get away without having to guess
these components in the case of three trees because, for three trees, these components
are not invisible after all: They may not be represented in the AAF, but they are
present as nodes in the three input trees, at least as long as we consider only tight
networks (and we have shown that we may do this without loss of generality). This
is the key to our O(ck · poly(n))-time algorithm for three trees. Unfortunately, it
appears that we simply scraped by. While the framework of our algorithm extends to
more than three trees, it seems that already for four trees, there are input instances
where the optimal network includes truly invisible nodes: nodes whose only purpose
is to change the way in which edges of the tree images are braided together along
network edges; see Figure 10. Thus, the main open problem is to discover structural
properties that, while unlikely to eliminate the need to guess the existence of these
braiding structures in the network altogether, at least limit the number of possible
guesses to be explored.

Another interesting question that arises from our work is whether guessing the
wiring of the extended AAF components as part of the reconstruction is necessary at

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1626 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 10. A truly invisible node of a network with four trees embedded in it. None of the four
trees branches in this network node.

all, at least in the case of three trees. Since all these components are visible in the
input trees, it could be possible that one can construct the entire network directly
from the AAF, that is, as in the case of two trees, the hard core of the problem is
finding the right AAF. However, we conjecture that this is not the case: i.e., that
even given the deletion AAF of an optimal hybridization network for the three input
trees, it remains NP-hard to find the network.

Appendix A. An example of constructing a network from its descrip-
tion. This appendix provides an example of the construction described in the proofs
of Lemmas 5 and 6. Consider the description (G, F ∗, T) in Figure 11. The TNET
in Figure 14 has this description. We first show how to construct its signature using
the construction in the proof of Lemma 5. This signature is shown in Figure 13.
Then we discuss how to construct the TNET in Figure 14 from this signature. The
hybridization network induced by this TNET is shown in Figure 15.

Lemma 5: Constructing the signature. The DAG D used in the construction of
the signature H̃ of any TNET with the description in Figure 11 is shown in Figure 12.
This DAG represents the adjacency of components of F ∗ in the three input trees in
T .

Before the first iteration, we have D̄0 = D. The only nodes with in-degree 0 in
D̄0 are b, c, and d. They are all free because they have no in-edges at all. Assume
we pick b as the first node to add to H̃ . We create the node H(b) and add parent
edges according to b’s wiring guess to obtain the partial network H̃1 in Figure 13.
Since b is the root of an AAF component, it has no buddies, so D1 has the node
set {b}.

D̄1 has two nodes of in-degree 0, namely, c and d. Both are again free. Assume
we choose c as the next node to add to D1 to obtain D2. Since c is again the root of
an AAF component, it has no buddies, so the node set of D2 is {b, c}. We construct
the graph H̃2 in Figure 14 from H̃1 by creating a node H(c) and adding parent edges
of this node according to c’s wiring guess.

D̄2 has two nodes of in-degree 0, namely, d and v3. Both nodes are free: d is
free because it is the root of an AAF component; v3 is free because H̃2 has two root
edges above H(b) and H(c), which are children of v3 in the green dotted tree, and
the top endpoints of both edges are colored green by the wiring guesses for b and c.
Let us assume we choose v3 as the next node to add to D2 to obtain D3. We create
the node H(v3) by identifying the top endpoints of the two green dotted parent edges
of H(b) and H(c) and add a parent edge above H(v3) according to v3’s wiring guess.
This gives the graph H̃3 shown in Figure 13. Since the only tree common to the color
sets of the parent edges of H(b) and H(c) is the green dotted one, v3 has no buddies.
Thus, D3 has the node set {b, c, v3}.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1627

Fig. 11. The input to the network reconstruction, including the AAF F (shown in bold in the
three input trees), the set of invisible nodes I = {v1, . . . , v4}, and the wiring guesses for the resulting
set of components of F ∗. There is no guess for the component {a, e, ρ} because it includes the root ρ
of the three trees.

Fig. 12. The DAG D used in the reconstruction of the signature H̃ in Figure 13 from the
description in Figure 11.

D̄3 has d as its only in-degree-0 node, and d is free. We obtain D4 by adding d to
D3. Node d has no buddies because it is the root of an AAF component. To obtain
H̃4 from H̃3, we create the node H(d) and add parent edges according to d’s wiring
guess.

D̄4 has three nodes of in-degree 0, namely, v1, v2, and v4. The two child edges of
v1 are represented by the red dashed parent edges ofH(v3) andH(d) in H̃4. According
to the wiring guesses for v3 and d, their top endpoints are red. Since v1 belongs to
the red dashed tree, v1 is free. The same two edges also represent the child edges
of v2. However, v2 is green and thus is not free. Finally, the two child edges of v4
are represented by the blue solid parent edges of H(c) and H(d), both of which have
blue top endpoints according to the wiring guesses for c and d. Thus, v4 is also free.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1628 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 13. The signature H̃ of any TNET with the description (G, F ∗, T) shown in Figure 11.
The partial signatures H̃1, H̃2, . . . , H̃7 = H̃ constructed incrementally are indicated by dashed lines
(edges that are partly in the indicated region are also contained in the partial signature).

Fig. 14. The TNET obtained from the signature in Figure 13 by expanding the components of F .

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1629

Assume we choose v4 as the next node to add to D4 to obtain D5. We create the
node H(v4) in H̃5 by identifying the top endpoints of the blue solid parent edges of
H(c) and H(d) and then create a parent edge of H(v4) according to v4’s wiring guess.
This produces the graph H̃5 in Figure 13. Since the color sets of the two child edges
of H(v4) have only the blue solid tree in common, v4 has no buddies and D5 has node
set {b, c, d, v3, v4}.

Nodes v1 and v2 are the only nodes of in-degree 0 in D̄5. Just as in D̄4, v1
is free and v2 is not. Thus, we choose v1 as the node to add to D5 to obtain D6.
The two child edges of v1 are represented by the red dashed parent edges of H(v3)
and H(d) in H̃5. We identify their top endpoints to create the node H(v1) and add
parent edges according to the wiring guess for v1. This produces the graph H̃6 in
Figure 13. Now observe that the two child edges of H(v1) in H̃6 are also colored
green (dotted). Thus, we identify the node that is the parent of the two edges of the
green dotted tree represented by these child edges, which is node v2. Node v2 becomes
a buddy of v1 and is added to D5 along with v1 to obtain D6. Thus, D6 has the node
set {b, c, d, v1, v2, v3, v4}. Note that making v1 and v2 buddies does not create any
conflicts because they both have the same wiring guess in G.

Finally, the only node remaining in D̄6 is {a, e, ρ}. The root edges of H̃6 represent
exactly the set of pendant edges of the AAF component {a, e, ρ} in the three input
trees, so {a, e, ρ} is free in D̄6. We create a node H({a, e, ρ}) in H̃7 by identifying the
top endpoints of all root edges of H̃6. Since there is no wiring guess for {a, e, ρ} in G,
we do not add any parent edges to H({a, e, ρ}), and H̃7 = H̃ is the final signature.

It is easily verified that we would have obtained the exact same signature had we
chosen different nodes to add to Di in iterations where D̄i contained more than one
free node.

Lemma 6: Expanding AAF components. In our example, the only nontrivial AAF
component to be expanded is the component {a, e, ρ}. This component has two non-
root edges. Let fa be the parent edge of a, and let fe be the parent edge of e in this
component. In H̃ , the node H({a, e, ρ}) has four child edges: a red dashed parent
edge e1 of H(b), a red dashed parent edge e2 of H(v1) = H(v2), a green-blue (dotted-
solid) parent edge e3 of H(v1) = H(v2), and a blue solid parent edge e4 of H(v4).
Edges e1 and e2 attach to fa in the red dashed tree and do not represent any edges
in any other trees, so we add them to Efa . Edge e3 attaches to fe in the green dotted
and the blue solid trees, so there is no conflict and we add it to Efe . Edge e4 attaches
to fe in the blue solid tree and does not represent any edge in any other tree, so we
add it to Efe .

The DAG Dfa has two nodes representing edges e1 and e2 with an edge from
e2 to e1 because e2 attaches to fa above e1 in the red dashed tree. A topological
ordering of Dfa places these edges in the order 〈e2, e1〉, and this is the order in which
we attach e2 and e1 to fa.

The DAG Dfe has two nodes representing edges e3 and e4 with an edge from e3
to e4 because e3 attaches to fe above e4 in the blue solid tree. The green dotted tree
does not impose any conflicting ordering constraints because only edge e3 belongs to
this tree. A topological ordering of Dfe places e3 and e4 in the order 〈e3, e4〉, and this
is the order in which we attach e3 and e4 to fe. The result is the TNET shown in
Figure 14.

Finally, the hybridization network induced by this TNET is shown in Figure 15.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1630 VAN IERSEL, KELK, LEKIĆ, WHIDDEN, AND ZEH

Fig. 15. The hybridization network induced by the TNET in Figure 14, obtained by separating
reticulations, split nodes, and leaves.

REFERENCES

[1] E. Bapteste, L. van Iersel, A. Janke, S. Kelchner, S. Kelk, J. O. McInerney, D. A.

Morrison, L. Nakhleh, M. Steel, L. Stougie, and J. Whitfield, Networks: Expanding
evolutionary thinking, Trends in Genetics, 29 (2013), pp. 439–441.

[2] M. Baroni, C. Semple, and M. Steel, A framework for representing reticulate evolution,
Ann. Comb., 8 (2004), pp. 391–408.

[3] M. Baroni, S. Grünewald, V. Moulton, and C. Semple, Bounding the number of hybridi-
sation events for a consistent evolutionary history, Math. Biol., 51 (2005), pp. 171–182.

[4] M. Bordewich and C. Semple, Computing the hybridization number of two phylogenetic
trees is fixed-parameter tractable, IEEE/ACM Trans. Comput. Biol. Bioinform., 4 (2007),
pp. 458–466.

[5] M. Bordewich and C. Semple, Computing the minimum number of hybridization events for
a consistent evolutionary history, Discrete Appl. Math., 155 (2007), pp. 914–928.

[6] Z.-Z. Chen and L. Wang, An ultrafast tool for minimum reticulate networks, J. Comput.
Biol., 20 (2013), pp. 38–41.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HYBRIDIZATION NUMBER ON THREE TREES 1631

[7] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer-Verlag, New York,
1999.

[8] J. Flum, M. Grohe, and M. Weyer, Bounded fixed-parameter tractability and nondetermin-
istic bits, J. Comput. Syst. Sci., 72 (2006), pp. 34–71.

[9] O. Gascuel and M. Steel, eds., Reconstructing Evolution: New Mathematical and Compu-
tational Advances, Oxford University Press, Oxford, 2007.

[10] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms
and Applications, Cambridge University Press, Cambridge, 2011.

[11] L. van Iersel and S. Kelk, Kernelizations for the hybridization number problem on multi-
ple nonbinary trees, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Comput. Sci. 8747, 2014, pp. 299–311.

[12] L. van Iersel, S. Kelk, N. Lekić, and L. Stougie, Approximation algorithms for nonbinary
agreement forests, SIAM J. Discrete Math., 28 (2014), pp. 49–66.

[13] L. van Iersel and S. Linz, A quadratic kernel for computing the hybridization number of
multiple trees, Inform. Process. Lett., 113 (2013), pp. 318–323.

[14] S. Kelk and C. Scornavacca, Towards the Fixed Parameter Tractability of Constructing
Minimal Phylogenetic Networks from Arbitrary Sets of Nonbinary Trees, arXiv:1207.7034,
2012.

[15] S. Kelk and C. Scornavacca, Constructing minimal phylogenetic networks from softwired
clusters is fixed parameter tractable, Algorithmica, 68 (2014), pp. 886–915.

[16] S. Kelk, C. Scornavacca, and L. van Iersel, On the elusiveness of clusters, IEEE/ACM
Trans. Comput. Biol. Bioinform., 9 (2012), pp. 517–534.

[17] S. Kelk, L. van Iersel, N. Lekić, S. Linz, C. Scornavacca, and L. Stougie, Cycle killer...
qu’est-ce que c’est? On the comparative approximability of hybridization number and
directed feedback vertex set, SIAM J. Discrete Math., 26 (2012), pp. 1635–1656.

[18] S. Linz and C. Semple, Hybridization in non-binary trees, IEEE/ACM Trans. Comput. Biol.
Bioinform., 6 (2009), pp. 30–45.

[19] D. Morrison, Introduction to Phylogenetic Networks, RJR Productions, Uppsala, 2011.
[20] R. Niedermeier, Invitation to Fixed Parameter Algorithms, Oxford Lecture Ser. Math. Appl.,

Oxford University Press, Oxford, 2006.
[21] T. Piovesan and S. Kelk, A simple fixed parameter tractable algorithm for computing the

hybridization number of two (not necessarily binary) trees, IEEE/ACM Trans. Comput.
Biol. Bioinform., 10 (2013), pp. 18–25.

[22] C. Semple and M. Steel, A supertree method for rooted trees, Discrete Appl. Math., 105
(2000), pp. 147–158.

[23] C. Whidden, R. G. Beiko, and N. Zeh, Fixed-parameter algorithms for maximum agreement
forests, SIAM J. Comput., 42 (2013), pp. 1431–1466.

[24] Y. Wu, An algorithm for constructing parsimonious hybridization networks with multiple phy-
logenetic trees, J. Comput. Biol., 20 (2013), pp. 792–804.

[25] Y. Yu, R. M. Barnett, and L. Nakhleh, Parsimonious inference of hybridization in the
presence of incomplete lineage sorting, Syst. Biol., 62 (2013), pp. 738–751.

D
ow

nl
oa

de
d

01
/1

7/
17

 to
 1

31
.1

80
.1

30
.2

27
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Preliminaries
	Guessing the AAF
	Tight networks
	Reconstructing a tight network
	Conclusions
	Appendix A. An example of constructing a network from its description
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

