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Bounds on equiangular lines and on related spherical codes

Boris Bukh
∗

Abstract

An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to

the set L. We show, for a fixed 0 < α, β < 1, that the size of any [−1,−β] ∪ {α}-spherical code is

at most linear in the dimension.

In particular, this bound applies to sets of lines such that every two are at a fixed angle to each

another.

1 Introduction

Background A set of lines in R
d is called equiangular, if the angle between any two of them is the

same. Equivalently, if P is the set of unit direction vectors, the corresponding lines are equiangular

with the angle arccosα if 〈v, v′〉 ∈ {−α,α} for any two distinct vectors v, v′ ∈ P . The second

equivalent way of defining equiangular lines is via the Gram matrix. Let M be the matrix whose

columns are the direction vectors. ThenMTM is a positive semidefinite matrix whose diagonal entries

are 1’s, and each of whose off-diagonal entries is −α or α. Conversely, any such matrix of size m and

rank d gives rise to m equiangular lines in R
d.

Equiangular lines have been extensively studied following the works of van Lint and Seidel [10],

and of Lemmens and Seidel [8]. Let N(d) be the maximum number of equiangular lines in R
d. Let

Nα(d) be the maximum number of equiangular lines with the angle arccosα. The values of N(d) are

known exactly for d ≤ 13, for d = 15, for 21 ≤ d ≤ 41 and for d = 43 [1, 5]. When d is large, the only

known upper bound on N(d) is due to Gerzon (see [8, Theorem 3.5]) and asserts that

N(d) ≤ d(d+ 1)/2 with equality only if d = 2, 3 or d+ 2 is a square of an odd integer.

A remarkable construction of de Caen[3] shows that N(d) ≥ 2
9(d+1)2 for d of the form d = 6 · 4i − 1.

A version of de Caen’s construction suitable for other values of d has been given by Greaves, Koolen,

Munemasa and Szöllösi [5]. See also the work of Jedwab and Wiebe [6] for an alternative construction

of Θ(d2) equiangular lines. In these constructions the inner product α tends to 0 as dimension grows.

Previously known bounds on Nα(d) The first bound is the so-called relative bound (see [10,

Lemma 6.1] following [8, Theorem 3.6])

Nα(d) ≤ d
1− α2

1− dα2
if d < 1/α2.
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While useful in small dimensions, it gives no information for a fixed α and large d. The second bound

is

Nα(d) ≤ 2d unless 1/α is an odd integer [8, Theorem 3.4].

This bound can be further improved to 3
2 (d+1) unless 1

2α + 1
2 is an algebraic integer of degree 2, see

[2, Subsection 2.3].

Finally, the values of N1/3(d) and N1/5(d) for a large d have been completely determined:

N1/3(d) = 2d− 2 for d ≥ 15 [8, Theorem 4.5],

N1/5(d) = ⌊3(d − 1)/2⌋ for all sufficiently large d [9] and [5, Corollary 6.6].

New bound We will show that Nα(d) is linear for every α. In fact, we will prove a result in greater

generality. Following [4], we call a set of unit vectors P an L-spherical code if 〈v, v′〉 ∈ L for every

pair of distinct points v, v′ ∈ P . In this language, a set of equiangular lines is a {−α,α}-spherical

code. Let NL(d) be the maximum cardinality of an L-spherical code in R
d.

Theorem 1. For every fixed 0 < β ≤ 1 there exists a constant cβ such that for any L of the form

L = [−1,−β] ∪ {α} we have NL(d) ≤ cβd.

We make no effort to optimize the constant cβ that arises from our proof, as it is huge. We

speculate about the optimal bounds on NL(d) in section 3. We do not know if the constant cβ can

be replaced by an absolute constant that is independent of β, i.e., whether NL(d) ≤ cd+ oβ(d) holds.

The rest of the paper is organized as follows. In the next section we prove Theorem 1 and in the

concluding section we discuss possible generalizations and strengthenings of Theorem 1.

2 Proof of Theorem 1

Proof sketch The idea behind the proof of Theorem 1 builds upon the argument of Lemmens and

Seidel for N1/3(d). Before going into the details, we outline the argument.

Let L = [−1,−β] ∪ {α}, and let P be an L-spherical code whose size we wish to bound. Define a

graph G on the vertex set P by connecting v and v′ by an edge if 〈v, v′〉 ∈ [−1,−β]. In their treatment

of N1/3(d) Lemmens and Seidel consider the largest clique in G, and carefully analyze how the rest of

the graph attaches to that clique. In contrast, in our argument we consider the largest independent

set I of G, and show that almost every other vertex is incident to nearly all vertices of I. Iterating

this argument inside the common neighborhood of I we can build a large clique in G. As the clique

size is bounded by a function of β, that establishes the theorem.

Proof details For the remainder of the section, L, P and G will be as defined as in the preceding

proof sketch. The following two well-known lemmas bound the sizes of cliques and independent sets

in G:

Lemma 2. Suppose u1, . . . , un are n vectors of norm at most 1 satisfying 〈ui, uj〉 ≤ −γ. Then

n ≤ 1/γ + 1.

Proof. This follows from 0 ≤ ‖
∑

ui ‖
2=

∑

i,j〈ui, uj〉 ≤ n− γn(n− 1).
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Lemma 3.

i. Every independent set in G is linearly independent. In particular, the graph G contains no

independent set on more than d vertices.

ii. The graph G contains no clique on more than 1/β + 1 vertices.

Proof. i) Let p1, . . . , pn be the points of the independent set. Suppose that
∑

cipi = 0. Taking an

inner product with pj we obtain 0 = (1 − α)cj + α
∑

ci implying that all ci’s are equal. The result

follows since (1− α) + nα 6= 0.

ii) This is a special case of the preceding lemma.

In the next two lemmas we analyze how the vertices of G attach to an independent set.

Lemma 4. Suppose that M is a matrix with linearly independent column vectors p1, . . . , pn. Suppose

that v, v′ ∈ span{p1, . . . , pn} are points satisfying 〈pi, v〉 = si and 〈pi, v
′〉 = s′i for some column vectors

s = (s1, . . . , sn)
T and s′ = (s′1, . . . , s

′
n)

T . Then 〈v, v′〉 = sT (MTM)−1s′.

Proof. By passing to a subspace we may assume that p1, . . . , pn span R
n, and so M is invertible. As

s = MT v and s′ = MT v′, we infer that 〈v, v′〉 = vT v′ = ((MT )−1s)T (MT )−1s′ = sT (MTM)−1s′.

The following lemma is the geometric heart of the proof. In its special case v = v′, the lemma

bounds degrees from certain vertices into an independent set. More precisely, let I be a sufficiently

large independent set. We will show later (in Lemma 6) that the vertices, the norm of whose projection

on span I exceeds α1/2, are few. The straightforward, but slightly messy calculations in the following

lemma characterize the vertices with such projections in terms of their degree into I. The case v 6= v′

is not needed when P comes from a set of equiangular lines, but is required to establish Theorem 1

in its full generality.

Lemma 5. Let t = 1/β +1. There exists n0 = n0(β) and ε = ε(β) > 0 such that the following holds.

Suppose that p1, . . . , pn is an independent set in G of size n, and suppose that points p, p′ ∈ P are

adjacent to the same m vertices among p1, . . . , pn. Assume 0 < m < n−t and n ≥ n0. Write p = v+u

and p′ = v′+u′ where v, v′ ∈ span{p1, . . . , pn} and u, u′ are both orthogonal to span{p1, . . . , pn}. Then

〈v, v′〉 ≥ α+ ε.

Proof. For the duration of this proof, I denotes the identity matrix, and J denotes the all-1 matrix.

Let M be the matrix comprised of column vectors p1, p2, . . . , pn. Since points p1, . . . , pn are linearly

independent (by Lemma 3), the condition of the preceding lemma is fulfilled. We have MTM =

αJ + (1− α)I. One can verify that its inverse is given by

(1− α)(MTM)−1 = I − φJ with φ
def

=
α

1 + (n− 1)α
. (1)

Note that φ ≤ 1/n since α ≤ 1.

Without loss of generality, p1, . . . , pm are the m vertices that p and p′ are adjacent to. This

means that s
def

= MT v and s′
def

= MT v′ are of the form s = (−β1, . . . ,−βm, α, . . . , α) and s′ =

(−β′
1, . . . ,−β′

m, α, . . . , α) for some β1, β
′
1, . . . , βm, β′

m ∈ [β, 1]. From Lemma 4 and (1) it follows that

(1− α)〈v, v′〉 = α2(n−m) +

m
∑

i=1

βiβ
′
i − φ

(

n
∑

i=1

si
)(

n
∑

i=1

s′i
)

. (2)
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We claim that, subject to the constraint β1, β
′
1, . . . , βm, β′

m ∈ [β, 1], the right side of (2) is minimized

when all the βi’s and all the β′
i’s are equal to β. Indeed, since [β, 1]2m is compact, the minimum is

actually attained. Assume that (β1, β
′
1, . . . , βm, β′

m) is the vector achieving the minimum, and let j

be the index for which β′
j is the largest. Then the derivative of the right side of (2) with respect to

β′
j is

βj − φ
∑

βi + (n−m)α ≥ βj −
1

n

∑

βi > βj −
1

m

∑

βi ≥ 0.

By the optimality assumption on the vector (β1, β
′
1, . . . , βm, β′

m) this implies that β′
j = β. From the

choice of j it then follows that β′
i = β for all i. Similarly, βi = β for all i.

We thus deduce that

(1− α)〈v, v′〉 ≥ α2(n−m) + β2m− φ ((n−m)α−mβ)2 .

Let R(m,n) denote the right side of preceding inequality. Let t∗
def

= (1−α)(α−β)
α(α+β) . We have

t∗ =
(1− α)(α − β)

α(α + β)
<

1− α

α+ β
<

1

β
= t− 1.

Thus to prove the lemma, it is enough to show that R(m,n) ≥ (1−α)α+ε whenever 1 ≤ m ≤ n−t∗−1

and n ≥ n0 for suitable n0 and ε.

The expression R(m,n) is a quadratic polynomial inm. A simple calculation shows that it satisfies

R(m,n) = R(n − t∗ −m,n), and in particular that the maximum of R(m,n) for a fixed n is at the

point mmax
def

= (n − t∗)/2, which is inside the interval [1, n − t∗ − 1]. Furthermore, at the boundary

points of the interval we have

R(1, n) = R(n− t∗ − 1, n) = α(1 − α) + (α+ β)2 −
α(1 + β)2

1 + α(n − 1)
.

Let n0 = 1 + 8/β2. Since α(1+β)2

1+α(n−1) < (1+β)2

n−1 ≤ 4
n−1 , for n ≥ n0 and 1 ≤ m ≤ n− t∗ − 1 we have the

inequality R(m,n) ≥ R(1, n) > α(1 − α) + 1
2(α + β)2. In particular 〈v, v′〉 > α + ε holds under the

same conditions on n and m, where ε = 1
2β

2.

Lemma 6. Suppose p1, . . . , pn is an independent set in G. Suppose p(1), . . . , p(m) ∈ P are points of the

form p(i) = v(i) + u(i) with v(i) ∈ span{p1, . . . , pn} and u(i)⊥ span{p1, . . . , pn} and 〈v(i), v(j)〉 > α+ ε

for all i, j. Then m ≤ 1/ε + 1.

Proof. From 〈p(i), p(j)〉 = 〈v(i), v(j)〉 + 〈u(i), u(j)〉 and 〈p(i), p(j)〉 ∈ [−1,−β] ∪ {α}, we deduce that

〈u(i), u(j)〉 < −ε. The result then follows from Lemma 2.

The combinatorial part of the argument is contained in the next result.

Lemma 7. Suppose δ > 0 is given. Then there exists a constant M(β, δ) such that the following

holds. Let U ⊂ P be arbitrary. Suppose I is a maximum-size independent subset of U . Then there

is a subset U ′ ⊂ U \ I of size |U ′| ≥ |U | −M |I| such that every vertex of U ′ is adjacent to at least

(1− δ)|I| vertices of I.
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Proof. Let t, ε and n0 be as in Lemma 5, and put n = max(n0, ⌈t/δ⌉). Denote by R the least integer

such that every graph on R vertices contains either an independent set of size n+1 or a clique of size

at least 1/β+2 (such an R exists by Ramsey’s theorem; furthermore, it satisfies R ≤
(n+1/β+1

n

)

). Let

M = max(R, (1/ε + 1)2n),

N = |I|.

If |U | < M , then |U | − M |I| is negative, and the lemma is vacuous. So, assume |U | ≥ M . In

particular, |U | ≥ R, and since by Lemma 3 the set U contains no clique of size greater 1/β + 1, we

conclude that N ≥ n+ 1.

Arrange the elements of I on a circle, and consider all N circular intervals containing n vertices

of I. Let S1, S2, . . . , SN be these intervals, in order.

We declare a vertex p ∈ U \ I to be i-bad if it is adjacent to between 1 and n − t vertices of Si.

For a set T ⊂ Si, we call an i-bad vertex p to be of type T if T is precisely the set of neighbors of p

in the set Si. Let Bi,T be the set of all i-bad vertices of type T , and let Bi =
⋃

T Bi,T be the set of

all i-bad vertices. By Lemmas 5 and 6 we have |Bi,T | ≤ 1/ε + 1 for every T , and so

|Bi| ≤ (1/ε + 1)(2n − 1).

Let B =
⋃

Bi be the set of bad vertices. Hence, |B| ≤ N(1/ε+ 1)(2n − 1), and |B ∪ I| ≤ MN .

Consider a vertex p ∈ U \ I that is good, i.e., p 6∈ B. Since I is a maximal independent set, p is

adjacent to at least one vertex of I. Say p is adjacent to a vertex of Si for some i. Since p is good, p

must in fact be adjacent to at least n − t vertices of Si. As Si shares n − 1 vertices with both Si−1

and Si+1, we are impelled to conclude that p must be adjacent to some of the vertices of Si−1 and of

Si+1. Repeating this argument we conclude that p is non-adjacent to at most t elements from among

any interval of length n. In particular, p is adjacent to at least N(1 − t/n) vertices of I. As p is an

arbitrary good vertex and t/n ≤ δ, the lemma follows.

We are now ready to complete the proof of Theorem 1. Indeed, with foresight we set

B = ⌈1/β + 1⌉,

δ = 1/(B + 1)2.

and let M be as in the proceeding lemma. Put U0 = P and let I0 be a maximal independent set in

U0. By the preceding lemma, there exists U1 ⊂ U0 \ I0 such that every vertex of U1 is adjacent to

(1 − δ)|I0| vertices of I0 and |U1| ≥ |U0| − M |I0|. In view of Lemma 3, |U1| ≥ |U0| − Md. Let I1
be a maximal independent set in U1. Repeating this argument, we obtain a nested sequence of sets

U0 ⊃ U1 ⊃ and a corresponding sequence of independent sets I0, I1, . . . such that

i. |Ui| ≥ |Ui−1| −Md for each i = 1, 2, . . . ,

ii. For r < s, each vertex in Is is adjacent to at least (1− δ)|Ir | vertices of Ir.

We claim that |P | ≤ BMd, which would be enough to complete the proof of Theorem 1. Indeed,

suppose for the sake of contradiction that |P | > BMd. Then I0, . . . , IB are non-empty. Pick vertices

v0, . . . , vB uniformly at random from I0, . . . , IB respectively. Since, for every i 6= j, the pair vivj is

5



an edge with probability at least 1− δ, it follows that v0, . . . , vB is a clique with probability at least

1−
(

B+1
2

)

δ > 0. In particular, G then contains a clique of size B+1 > 1/β+1, contrary to Lemma 3.

The contradiction shows that |P | ≤ BMd, completing the proof of Theorem 1.

3 Open problems

• I know of only one asymptotic lower bound on NL. It is a version of [5, Proposition 5.12] that

is also implicit in the bound for N1/3(d) in [8]. Denote by In the identity matrix of size n, and

by Jn the all-one matrix of size n. Then the matrix M = (r− 1)Irt − (Jr − Ir)⊗ It is a positive

semidefinite matrix of nullity t, it has (r − 1)’s on the diagonal, and its off-diagonal entries are

0 and −1. Hence, 1
r−1+τ (M + τJrt) is a Gram matrix of a {− 1−τ

r−1+τ ,
τ

r−1+τ }-code in R
(r−1)t+1

of size rt. So, NL(d) ≥
r

r−1d+O(1) for L = {− 1−τ
r−1+τ ,

τ
r−1+τ }. For τ = 1/2, this yields a family

of equiangular lines. The results in [8, 9, 5] suggest that this bound is sharp.

Conjecture 8. For an integer r ≥ 2, the maximum number of equiangular lines with angle

arccos 1
2r−1 is N1/(2r−1)(d) =

r
r−1d+O(1) as d tends to infinity.

In contrast, one can show that the bound implicit in the proof of Theorem 1 is 2O(1/β2)d.

• Informally, it is natural to think of Theorem 1 as a juxtaposition of two trivial results from

Lemma 3: N[−1,−β](d) = O(1) and N{α}(d) = O(d). Since N{α1,...,αk}(d) = O(dk) for any real

numbers α1, . . . , αk (see [2, Proposition 1]) this motivates the following conjecture.

Conjecture 9. Suppose α1, . . . , αk are any k real numbers, and L = [−1,−β] ∪ {α1, . . . , αk}.

Then NL(d) ≤ cβ,kd
k.

It is conceivable that in this case even NL(d) ≤ cβN{α1,...,αk}(d) might be true.

Added in revision: Conjecture 9 has been resolved by Keevash and Sudakov [7]

• I cannot rule out the possibility that for a fixed α the size of any [−1, 0) ∪ {α}-code is at most

linear in the dimension.
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