Bounds on equiangular lines and on related spherical codes

Boris Bukh*

Abstract

An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed $0<\alpha, \beta<1$, that the size of any $[-1,-\beta] \cup\{\alpha\}$-spherical code is at most linear in the dimension.

In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.

1 Introduction

Background A set of lines in \mathbb{R}^{d} is called equiangular, if the angle between any two of them is the same. Equivalently, if P is the set of unit direction vectors, the corresponding lines are equiangular with the angle $\arccos \alpha$ if $\left\langle v, v^{\prime}\right\rangle \in\{-\alpha, \alpha\}$ for any two distinct vectors $v, v^{\prime} \in P$. The second equivalent way of defining equiangular lines is via the Gram matrix. Let M be the matrix whose columns are the direction vectors. Then $M^{T} M$ is a positive semidefinite matrix whose diagonal entries are 1's, and each of whose off-diagonal entries is $-\alpha$ or α. Conversely, any such matrix of size m and rank d gives rise to m equiangular lines in \mathbb{R}^{d}.

Equiangular lines have been extensively studied following the works of van Lint and Seidel [10], and of Lemmens and Seidel [8]. Let $N(d)$ be the maximum number of equiangular lines in \mathbb{R}^{d}. Let $N_{\alpha}(d)$ be the maximum number of equiangular lines with the angle arccos α. The values of $N(d)$ are known exactly for $d \leq 13$, for $d=15$, for $21 \leq d \leq 41$ and for $d=43[1,5]$. When d is large, the only known upper bound on $N(d)$ is due to Gerzon (see [8, Theorem 3.5]) and asserts that
$N(d) \leq d(d+1) / 2$ with equality only if $d=2,3$ or $d+2$ is a square of an odd integer.
A remarkable construction of de Caen[3] shows that $N(d) \geq \frac{2}{9}(d+1)^{2}$ for d of the form $d=6 \cdot 4^{i}-1$. A version of de Caen's construction suitable for other values of d has been given by Greaves, Koolen, Munemasa and Szöllösi [5]. See also the work of Jedwab and Wiebe [6] for an alternative construction of $\Theta\left(d^{2}\right)$ equiangular lines. In these constructions the inner product α tends to 0 as dimension grows.

Previously known bounds on $N_{\alpha}(d)$ The first bound is the so-called relative bound (see [10, Lemma 6.1] following [8, Theorem 3.6])

$$
N_{\alpha}(d) \leq d \frac{1-\alpha^{2}}{1-d \alpha^{2}} \quad \text { if } d<1 / \alpha^{2}
$$

[^0]While useful in small dimensions, it gives no information for a fixed α and large d. The second bound is

$$
N_{\alpha}(d) \leq 2 d \quad \text { unless } 1 / \alpha \text { is an odd integer [8, Theorem 3.4]. }
$$

This bound can be further improved to $\frac{3}{2}(d+1)$ unless $\frac{1}{2 \alpha}+\frac{1}{2}$ is an algebraic integer of degree 2 , see [2, Subsection 2.3].

Finally, the values of $N_{1 / 3}(d)$ and $N_{1 / 5}(d)$ for a large d have been completely determined:

$$
\begin{array}{lll}
N_{1 / 3}(d)=2 d-2 & \text { for } d \geq 15 & {[8, \text { Theorem 4.5], }} \\
N_{1 / 5}(d)=\lfloor 3(d-1) / 2\rfloor & \text { for all sufficiently large } d & {[9] \text { and [5, Corollary 6.6]. }}
\end{array}
$$

New bound We will show that $N_{\alpha}(d)$ is linear for every α. In fact, we will prove a result in greater generality. Following [4], we call a set of unit vectors P an L-spherical code if $\left\langle v, v^{\prime}\right\rangle \in L$ for every pair of distinct points $v, v^{\prime} \in P$. In this language, a set of equiangular lines is a $\{-\alpha, \alpha\}$-spherical code. Let $N_{L}(d)$ be the maximum cardinality of an L-spherical code in \mathbb{R}^{d}.

Theorem 1. For every fixed $0<\beta \leq 1$ there exists a constant c_{β} such that for any L of the form $L=[-1,-\beta] \cup\{\alpha\}$ we have $N_{L}(d) \leq c_{\beta} d$.

We make no effort to optimize the constant c_{β} that arises from our proof, as it is huge. We speculate about the optimal bounds on $N_{L}(d)$ in section 3 . We do not know if the constant c_{β} can be replaced by an absolute constant that is independent of β, i.e., whether $N_{L}(d) \leq c d+o_{\beta}(d)$ holds.

The rest of the paper is organized as follows. In the next section we prove Theorem 1 and in the concluding section we discuss possible generalizations and strengthenings of Theorem 1.

2 Proof of Theorem 1

Proof sketch The idea behind the proof of Theorem 1 builds upon the argument of Lemmens and Seidel for $N_{1 / 3}(d)$. Before going into the details, we outline the argument.

Let $L=[-1,-\beta] \cup\{\alpha\}$, and let P be an L-spherical code whose size we wish to bound. Define a graph G on the vertex set P by connecting v and v^{\prime} by an edge if $\left\langle v, v^{\prime}\right\rangle \in[-1,-\beta]$. In their treatment of $N_{1 / 3}(d)$ Lemmens and Seidel consider the largest clique in G, and carefully analyze how the rest of the graph attaches to that clique. In contrast, in our argument we consider the largest independent set I of G, and show that almost every other vertex is incident to nearly all vertices of I. Iterating this argument inside the common neighborhood of I we can build a large clique in G. As the clique size is bounded by a function of β, that establishes the theorem.

Proof details For the remainder of the section, L, P and G will be as defined as in the preceding proof sketch. The following two well-known lemmas bound the sizes of cliques and independent sets in G :

Lemma 2. Suppose u_{1}, \ldots, u_{n} are n vectors of norm at most 1 satisfying $\left\langle u_{i}, u_{j}\right\rangle \leq-\gamma$. Then $n \leq 1 / \gamma+1$.

Proof. This follows from $0 \leq\left\|\sum u_{i}\right\|^{2}=\sum_{i, j}\left\langle u_{i}, u_{j}\right\rangle \leq n-\gamma n(n-1)$.

Lemma 3.

i. Every independent set in G is linearly independent. In particular, the graph G contains no independent set on more than d vertices.
ii. The graph G contains no clique on more than $1 / \beta+1$ vertices.

Proof. i) Let p_{1}, \ldots, p_{n} be the points of the independent set. Suppose that $\sum c_{i} p_{i}=0$. Taking an inner product with p_{j} we obtain $0=(1-\alpha) c_{j}+\alpha \sum c_{i}$ implying that all c_{i} 's are equal. The result follows since $(1-\alpha)+n \alpha \neq 0$.
ii) This is a special case of the preceding lemma.

In the next two lemmas we analyze how the vertices of G attach to an independent set.
Lemma 4. Suppose that M is a matrix with linearly independent column vectors p_{1}, \ldots, p_{n}. Suppose that $v, v^{\prime} \in \operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$ are points satisfying $\left\langle p_{i}, v\right\rangle=s_{i}$ and $\left\langle p_{i}, v^{\prime}\right\rangle=s_{i}^{\prime}$ for some column vectors $s=\left(s_{1}, \ldots, s_{n}\right)^{T}$ and $s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)^{T}$. Then $\left\langle v, v^{\prime}\right\rangle=s^{T}\left(M^{T} M\right)^{-1} s^{\prime}$.

Proof. By passing to a subspace we may assume that p_{1}, \ldots, p_{n} span \mathbb{R}^{n}, and so M is invertible. As $s=M^{T} v$ and $s^{\prime}=M^{T} v^{\prime}$, we infer that $\left\langle v, v^{\prime}\right\rangle=v^{T} v^{\prime}=\left(\left(M^{T}\right)^{-1} s\right)^{T}\left(M^{T}\right)^{-1} s^{\prime}=s^{T}\left(M^{T} M\right)^{-1} s^{\prime}$.

The following lemma is the geometric heart of the proof. In its special case $v=v^{\prime}$, the lemma bounds degrees from certain vertices into an independent set. More precisely, let I be a sufficiently large independent set. We will show later (in Lemma 6) that the vertices, the norm of whose projection on span I exceeds $\alpha^{1 / 2}$, are few. The straightforward, but slightly messy calculations in the following lemma characterize the vertices with such projections in terms of their degree into I. The case $v \neq v^{\prime}$ is not needed when P comes from a set of equiangular lines, but is required to establish Theorem 1 in its full generality.

Lemma 5. Let $t=1 / \beta+1$. There exists $n_{0}=n_{0}(\beta)$ and $\varepsilon=\varepsilon(\beta)>0$ such that the following holds. Suppose that p_{1}, \ldots, p_{n} is an independent set in G of size n, and suppose that points $p, p^{\prime} \in P$ are adjacent to the same m vertices among p_{1}, \ldots, p_{n}. Assume $0<m<n-t$ and $n \geq n_{0}$. Write $p=v+u$ and $p^{\prime}=v^{\prime}+u^{\prime}$ where $v, v^{\prime} \in \operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$ and u, u^{\prime} are both orthogonal to $\operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$. Then $\left\langle v, v^{\prime}\right\rangle \geq \alpha+\varepsilon$.

Proof. For the duration of this proof, I denotes the identity matrix, and J denotes the all-1 matrix. Let M be the matrix comprised of column vectors $p_{1}, p_{2}, \ldots, p_{n}$. Since points p_{1}, \ldots, p_{n} are linearly independent (by Lemma 3), the condition of the preceding lemma is fulfilled. We have $M^{T} M=$ $\alpha J+(1-\alpha) I$. One can verify that its inverse is given by

$$
\begin{equation*}
(1-\alpha)\left(M^{T} M\right)^{-1}=I-\phi J \quad \text { with } \quad \phi \stackrel{\text { def }}{=} \frac{\alpha}{1+(n-1) \alpha} . \tag{1}
\end{equation*}
$$

Note that $\phi \leq 1 / n$ since $\alpha \leq 1$.
Without loss of generality, p_{1}, \ldots, p_{m} are the m vertices that p and p^{\prime} are adjacent to. This means that $s \stackrel{\text { def }}{=} M^{T} v$ and $s^{\prime} \stackrel{\text { def }}{=} M^{T} v^{\prime}$ are of the form $s=\left(-\beta_{1}, \ldots,-\beta_{m}, \alpha, \ldots, \alpha\right)$ and $s^{\prime}=$ $\left(-\beta_{1}^{\prime}, \ldots,-\beta_{m}^{\prime}, \alpha, \ldots, \alpha\right)$ for some $\beta_{1}, \beta_{1}^{\prime}, \ldots, \beta_{m}, \beta_{m}^{\prime} \in[\beta, 1]$. From Lemma 4 and (1) it follows that

$$
\begin{equation*}
(1-\alpha)\left\langle v, v^{\prime}\right\rangle=\alpha^{2}(n-m)+\sum_{i=1}^{m} \beta_{i} \beta_{i}^{\prime}-\phi\left(\sum_{i=1}^{n} s_{i}\right)\left(\sum_{i=1}^{n} s_{i}^{\prime}\right) . \tag{2}
\end{equation*}
$$

We claim that, subject to the constraint $\beta_{1}, \beta_{1}^{\prime}, \ldots, \beta_{m}, \beta_{m}^{\prime} \in[\beta, 1]$, the right side of (2) is minimized when all the β_{i} 's and all the β_{i}^{\prime} 's are equal to β. Indeed, since $[\beta, 1]^{2 m}$ is compact, the minimum is actually attained. Assume that $\left(\beta_{1}, \beta_{1}^{\prime}, \ldots, \beta_{m}, \beta_{m}^{\prime}\right)$ is the vector achieving the minimum, and let j be the index for which β_{j}^{\prime} is the largest. Then the derivative of the right side of (2) with respect to β_{j}^{\prime} is

$$
\beta_{j}-\phi \sum \beta_{i}+(n-m) \alpha \geq \beta_{j}-\frac{1}{n} \sum \beta_{i}>\beta_{j}-\frac{1}{m} \sum \beta_{i} \geq 0 .
$$

By the optimality assumption on the vector $\left(\beta_{1}, \beta_{1}^{\prime}, \ldots, \beta_{m}, \beta_{m}^{\prime}\right)$ this implies that $\beta_{j}^{\prime}=\beta$. From the choice of j it then follows that $\beta_{i}^{\prime}=\beta$ for all i. Similarly, $\beta_{i}=\beta$ for all i.

We thus deduce that

$$
(1-\alpha)\left\langle v, v^{\prime}\right\rangle \geq \alpha^{2}(n-m)+\beta^{2} m-\phi((n-m) \alpha-m \beta)^{2} .
$$

Let $R(m, n)$ denote the right side of preceding inequality. Let $t^{*} \stackrel{\text { def }}{=} \frac{(1-\alpha)(\alpha-\beta)}{\alpha(\alpha+\beta)}$. We have

$$
t^{*}=\frac{(1-\alpha)(\alpha-\beta)}{\alpha(\alpha+\beta)}<\frac{1-\alpha}{\alpha+\beta}<\frac{1}{\beta}=t-1 .
$$

Thus to prove the lemma, it is enough to show that $R(m, n) \geq(1-\alpha) \alpha+\varepsilon$ whenever $1 \leq m \leq n-t^{*}-1$ and $n \geq n_{0}$ for suitable n_{0} and ε.

The expression $R(m, n)$ is a quadratic polynomial in m. A simple calculation shows that it satisfies $R(m, n)=R\left(n-t^{*}-m, n\right)$, and in particular that the maximum of $R(m, n)$ for a fixed n is at the point $m_{\max } \stackrel{\text { def }}{=}\left(n-t^{*}\right) / 2$, which is inside the interval $\left[1, n-t^{*}-1\right]$. Furthermore, at the boundary points of the interval we have

$$
R(1, n)=R\left(n-t^{*}-1, n\right)=\alpha(1-\alpha)+(\alpha+\beta)^{2}-\frac{\alpha(1+\beta)^{2}}{1+\alpha(n-1)}
$$

Let $n_{0}=1+8 / \beta^{2}$. Since $\frac{\alpha(1+\beta)^{2}}{1+\alpha(n-1)}<\frac{(1+\beta)^{2}}{n-1} \leq \frac{4}{n-1}$, for $n \geq n_{0}$ and $1 \leq m \leq n-t^{*}-1$ we have the inequality $R(m, n) \geq R(1, n)>\alpha(1-\alpha)+\frac{1}{2}(\alpha+\beta)^{2}$. In particular $\left\langle v, v^{\prime}\right\rangle>\alpha+\varepsilon$ holds under the same conditions on n and m, where $\varepsilon=\frac{1}{2} \beta^{2}$.

Lemma 6. Suppose p_{1}, \ldots, p_{n} is an independent set in G. Suppose $p^{(1)}, \ldots, p^{(m)} \in P$ are points of the form $p^{(i)}=v^{(i)}+u^{(i)}$ with $v^{(i)} \in \operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$ and $u^{(i)} \perp \operatorname{span}\left\{p_{1}, \ldots, p_{n}\right\}$ and $\left\langle v^{(i)}, v^{(j)}\right\rangle>\alpha+\varepsilon$ for all i, j. Then $m \leq 1 / \varepsilon+1$.

Proof. From $\left\langle p^{(i)}, p^{(j)}\right\rangle=\left\langle v^{(i)}, v^{(j)}\right\rangle+\left\langle u^{(i)}, u^{(j)}\right\rangle$ and $\left\langle p^{(i)}, p^{(j)}\right\rangle \in[-1,-\beta] \cup\{\alpha\}$, we deduce that $\left\langle u^{(i)}, u^{(j)}\right\rangle<-\varepsilon$. The result then follows from Lemma 2.

The combinatorial part of the argument is contained in the next result.
Lemma 7. Suppose $\delta>0$ is given. Then there exists a constant $M(\beta, \delta)$ such that the following holds. Let $U \subset P$ be arbitrary. Suppose I is a maximum-size independent subset of U. Then there is a subset $U^{\prime} \subset U \backslash I$ of size $\left|U^{\prime}\right| \geq|U|-M|I|$ such that every vertex of U^{\prime} is adjacent to at least $(1-\delta)|I|$ vertices of I.

Proof. Let t, ε and n_{0} be as in Lemma 5, and put $n=\max \left(n_{0},\lceil t / \delta\rceil\right)$. Denote by R the least integer such that every graph on R vertices contains either an independent set of size $n+1$ or a clique of size at least $1 / \beta+2$ (such an R exists by Ramsey's theorem; furthermore, it satisfies $R \leq\left({ }_{n}^{n+1 / \beta+1}\right)$). Let

$$
\begin{aligned}
M & =\max \left(R,(1 / \varepsilon+1) 2^{n}\right), \\
N & =|I| .
\end{aligned}
$$

If $|U|<M$, then $|U|-M|I|$ is negative, and the lemma is vacuous. So, assume $|U| \geq M$. In particular, $|U| \geq R$, and since by Lemma 3 the set U contains no clique of size greater $1 / \beta+1$, we conclude that $N \geq n+1$.

Arrange the elements of I on a circle, and consider all N circular intervals containing n vertices of I. Let $S_{1}, S_{2}, \ldots, S_{N}$ be these intervals, in order.

We declare a vertex $p \in U \backslash I$ to be i-bad if it is adjacent to between 1 and $n-t$ vertices of S_{i}. For a set $T \subset S_{i}$, we call an i-bad vertex p to be of type T if T is precisely the set of neighbors of p in the set S_{i}. Let $B_{i, T}$ be the set of all i-bad vertices of type T, and let $B_{i}=\bigcup_{T} B_{i, T}$ be the set of all i-bad vertices. By Lemmas 5 and 6 we have $\left|B_{i, T}\right| \leq 1 / \varepsilon+1$ for every T, and so

$$
\left|B_{i}\right| \leq(1 / \varepsilon+1)\left(2^{n}-1\right)
$$

Let $B=\bigcup B_{i}$ be the set of bad vertices. Hence, $|B| \leq N(1 / \varepsilon+1)\left(2^{n}-1\right)$, and $|B \cup I| \leq M N$.
Consider a vertex $p \in U \backslash I$ that is good, i.e., $p \notin B$. Since I is a maximal independent set, p is adjacent to at least one vertex of I. Say p is adjacent to a vertex of S_{i} for some i. Since p is good, p must in fact be adjacent to at least $n-t$ vertices of S_{i}. As S_{i} shares $n-1$ vertices with both S_{i-1} and S_{i+1}, we are impelled to conclude that p must be adjacent to some of the vertices of S_{i-1} and of S_{i+1}. Repeating this argument we conclude that p is non-adjacent to at most t elements from among any interval of length n. In particular, p is adjacent to at least $N(1-t / n)$ vertices of I. As p is an arbitrary good vertex and $t / n \leq \delta$, the lemma follows.

We are now ready to complete the proof of Theorem 1. Indeed, with foresight we set

$$
\begin{aligned}
B & =\lceil 1 / \beta+1\rceil \\
\delta & =1 /(B+1)^{2} .
\end{aligned}
$$

and let M be as in the proceeding lemma. Put $U_{0}=P$ and let I_{0} be a maximal independent set in U_{0}. By the preceding lemma, there exists $U_{1} \subset U_{0} \backslash I_{0}$ such that every vertex of U_{1} is adjacent to $(1-\delta)\left|I_{0}\right|$ vertices of I_{0} and $\left|U_{1}\right| \geq\left|U_{0}\right|-M\left|I_{0}\right|$. In view of Lemma $3,\left|U_{1}\right| \geq\left|U_{0}\right|-M d$. Let I_{1} be a maximal independent set in U_{1}. Repeating this argument, we obtain a nested sequence of sets $U_{0} \supset U_{1} \supset$ and a corresponding sequence of independent sets I_{0}, I_{1}, \ldots such that
i. $\left|U_{i}\right| \geq\left|U_{i-1}\right|-M d$ for each $i=1,2, \ldots$,
ii. For $r<s$, each vertex in I_{s} is adjacent to at least $(1-\delta)\left|I_{r}\right|$ vertices of I_{r}.

We claim that $|P| \leq B M d$, which would be enough to complete the proof of Theorem 1. Indeed, suppose for the sake of contradiction that $|P|>B M d$. Then I_{0}, \ldots, I_{B} are non-empty. Pick vertices v_{0}, \ldots, v_{B} uniformly at random from I_{0}, \ldots, I_{B} respectively. Since, for every $i \neq j$, the pair $v_{i} v_{j}$ is
an edge with probability at least $1-\delta$, it follows that v_{0}, \ldots, v_{B} is a clique with probability at least $1-\binom{B+1}{2} \delta>0$. In particular, G then contains a clique of size $B+1>1 / \beta+1$, contrary to Lemma 3 . The contradiction shows that $|P| \leq B M d$, completing the proof of Theorem 1.

3 Open problems

- I know of only one asymptotic lower bound on N_{L}. It is a version of [5, Proposition 5.12] that is also implicit in the bound for $N_{1 / 3}(d)$ in [8]. Denote by I_{n} the identity matrix of size n, and by J_{n} the all-one matrix of size n. Then the matrix $M=(r-1) I_{r t}-\left(J_{r}-I_{r}\right) \otimes I_{t}$ is a positive semidefinite matrix of nullity t, it has $(r-1)$'s on the diagonal, and its off-diagonal entries are 0 and -1 . Hence, $\frac{1}{r-1+\tau}\left(M+\tau J_{r t}\right)$ is a Gram matrix of a $\left\{-\frac{1-\tau}{r-1+\tau}, \frac{\tau}{r-1+\tau}\right\}$-code in $\mathbb{R}^{(r-1) t+1}$ of size r. So, $N_{L}(d) \geq \frac{r}{r-1} d+O(1)$ for $L=\left\{-\frac{1-\tau}{r-1+\tau}, \frac{\tau}{r-1+\tau}\right\}$. For $\tau=1 / 2$, this yields a family of equiangular lines. The results in $[8,9,5]$ suggest that this bound is sharp.

Conjecture 8. For an integer $r \geq 2$, the maximum number of equiangular lines with angle $\arccos \frac{1}{2 r-1}$ is $N_{1 /(2 r-1)}(d)=\frac{r}{r-1} d+O(1)$ as d tends to infinity.

In contrast, one can show that the bound implicit in the proof of Theorem 1 is $2^{O\left(1 / \beta^{2}\right)} d$.

- Informally, it is natural to think of Theorem 1 as a juxtaposition of two trivial results from Lemma 3: $N_{[-1,-\beta]}(d)=O(1)$ and $N_{\{\alpha\}}(d)=O(d)$. Since $N_{\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}}(d)=O\left(d^{k}\right)$ for any real numbers $\alpha_{1}, \ldots, \alpha_{k}$ (see [2, Proposition 1]) this motivates the following conjecture.

Conjecture 9. Suppose $\alpha_{1}, \ldots, \alpha_{k}$ are any k real numbers, and $L=[-1,-\beta] \cup\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. Then $N_{L}(d) \leq c_{\beta, k} d^{k}$.

It is conceivable that in this case even $N_{L}(d) \leq c_{\beta} N_{\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}}(d)$ might be true.
Added in revision: Conjecture 9 has been resolved by Keevash and Sudakov [7]

- I cannot rule out the possibility that for a fixed α the size of any $[-1,0) \cup\{\alpha\}$-code is at most linear in the dimension.

Acknowledgments. I am grateful to James Cummings, Hao Huang and Humberto Naves for inspirational discussions. I am thankful to Joseph Briggs for careful reading, and for finding a mistake in an earlier version of this paper. I also benefited from the constructive comments of two referees.

References

[1] Alexander Barg and Wei-Hsuan Yu. New bounds for equiangular lines. In Discrete geometry and algebraic combinatorics, volume 625 of Contemp. Math., pages 111-121. Amer. Math. Soc., Providence, RI, 2014. arXiv:1311.3219.
[2] Boris Bukh. Ranks of matrices with few distinct entries. arXiv:1508.00145, 2015.
[3] D. de Caen. Large equiangular sets of lines in Euclidean space. Electron. J. Combin., 7:Research Paper 55, 3 pp. (electronic), 2000. http://www.combinatorics.org/Volume_7/Abstracts/v7i1r55.html.
[4] P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geometriae Dedicata, 6(3):363-388, 1977.
[5] Gary Greaves, Jacobus H. Koolen, Akihiro Munemasa, and Ferenc Szöllösi. Equiangular lines in Euclidean spaces. arXiv:1403.2155, January 2015.
[6] Jonathan Jedwab and Amy Wiebe. Large sets of complex and real equiangular lines. J. Combin. Theory Ser. A, 134:98-102, 2015. arXiv:1501.05395.
[7] Peter Keevash and Benny Sudakov. Bounds for spherical codes. arXiv:1602.07645, February 2016.
[8] P. W. H. Lemmens and J. J. Seidel. Equiangular lines. J. Algebra, 24:494-512, 1973.
[9] A. Neumaier. Graph representations, two-distance sets, and equiangular lines. Linear Algebra Appl., 114/115:141-156, 1989.
[10] J. H. van Lint and J. J. Seidel. Equilateral point sets in elliptic geometry. Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math., 28:335-348, 1966.

[^0]: *Supported in part by U.S. taxpayers through NSF grant DMS-1301548. Supported in part by Alfred P. Sloan Foundation through Sloan Research Fellowship.

