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Periodic eigendecomposition and its application to Kuramoto-Sivashinsky
system

Xiong Ding† and Predrag Cvitanović†

Abstract. Periodic eigendecomposition, to be formulated in this paper, is a numerical method to compute
Floquet spectrum and Floquet vectors along periodic orbits in a dynamical system. It is rooted in
numerical algorithms advances in computation of ‘covariant vectors’∗ of the linearized flow along
an ergodic trajectory in a chaotic system. Recent research on covariant vectors strongly strongly
suggests that the physical dimension of inertial manifold of a dissipative PDE can be characterized by
a finite number of ‘entangled modes’, dynamically isolated from the residual set of transient degrees
of freedom. We anticipate that Floquet vectors display similar properties as covariant vectors. In this
paper we incorporate periodic Schur decomposition to the computation of dynamical Floquet vectors,
compare it with other methods, and show that the method can yield the full Floquet spectrum of a
periodic orbit at every point along the orbit to high accuracy. Its power, and in particular its ability
to resolve eigenvalues whose magnitude differs by hundreds of orders magnitude, is demonstrated
by applying the algorithm to computation of the full linear stability spectrum of several periodic
solutions in one dimensional Kuramoto-Sivashinsky flow.
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1. Introduction. In dissipative chaotic dynamical systems, the decomposition of the tan-
gent space of invariant subsets into stable, unstable and center subspaces is important for
analyzing the geometrical structure of the solution field [18]. For equilibrium points, the task
is quite simple, which is reduced to the eigen-problem of a single stability matrix, but the
scenario is much more difficult for complex structures, such as periodic orbits and invariant
tours, since the expanding/contracting rate in high dimensional systems usually span a large
order of magnitude. Actually, in literature, two different algorithms are capable of resolving
this problem partially originated from different settings. The first candidate is covariant vec-
tor algorithm [14, 24, 39]. It is designed to stratify the Oseledets subspaces [32] corresponding
to the hierarchy of Lyapunov exponents along a long non-wandering orbit on the attractor.
Covariant vectors attract a lot of attention in the past few years. They turn out to be a useful
tool for physicists to investigate the dynamical properties of the system, such as hyperbolicity
degree [4, 19, 23] and the geometry of inertial manifold [34, 40, 42]. For our interest in peri-
odic orbits, it produces Floquet spectrum and Floquet vectors. The second candidate is called
periodic Schur decomposition(PSD) [3], and was brought up to compute the eigenvalues of the
product of a sequence of matrices without forming the product explicitly. This is suitable for
solving the eigenvalue problem in tangent space because the fundamental matrix in tangent
space can be formed as a product of its shorter-time pieces. However, in its original form,
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paper.
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PSD are only capable of computing eigenvalues but not eigenvectors. Also PSD seems not
well known to the physics community.

In this paper, we unify these two methods for computing Floquet spectrum and Floquet
vectors along periodic orbits or invariant tori, and name it after periodic eigendecomposition.
Special attention is exerted to complex conjugate Floquet vectors. There are two stages in
the process of this algorithm, each of which can be accomplished by two different methods, so
we study performance of four different algorithms in all. Also it turns out that the covariant
vectors algorithm reduces to one of them when applied to periodic orbits.

The paper is organized as follows. Sect. 2 describes briefly the nonlinear dynamics moti-
vation for undertaking this project, and reviews two existing algorithms related to our work.
Readers interested only in the algorithms itself can skip this part. We describe the computa-
tional problem in sect. 3. In sect. 4 we deal with the first stage of periodic eigendecomposition,
and then show that both the periodic QR algorithm and simultaneous iteration are capable
of achieving periodic Schur decomposition. Sect. 5 introduces power iteration and reordering
as two practical methods to obtain all eigenvectors. In sect. 6 we compare the computa-
tional effort required by different methods, and sect. 7 applies periodic eigendecomposition to
Kuramoto-Sivashinsky equation, an example which illustrates method’s effectiveness.

2. Dynamics background and existing algorithms. The study of dynamical systems is
trying to understand the statistical properties of the system and the geometrical structure
of the global attractor. As we will see, periodic orbits plays an important role in answer-
ing both questions. For dissipative systems, orbits typically land onto an invariant subset,
called global attractor, after a transient period, and if the system is chaotic, the attractor is
a strange attractor which contains a dense set of periodic orbits. The chaotic deterministic
flow on strange attractor can be visualized as a walk chaperoned by a hierarchy of unstable
invariant solutions (equilibria, periodic orbits) embedded in the attractor. An ergodic trajec-
tory shadows one such invariant solution for a while, is expelled along its unstable manifold,
settles into the neighborhood of another invariant solution for a while, and continues in this
way forever. Together, the infinite set of these unstable invariant solutions forms the skeleton
of a chaotic attractor, and in fact spatiotemporal averages, such as deterministic diffusion
coefficients, energy dissipation rate, Lyapunov exponents, etc. can be accurately calculated as
a sum over periodic orbits weighted by products of their unstable Floquet multipliers [5, 7].
This is one reason we study the algorithm of computing Floquet spectrum in this paper.

On the other hand, strange attractor is usually a fractal subset with unsmooth surface, and
is not handy to analyze. So this motivates the formulation of concept of inertial manifold [35],
which contains the global attractor but is integer-dimensional and exponentially attractive.
The existence of inertial manifold has been proved for many dissipative dynamical systems [35],
but the mathematical proof shed little knowledge about the dimension of inertial manifold.
Although, upper bounds are persistently improved for some systems, such as Kuramoto-Siva-
shinsky equation [20, 31], they are far from being tight and give limited hint for suitable mode
truncation in numerical simulations. Recently, however, there is strong numerical evidence [34,
42] that the long-time chaotic (turbulent) dynamics of at least two spatially extended systems,
Kuramoto-Sivashinsky and complex Landau-Ginzburg, is confined to an inertial manifold that
is everywhere locally spanned by a finite number of ‘entangled’ modes, dynamically isolated
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from the residual set of isolated, transient degrees of freedom. Covariant vectors exhibit an
approximate orthogonality between the ‘entangled’ modes and the rest, the ‘isolated’ modes.
These results suggest that for a faithful numerical integration of dissipative PDEs, a finite
number of entangled modes should suffice, and that increasing the dimensionality beyond that
merely increases the number of isolated modes, with no effect on the long-time dynamics. This
work has been made possible by advances in algorithms for computation of large numbers of
‘covariant vectors’ [14, 15, 24, 30, 33, 39]. While these studies offer strong evidence for
finite dimensionality of inertial manifolds of dissipative flows, they are based on numerical
simulations of long ergodic trajectories and they yield no intuition about the geometry of the
attractor. That is attained by studying the hierarchies of unstable periodic orbits, invariant
solutions which, together with their Floquet vectors, provide an effective description of both
the local hyperbolicity and the global geometry of an attractor embedded in a high-dimensional
state space. Motivated by the above studies of covariant vectors, we formulate in this paper a
periodic eigendecomposition algorithm suited to accurate computation of Floquet vectors of
unstable periodic orbits.

2.1. Linear stability. Now, we turn to the definition of Floquet exponents and Floquet
vectors. Let the flow of a autonomous continuous system be described by ẋ = v(x), x ∈ R

n

and the corresponding time-forward trajectory starting from x0 is x(t) = f t(x0). In the linear
approximation, the deformation of an infinitesimal neighborhood of x(t) (dynamics in tangent
space) is governed by the Jacobian matrix (fundamental matrix) δx(x0, t) = J t(x0) δx(x0, 0),
where J t(x0) = J t−t0(x0, t0) = ∂f t(x0)/∂x0. Jacobian matrix satisfies the semi-group multi-
plicative property (chain rule) along an orbit,

(2.1) J t−t0(x(t0), t0) = J t−t1(x(t1), t1)J
t1−t0(x(t0), t0) .

For a periodic point x on orbit p of period Tp, Jp = JTp(x) is called the Floquet matrix
(monodromy matrix) and its eigenvalues the Floquet multipliers Λj. A Floquet multiplier is
a dimensionless ratio of the final/initial perturbation along the jth eigen-direction. It is an
intrinsic, local property of a smooth flow, invariant under all smooth coordinate transforma-
tions. The associated Floquet vectors ej(x), Jp ej = Λjej , define the invariant directions of
the tangent space at the periodic point x = x(t) ∈ p. Evolving small initial perturbation
aligned with a Floquet direction will generate the corresponding unstable manifold along the
periodic orbit. Floquet multipliers are either real, Λj = σj |Λj|, σj ∈ {1,−1}, or form complex
pairs, {Λj ,Λj+1} = {|Λj | exp(iθj), |Λj | exp(−iθj)}, 0 < θj < π. The real parts of Floquet
exponents µj = (ln |Λj |)/Tp describe the mean contraction or expansion rates per one period
of the orbit. The Jacobian matrix is naively obtained numerically by integrating the stability
matrix

(2.2)
dJ t

dt
= A(x)J t , with A(x) =

∂v(x)

∂x

along the orbit. However, it is almost certain that this process will overflow or underflow
at exponential rate as the system evolves or the resulting Jacobian is highly ill-conditioned.
Thus, accurate calculation of expansion rate is not trivial for nonlinear systems, especially for
those that evolve in a high dimensional space. In such cases, the expansion/contraction rate
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can easily range over many orders of magnitude, which raises a challenge to formulating an
effective algorithm to tackle this problem. However, the semi-group property (2.1) enables us
to factorize the Jacobian matrix into a product of short-time matrices with matrix elements
of comparable magnitudes. So the problem is reduced to calculating the eigenvalues of the
product of a sequence of matrices.

2.2. covariant vectors. multiplicative ergodic theorem [29, 32] says that the forward and
backward Oseledets matrices

(2.3) Λ±(x) := lim
t→±∞

[J t(x)⊤J t(x)]1/2t

both exist for an invertible dynamical system equipped with an invariant measure. The eigen-
values are eλ

±
1
(x) < · · · < eλ

±
s (x), where λ±

i (x) are the Lyapunov exponents (characteristic
exponents) and s is the total number of distinct exponents (s ≤ n). For an ergodic system,
Lyapunov exponents are the same almost everywhere, and λ+

i (x) = −λ−
s−i+1(x) = λi. The

corresponding eigenspaces U±
1 (x), · · · , U±

s (x) can be used to construct the forward and back-
ward invariant subspaces: V +

i (x) = U+
1 (x) + · · ·+U+

i (x) , V −
i (x) = U−

s (x) + · · ·+U−
s−i+1. So

the intersections Wi(x) = V +
i (x) ∩ V −

i (x) are dynamically forward and backward invariant:
J±t(x)Wi(x) → Wi(f

±t(x)), i = 1, 2, · · · , s. The expansion rate in invariant subspace Wi(x)
is given by the corresponding Lyapunov exponents,

(2.4) lim
t→±∞

1

|t| ln
w

w J t(x)u
w

w = lim
t→±∞

1

|t| ln
w

w

w
[J t(x)⊤J t(x)]1/2u

w

w

w
= ±λi , u ∈ Wi(x)

If a Lyapunov exponent has degeneracy one, the corresponding subspace Wi(x) reduces to a
vector, called covariant vector. For periodic orbits, these λi (evaluated numerically as t → ∞
limits of many repeats of the prime period T) coincide with the real part of Floquet exponents
(computed in one period of the orbit). Subspace Wi(x) coincides with a Floquet vector, or, if
there is degeneracy, a subspace spanned by Floquet vectors.

The reorthonormalization procedure formulated by Benettin etc. [2] is the standard way
to calculate the full spectrum of Lyapunov exponents, and it is shown [10] that the orthogonal
vectors produced at the end of calculation converges to U−

i , eigenvectors of Λ−(x), called
the GS vectors (backward Lyapunov vectors). Based on this technique, Wolf etc. [39] and
Ginelli etc. [14] invented independent methods to recover covariant vectors from GS vectors.
Here, we should emphasize that GS vectors are not invariant. Except the leading one, all of
them are dependent on the specific inner product imposed by the dynamics. Also the local
expansion rate of covariant vectors are not identical to the local expansion rate of GS vectors.
Specifically for periodic orbits, Floquet vectors depend on no norm, and map forward and
backward as ej → J ej under time evolution. In contrast, the linearized dynamics does not
transport GS vectors into the tangent space computed further downstream. For more detailed
comparison, please see [24, 41].

2.3. Covariant vectors algorithm. Here we briefly introduce the method used by Ginelli
etc. to extract covariant vectors from GS vectors. The setup is the same as computing Lya-
punov exponents. We follow a long ergodic trajectory, and integrate the linearized dynamics
in tangent space (2.2) with periodic orthonormalization, shown as the first two stages in fig-
ure 1. Here, Ji is the Jacobian matrix corresponding to time interval (ti, ti+1), and diagonal
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x(t0)

x(t1)

x(t2)

x(t3)
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forward transient
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forward
, record

Qi
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= R
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i
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kwa

rd,
reco

rd
Ci

Figure 1. Four stages of Covariant vectors algorithm. The black line is a part of a long ergodic trajectory.

elements of upper-triangular matrices Ri store local Lyapunov exponents, long time average
of which gives the Lyapunov exponents of this system. We assume Qi converges to the GS
vectors after stage 1, and start to record Ri in stage 2. Since the first m GS vectors span
the same subspace as the first m covariant vectors, which means Wi = QiCi

† with Ci an
upper-triangular matrix, giving the expansion coefficients of covariant vectors in the GS ba-
sis. So we have Wi = Ji−1Qi−1R

−1
i Ci = Ji−1Wi−1C

−1
i−1R

−1
i Ci. Since Wi is invariant in the

tangent space, we must have C−1
i−1R

−1
i Ci = I, which gives the backward dynamics of matrix

Ci : Ci−1 = R−1
i Ci. Ginelli etc. cleverly uncover this backward dynamics and show that Ci

converges after a sufficient number of iterations (stage 3 in figure 1). This process is contin-
ued in stage 4 in figure 1, and Ci are recorded in this stage. Finally, we obtain the covariant
vectors for trajectory x(t1) to x(t2) in figure 1.

covariant vectors algorithm is invented to stratify the tangent spaces along an ergodic
trajectory, so it is hard to observe degeneracy numerically. However, for periodic orbits, it
is possible that some Floquet vectors form conjugate complex pairs. When this algorithm is
applied to periodic orbits, it is reduced to a combination of simultaneous iteration and pure
power iteration; consequently, complex conjugate pairs cannot be told apart. This means that
we need to pay attention to the two dimensional rotation when checking the convergence of
each stages in figure 1. As is shown in latter sections, a complex conjugate pair of Floquet
vectors can be extracted from this converged two dimensional subspace.

2.4. Periodic Schur decomposition algorithm. The implicit QR algorithm (Francis’s
algorithm) is the standard way of solving eigen problem of a single matrix in many numerical
packages, such as the eig() function in Matlab. Bojanczyk etc. [3] extends the idea to compute
eigenvalues of the product of a sequence of matrices. Later on, Kurt Lust [26] describes the
implementation details and provides the corresponding Fortran code. As stated before, by use
of chain rule (2.1), Jacobian matrix can be decomposed into a product of short-time Jacobians
with the same dimension, so periodic Schur decomposition is suitable for computing Floquet

†Here, Wi refers to the matrix formed by individual covariant vectors at step i of the algorithm. Do not
get confused with the ith covariant vector
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Figure 2. Two stages of periodic Schur decomposition algorithm illustrated by tree matrices.

exponents, and we think it is necessary to introduce this algorithm into physics community.
As illustrated in figure 2, periodic Schur decomposition proceeds in two stages. First, the

sequence of matrices are transformed to Hessenberg-Triangular form, one of which has upper-
Hessenberg form while the others are upper-triangular , by a series of Household reflections.
The second stage is iteration of periodic QR algorithm, which diminishes the sub-diagonal
components of the Hessenberg matrix until it becomes quasi-upper-triangular. The conver-
gence of this second stage is guaranteed by “Implicit Q Theorem” [12, 38]. After the second
stage, The sequence of matrices are all transformed into upper-triangular form except one of
them be quasi-upper triangular - there are some [2×2] blocks on the diagonal corresponding
to complex eigenvalues. Then the eigenvalues are the product of their diagonal elements.
However, periodic Schur decomposition is not enough for extracting eigenvectors except the
leading one. Kurt Lust claims to formulate the corresponding Floquet vector algorithm, but
to the best of our knowledge, such algorithm is not present in literature. Fortunately, Granat
etc. [17] propose a method to reorder the diagonal elements after periodic Schur decomposi-
tion. It provides a elegant way to compute Floquet vectors as we will see in later sections.

3. Description of the problem. After introducing the underlying physical motivation, let
us turn to the definition of the problem. According to (2.1), Jacobian matrix can be integrated
piece by piece along a state orbit:

J t(x0) = J tm−tm−1(x(tm−1), tm−1) · · · J t2−t1(x(t1), t1)J
t1−t0(x(t0), t0)

with t0 = 0, tm = t and x0 the initial point. For periodic orbits, x(tm) = x0. The time
sequence ti, i = 1, 2, · · · ,m − 1 is chosen properly such that the elements of each Jacobian
matrix associated with each small time interval has relatively similar order of magnitude. For
simplicity, we drop all the parameters above and use a bold letter to denote the product:

(3.1) J
(0) = JmJm−1 · · · J1 , Ji ∈ R

n×n, i=1, 2, · · · ,m .

This product can be diagonalized if and only if the sum of dimensions of eigenspaces of J(0)

is n.

(3.2) J
(0) = E(0)Σ(E(0))−1 ,

where Σ is a diagonal matrix which stores J(0)’s eigenvalues (Floquet multipliers), {Λ1,Λ2, · · · ,Λn},
and columns of matrixE(0) are the eigenvectors (Floquet vectors) of J(0): E(0) = [e

(0)
1 , e

(0)
2 , · · · , e(0)n ].
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In this paper all vectors are written in the column form, transpose of v is denoted v⊤, and
Euclidean ‘dot’ product by (v⊤ u). The challenge associated with obtaining diagonalized form
(3.2) is the fact that often J

(0) should not be written explicitly since the integration process
(2.2) may overflow or the resulting matrix is highly ill-conditioned. Floquet multipliers can
easily vary over 100’s orders of magnitude, depending on the system under study and the
period of the orbit; therefore all transformations should be applied to the short time Jaco-
bian matrices Ji individually, instead of working with the full-time J

(0). Also, in order to
characterize the geometry along a periodic orbit, not only the Floquet vectors at the initial
point are required, but also the sets at each point on the orbit. Therefore, we also desire
the eigendecomposition of the cyclic rotations of J

(0): J
(k) = JkJk−1 · · · J1Jm · · · Jk+1 for

k = 1, 2, . . . ,m−1. Eigendecomposition of all J(k) is called the periodic eigendecomposition of
the matrix sequence Jm, Jm−1, · · · , J1.

The process of implementing eigendecomposition (3.2) proceeds in two stages. First,
periodic real Schur form (PRSF) is obtained by a similarity transformation for each Ji,

(3.3) Ji = QiRiQ
⊤
i−1 ,

with Qi orthogonal matrix, and Q0 = Qm. In the case considered here, Rm is quasi-upper tri-
angular with [1×1] and [2×2] blocks on the diagonal, and the remainingRi, i = 1, 2, · · · ,m−1 are
upper triangular. The existence of PRSF, proved in ref. [3], provides the periodic QR algorithm
that implements periodic Schur decomposition. Defining R

(k) = RkRk−1 · · ·R1Rm · · ·Rk+1,
we have

(3.4) J
(k) = QkR

(k)Q⊤
k ,

with the eigenvectors of matrix J
(k) related to eigenvectors of quasi-upper triangular matrix

R
(k) by orthogonal matrix Qk. J

(k) and R
(k) have the same eigenvalues, stored in the [1×1]

and [2×2] blocks on the diagonal of R(k), and their eigenvectors are transformed by Qk, so
the second stage concerns the eigendecomposition of R(k). Eigenvector matrix of R(k) has
the same structure as Rm. We evaluate it by two distinct algorithms. The first one is power
iteration , while the second algorithm relies on solving a periodic Sylvester equation [17].

As all R(k) have the same eigenvalues, and their eigenvectors are related by similarity
transformations,

(3.5) R
(k) = (Rm · · ·Rk+1)

−1
R

(0)(Rm · · ·Rk+1) ,

one may be tempted to calculate the eigenvectors of R(0), and obtain the eigenvectors of R(k)

by (3.5). The pitfall of this approach is that numerical errors accumulate when multiplying a
sequence of upper triangular matrices, especially for large k. Therefore, in the second stage of
implementing periodic eigendecomposition, iteration is needed for each R

(k) if power iteration
method is chosen in this stage. Periodic Sylvester equation bypasses this problem by giving
the eigenvectors of all R(k) simultaneously.

Our work illustrates the connection between different algorithms in the two stages of im-
plementing periodic eigendecomposition, pays attention to the case when eigenvectors appear
as complex pairs, and demonstrates that eigenvectors can be obtained directly from periodic
Sylvester equation without restoring PRSF.
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4. Stage 1 : periodic real Schur form (PRSF). This is the first stage of implement-
ing periodic eigendecomposition. Eq. (3.4) represents the eigenvalues of matrix J

(k) as real
eigenvalues on the diagonal, and complex eigenvalue pairs as [2×2] blocks on the diagonal
of R(k). More specific, if the ith eigenvalue is real, it is given by the product of all the ith
diagonal elements of matrices R1, R2, · · · , Rm. In practice, the logarithms of magnitudes of
these numbers are added, in order to overcome numerical overflows. If the ith and (i + 1)th
eigenvalues form a complex conjugate pair, all [2×2] matrices at position (i, i+1) on the diag-
onal of R1, R2, · · · , Rm are multiplied with normalization at each step, and the two complex
eigenvalues of the product are obtained. There is no danger of numerical overflow because all
these [2×2] matrices are in the same position and in our applications their elements are of
similar order of magnitude. Sec. 2.4 introduce the periodic Schur decomposition to achieve
PRSF. Another alternative is the first two stages of covariant vectors in sec. 2.3, which reduces
to simultaneous iteration for periodic orbits. Actually, these two methods are equivalent [37],
but the computational complexity differs.

Simultaneous iteration. The basic idea of simultaneous iteration is implementing QR de-
composition in the process of power iteration. Assume all Floquet multipliers are real, without
degeneracy, and order them by their magnitude: |Λ1| > |Λ2| > · · · > |Λn|, with corresponding
normalized Floquet vectors e1, e2, · · · , en. For simplicity, here we have dropped the upper

indices of these vectors. An arbitrary initial vector q̃1 =
∑n

i=1 α
(1)
i ei will converge to the first

Floquet vector e1 after normalization under power iteration of J(0),

lim
ℓ→∞

(J(0))ℓq̃1
|| · || → q1 = e1 .

Here || · || denotes the Euclidean norm of the numerator (||x|| =
√
x⊤x). Let 〈a, b, · · · , c〉

represent the space spanned by vector a, b, · · · , c in R
n. Another arbitrary vector q̃2 is then

chosen orthogonal to subspace 〈q1〉 by Gram-Schmidt orthonormalization, q̃2 =
∑n

i=2 α
(2)
i [ei−

(q⊤1 ei)q1]. Note that the index starts from i = 2 because 〈q1〉 = 〈v1〉. The strategy now is to
apply power iteration of J(0) followed by orthonormalization in each iteration.

J
(0)q̃2 =

n
∑

i=2

α
(2)
i [Λiei − Λ1(q

⊤
1 ei)q1]

=

n
∑

i=2

α
(2)
i Λi[ei − (q⊤1 ei)q1] +

n
∑

i=2

α
(2)
i (Λi − Λ1)(q

⊤
1 ei)q1 .

The second term in the above expression will disappear after performing Gram-Schmidt or-
thonormalization to 〈q1〉, and the first term will converge to q2 = e2 − (q⊤1 e2)q1 (not normal-
ized) after a sufficient number of iterations because of the decreasing magnitudes of Λi, and
we also note that 〈v1, v2〉 = 〈q1, q2〉. The same argument can be applied to q̃i, i = 3, 4, · · · , n
as well. In this way, after a sufficient number of iterations,

lim
ℓ→∞

(J(0))ℓ[q̃1, q̃2, · · · , q̃n] → [q1, q2 · · · , qn] ,

where

q1 = e1 , q2 =
e2 − (e⊤2 q1)q1

|| · || , · · · , qn =
en −∑n−1

i=1 (e
⊤
n qi)qi

|| · || .
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Let matrix Q0 = [q1, q2, · · · , qn]; then we have J(0)Q0 = Q0R
(0) with R

(0) an upper triangular
matrix because of 〈q1, q2, · · · , qi〉 = 〈v1, v2, · · · , vi〉, which is just J(0) = Q0R

(0)Q⊤
0 (the Schur

decomposition of J(0)). The diagonal elements of R(0) are the eigenvalues of J(0) in decreasing
order. Numerically, the process described above can be implemented on an arbitrary initial full
rank matrix Q̃0 followed by QR decomposition at each step JsQ̃s−1 = Q̃sR̃s with s = 1, 2, 3, · · ·
and Js+m = Js. For sufficient number of iterations, Q̃s and R̃s converge to Qs and Rs (3.3)
for s = 1, 2, · · · , n, so we achieve (3.4) the periodic Schur decomposition of J(k).

We have thus demonstrated that simultaneous iteration converges to PRSF for real non-
degenerate eigenvalues. For complex eigenvalue pairs, the algorithm converges in the sense
that the subspace spanned by a complex conjugate vector pair converges. So,

J
(0)Q0 = Q

′

0R
(0) = Q0DR

(0) ,

where D is a block-diagonal matrix with diagonal elements ±1 (corresponding to real eigen-
values) or [2×2] blocks (corresponding to complex eigenvalue pairs). Absorb D into Rm, then
Rm becomes a quasi-upper triangular matrix, and (3.3) still holds.

5. Stage 2 : eigenvector algorithms. Upon achieving PRSF, the eigenvectors of J
(k)

are related to eigenvectors of R(k) by orthogonal matrix Qk from (3.3), and the eigenvector
matrix of R(k) has the same quasi-upper triangular structure as Rm. In addition, if we follow
the simultaneous iteration method or implement periodic Schur decomposition without shift,
eigenvalues are ordered by their magnitudes on the diagonal. Power iteration utilizing this
property could be easily implemented to generate the eigenvector matrix. This is the basic
idea of the first algorithm for generating eigenvectors of R(k), corresponding to the 3rd and
4th stage in covariant vectors algorithm in figure figure 1. Alternatively, observation that the
first eigenvector of R(k) is trivial if it is real, v1 = (1, 0, · · · , 0)⊤, inspires us to reorder the
eigenvalues so that the jth eigenvalue is in the first diagonal place of R(k); in this way, the jth
eigenvector is obtained. For both methods, attention should be paid to the complex conjugate

eigenvector pairs. In this section, v
(k)
i denotes the ith eigenvectors of R(k), contrast to e

(k)
i the

eigenvectors of J(k), and for most cases, the upper indices are dropped if no confusion occurs.

5.1. Iteration method. The prerequisite for iteration method is that all the eigenvalues
are ordered in a ascending or descending way by their magnitude on the diagonal of R(k).
Assume that they are in descending order, which is the outcome of simultaneous iteration;
therefore the diagonal elements of R(k) are Λ1,Λ2, · · · ,Λn, with magnitudes from large to
small. If the ith eigenvector of R(k) is real, then it has form vi = (a1, a2, · · · , ai, 0, · · · , 0)⊤.
An arbitrary vector whose first i elements are nonzero x = (b1, b2, · · · , bi, 0, · · · , 0)⊤ is a linear
combination of the first i eigenvectors: x =

∑i
j=1 αjvj . Use it as the initial condition for

the power iteration by (R(k))−1 = R−1
k+1 · · ·R−1

m R−1
1 R−1

2 · · ·R−1
k and after sufficient number of

iterations,

lim
ℓ→∞

(R(k))−ℓx

|| · || = vi .

The property we used here is that (R(k))−1 and R
(k) have the same eigenvectors but inverse

eigenvalues.
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For a [2×2] block on the diagonal ofR(k), the corresponding conjugate complex eigenvectors
form a two dimensional subspace. Any real vector selected from this subspace will rotate under
power iteration. In this case, power iteration still converges in the sense that the subspace
spanned by the complex conjugate eigenvector pair converges. Suppose the ith and (i + 1)th
eigenvectors of R(k) form a complex pair. Two arbitrary vectors x1 and x2 whose first i + 1
elements are non zero can be written as the linear superposition of the first i+1 eigenvectors,

x1,2 = (
∑i−1

j=1 α
(1,2)
j vj)+α

(1,2)
i vi+(α

(1,2)
i vi)

∗, where (∗) denotes the complex conjugate. As for
the real case, the first i−1 components above will vanish after a sufficient number of iterations.
Denote the two vectors at this instance (corresponding to x1,2) to be X1 and X2 and form
matrix X = [X1,X2]. The subspace spanned by X1,2 does not change and X will be rotated
after another iteration,

(5.1) (R(k))−1X = X
′

= XC ,

where C is a [2×2] matrix which has two complex conjugate eigenvectors vC and (vC)
∗.

Transformation (5.1) relates the eigenvectors ofR(k) with those of C: [vi, (vi)
∗] = X[vC , (vC)

∗].
In practice, matrix C can be computed by QR decomposition; let X = QXRX be the QR
decomposition of X, then C = R−1

X Q⊤
XX

′
. On the other hand, complex eigenvectors are not

uniquely determined in the sense that eiθvi is also a eigenvector with the same eigenvalue as vi
for an arbitrary angle θ, so when comparing results from different eigenvector algorithms, we
need a constraint to fix the phase of a complex eigenvector, such as letting the first element
be real.

We should note that performance of power iteration depends on the ratios of magnitudes
of eigenvalues, so performance is poor for systems with clustered eigenvalues. We assume
that proper modifications, such as shifted iteration or inverse iteration, may help improve the
performance. Such techniques are beyond the scope of this paper.

5.2. reordering method. Except for the performance problem with clustered eigenvalues,
the power iteration has a more severe issue when applied to dynamical systems, that is, it
cannot get the eigenvectors of R(k) for all k ∈ 0, 1, 2, · · · ,m at the same time. Although
eigenvectors of R(k) and R

(0) are related by (3.5), it is not advisable, as pointed out above, to
evolve the eigenvectors of R(0) so as to get eigenvectors of R(k) because of the noise introduced
during this process. Therefore, iteration is needed for each k ∈ 0, 1, 2, · · · ,m.

There exists a direct algorithm to obtain the eigenvectors of every R
(k) at once without

iteration. The idea is very simple: the eigenvector corresponding to the first diagonal element
of an upper-triangular matrix is v1 = (1, 0, · · · , 0)⊤. By reordering the diagonal elements (or
[2×2] blocks) of R(0), we can find any eigenvector by positioning the corresponding eigenvalue
in the first diagonal position. Although in our application only reordering of [1×1] and [2×2]
blocks is needed, we recapitulate here the general case of reordering two adjacent blocks of a
quasi-upper triangular matrix following Granat [17]. Partition Ri as

Ri =









R00
i ∗ ∗ ∗
0 R11

i R12
i ∗

0 0 R22
i ∗

0 0 0 R33
i









,
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where R00
i , R11

i , R22
i , R33

i have size [p0×p0], [p1×p1], [p2×p2] and [p3×p3] respectively, and
p0+p1+p2+p3 = n. In order to exchange the middle two blocks (R11

i and R22
i ), we construct

a non-singular periodic matrix sequence: Ŝi, i = 0, 1, 2, · · · ,m with Ŝ0 = Ŝm,

Ŝi =





Ip0 0 0

0 Si 0

0 0 Ip3



 ,

where Si is a [(p1 + p2)×(p1 + p2)] matrix, such that Ŝi transforms Ri as follows:

(5.2) Ŝ−1
i RiŜi−1 = R̃i =









R00
i ∗ ∗ ∗
0 R22

i 0 ∗
0 0 R11

i ∗
0 0 0 R33

i









,

which is

S−1
i

[

R11
i R12

i

0 R22
i

]

Si−1 =

[

R22
i 0
0 R11

i

]

.

The problem is to find the appropriate matrix Si which satisfies the above condition. Assume
Si has form

Si =

[

Xi Ip1
Ip2 0

]

,

where matrix Xi has dimension [p1×p2]. We obtain periodic Sylvester equation [17]

(5.3) R11
i Xi−1 −XiR

22
i = −R12

i , i = 0, 1, 2, · · · ,m .

The algorithm to find eigenvectors is based on (5.3). If the ith eigenvalue of R(k) is real,
we only need to exchange the first [(i − 1)× (i − 1)] block of Rk , k = 1, 2, · · · ,m with its
ith diagonal element. If the ith and (i + 1)th eigenvalues form a complex pair, then the first
[(i − 1)×(i − 1)] block and the following [2×2] block should be exchanged. Therefore Xi in
(5.3) has dimension [p1×1] or [p1×2]. In both cases, p0 = 0.

Real eigenvectors. In this case, matrix Xi is just a column vector, so (5.3) is equivalent to

(5.4)





























R11
1 −R22

1 Ip1

R11
2 −R22

2 Ip1

R11
3 −R22

3 Ip1

. . . · · ·

−R22
m Ip1 R11

m























































X0

X1

X2

· · ·

Xm−1



























=



























−R12
1

−R12
2

−R12
3

· · ·

−R12
m



























,

where R22
i is the (p1+1)th diagonal element of Ri. The accuracy of eigenvectors is determined

by the accuracy of solving sparse linear equation (5.4). In our application to periodic orbits in
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one dimensional Kuramoto-Sivashinsky equation, Gaussian elimination with partial pivoting
(GEPP) is enough. For a more technical treatment, such as cyclic reduction or preconditioned
conjugate gradients, to name a few, please see [1, 11, 16].

Now we get all vectors Xi by solving periodic Sylvester equation, but how are they related
to the eigenvectors? In analogy to R

(0), defining R̃0 = R̃mR̃m−1 · · · R̃1, we get Ŝ−1
m R

(0)Ŝm =
R̃0 by (5.2). Since p0 = 0 and p2 = 1 in (5.2), the first eigenvector of R̃0, the one corresponding
to eigenvalue Λp1+1 is ẽ = (1, 0, · · · , 0)⊤. Before normalization, the corresponding eigenvector
of R(0) is

v
(0)
p1+1 = Ŝmẽ =

[

X⊤
0 , 1, 0, 0, · · · , 0

]⊤

.

This is the eigenvector of matrix R
(0) = RmRm−1 · · ·R1 in (3.4) for k = 0. For R

(1) =
R1Rm · · ·R2, the corresponding periodic Sylvester equation will be cyclically rotated one row
up, which means X1 will be shifted to the first place in the column vector in (5.4), and thus

the corresponding eigenvector of R(1) is v
(1)
p1+1 = [X⊤

1 , 1, 0, · · · , 0]⊤. The same argument goes

for all the following R
(k) , k = 2, 3, · · · ,m − 1. In conclusion, solution of (5.4) contains the

eigenvectors for all R(k) , k = 0, 1, · · · ,m−1. Another benefit of reordering method is that we
can selectively get the eigenvectors corresponding to some specific eigenvalues. This merit is
important in high dimensional nonlinear systems for which only a subset of Floquet vectors
suffices to characterize the dynamics in tangent space, and thus we avoid wasting time in
calculating the remaining transient uniformly vanishing modes.

Complex eigenvector pairs. As in the real eigenvalue case, we have p0 = 0, but now p2 = 2,
so matrix Xi has dimension [p1×2]. Using the same notation as ref. [17], let v(Xi) denote
the vector representation of Xi with the columns of Xi stacked on top of each other, and let
A⊗B denote the Kronecker product of two matrices, with the (i, j)-block element be aijB.

Now, the periodic Sylvester equation (5.3) is equivalent to
(5.5)




























I2 ⊗R11
1 −(R22

1 )⊤ ⊗ Ip1

I2 ⊗R11
2 −(R22

2 )⊤ ⊗ Ip1

I2 ⊗R11
3 −(R22

3 )⊤ ⊗ Ip1

. . . · · ·

−(R22
m )⊤ ⊗ Ip1 I2 ⊗R11

m























































v(X0)

v(X1)

v(X2)

· · ·

v(Xm−1)



























=



























−v(R12
1 )

−v(R12
2 )

−v(R12
3 )

· · ·

−v(R12
m )



























.

After switching R11
i and R22

i , we can get the first two eigenvectors of R̃0 by multiplying the
first [2×2] diagonal blocks of R̃i: R22 = R22

mR22
m−1 · · ·R22

1 . Let the eigenvectors of R22 be v

and v∗ of size [2×1], then the corresponding eigenvectors of R̃0 are ẽ1 = (v⊤, 0, 0, · · · , 0)⊤ and
ẽ2 = (ẽ1)

∗ (the additional zeros make the length of the eigenvectors to be n). Therefore, the
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corresponding eigenvectors of R(0) are

[

v
(0)
p1+1, v

(0)
p1+2

]

= Ŝm[ẽ1, ẽ2] =



















X0

I2
0 0
0 0
...

0 0



















[v, v∗] .

For other R
(k), the same argument in the real case applies here too, so we obtain all the

complex eigenvector pairs for R(k) , k = 1, 2, · · · ,m.

6. Computational complexity and convergence analysis. In this paper we make no at-
tempt at conducting a strict error analysis of the algorithms presented. However, for practical
applications it is important to understand their computational costs. Periodic eigendecompo-
sition is conducted in two stages: (1) periodic real Schur form, and (2) determination of all
eigenvectors. In each stage, there are two candidate algorithms, so the efficiency of periodic
eigendecomposition depends on the choice of the specific algorithm chosen in each stage.

Periodic QR algorithm and simultaneous iteration are both effective to achieve PRSF for
the real eigenvalues, and for complex pairs of eigenvalues. Periodic QR algorithm consists of
two stages. First, matrix sequence Jm, Jm−1 · · · , J1 is reduced to Hessenberg-triangular form,
with Jm−1, · · · , J1 upper triangular and Jm upper Hessenberg. It requires O(mn) Householder
reflections in this stage and computational cost associated with each reflection is O(n2), if the
transformed matrix is calculated implicitly without forming the Householder matrix [37]. So
the overall computational cost of this stage is O(mn3). The second stage is the periodic QR
iteration which is a generalization of the standard, m = 1, case [37]. O(mn) Givens rotations
are performed in each iteration with overall computational cost of O(mn2). Though the
computational effort in each iteration in the second stage is less than that in the first stage,
the number of iterations in the second stage is usually far more than the dimension of matrices
involved. In this sense, the second stage is the heavy part of periodic QR algorithm. On the
other hand, simultaneous iteration conducts m QR decomposition O(mn3) and m matrix-
matrix multiplication O(mn3) in each iteration, giving a total computational cost of O(mn3).
The convergence of either algorithm depends linearly on the ratio of adjacent eigenvalues of
R

(0): |Λi|/|Λi+1| without shift [12]. Therefore the ratio of costs is approximately of the order
O(mn3)/O(mn2) = O(n), implying that the periodic QR algorithm is much cheaper than the
simultaneous iteration if the dimension of matrices involved is large enough.

The second stage of periodic eigendecomposition is to find all the eigenvectors of J(k) via
quasi-upper triangular matrices R(k). The first candidate is the combination of power iteration
and shifted power iteration. The computational cost of one iteration for the ith eigenvector
is O(mi2). The second candidate, reordering method, relies on an effective method to solve
periodic Sylvester equation (5.3). For example, GEPP is suitable for well conditioned matrix
(5.4) and (5.5) with computational cost of O(mn2). On the other hand, the iteration method,
as pointed out earlier, could not produce the eigenvectors of R

(k) for all k = 1, 2, · · · ,m
accurately in the same time due to the noise introduced during the transformation process



14 XIONG DING AND PREDRAG CVITANOVIĆ

(3.4), especially when the magnitudes of eigenvalues span a large range. In contrast, the
reordering algorithm is not iterative and it gives all the eigenvectors simultaneously.

In summary, if we just consider the computational effort, the combination of periodic QR
algorithm and reordering method is preferable for periodic eigendecomposition.

7. Application to Kuramoto-Sivashinsky equation. Our ultimate goal of implementing
periodic eigendecomposition is to analyze the stability of periodic orbits and the associated
stable/unstable manifolds in dynamical systems, for the hope of getting a better understand-
ing of pattern formation and turbulence. As an example, we focus on the one-dimensional
Kuramoto-Sivashinsky equation

(7.1) ut +
1

2
(u2)x + uxx + uxxxx = 0 , x ∈ [0, L]

on a periodic spatial domain of size L = 22, large enough to exhibit complex spatiotemporal
dynamics. This equation is formulated independently by Kuramoto in the context of angu-
lar phase turbulence in reaction-diffusion systems [25], and by Sivashinsky in the study of
hydrodynamic instability in laminar flames [28]. Periodic boundary condition enables us to
transform this partial differential equation into a set of ODEs in Fourier space

(7.2) ȧk = (q2k − q4k) ak − i
qk
2

∞
∑

m=−∞

amak−m

where qk = 2πk/L, and the coefficients are complex, ak = bk+ick. In our simulations, discrete
Fourier transform is used with N = 64 modes (k = −N/2 + 1 up to N/2 in (7.2)).

Since u(x, t) is real, ak(t) = a∗−k(t); thus only half of the Fourier modes are independent.
As ȧ0 = 0 from (7.2), we can set a0 = 0 corresponding to zero mean velocity without lose
of generality. Also the nonlinear term of ȧN/2 in fact has coefficient qN/2 + q−N/2 = 0 from
symmetric consideration [36]; thus aN/2 is decoupled from other modes and it can be set to
zero as well. Thus then the number of independent variables is N − 2,

(7.3) û = (b1, c1, b2, c2, · · · , bN/2−1, cN/2−1)
⊤ .

This is the ‘state space’ in the discussion that follows. Exponential time-differencing scheme
combined with RK4 [6, 21] is implemented to integrate (7.2). The combination of periodic QR
algorithm algorithm and reordering algorithm is used to obtain all exponents and eigenvectors.
In addition, Gaussian elimination with partial pivoting (GEPP) is stable for (5.4) and (5.5) if
the time step in Kuramoto-Sivashinsky integrator is not too large, as GEPP only uses addition
and subtraction operations.

Kuramoto-Sivashinsky equation is equivariant under reflection and space translation: −u(−x, t)
and u(x+ l, t) are also solutions if u(x, t) is a solution, which corresponds to equivariance of
(7.3) under group operation R = diag(−1, 1,−1, 1, · · · ) and g(l) = diag(r1, r2, · · · , rN/2−1),
where

rk =

(

cos(qkl) − sin(qkl)
sin(qkl) cos(qkl)

)

, k = 1, 2, · · · , N/2 − 1 .

Based on the consideration of these symmetries, there are three types of invariant orbits in
Kuramoto-Sivashinsky system: periodic orbits in the bk = 0 invariant antisymmetric subspace,
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Figure 3. (Color online) (a) Preperiodic orbit pp
10.25 and (b) relative periodic orbit rp

16.31 for total
evolution time 4Tpp and 2 Trp, respectively. The phase shift for rp

16.31 after one prime period ≃ −2.863. (c)
The real parts of Floquet exponents paired for a given k as (k, µ2k−1) and (k, µ2k), for pp

10.25 with truncation
number N = 64. The dashed line (green) is q2k − q4k. The inset is a magnification of the region containing the
8 leading entangled modes.

preperiodic orbits which are self-dual under reflection, and relative periodic orbits with a shift
along group orbit after one period. As shown in ref. [8], the first type is absent for domains
as small as L = 22, and thus we focus on the last two types of orbits. For preperiodic
orbits û(0) = Rû(Tp) , we only need to evolve the system for a prime period Tp which is
half of the whole period, with the Floquet matrix given by Jp(û) = RJTp(û). A relative
periodic orbit, û(0) = gpû(Tp), returns after one period Tp to the initial state upon the group
transform gp = g(lp), so the corresponding Floquet matrix is Jp(û) = gpJ

Tp(û). Here we show
how periodic eigendecomposition works by applying it to one representative preperiodic orbit
pp10.25 and two relative periodic orbits rp16.31 and rp57.60 (subscript indicates the period of
the orbit), described in ref. [8].

Figure 3 shows the time evolution of pp10.25 and rp16.31 and the Floquet spectrum of
pp10.25. At each repeat of the prime period, pp10.25 is invariant under reflection along x = L/2,
figure 3 (a), and rp16.31 has a shift along the x direction as time goes on, figure 3 (b). Since
pp10.25 and rp16.31 are both time invariant and equivariant under SO(2) group transformation
g(l), there should be two marginal Floquet exponents, corresponding to the velocity field v(x)
and group tangent t(x) = Tx respectively, where T is the generator of SO(2) rotation:

T = diag(t1, t2, · · · , tN/2−1), tk =

(

0 −qk
qk 0

)

.

Table 1 shows that the 2nd and 3rd, respectively 3rd and 4th exponents of rp16.31, respectively
pp10.25, are marginal, with accuracy as low as 10−12, to which the inaccuracy introduced by
the error in the closure of the orbit itself also contributes. Table 1 and figure 3 (c) show that
periodic Schur decomposition is capable of resolving Floquet multipliers differing by thousands
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Table 1
The first 10 and last four Floquet exponents and Floquet multiplier phases, Λi = exp(T µi ± iθi), for orbits

pp
10.25 and rp

16.31, respectively. θi column lists either the phase, if the Floquet multiplier is complex, or ‘-1’ if
the multiplier is real, but inverse hyperbolic. Truncation number N = 64. The 8 leading exponents correspond
to the entangled modes: note the sharp drop in the value of the 9th and subsequent exponents, corresponding to
the isolated modes.

pp
10.25 rp

16.31

i µi θi i µi θi
1,2 0.033209 ±2.0079 1 0.32791
3 -4.1096e-13 2 2.8679e-12
4 -3.3524e-14 -1 3 2.3559e-13
5 -0.21637 4 -0.13214 -1
6,7 -0.26524 ±2.6205 5,6 -0.28597 ±2.7724
8 -0.33073 -1 7 -0.32821 -1
9 -1.9605 8 -0.36241
10 -1.9676 -1 9,10 -1.9617 ±2.2411
· · · · · · · · · · · · · · · · · ·

59 -5313.6 -1 59 -5314.4
60 -5317.6 60 -5317.7
61 -6051.8 -1 61 -6059.2
62 -6080.4 62 -6072.9

of orders: when N = 64, the smallest Floquet multiplier for pp10.25 is |Λ62| ≃ e−6080.4×10.25.
We should know that this cannot be achieved if we try to get a single Jacobian for the whole
orbit. Figure 3(c) and table 1 also show that for k ≥ 9, Floquet exponents almost lie on the
curve (q2k − q4k). This is the consequence of strong dissipation caused by the linear term in
(7.2) for large Fourier mode index. This feature is observed for all the other periodic orbits
we have experimented, and it is a good indicator of existence of a finite dimensional inertial
manifold. Also, Floquet exponents appear in pairs for large indices simply because the real
and complex part of high Fourier modes have similar contracting rate from (7.2).
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Figure 4. (Color online) (a) ∼ (d) : the 1st (real part), 5th, 10th and 30th Floquet vector along pp
10.25

for one prime period. (e) ∼ (h) : the 1st, 4th (real part), 10th (imaginary part) 30th (imaginary part) Floquet
vector along rp

16.31 for one prime period. axes and color scale are the same with figure 3.

Figure 4 shows a few selected Floquet vectors along pp10.25 and rp16.31 for one prime
period respectively. We need to remind the reader that Floquet vectors for a whole period
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Figure 5. (Color online) The power spectrum of the first 30 Floquet vectors for pp
10.25 (left) and rp

16.31

(right) at t = 0. Red lines corresponds to the leading 8 Floquet vectors; while the blue lines correspond to the
left 22 Floquet vectors with the ith one localized at index i. Power is defined to be the modular square of Fourier
coefficients of Floquet vectors. The x-axis is labeled by the Fourier mode indices. Only the k > 0 part is shown,
the negative k follow by reflection. For complex Floquet vectors, the power spectra of real part and imaginary
part are calculated separately. Since almost all contracting Floquet vectors of rp

16.31 form complex conjugate
pairs, their power peaks are far less than 1.

is obtained by solving (5.4) or (5.5), not by evolving Floquet vectors at one time spot to the
later time spots because the evolution procedure is not stable for Floquet vectors. We can see
that the leading few Floquet vectors have turbulent structures containing only long waves for
both pp10.25 and rp16.31, but for Floquet vectors corresponding to strong contracting rates,
the configurations are pure sinusoidal curves. The power spectra in Figure 5 demonstrate this
point too. The leading 8 Floquet vectors have large components in the first 5 Fourier modes
and the spectra are entangled with each other; while the remaining Floquet vectors almost
concentrate on a single Fourier mode and are decoupled from each other; more specifically, the
ith Floquet vector with i ≥ 9 peaks at the ⌈ i

2⌉th mode in figure 5. Takeuchi etc. [34, 42] observe
similar features in covariant vectors along ergodic trajectories and by measuring the tangency
between these two groups of covariant vectors, they reach a reasonable conclusion about
the dimension of inertial manifold of Kuramoto-Sivashinsky equation and complex Ginzburg-
Landau equation. Therefore, we anticipate that by analyzing the tangency of Floquet vectors
along different periodic orbits can also lead to the same conclusion, which is our further
research.

We have noted above that the group property of Jacobian matrix multiplication (2.1)
enables us to factorize J

(k) into a product of short-time matrices with matrix elements of
comparable magnitudes. In practice, caution should be exercised when trying to determine
the optimal number of time increments that the orbit should be divided into. If the number
of time increments m is too large, then, according to the estimates of sect. 6, the computation
may be too costly. If m is too small, then the elements of Jacobian matrix corresponding
to the corresponding time increment may range over too many orders of magnitude, causing
periodic eigendecomposition to fail to resolve the most contracting Floquet vector along the
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Figure 6. (Color online) Relative error of the real part of Floquet exponents associated with different time
steps with which the Floquet matrix is integrated. Two orbits pp

10.25 and rp
57.60 are used as an example with the

base case h0 ≈ 0.001. (a) The maximal relative difference of the whole set of Floquet exponents with increasing
time step (decreasing the number of ingredient segments of the orbit). (b) Only consider the first 35 Floquet
exponents.

orbit. One might also vary the time step according to the velocity at a give point on the orbit.
Here we determined satisfactory m’s by numerical experimentation shown in figure 6. Since
larger time step means fewer time increments of the orbit, a very small time step (h0 ≈ 0.001)
is chosen as the base case, and it is increased to test whether the corresponding Floquet
exponents change substantially or not. As shown in figure 6 (a), up to 6h0 the whole Floquet
spectrum varies within 10−12 for both pp10.25 and rp57.60. These two orbits represent two
different types of invariant solutions which have short and long periods, so we presume that
time step 6h0 is good enough for other short or long orbits too. On the other hand, if only the
first few Floquet exponents are desired, the time step can be increased further to fulfill the job.
As shown in figure 6 (b), if we are only interested in the first 35 Floquet exponents, then time
step 30h0 is small enough. In high dimensional nonlinear systems, often we are not interested
in the dynamics in the very contracting directions because they are usually decoupled from
the physical modes, and shed little insight into the system properties. Therefore, large time
step could to used in order to save time.

The two marginal directions have a simple geometrical interpretation and provides a metric
for us to measure the convergence of periodic eigendecomposition. Figure 7 (a) depicts the
two marginal vectors of pp10.25 projected onto the subspace spanned by [a1, b1, a2] (the real,
imaginary parts of the first mode and the real part of the second Fourier mode). The first
marginal eigen-direction (the 3rd Floquet vector in table 1) is aligned with the velocity field
along the orbit, and the second marginal direction (the 4th Floquet vector) is aligned with the
group tangent. The numerical difference between the unit vectors along these two marginal
directions and the corresponding physical directions is shown in figure 7 (b). The difference
is under 10−9 and 10−11 for these two directions, which demonstrates the accuracy of the
algorithm. As shown in table 1, for an preperiodic orbit, such as pp10.25, the trajectory
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Figure 7. (Color online) Marginal vectors and the associated errors. (a) pp
10.25 in one period projected

onto [a1, b1, a2] subspace (blue curve), and its counterpart (green line) generated by a small group transformation
g(ℓ) , here arbitrarily set to ℓ = L/(20π). Magenta and black arrows represent the first and the second marginal
Floquet vectors e3(x) and e4(x) along the prime orbit. (b) The solid red curve is the magnitude of the difference
between e3(x) and the velocity field ~v(x) along the orbit, and blue dashed curve is the difference between e4(x)
and the group tangent t(x) = Tx.

tangent and the group tangent have eigenvalue +1 and −1 respectively, and are thus distinct.
However, the two marginal directions are degenerate for an relative periodic orbit, such as
rp16.31. So these two directions are not fixed, but the plane that they span is uniquely
determined. Figure 8 shows the velocity field and group tangent along orbit rp16.31 indeed lie
in the subspace spanned by these two marginal directions.

8. Conclusion and future work. In this paper, as well as in the forthcoming publication,
ref. [9], we use one-dimensional Kuramoto-Sivashinsky system to illustrate the effectiveness
and potential wide usage of periodic eigendecomposition applied to stability analysis in dissi-
pative nonlinear systems.

On the longer time scale, we hope to apply the method to the study of orbits of much
longer periods, as well as to the study of high-dimensional, numerically exact time-recurrent
unstable solutions of the full Navier-Stokes equations. Currently up to 30 Floquet vectors for
plane Couette invariant solutions can be computed [13], but many more will be needed and to
a higher accuracy in order to determine the physical dimension of a turbulent Navier-Stokes
flow. We are nowhere there yet; we anticipate the need for optimizing and parallelizing such
algorithms. Also there is opportunity to apply periodic eigendecomposition to Hamiltonian
systems too and we need additional tests to show its ability to preserve symmetries of Floquet
spectrum imposed by Hamiltonian systems.
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Figure 8. (Color online) Projection of relative periodic orbit rp
16.31 onto the Fourier modes subspace

[b2, c2, b3] (red curve). The dotted curve (lime) is the group orbit connecting the initial and final points. Blue
and magenta arrows represent the velocity field and group tangent along the orbit, respectively. Two-dimensional
planes (cyan) are spanned by the two marginal Floquet vectors at each point (yellow) along the orbit.
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[7] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and Quantum,
Niels Bohr Inst., Copenhagen, 2014. ChaosBook.org.
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