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PERIODIC TRAVELING WAVES OF THE REGULARIZED SHORT
PULSE AND OSTROVSKY EQUATIONS: EXISTENCE

AND STABILITY∗
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Abstract. We construct various periodic traveling wave solutions of the Ostrovsky/Hunter–
Saxton/short pulse equation and its KdV regularized version. For the regularized short pulse model
with small Coriolis parameter, we describe a family of periodic traveling waves which are a pertur-
bation of appropriate KdV solitary waves. We show that these waves are spectrally stable. For the
short pulse model, we construct a family of traveling peakons with corner crests. We show that the
peakons are spectrally stable as well.
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1. Introduction. It is well known that the (generalized) Korteweg–de Vries
(KdV) equation

(1) ut + βuxxx + (f(u))x = 0

can be used in modeling and understanding the dynamics of large scales in the at-
mosphere and in the oceans. There is a substantial amount of research into various
aspects of this model—well—posedness, propagation of singularities, asymptotic be-
havior near solitary waves, etc. We will not even attempt to review these here, as this
is outside the scope of this paper. Instead, we discuss a related model, which takes
into account the effect of a rotation force, if such is applied to the fluid. To be sure,
the effect of the rotation of the Earth (which induces the so-called Coriolis force) is
often a negligible factor. As such, it is not taken into account in the derivation of
various water wave models, such as (1). However, adding this feature in the model
results in the following dispersive model:

(2) (ut + βuxxx + (f(u))x)x + εu = 0,−T ≤ x ≤ T.

Here, T could be finite or infinite, depending on the particular setup that one is
interested in. We adopt the notation ε in order to emphasize the fact that usually
0 < |ε| << 1 is a small parameter and also, at least mathematically, we can allow ε to
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be both positive and negative.1 This is a model which has gained popularity lately.2

We refer to it as the regularized short pulse equation (RSPE).
We should also mention that traditionally in the physics literature these models

have been considered in finite spatially symmetric intervals, with appropriate bound-
ary conditions. In addition, since (2) clearly forces the solution to be an exact deriva-
tive, one faces some mathematical difficulties associated with it, if one considers the
problem on the whole line. More precisely, in the whole line context, even though one
may still conclude from (5) that

∫∞
−∞ u(t, x)dx = 0, this is not enough to properly de-

fine ∂−1
x u. Indeed, writing ∂−1

x u requires that u ∈ Ḣ−1(R1), which is not a property
easily enforced on the solutions of (2) for t > 0. Thus, the reformulation of (2) in the
form

(3) ut + βuxxx + (f(u))x + ε∂−1
x u = 0

which is somewhat desirable creates some technical difficulties in the well-posedness as
well as the stability considerations in the whole line case. We will, however, consider
the problem (3) in the periodic context, for which the operator ∂−1

x makes perfect
sense on mean value zero functions.

Regardless of the issues associated with the theory in the whole line, there are
several results regarding existence (and in some cases stability) of traveling waves.
In [18, 19] (under some assumptions on the coefficient β, the function f , and ε),
Levandosky and Liu have succeeded in constructing traveling wave solutions of (2) on
the whole line by employing variational methods. They have also studied the stability
of such solutions by relying on the Grillakis–Shatah–Strauss theory, although their
results do not give a full stability picture of all solitary waves constructed in their
paper. Further work on the stability of these traveling waves was done by Liu, [20]
and Liu and Ohta, [21].

In [7], the authors have considered the same problem for small values of ε. They
have constructed solutions of (5) via singular perturbation theory. In [8], in collabora-
tion with Sandstede, they have extended their previous results to include the existence
of multipulse solutions. To the best of our knowledge, the problem for the stability
of both types of waves remains open.

An interesting special model occurs when the KdV regularization is absent,3 in
other words, β = 0. This is referred to in the literature, depending on the form of
the nonlinearity f , as the reduced Ostrovsky/Ostrovsky–Hunter/short pulse model.
Namely, we scale for convenience ε = 1, which leads us to

(4) (ut + (f(u))x)x = u.

Such a model represents an independent interest, not necessarily related to the
(generalized) KdV equation. In fact, (4), with various forms of nonlinearity, has
a rich history. The first model of this family was introduced by Ostrovsky [25] in the
late 70s. In the early 90s, Vakhnenko [32] came up with an alternative derivation,
while Hunter [13] proposed some numerical simulations. The well-posedness ques-
tions were investigated by Boyd [2], Schaefer and Wayne [29], and Stefanov, Shen,

1Although in physically relevant models, ε is a small negative number.
2One particularly interesting aspect of it is the connection to the two-dimensional Kadomtsev–

Petviashvili (KP) equations—indeed, (2) provides special one-dimensional solutions of KP, which
may be used as a reference in the study of the dynamics of KP.

3One should note that the presence of β 6= 0 provides a regularizing effect on the evolution [10].
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676 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

and Kevrekidis [30]. Liu, Pelinovsky, and Sakovich [22, 23] have studied wave break-
ing, which was later supplemented by the global regularity results of Grimshaw and
Pelinovsky, [11]. There are numerous works on explicit traveling wave solutions of
these models, [10, 24, 27, 28, 31, 33, 34]. One should note that some of these solu-
tions are not classical solutions but rather are multivalued ones [28]. Several authors
have also explored the integrability of the Ostrovsky equation [28, 34]; in particular
they have managed to construct the traveling waves by means of the inverse scatter-
ing transform. Finally, there are several attempts at stability, like [26], [27]. These
mostly consist of either direct numerical simulations of the full equation or numerical
spectral computations, performed on the linearized operator.

Since we will be interested in traveling wave solutions of (2) and their stability
properties, we should give a more precise definition and record the corresponding
elliptic equations. More specifically, we consider solutions of (2) in the form ϕ(x−ct).
They satisfy

(5) − cϕ′′ + βϕ′′′′ + (f(ϕ))′′ + εϕ = 0,−T ≤ x ≤ T.

In the periodic context and if one assume that ϕ is sufficiently smooth, this formula-

tion immediately implies that
∫ T
−T ϕ(x)dx = 0.

1.1. Some notation. We will often work in the subspace L2
0 = {f ∈ L2[−T, T ] :∫ T

−T f(x)dx = 0}, which can be realized as the space of all Fourier series with the

restriction a0 = 0. Namely, f ∈ L2
0 if and only if f(x) = 1√

2T

∑∞
k=−∞,k 6=0 ake

πikx/T ,

with a norm given by

‖f‖L2
0

=

 ∞∑
k=−∞,k 6=0

|ak|2
1/2

,

where ak = 1√
2T

∫ T
−T f(x)e−πikx/T dx. The Sobolev spaces with mean zero functions

are defined as follows: Hs
0 [−T, T ] = L2

0∩Hs[−T, T ]. In addition, one can consider the
action of the operator ∂−1

x on L2
0 and the corresponding Sobolev spaces Hs

0 , defined
in a standard way by the formula

∂−1
x f = T

∞∑
k=−∞,k 6=0

ak
πik

eπikx/T .

More generally, we introduce the following operators, which will be useful in what
follows. On the Sobolev space with zero mean functions, Hs

0 (where s is a real pa-
rameter), let

(6) |∂x|sf(x) := T−s
∞∑

k=−∞,k 6=0

πs|k|sakeπikx/T .

In addition, introduce the Hilbert transform operator H : H∂x = |∂x| or ∂x = −H|∂x|.
In other words,

(7) Hf(x) = i

∞∑
k=−∞,k 6=0

sgn(k)ake
πikx/T .

It is easy to see that H is a skew-symmetric operator, that is, H∗ = −H. In addition,
H maps real-valued functions into real-valued functions.

D
ow

nl
oa

de
d 

12
/1

4/
18

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRAVELING WAVES FOR THE SHORT PULSE EQUATION 677

1.2. Organization of the paper and a synopsis of the main results. The
main goal of this work is to provide some new periodic traveling wave solutions of the
short pulse equation (4) and its regularized version, (2). For the RSPE (2), we can
construct a family of waves, for all small ε, whenever the underlying KdV equation
(1) has such waves and they satisfy appropriate nondegeneracy requirements. This
is done in section 2 below via the Lyapunov–Schmidt reduction argument. We apply
these results, for example,4 to the cnoidal solutions of KdV constructed in section 2.1.
In section 3, we establish the spectral stability of the solutions constructed perturba-
tively in section 2. It is perhaps interesting to note that the solutions constructed in
this way, as perturbation of the corresponding (gKdV) models, have the same stability
properties as the original solitons, modulo some mild technical assumptions. Our ap-
proach relies on the Hamilton–Krein index theory, developed by Kapitula, Kevrekidis,
and Sandstede in the works [15, 16]; see also the related work of Chugunova and
Pelinovsky [6].

In section 4, we consider the Ostrovsky equation (4), in the case f(u) = −u2.
We construct peakon type solutions. These are continuous functions in an interval
[−T, T ], but their derivatives develop a jump discontinuity at the points ±T . That is,
they have a corner crest. In section 5, we show that these periodic traveling peakons
are spectrally stable.

2. Construction of the periodic traveling waves for the RSPE with
small Coriolis parameter. In this section, we first state and prove a general the-
orem for the existence of periodic traveling waves for RSPE, for small ε : |ε| << 1.
After that, we give concrete and explicit forms of the traveling wave solutions of the
KdV equation, which satisfy the assumption in Theorem 1 below.

Before we formulate the main result, let us rewrite (5) in a more suitable form
for our analysis. For ε = 0, (5) reduces to −∂2

x[−βϕ′′ + cϕ − f(ϕ)] = 0. After two
integrations in the x variable, this reduces5 to

(8) − βϕ′′ + cϕ− f(ϕ) = h, −T ≤ x ≤ T.

For the general case, under the condition
∫ T
−T ϕ(x)dx = 0, we are looking for a solution

in the form

(9) − βϕ′′ε + cϕε − f(ϕε)− ε∂−2
x ϕε = h+ α(ε), ϕε ∈ L2

0[−T, T ]

for some α = α(ε). Indeed, any solution of (9) will be a solution to (5): just apply ∂2
x

on both sides of (9). So, our goal is to produce a solution to (9) for |ε| << 1.
Our next result states that one can perturbatively produce a solution of (9)

starting from a solution of (8). It is important to note that for the existence of these
waves, an important spectral condition involving the linearized operator

L := −β∂2
x + c− f ′(ϕ0)

is required. Namely, we shall need that6
〈
L−1[1], 1

〉
6= 0. The significance of this

quantity is well-recognized in the literature; see [9] and Chapter 6.1.2 in [17].

4We would like to point out, on the other hand, that our results are pretty flexible in that they
should be applicable to a wide range of examples, satisfying a set of assumptions.

5Note that in principle we obtain linear terms h+mx on the right-hand side. But the cases with
m 6= 0 are not permissible, due to the periodicity requirements in [−T, T ], hence m = 0.

6Even though L has a kernel, the constant function 1 is assumed to be orthogonal to it, so this
expression makes sense.
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Theorem 1. Let the nonlinearity f be so that f ∈ C2(R1), f(0) = 0 and the
following holds:

1. There is an even, mean zero and smooth solution ϕ0 ∈ L2 of (8).
2. Ker[L] ⊂ L2

odd. That is, the kernel of L is spanned by odd functions.
3.
〈
L−1[1], 1

〉
6= 0.

Then, there exists ε0 > 0, a function α(ε) : (−ε0, ε0) → R1, so that for all ε ∈
(−ε0, ε0), there is a function ϕε ∈ H2

0,even, which is a solution to (9). In addition,

ϕε = ϕ0 + εL−1

[
∂−2
x ϕ0 −

〈
∂−2
x ϕ0, L

−1[1]
〉

〈1, L−1[1]〉

]
+O(ε2),(10)

α(ε) = −ε
〈
∂−2
x ϕ0, L

−1[1]
〉

〈1, L−1[1]〉
+O(ε2).(11)

Proof. Define ψ0 = L−1[1]
‖L−1[1]‖ . This is a well-defined element of H2

even[−T, T ] by

the Fredholm alternative, since 1 ⊥ Ker[L], which follows from Ker[L] ⊂ L2
odd.

For ψ ∈ H2
0,even, introduce F : R1 ×R1 ×H2

0,even → L2
even defined via

F (ε, α;ψ) = −β(ϕ0 + ψ)′′ + c(ϕ0 + ψ)− ε∂−2
x (ϕ0 + ψ)− f(ϕ0 + ψ)− h− α.

Note that the condition ψ ∈ L2
0 allows us to take the operator ∂−2

x in the definition
of F .

Let P{ψ0}⊥ be the orthogonal projection on the subspace {ψ0}⊥ = {ψ : 〈ψ,ψ0〉 =
0}. That is,

P{ψ0}⊥f = f − 〈f, ψ0〉ψ0.

We prove our theorem via the Lyapunov–Schmidt procedure. First, F (0, 0; 0) = 0.
Next, we show that there is ψ = ψ(ε, α) ∈ H2

0,even, so that the equation

(12) P{ψ0}⊥F (ε, α;ψ) = 0

holds true for (ε, α) in some neighborhood of (0, 0). As an application of the implicit
function theorem for (12), in the spaces indicated above, we will need to show that

Dψ(0, 0; 0) : H2
0,even → Y

is an invertible operator, where Y = P{ψ0}⊥ [L2
0,even] ⊂ L2

0,even. We have

Dψ(0, 0; 0)ψ̃ = P{ψ0}⊥ [−βψ̃′′ + cψ̃ − f ′(ϕ0)ψ̃] = P{ψ0}⊥L[ψ̃].

Let g ∈ Y be an arbitrary element and consider Dψ(0, 0; 0)ψ̃ = g. That is,

P{ψ0}⊥L[ψ̃] = g.

Since Ker[L] is spanned by odd functions, L is invertible on L2
even and hence ψ̃ =

L−1[g] ∈ H2
even is well defined. It remains to check that ψ̃ has mean value zero. We

have by the self-adjointness of L on L2
even〈

ψ̃, 1
〉

=
〈
L−1[g], 1

〉
=
〈
g, L−1[1]

〉
= ‖L−1[1]‖ 〈g, ψ0〉 = 0,

since g ∈ Y = P{ψ0}⊥ [L2
0,even]. Thus, ψ̃ has mean value zero and the first step of the

Lyapunov–Schmidt procedure is justified. That is, there is a function ψ = ψ(ε, α).
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For the second step, we need to resolve the remaining equation, namely,

(13) 〈F (ε, α;ψ(ε, α)), ψ0〉 = 0.

Denoting f(ε, α) = 〈F (ε, α;ψ(ε, α)), ψ0〉, we need to check that the implicit function
theorem applies, so that there is a solution α(ε). We have

∂f

∂α
=

〈
−β
(
∂ψ

∂α

)′′
+ c

∂ψ

∂α
− ε∂−2

x

(
∂ψ

∂α

)
− f ′(ϕ0 + aψ0 + ψ)

∂ψ

∂α
− 1, ψ0

〉
.

Evaluating at ε = 0, α = 0 yields

∂f

∂α
|ε=0,α=0 =

〈
L
∂ψ

∂α
|ε=0,α=0, ψ0

〉
− 〈1, ψ0〉

=
1

‖L−1[1]‖

〈
∂ψ

∂α
|ε=0,α=0, 1

〉
− 〈1, ψ0〉 = −〈1, ψ0〉 ,

where we have used the self-adjointness of L, the fact that ψ(ε, α) ∈ L2
0 (and hence

∂ψ
∂α |ε=0,α=0 ⊥ 1). Finally, by the assumptions in the theorem,

∂f

∂α
|ε=0,α=0 = − 1

‖L−1
+ [1]‖

〈
1, L−1[1]

〉
6= 0,

and hence the existence of α(ε) in a small interval (−ε0, ε0) is shown.
We now establish the behavior of α(ε) and ψε := ψ(ε, λ(ε)). We start with the

relation

(14) P{ψ0}⊥F (ε, α;ψ(ε, α)) = 0.

Taking a derivative in ε and evaluating at ε = 0, α = 0 yields

P{ψ0}⊥

[
L+

[
∂ψ

∂ε
|ε=α=0

]
− ∂−2

x ϕ0

]
= 0.

Since L[∂ψ∂ε |ε=α=0] ⊥ ψ0, it follows that

L

[
∂ψ

∂ε
|ε=α=0

]
= P{ψ0}⊥ [∂−2

x ϕ0].

The right-hand side is even and hence orthogonal to Ker[L], whence we can find the
unique solution

(15)
∂ψ

∂ε
|ε=α=0 = L−1[P{ψ0}⊥(∂−2

x ϕ0)].

Similarly, taking derivative with respect to α in (14) and evaluating at ε = α = 0, we
obtain

P{ψ0}⊥

[
L+

[
∂ψ

∂α
|ε=α=0

]
− 1

]
= 0.

This implies L[∂ψ∂α |ε=α=0] = P{ψ0}⊥(1) and hence

(16)
∂ψ

∂α
|ε=α=0 = L−1[P{ψ0}⊥(1)],

since P{ψ0}⊥(1) is an even function.
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Finally, in order to find α′(0), we take a derivative in ε in the equation

F (ε, α(ε), ψ(ε, α(ε)) = 0

and evaluate at ε = 0. This yields

L

[
∂ψ

∂ε
|ε=α=0

]
+ α′(0)L

[
∂ψ

∂α
|ε=α=0

]
− ∂−2

x [ϕ0] = α′(0).

Using (15) and (16), this further simplifies to

−
〈
∂−2
x ϕ0, ψ0

〉
ψ0 − α′(0) 〈1, ψ0〉ψ0 = 0,

which results in the formula

(17) α′(0) = −
〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

.

Here again, we have used the condition that 〈1, ψ0〉 =
〈
L−1[1], 1

〉
6= 0. This allows us

to derive the following representation formula for ψε:

ψε(x) = ε
∂ψ

∂ε
|ε=α=0 + α(ε)

∂ψ

∂α
|ε=α=0 +O(ε2)

= ε

[
L−1[P{ψ0}⊥(∂−2

x ϕ0)]−
〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

L−1[P{ψ0}⊥(1)]

]
+O(ε2)

= εL−1

(
P{ψ0}⊥

[
∂−2
x ϕ0 −

〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

])
+O(ε2).

Since 〈
∂−2
x ϕ0 −

〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

, ψ0

〉
=
〈
∂−2
x ϕ0, ψ0

〉
−
〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

〈1, ψ0〉 = 0,

we find that P{ψ0}⊥

[
∂−2
x ϕ0 −

〈∂−2
x ϕ0,ψ0〉
〈1,ψ0〉

]
= ∂−2

x ϕ0 −
〈∂−2
x ϕ0,ψ0〉
〈1,ψ0〉 , and so we finally

have the formula

ψε(x) = εL−1

[
∂−2
x ϕ0 −

〈
∂−2
x ϕ0, ψ0

〉
〈1, ψ0〉

]
+O(ε2).

2.1. Examples of periodic traveling wave solutions of KdV satisfying
Theorem 1. As we have mentioned above, we consider only the KdV case. That is,
take f(z) = z2. Integrating once more (9), we get the equation

(18) ϕ′2 =
2

3β

(
−ϕ3 +

3

2
cϕ2 + 3hϕ+ 3h2

)
.

Let c > 0 and ϕ1 < ϕ2 < ϕ3 are roots of the polynomial F (ρ) = −ρ3+ 3
2cρ

2+3hρ+3h2.
Then, we have F (ρ) = (ρ− ϕ1)(ρ− ϕ2)(ϕ3 − ρ) and

(19)

∣∣∣∣∣∣∣∣∣∣
ϕ1 + ϕ2 + ϕ3 = 3

2c,

ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3 = −3h,

ϕ1ϕ2ϕ3 = 3h2.
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Introducing a new variable s via ϕ = ϕ2 + (ϕ3 − ϕ2)s2, we get

s′2 =
1

6β
(1− s2)(κ′2 + κ2s2)

and the solution of (18) is given by

(20) ϕ(x) = ϕ2 + (ϕ3 − ϕ2)cn2(αx, κ),

where

(21) κ2 =
2ϕ3 − 2ϕ2

4ϕ3 + 2ϕ2 − 3c
, κ′2 = 1− κ2, α2 =

4ϕ3 + 2ϕ2 − 3c

12β
.

For fixed T in a proper interval, we can determine ϕ2 and ϕ3 as smooth functions
of c so that the periodic solution ϕ given by (20) will have period T because of
monotonicity of the period (for more details see [1, 12]). Moreover, for T > 0 and
c > 0 there exists a smooth branch of cnoidal waves with mean zero (see [1]).

In [−T, T ] = [−K(k)/α,K(k)/α], we consider the spectral properties of the op-
erator

L = −β∂2
x + c− 2ϕ,

supplied with periodic boundary conditions. By the above formulas, ϕ3 − ϕ2 =
6βα2k2, 2ϕ2 − c = 4βα2(1− 2k2). Taking y = αx as an independent variable in L+,
one obtains L+ = βα2Λ with an operator Λ in [−K(k),K(k)] given by

Λ = −∂2
x − 4(1 + k2) + 12k2sn2(y; k).

The spectral properties of the operator Λ in [0, 2K(k)] are well known. The first three
(simple) eigenvalues and corresponding eigenfunctions of Λ are

µ0 = k2 − 2− 2
√

1− k2 + 4k4 < 0,

ψ0(y) = dn(y; k)[1− (1 + 2k2 −
√

1− k2 + 4k4)sn2(y; k)] > 0,

µ1 = 0,

ψ1(y) = dn(y; k)sn(y; k)cn(y; k) =
1

2

d

dy
cn2(y; k),

µ2 = k2 − 2 + 2
√

1− k2 + 4k4 > 0,

ψ2(y) = dn(y; k)[1− (1 + 2k2 +
√

1− k2 + 4k4)sn2(y; k)].

Since the eigenvalues of L and Λ are related by λn = βα2µn, it follows that the first
three eigenvalues of the operator L, equipped with periodic boundary condition on
[0, 2K(k)] are simple and λ0 < 0, λ1 = 0, λ2 > 0. The corresponding eigenfunctions
are ψ0(αx), ψ1(αx) = ϕ′ and ψ2(αx).

Now we verify that condition 3 of Theorem 1 is satisfied in this case, for some
interval of values of κ. We will proceed as in [9]. We have Lϕ′ = 0. The function

ψ(x) = ϕ′(x)

∫ x 1

ϕ′2(s)
ds,

∣∣∣∣ ϕ′ ψ
ϕ′′ ψ′

∣∣∣∣ = 1,

is also solution of L+ψ = 0. Formally, since ϕ′ has two zeros using the identities

1

cn2(y, κ)
=

1

dn(y, κ)

∂

∂y

sn(x, κ)

cn(y, κ)
,

1

sn2(y, κ)
= − 1

dn(y, κ)

∂

∂y

cn(x, κ)

sn(y, κ)
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682 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

and integrating by parts we get

ψ(x) =
1

2α2(ϕ3 − ϕ2)

[
cn2(αx, κ)− 1

1− κ2
sn2(αx, κ)

]
− κ2sn(αx, κ)cn(αx, κ)dn(αx, κ)

2α(ϕ3 − ϕ2)(1− κ2)

∫ x

0

(1− 2κ2)− (2− κ2)sn2(αs, κ)

dn2(αs, κ)
ds.

Thus, we may construct the Green function

L−1f = ϕ′
∫ x

0

ψ(s)f(s)ds− ψ(s)

∫ x

0

ϕ′(s)f(s)s+ Cfψ(x),

where Cf is chosen such that L−1f is periodic with the same period as ϕ(x). After
integrating by parts, we get

(22) 〈L−1[1], 1〉 = (ϕ(T ) + ϕ(0) + C1)

∫ T

−T
ψ(x)dx− 2

∫ T

−T
ϕ(x)ψ(x)dx,

where

(23) C1 = (ϕ(T )− ϕ(0))− ϕ′′(T )

2ψ(T )

∫ T

−T
ψ(x)dx.

Using that

sn(αx, κ)cn(αx, κ)dn(αx, κ) = − 1

2ακ2

∂

∂x
dn2(αx, κ)

and integrating by parts, we get∫ T

−T
ψ(x)dx =

1

α3(ϕ3 − ϕ2)
I1,

where

I1(κ) =

∫ K(κ)

0

cn2(x, κ)dx− 1

1− κ2

∫ K(κ)

0

sn2(x, κ)dx

+
1

2(1− κ2)

∫ K(κ)

0

[(1− 2κ2)− (2− κ2)sn2(x, κ)][(1− κ2)− dn2(x, κ)]

dn2(x, κ)
dx.

Using Mathematica, we obtain the following simple formula for I1(κ):

I1(κ) =
(κ4 + 5κ2 − 8)E(κ) + (2κ4 − 9κ2 + 8)K(κ)

2(k4 − k2)
.

Now ∫ T

−T
ϕ(x)ψ(x)dx =

ϕ2

α3(ϕ3 − ϕ2)
I1 + (ϕ3 − ϕ2)

∫ T

−T
cn2(αx, κ)ψ(x)dx.

Using that

cn3(αx, κ)sn(αx, κ)dn(αx, κ) = − 1

4α

∂

∂x
cn4(αx, κ)
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and integrating by parts, we get∫ T

−T
cn2(αx, κ)ψ(x)dx =

1

α3(ϕ3 − ϕ2)
I2,

where

I2 =

∫ K(κ)

0

cn4(x, κ)dx− 1

1− κ2

∫ K(κ)

0

sn2(x, κ)cn2(x, κ)dx

− κ2

4(1− κ2)

∫ K(κ)

0

cn4(x, κ)[(1− 2κ2)− (2− κ2)sn2(x, κ)]

dn2(x, κ)
dx.

Using Mathematica, we obtain the following formula for I2(κ):

I2(κ) =
2E(κ)−K(κ)

4
.

Hence

(24) 〈L−1[1], 1〉 =
T 3

K3(κ)

[
ϕ(T ) + ϕ(0) + C1

ϕ3 − ϕ2
I1 −

2ϕ2

ϕ3 − ϕ2
I1 − 2I2

]
,

where we used that T = K(κ)
α . From (19)–(21), after calculations, we obtain

(25)

ϕ3 − ϕ2 = 6βκ2K
2(κ)
T 2 ,

ϕ2 = − 6β
T 2K(κ)[E(κ)− (1− κ2)K(κ),

ϕ3 = 6β
T 2 [K2(κ)− E(κ)K(κ)],

c = 4β
T 2 [(2− κ2)K2(κ)− 3E(κ)K(κ)].

Note that the wave speed c needs to be a positive quantity by construction. On the
other hand, this is not always satisfied—indeed, it is only true for some values of κ;
refer to Figure 1. It is clear that only values of κ ∈ (0.98, 1) produce c = c(κ) > 0 as
is required. From (25), we get

ϕ(T ) + ϕ(0) + C1

ϕ3 − ϕ2
=

2(1− κ2)K(κ)− 2E(κ)− 2(1−κ2)K(κ)I1∫K(κ)
0

(1−2κ2)−(2−κ2)sn2(x,κ)

dn2(x,κ)
dx

κ2K(κ)

and
ϕ2

ϕ3 − ϕ2
=

(1− κ2)K(κ)− E(κ)

κ2K(κ)
.

Using Mathematica, we were able to simplify the formula (24) to the following:〈
L−1[1], 1

〉
= T 3

K3(κ)Z(κ), where

Z(κ) =

(
3κ8 − 33κ6 + 111κ4 − 144κ2 + 64

)
K(κ)2 + 2

(
4κ8 − 3κ6 − 50κ4 + 112κ2 − 64

)
K(κ)E(κ)

2κ4 (2 (κ4 − κ2 + 1)E(κ)− (κ4 − 3κ2 + 2)K(κ))

+
(−3κ8 + 14κ6 + 5κ4 − 80κ2 + 64)E(κ)2

(2 (κ4 − κ2 + 1)E(κ)− (κ4 − 3κ2 + 2)K(κ))
.

We have checked, by plotting in Mathematica, that in the interval of interest κ ∈
(0.98, 1) (i.e., the interval in which c > 0), the function Z[κ] > 0, κ ∈ (0.98, 1), whence〈
L−1[1], 1

〉
> 0.
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Fig. 1. The graph of the function (2− κ2)K2(κ)− 3E(κ)K(κ) for κ ∈ (0.9, 1).

3. Stability of traveling waves of the RSPE. We study the linear stability
of the waves ϕε with respect of perturbations of the same period. We assume that
these solutions are even functions of x.

3.1. Spectral setup. Consider the linearization around the solution ϕε(x− ct)
of (2), namely, u(t, x) = ϕε(x − ct) + v(t, x − ct). Note that since all solutions must
have mean value zero, we take the perturbation v ∈ L2

0[−T, T ] as well. After ignoring
all terms of the form O(v2), we obtain

vtx = (−βvxx + cv − f ′(ϕε)v − ε∂−2
x v)xx.

By the mean value property of v, we can apply the operator ∂−1
x to the previous

identity to obtain

(26) vt = (−βvxx + cv − f ′(ϕε)v − ε∂−2
x v)x.

Introduce the one-parameter family of operators

Lε := −β∂xx + c− f ′(ϕε)− ε∂−2
x .

We denote the standard Hill operator corresponding to ε = 0 by L, that is, L := L0.
Clearly, Lε is still self-adjoint, with domain H2

0 , which acts invariantly on the even
and odd subspaces.

In order to rewrite the linear stability problem (26) in a more suitable form,
introduce

w = |∂x|−1/2v, w ∈ H5/2
0 .
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TRAVELING WAVES FOR THE SHORT PULSE EQUATION 685

We then have, in terms of w (recall ∂x = −H|∂x|),

|∂x|1/2wt = H|∂x|Lε|∂x|1/2w.

Applying |∂x|−1/2 on both sides (and taking into account that H commutes with all
|∂x|s), we obtain

(27) wt = −H|∂x|1/2Lε|∂x|1/2w =: −HKεw.

Setting w(t, x)→ eλtw(x), we arrive at the eigenvalue problem

(28) λw = −HKεw.

Note that H∗ = −H, while K∗ε = Kε. This is exactly the form of the eigenvalue
problem considered in [15, 16]. It is a standard result that the essential spectrum of
(28) is on the imaginary axes and the instabilities may come only in the form of point
eigenvalues λ with positive real part. In order to decide about the stability of (28),
we need to establish some properties of the operators Lε,Kε. To begin with, observe
that Kε is a self-adjoint operator with a domain H2

per[−T, T ].

3.2. Spectral analysis. We need the following simple lemma.

Lemma 1. Assume that the operator L has one simple negative eigenvalue, a
simple eigenvalue at zero, corresponding to the eigenfunction ϕ′0 and the rest of the
spectrum is strictly inside (0,∞). In addition, we require that

〈
L−1[1], 1

〉
6= 0.

Then, there exists ε1 > 0, so that for all ε ∈ (−ε1, ε1), the self-adjoint operator
Kε is either a nonnegative operator or else it has one simple negative eigenvalue.
In addition, it has a simple eigenvalue at zero, corresponding to the eigenfunction
qε = H|∂x|1/2ϕε, while the rest of the spectrum belongs to (0,∞).

Proof. We start our considerations with the operators Lε. We have that

Lε = L0 + f ′(ϕ0)− f ′(ϕε)− ε∂−2
x = L+Mε,

where Mε is clearly a bounded operator, with ‖Mε‖L2→L2 ≤ Cε. Thus, by the Courant
principle for the eigenvalues,7 we can conclude that |λj(Lε)− λj(L)| ≤ Cε.

Thus, for all small enough ε, we have one negative eigenvalue for Lε (which is close
to λ0(L) < 0). The eigenvalue λ2(Lε) is in fact positive, being close to λ2(L) > 0. The
only remaining question is then about the sign of λ(Lε), which is close to λ1(L) = 0.
By direct verification (differentiating (9) in x), we have that Lε(ϕ′ε) = 0, 0 is an
eigenvalue, and thus that λ1(Lε) = 0. To summarize,

λ0(Lε) < 0 = λ1(Lε) < λ2(Lε).

We now need to make similar arguments regarding Kε. Let ψε be the negative eigen-
function for Lε. According to the Courant variational eigenvalue principle, we have

λ1(Kε) ≥ inf
φ⊥|∂x|1/2ψε

〈Kεφ, φ〉
‖φ‖2

.

The restriction in the inf is equivalent to
〈
|∂x|1/2φ, ψε

〉
= 0. But then,

〈Kεφ, φ〉 =
〈
Lε|∂x|1/2φ, |∂x|1/2φ

〉
≥ 0,

7Here, λj(S) refers to the jth eigenvalue of the self-adjoint operator S, the smallest one being
λ0(S).
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since Lε|{ψε}⊥ ≥ 0. Thus, we conclude that λ1(Kε) ≥ 0. This last conclusion implies
that either Kε ≥ 0 or else it has at most one simple and negative eigenvalue.

Next, we study Ker(Kε). We will show that it is a one-dimensional subspace,
spanned by qε = H|∂x|1/2ϕε. To that end, let Kεφ = |∂x|1/2Lε|∂x|1/2φ = 0. As a
consequence

(29) Lε|∂x|1/2φ = c,

where c could be zero or a nonzero constant. We show that it must be that c = 0
for all small enough ε. Indeed, assume for a moment that c 6= 0. Then, since c ⊥
Ker(Lε) = span{ϕ′ε}, we can take inverses in (29) and

|∂x|1/2φ = cL−1
ε [1].

But now, take a dot product of this last expression with the constant 1. We have

0 =
〈
|∂x|1/21, φ

〉
=
〈

1, |∂x|1/2φ
〉

= c
〈
1,L−1

ε [1]
〉
.

Since limε→0

〈
1,L−1

ε [1]
〉

=
〈
1, L−1[1]

〉
6= 0, it follows that c = 0, a contradiction.

Thus, Lε|∂x|1/2φ = 0. However, recall that Lε has unique eigenfunction at zero, ϕ′ε.
Thus, |∂x|1/2φ = const.∂xϕε or

φ = const.|∂x|−1/2∂xϕε = const.H|∂x|1/2ϕε.

Finally, we need to show that the rest of the spectrum of Kε is in (0,∞). Indeed,
we have already shown that λ1(Kε) = 0. If λ2(Kε) > 0, we are done. Otherwise,
we would have λ2(Kε) = 0, which means that zero is an eigenvalue of multiplicity
of at least two for Kε. We have of course ruled this out in the argument above, so
λ2(Kε) > 0 and Lemma 1 is proved in full.

For the stability of the waves, we observe that the eigenvalue problems that we
have to deal with are in the form considered in [15, 16]. In these papers, the authors
have studied a pretty general form of eigenvalue problems associated to a linearization
around soliton solutions of Hamiltonian systems. According to Lemma 1, we have that
Kε is either a positive operator or else it has one negative and simple eigenvalue. If
Kε ≥ 0, we have that8 n(Kε) = 0 and hence, according to the results9 of [15, 16]
the wave is stable. Otherwise, n(Kε) = 1 and we have by [16] that the number of
instabilities of (28)—that is, the number of solutions (λ,w) : <λ > 0, w ∈ D(Kε) of
(28)—is equal to

n(Kε)− n(
〈
K−1
ε Hqε, Hqε

〉
) = 1− n(

〈
K−1
ε Hqε, Hqε

〉
).

Thus, we need to compute the quantity〈
K−1
ε Hqε, Hqε

〉
=
〈
|∂x|−1/2L−1

ε |∂x|−1/2[|∂x|1/2ϕε], |∂x|1/2ϕε
〉

=
〈
L−1
ε ϕε, ϕε

〉
.

Since both Lε and L act invariantly and are invertible on the subspace of even func-
tions, we take the operator norms in the space of L2

even. We have

‖L−1
ε − L−1‖ = ‖((I + L−1Mε)

−1 − I)L−1‖ ≤ ‖L−1‖‖((I + L−1Mε)
−1 − I‖.

8Here n(S) denotes the number of negative eigenvalues of the self-adjoint operator S.
9In this simple case, one in fact does not need the results of [15, 16]; one can pretty much rule

out instabilities by an easy hands-on argument.
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It follows that ‖L−1
ε − L−1‖ ≤ Cε. Furthermore, ‖ϕε − ϕ‖ ≤ Cε and hence we have

that
lim
ε→0

〈
L−1
ε ϕε, ϕε

〉
=
〈
L−1ϕ,ϕ

〉
.

We summarize the existence and stability findings for ϕε in the following result.

Theorem 2. Assume that the nonlinearity f , the even solution ϕ of (8), and the
operator L = −β∂2

x + c − f ′(ϕ) satisfy the assumptions of Theorem 1. Then, there
exists ε0 > 0, so that traveling waves ϕε exist for all ε ∈ (−ε0, ε0). The functions ϕε
are even.

Furthermore, assume that L has a simple and single negative e-value and a simple
eigenvalue at zero (with kernel spanned by ϕ′). Then, under the assumption

(30)
〈
L−1[ϕ], ϕ

〉
< 0

we can conclude that all waves ϕε are linearly stable when perturbed with perturbations
with the same period.

Note that (30) is nothing but the Vakhitov–Kolokolov stability criterion, accord-
ing to the Hamilton–Krein index theory. By way of example, we examine the prop-
erties of the periodic traveling wave solutions of KdV, constructed in section 2.1.
Suppose ϕ is the periodic traveling wave for KdV provided in (20). Then, by The-
orem 1, there exists ε0 > 0, so that for all ε : |ε| < ε0, there exist traveling wave
solutions ϕε of the RSPE. By checking again the properties of ϕ, we conclude that
these are spectrally stable, according to Theorem 2. We can thus formulate the fol-
lowing corollary.

Corollary 1. Let ϕ be given (20) with κ ∈ (0.98, 1). Then, for all ε : |ε| << 1,
the corresponding traveling waves ϕε of the regularized SPE are spectrally stable.

Unfortunately, while spectral stability is established via the instabilities index
counting methods, we cannot say anything definite about orbital stability.

Proof. In order to establish the stability of the waves, we must show that〈
L−1ϕ,ϕ

〉
< 0. Thus, we need to compute

〈
L−1ϕ,ϕ

〉
. To that end, we start with

L[1] = c− 2ϕ. Applying L−1 yields

(31) 1 = cL−1[1]− 2L−1ϕ.

Since ϕ has mean value zero, we conclude

(32)
〈
L−1ϕ,ϕ

〉
=
c

2

〈
L−1[1], ϕ

〉
.

Integrating by parts, we get

〈
L−1[1], ϕ

〉
=
ϕ2(T )

2

∫ T

−T
ψ(x)dx− 3

2

∫ T

−T
ϕ2(x)ψ(x)dx+ [ϕ(0) + C1]

∫ T

−T
ϕ(x)ψ(x)dx

=
ϕ2(T )

2α3(ϕ3 − ϕ2)
I1 + [ϕ(0) + C1]

[
ϕ2

α3(ϕ3 − ϕ2)
I1 +

1

α3
I2

]
− 3

2

∫ T

−T
ϕ2(x)ψ(x)dx

and∫ T

−T
ϕ2(x)ψ(x)dx =

ϕ2
2

α3(ϕ3 − ϕ2)
I1 +

2ϕ2

α3
I2 + (ϕ3 − ϕ2)2

∫ T

−T
cn4(αx, κ)ψ(x)dx.
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688 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

Using the identity

cn5(αx, κ)sn(αx, κ)dn(αx, κ) = − 1

6α

∂

∂x
cn6(αx, κ)

and integrating by parts, we get∫ T

−T
cn4(αx, κ)ψ(x)dx =

1

α3(ϕ3 − ϕ2)
I3,

where

I3(κ) =

∫ K(κ)

0

cn6(x, κ)dx− 1

1− κ2

∫ K(κ)

0

sn2(x, κ)cn4(x, κ)dx

− κ2

6(1− κ2)

∫ K(κ)

0

cn6(x, k)[(1− 2κ2)− (2− κ2)sn2(x, k)]

dn2(x, κ)
dx.

We have used Mathematica to compute the precise value of I3(κ) and we have found

I3(κ) =
(2κ2 − 1)E(κ) + (1− κ2)K(κ)

6κ2
.

Combining the above equalities, we get

〈
L−1[1], ϕ

〉
=

1

α3

(
ϕ2(T )

2(ϕ3 − ϕ2)
+

[ϕ(0) + C1]ϕ2

ϕ3 − ϕ2
− 3ϕ2

2

2(ϕ3 − ϕ2)

)
I1

+
1

α3

[
(ϕ(0) + C1 − 3ϕ2)I2 −

3(ϕ3 − ϕ2)

2
I3

]
.

Hence, from (25) and (32), we conclude

(33)
〈
L−1ϕ,ϕ

〉
=

6β2

T

(2− κ2)K(κ)− 3E(κ)

K2(κ)
I(κ),

where

I(κ) =
4(1− κ2)K(κ)[E(κ)− (1− κ2)K(κ)]

κ2
∫K(κ)

0
(1−2κ2)−(2−κ2)sn2(x,κ)

dn2(x,κ) dx
I2
1

+4

E(κ)K(κ)− (1−κ2)K2(κ)− (1−κ2)K2(κ)∫K(κ)

0
(1−2κ2)−(2−κ2)sn2(x,κ)

dn2(x,κ) dx
I1

 I2−3κ2K2(κ)I3.

Note that the expression in front of I(κ) in (33) is (positively) proportional to the
speed c, which is positive in our case (i.e., κ ∈ (0.98, 1)), and thus we need to show
that I(κ) < 0, κ ∈ (0.98, 1). Indeed this is the case, as the graph of the function I(κ)
shows; see Figure 2.

Thus, we find that limε→0

〈
L−1
ε ϕε, ϕε

〉
< 0 and hence n(

〈
L−1
ε ϕε, )

〉
= 1 for all

small enough ε. Consequently, n(−HKε) = 0, which is to say that the waves are
stable.
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0.4 0.5 0.6 0.7 0.8 0.9 1.0

-8

-6

-4

-2

Fig. 2. The graph of the function I(κ). Note that I(κ) < 0, κ ∈ (0.98, 1).

4. Periodic traveling waves for the short-pulse equation. The generalized
Ostrovsky equation that we consider is in the form (4), with f(u) = −up. For the
purposes of this section, we consider the case p = 2 only, although some of the other
cases are certainly physically relevant and mathematically tractable.

For the profile equation, we impose the ansatz u(x, t) = ϕc(x+ ct), c > 0. We get

(34) cϕ′′ = ϕ+ (ϕ2)xx

or

(35) [ϕ′(c− 2ϕ)]′ = ϕ.

At this point, we need to perform a well-known change of variables; see, for example,
[10], although this originated much earlier (see [2, 24, 27, 31, 33, 34]). More specifically,
take

(36) ξ = η − 2Ψ(η)

c
=: Ξ(η),

where ϕ(ξ) = Φ(η) = Ψ′(η). Then (36) in the new variables takes the form

(37) c2Φηη = Φ(c− 2Φ).

Integrating once (37), we get

(38) Φ2
η =

1

c2

[
−4

3
Φ3 + cΦ2 +A

]
= F (Φ),
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690 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

where A is a constant of integration. Clearly, Φ = c
2 is a stationary solution of (36).

This turns out to be a center. We are interested in constructing solutions that are
close to this center. We have the following proposition.

Proposition 1. There exists a0 > 0, so that for every a : |a| < a0, there exists
an even smooth function Φa, solving (38), which is in the form

Φa(η) =
c

2
+ a cos(kaη) +O(a2) : −2π

ka
≤ η ≤ 2π

ka
,

ka =
1

c
− 10a2

3c2
+O(a4).

Proof. In the phase plane (Φ,Φ′) for c > 0, (37) has equilibria at (0, 0), which
is saddle point, and at

(
c
2 , 0
)
, which is a center. It is classical that the center is

surrounded by a continuous band of periodic trajectories, which terminates at a
separatrix, which is homoclinic to the saddle point. Introduce a small parameter

0 < |a| << 1. More precisely, for values10 of A ∈ (− c3

12 , 0), the cubic polynomial
FA(z) = − 4

3z
3 + cz2 + A has three real roots — one negative and two positive roots

Φ0,Φ1 : 0 < Φ0 <
c
2 < Φ1, and Φ0 < Φ(x) < Φ1. Then the period T of Φ is given by

(39) T =

∫ T

0

dt = 2

∫ Φ1

Φ0

1

F (X)
dX.

It is easy to see that the period T is continuous function of Φ0, indeed by changing
of variable

X =
Φ1 − Φ0

2
s+

Φ1 + Φ0

2
,

and for Φ0 → c
2 , we get

(40) TΦ → T0 = 2π
√
c.

Let Φ(x) = φ(kax) = φ(z), where φ(z) is periodic function with period 2π. To conform
with our earlier setup, we will take the interval in the form [−π, π] . We have

k0 =
2π

T0
=

1√
c
.

Then the function φ is given by the equation

(41) c2k2
aφ
′′ = cφ− 2φ2.

Let

(42)
φ(z) = c

2 + a cos(z) + a2φ2(z) + a3φ3(z) +O(a4),

k2
a = 1

c + a2k1 +O(a4).

We look for solutions parametrized by a small parameter a. Plugging in (42) into
(41), we see that the coefficients of O(a) are equal. For coefficients of O(a2), the
compatibility condition is

c(φ′′2 + φ2) = −2 cos2(z),

10When a = 0, we obtain the center, Φ = c
2

and A = − c
3

12
.
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TRAVELING WAVES FOR THE SHORT PULSE EQUATION 691

with solution φ2(z) = 1
3c (cos(2z)− 3). For O(a3), we have

c(φ′′3 + φ3) = c2k1 cos(z)− 4 cos(z)φ2(z),

which leads to the equality k1 = − 10
3c2 . Thus finally we get

(43) φ(z) =
c

2
+ a cos(z) + a2 1

3c
(cos(2z)− 3) + a3φ3(z) +O(a4),

and

(44) k2
a =

1

c
− a2 10

3c2
+O(a4).

Now, to construct the solutions to (35), we need to use the function Φ described
in Proposition 1. In addition, we need to make sure that we restrict ourselves to an
appropriate interval, where the transformation (36) is invertible. To that end, take
the derivative Ξ′(η). We have

dξ

dη
= Ξ′(η) = 1− 2Ψ′(η)

c
= 1− 2Φ(η)

c
.

From (42), we deduce that

dξ

dη
= Ξ′(η) = 1− 2

c

( c
2

+ a cos(kaη) +O(a2)
)

= −2a

c
cos(kaη) +O(a2).

Thus, we need to restrict η to an interval, where the cos(kaη) does not vanish, for
example,

−B
ka
≤ η ≤ B

ka
.

where 0 < B < π
2 . Now that we know that Ξ(η) : [−B/ka, B/ka] → R1 has an

inverse function, say, η(ξ), we need to determine the domain of the inverse function.
Observing that

Ξ′(η) = −2a

c
cos(kaη) +O(a2) < 0, when a > 0,

Ξ′(η) = −2a

c
cos(kaη) +O(a2) > 0, when a < 0.

We define the positive quantity ξa as follows:

−ξa = Ξ

(
B

ka

)
when a > 0,

ξa = Ξ

(
B

ka

)
when a < 0.

With this in mind, we just take

(45) ϕ(ξ) := φ(kaη(ξ)), ϕ : [−ξa, ξa]→ R1,

where η(ξ) is the inverse function to the one defined in (36).
By construction, ϕ solves (35). It is also obviously an even function. We now

verify the periodicity on the interval [−ξa, ξa]. We have

ϕ(ξa) = φ(kaη(ξa)) = φ(−B), ϕ(−ξa) = φ(kaη(−ξa)) = φ(B).

Thus, ϕ(ξa) = ϕ(−ξa), since φ is an even function.
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692 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

Furthermore,

ϕ′(ξ) = kaφ
′(kaη(ξ))η′(ξ) = ka

φ′(kaη(ξ))
dξ
dη

= ka
φ′(kaη(ξ))

1− 2
cϕ(ξ)

.

Evaluating at ξ = ±ξa, we have that

1−2

c
ϕ(±ξa) = 1−2

c
φ(∓B) = 1−2

c

( c
2

+a cos(∓B)+O(a2)
)

= −2a

c
cos(B)+O(a2)6=0,

whence the denominator is nonzero for small enough a. Also, for the numerator, we
have

φ′(kaη(ξa)) = φ′(−B) = −φ′(B) = −φ′(kaη(−ξa)),

since φ′ is an odd function. We conclude that

ϕ′(−ξa) = −ϕ′(ξa).

That is, the function has a corner crest at the endpoints of the interval ±ξa. If one
takes a periodization of such function, the corner crests will of course appear at all
points in the form (2k + 1)ξa, k ∈ Z. This is the peakon type solution that we have
discussed, see Figure 3 below.

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3. Peakons: the blue one is with a > 0, the yellow one is with a < 0.
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Theorem 3 (Existence of peakons solutions). There exists a0 > 0, so that for
each a : |a| < a0, there is a one-parameter family of even functions ϕa,b, ϕa,B :
[−ξa, ξa] → R1, B ∈ (0, π/2), which classically solve (35) in the interval (−ξa, ξa).
These functions are C∞(−ξa, ξa).

Moreover, the 2ξa periodizations of these functions remain continuous functions,
but their derivatives develop jump discontinuities at the points (2k + 1)ξa, k ∈ Z.

5. Spectral stability of the traveling peakons for the short pulse equa-
tion. In this section, we show the spectral stability for the peakons constructed in
section 4. The change of variables (36), which “translates” the peakon equation (35)
into the more tractable Schrödinger equation (36) will play pivotal role in the problem
for linear/spectral stability as well.

More concretely, suppose that ϕc is a solution11 of (35) in the interval [−T, T ],
where we henceforth set T := ξa. Introduce the ansatz u(t, x) = ϕc(x+ct)+v(t, x+ct)
in (34). Ignoring quadratic and higher order terms, and adopting the new variable
x+ ct→ ξ, we arrive at

(46) (vt + ((c− 2ϕ)v)ξ)ξ = v, −T ≤ ξ ≤ T,

where v is a periodic function in [−T, T ]. We consider the stability problem for (46).
Take v(t, ξ) = eλtw(ξ), with the requirement that12 w ∈ H2[−T, T ]. The problem
(46) turns into the eigenvalue problem

(47) (λw + ((c− 2ϕ)w)ξ)ξ = w, −T ≤ ξ ≤ T.

Equivalently, we ask that the 2T periodization of w and ϕ (also denoted by w, ϕ)
obeys

(48) (λw + ((c− 2ϕ)w)ξ)ξ = w, ξ ∈ R1.

In particular, it must be that the function ξ → λw+((c−2ϕ)w)ξ is continuous at ±T .
By the continuity of w,wξ, ϕ at ±T and the fact that ϕ′(−T+) = −ϕ′(T−) 6= 0, we
conclude that w(±T ) = 0. Note that by the periodicity of wξ and w(−T ) = w(T ) = 0∫ T

−T
w(ξ)dξ = [λw + ((c− 2ϕ)w)ξ]|T−T = 0.

Thus, one can select a function z :
∫ T
−T z(ξ) = 0, so that w = zξ. Since we require that

w ∈ C2[−T, T ] and periodic, we have that w ∈ H2[−T, T ], whence z ∈ H3[−T, T ].
We have

(λzξ + ((c− 2ϕ)zξ)ξ)ξ = zξ, −T < ξ < T.

Integrating once in ξ allows us to conclude that

λzξ + ((c− 2ϕ)zξ)ξ = z + C, −T < ξ < T,

for some constant of integration C. Since
∫ T
−T z(ξ) = 0, C = 0 and we obtain

(49) λzξ + ((c− 2ϕ)zξ)ξ = z, −T < ξ < T.

11In the sense of Theorem 3.
12In particular, the periodization of w,wξ are continuous everywhere.
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694 S. HAKKAEV, M. STANISLAVOVA, AND A. STEFANOV

By our construction of the peakons, the interval [−T, T ] is such that the transforma-
tion ξ = Ξ(η) is a one-to-one mapping from [−B/ka, B/ka] onto [−T, T ]. Introduce
b := B

ka
. Take η(ξ) : [−T, T ] → [−b, b] to be the inverse of Ξ(η). Thus, we may

introduce a new function Z, via

(50) z(ξ) = Z(η(ξ)).

Note that while z enjoys the mean value zero property, this is clearly no longer the
case for Z. We now compute the derivatives of z in terms of Z. We have

(51) zξ(ξ) =
Zη
dξ
dη

=
Zη

1− 2
cϕ(ξ)

=
cZη

c− 2ϕ(ξ)
.

Thus, (c− 2ϕ)zξ = cZη, and hence

(52) [(c− 2ϕ)zξ]ξ = c
d

dξ
(Zη(η(ξ))) =

cZηη
dξ
dη

=
c2Zηη

c− 2ϕ(ξ)
.

Plugging (51), (52) into (49) and taking into account that ϕ(ξ) = Φ(η) leads us to
the new spectral problem

(53) − c2Zηη + cZ − 2ΦZ = λcZη,−b < η < b.

Let us now show that the function Z in (50) is in fact Z ∈ H2[−b, b]. First of all,
the formula (50) ensures that Z is continuous and 2b periodic. Next, the relation
Zη = c−1(c − 2ϕ)zξ implies that Zη is continuous and 2b periodic. Finally, (53)
implies that Zηη is a linear combination of continuous functions on [−b, b] and hence
Z ∈ H2[−b, b]. Thus, we have shown that if the eigenvalue problem (48) has a solution
w ∈ H2, then the transformed problem (53) will have a solution Z ∈ H2[−b, b]. For
the rest of the section, we show that this is not the case, hence we will conclude
stability for the peakon solutions.

Since we are looking for solutions of (53) with <λ > 0 and c > 0, we can rewrite
the spectral problem in the form

(54) L[Z] = µZ ′,

where µ = λc, and

L = La := −c2∂yy + c− 2Φ,−b ≤ y ≤ b,

where Z ∈ D(L) = H2[−b, b]. Here, recall that the function Φ was constructed
explicitly in Proposition 1. Clearly, the instability occurs for (53), exactly when it
occurs for (54), because <(µ) = c<(λ) and hence <(µ) and <(λ) have the same sign.
In other words, we study (54) for stability/instability.

Let P0 : L2[−b, b]→ L2
0[−b, b] be the projection onto L2

0

P0f(y) = f(y)− 1

2b

∫ b

−b
f(z)dz.

Introduce the operator L0
a := P0LaP0, which is self-adjoint, when equipped with the

domain D(L0
a) = H2

0 [−b, b]. Alternatively, one may define it via the quadratic form
q(u, v) = 〈Lu, v〉, where u, v ∈ H1

0 [−b, b]. We will need the following lemma regarding
the spectrum of L.
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Lemma 2. The spectrum of La consists of eigenvalues only, each with finite mul-
tiplicity. There exists a0 > 0 so that for all −a0 < a < 0, the operator La is a positive
operator. For all a : 0 < a < a0, La has one negative eigenvalue, denoted by λ0(L),

for which |λ0(La)|
a ∼ 1 and the rest of the spectrum is positive. In particular, La is

invertible for all a : |a| < a0. Finally, there exists δ = δb so that L0
a ≥ δId.

Proof. Clearly, the spectrum of La consists entirely of real eigenvalues, each with
finite multiplicity. This is because L is bounded from below and also L can be repre-
sented as a sum of A = −∂yy plus a relative compact perturbation. We have by (43)

La = −c2∂yy + c− 2Φ = −c2∂yy + c− 2
( c

2
+ a cos(kay) +O(a2)

)
= −c2∂yy − 2a cos(kay) +O(a2).

Recall that y ∈ (−b, b) in which cos(kay) > 0. In fact, cos(kay) ≥ σb > 0, whence

La ≥ −c2∂yy − 2aσb ≥ −2aσb = 2|a|σb.

Thus, we immediately conclude that for all a < 0, |a| << 1, we have that L is a
positive operator.

For a > 0, we observe that

La = −c2∂yy − 2a cos(kay) +O(a2) ≥ −2a cos(kay) +O(a2) ≥ −2a,

whence λ0(L) ≥ −2a. On the other hand, using the expression for Φ from Proposi-
tion 1

(55) 〈La(1), 1〉 = 〈c− 2Φ, 1〉 = −2a 〈1, cos(ka·)〉+O(a2) ≤ −abσb

for a : |a| << 1, since cos(kay) ≥ σb > 0, y ∈ (−b, b).
Finally, restrict to the mean value zero subspace L2

0[−b, b], which is co-dimension
one subspace. We have for f ∈ H1

0 [−b, b]

〈Laf, f〉 = c2‖f ′‖2 − 2a

∫ b

−b
f2(y) cos(kay)dy +O(a2).

On the other hand, for f ∈ H1
0 [−b, b], there is the Poincaré inequality, ‖f ′‖ ≥ π

b ‖f‖.
Thus, we conclude that for all a : |a| << 1 and for all for f ∈ H1

0 [−b, b]

〈Laf, f〉 ≥
(
c2π2

b2
− 2a+O(a2)

)
‖f‖2 ≥ c2π2

2b2
‖f‖2.

Note that this last inequality incidentally establishes the last claim in Lemma 2.
By the min-max characterization of the eigenvalues, the last inequality implies

that λ1(L) is positive, bounded away from zero (in terms of a). Combining the last
observations implies that for 0 < a << 1, La has a small (and simple) negative
eigenvalue and the rest of the spectrum is contained in (kb,∞) for some k > 0.

In addition, we can deduce that in fact the negative eigenvalue |λ0(La)| ∼ a.
More precisely, there exist 0 < c0 ≤ 2 so that for all 0 < a << 1,

(56) c0 ≤
|λ0(La)|

a
≤ 2.

Indeed, the right-hand-side inequality follows from our earlier estimate λ0(La) ≥ −2a,
while the left-hand-side inequality eventually follows from (55).
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To that end, let ψ0, {ψj}j be an enumeration of the eigenfunctions of La,
corresponding to eigenvalues λ0(La) < 0, 0 < cb ≤ λ1(La) ≤ λ2(La) . . .. We have

−2abσb ≥ 〈La(1), 1〉 = λ0(La) 〈1, ψ0〉2 +

∞∑
j=1

λj(La) 〈1, ψj〉2 ≥ λ0(La) 〈1, ψ0〉2 .

Noting that | 〈1, ψ0〉 | ≤ ‖1‖‖ψ0‖ = C, we conclude that −2abσb ≥ −C|λ0(La)|. But
this last inequality means |λ0(L)| ≥ c0a, whence (56) is established in full.

Having the results of Lemma 2, we return to the consideration of the eigenvalue
problem (54). Introduce a new variable W : W = L[Z] or Z = L−1[W ], since L is
invertible. This allows us to rewrite (54) as

(57) W = µ∂x[L−1W ].

Here, it is worth noting that the theory developed in [9] applies to the stability of
(57). We provide the short proof below using only elementary arguments.

Since the right-hand side of the last equation is an exact derivative, W has mean
value zero orW ∈ L2

0[−b, b]. In fact, keeping track of the derivatives13 allows us to con-

clude W ∈ H1
0 [−b, b]. Thus, we introduce yet another new variable Q ∈ H3/2

0 [−b, b],
with W = |∂x|1/2Q. Taking into account ∂x = −H|∂x|, we can rewrite (57) as follows:

(58) −H|∂x|1/2L−1|∂x|1/2Q = µ−1Q.

Observe that in (58) L−1 acts upon |∂x|1/2Q ∈ L2
0[−b, b] and then the operator |∂x|1/2

in front of L−1 can be factorized |∂x|1/2 = |∂x|1/2P0. Thus, we may rewrite (58)

(59) −H|∂x|1/2[L0]−1|∂x|1/2Q = µ−1Q.

Note that in this particular form, the eigenvalue problem fits the framework of [15, 16].
Indeed, with J := −H and L := |∂x|1/2[L0]−1|∂x|1/2, we have a pair of anti-self-adjoint
and self-adjoint operators, so that the eigenvalue problem of interest is in the form
JLQ = µ−1Q. Moreover, we have that L > 0, since for every f ∈ H2

0 [−b, b]

〈Lf, f〉 =
〈

[L0]−1|∂x|1/2f, |∂x|1/2f
〉
> 0,

since L0 > δId by virtue of Lemma 2. Thus, L > 0. Based on that, we can now
conclude that the eigenvalue problem JLQ = hQ cannot have solutions with <h > 0,
which implies that (58) and subsequently (54) do not have unstable solutions. This
follows by a simple application of the general results in [15, 16] (and maybe as a
consequence of some older papers). Let us, however, provide a simple alternative
proof.

Assume that JLQ = hQ has unstable solutions, that is,

JL(Q1 + iQ2) = (h1 + ih2)(Q1 + iQ2),

with h1 > 0 and (Q1, Q2) 6= (0, 0). Taking real and imaginary parts yields the system∣∣∣∣ JLQ1 = h1Q1 − h2Q2,
JLQ2 = h2Q1 + h1Q2.

13By definition L−1[W ] ∈ H2[−b, b], whence ∂xL−1[W ] ∈ H1[−b, b].
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Taking dot products with LQ1, LQ2, respectively, and taking into account 〈Jf, f〉 = 0
for all real-valued functions,14 we obtain∣∣∣∣ h1 〈Q1, LQ1〉 − h2 〈Q2, LQ1〉 = 0,

h2 〈Q1, LQ2〉+ h1 〈Q2, LQ2〉 = 0.

By the self-adjointness of L and since Q1, Q2 are real, 〈Q2, LQ1〉 = 〈Q1, LQ2〉. Thus,
adding the equations results in

h1(〈Q1, LQ1〉+ 〈Q2, LQ2〉) = 0.

Recall though that L > 0, whence (〈Q1, LQ1〉+〈Q2, LQ2〉 > δ(‖Q1‖2+‖Q2‖2). Then,
either Q1 = Q2 = 0 or h1 = 0, a contradiction.

We have thus proved the main result.

Theorem 4. There exists a0 > 0 so that for all a : |a| < a0, the waves ϕa
constructed in section 4 are spectrally stable.
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