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Abstract

We consider distributed optimization problems where networked nodes
cooperatively minimize the sum of their locally known convex costs. A
popular class of methods to solve these problems are the distributed gra-
dient methods, which are attractive due to their inexpensive iterations,
but have a drawback of slow convergence rates. This motivates the incor-
poration of second order information in the distributed methods, but this
task is challenging: although the Hessians which arise in the algorithm
design respect the sparsity of the network, their inverses are dense, hence
rendering distributed implementations difficult. We overcome this chal-
lenge and propose a class of distributed Newton-like methods, which we
refer to as Distributed Quasi Newton (DQN). The DQN family approx-
imates the Hessian inverse by: 1) splitting the Hessian into its diagonal
and off-diagonal part, 2) inverting the diagonal part, and 3) approximat-
ing the inverse of the off-diagonal part through a weighted linear function.
The approximation is parameterized by the tuning variables which corre-
spond to different splittings of the Hessian and by different weightings of
the off-diagonal Hessian part. Specific choices of the tuning variables give
rise to different variants of the proposed general DQN method – dubbed
DQN-0, DQN-1 and DQN-2 – which mutually trade-off communication
and computational costs for convergence. Simulations demonstrate the
effectiveness of the proposed DQN methods.
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1 Introduction

We consider a connected network with n nodes, each of which has access to a
local cost function fi : Rp → R, i = 1, . . . , n. The objective for all nodes is to
minimize the aggregate cost function f : Rp → R, defined by

f(y) =

n∑
i=1

fi(y). (1)

Problems of this form arise in many emerging applications like big data
analytics, e.g., [7], distributed inference in sensor networks [33, 16, 21, 5], and
distributed control, [29].

Various methods for solving (1) in a distributed manner are available in
the literature. A class of methods based on gradient descent at each node
and exchange of information between neighboring nodes is particularly popular,
see [30, 31, 32, 14, 15, 6, 40, 36, 20]. Assuming that the local costs fi’s are
strongly convex and have Lipschitz continuous gradients and that a constant
step size α is used, these methods converge linearly to a solution neighborhood.
With such methods, step size α controls the tradeoff between the convergence
speed towards a solution neighborhood and the distance of the limit point from
the actual solution, larger α means faster convergence but larger distance from
the solution in the limit; see, e.g., [15], [22]. Distributed first order (gradient)
methods allow for a penalty interpretation, where the distributed method is
interpreted as a (centralized) gradient method applied on a carefully constructed
penalty reformulation of the original problem (1); see [15], [22] for details.

Given the existence of well developed theory and efficient implementations
of higher order methods in centralized optimization in general, there is a clear
need to investigate the possibilities of employing higher order methods in dis-
tributed optimization as well. More specifically, for additive cost structures (1)
we study here, a further motivation for developing distributed higher order
methods comes from their previous success when applied to similar problems in
the context of centralized optimization. For example, additive cost (1) is typical
in machine learning applications where second order methods play an impor-
tant role, see, e.g., [2, 3, 4]. Another similar class of problems arise in stochastic
optimization, where the objective function is given in the form of mathematical
expectation. Again, second order methods are successfully applied in centralized
optimization, [12, 17, 18, 25, 26].

There have been several papers on distributed Newton-type methods. A
distributed second order methods for network utility maximization and net-
work flow optimization are developed in [37] and [41] but on problem formula-
tions different from (1). Network Newton method [22] aims at solving (1) and
presents a family of distributed (approximate) Newton methods. The class of
Netwrok Newton method, refereed to as NN, is extensively analyzed in [23, 24].
The proposed methods are based on the penalty interpretation, [15, 22], of the
distributed gradient method in [30], and they approximate the Newton step
through an `-th order Taylor approximation of the Hessian inverse, ` = 0, 1, ...
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This approximation gives rise to different variants of methods within the family,
dubbed NN-`. Different choices of ` exhibit inherent tradeoffs between the com-
munication cost and the number of iterations until convergence, while NN-0, 1,
and 2 are the most efficient in practice. The proposed methods converge linearly
to a solution neighborhood, exhibit a kind of quadratic convergence phase, and
show significantly better simulated performance when compared with the stan-
dard distributed gradient method in [30]. Reference [27] proposes a distributed
second order method which approximates the (possibly expensive) primal up-
dates with the distributed alternating direction of multipliers method in [35].
In [38], the authors propose a distributed Newton Raphson method based on
the consensus algorithm and separation of time-scales. Reference [28] proposes
distributed second order methods based on the proximal method of multipli-
ers (PMM). Specifically, the methods approximate the primal variable update
step through a second order approximation of the NN-type [22]. While the NN
methods in [22] converge to a solution neighborhood, the methods in [28, 27, 38]
converge to exact solutions.

In this paper, we extend [22, 23, 24] and propose a different family of dis-
tributed Newton-like methods for solving (1). We refer to the proposed family
as Distributed Quasi Newton methods (DQN). The methods are designed to
exploit the specific structure of the penalty reformulation [15, 22], as is done
in [22], but with a different Hessian inverse approximation, for which the idea
originates in [19]. Specifically, the Hessian matrix is approximated by its block
diagonal part, while the remaining part of the Hessian is used to correct the
right hand side of the quasi Newton equation. The methods exhibit linear con-
vergence to a solution neighborhood under a set of standard assumptions for the
functions fi and the network architecture – each fi is strongly convex and has
Lipschitz continuous gradient, and the underlying network is connected. Simu-
lation examples on (strongly convex) quadratic and logistic losses demonstrate
that DQN compares favorably with NN proposed in [22].

With the DQN family of methods, the approximation of the Newton step is
parameterized by diagonal matrix Lk at each iteration k, and different choices
of Lk give rise to different variants of DQN, which we refer to as DQN-0, 1,
and 2. Different variants of DQN, based on different matrices Lk, tradeoff the
number of iterations and computational cost. In particular, setting Lk = 0
yields the DQN-0 method; a constant, diagonal matrix Lk = L corresponds to
DQN-1. Finally, Lk with DQN-2 is obtained through approximately fitting the
Newton equation (34) using a first order Taylor approximation. The DQN-1
method utilizes the latter, DQN-2’s weight matrix at the first iteration, and
then it “freezes” it to this constant value throughout the iterations; that is, it
sets L = L0, where L0 corresponds to the weight matrix of DQN-2 in the initial
iteration.

Let us further specify the main differences between the proposed DQN family
and NN methods in [22] as the NN methods are used as the benchmark in
the work presented here. First, the DQN methods introduce a different, more
general splitting of Hessians with respect to NN, parameterized with a scalar θ ≥
0; in contrast, the splitting used in NN corresponds to setting θ = 1. Second,
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with the proposed variants of DQN-0, 1, and 2, we utilize diagonal matrices
Lk, while the NN-` methods use in general block-diagonal or neighbor-sparse
matrices. Third, DQN and NN utilize different inverse Hessian approximations;
the NN’s inverse Hessian approximation matrix is symmetric, while with DQN
it is not symmetric in general. Fourth, while NN approximates the inverse
Hessian directly (independently of the Newton equation), DQN actually aims
at approximating the Newton equation. Hence, unlike NN, the resulting DQN’s
inverse Hessian approximation (with DQN-2 in particular) explicitly depends
on the gradient at the current iterate, as it is the case with many Quasi-Newton
methods; see, e.g., [9]. Finally, the analysis here is very different from [22],
and the major reason comes from the fact that the Hessian approximation with
DQN is asymmetric in general. This fact also incurs the need for a safeguarding
step with DQN in general, as detailed in Section 3. We also point out that
results presented in [22] show that NN methods exhibit a quadratic convergence
phase. It is likely that similar results can be shown for certain variants of DQN
methods as well, but detailed analysis is left for future work. It may be very
challenging to rigorously compare the linear convergence rate factors of DQN
and NN methods and their respective inverse Hessian approximations. However,
we provide in Section 5 both certain analytical insights and extensive numerical
experiments to compare the two classes of methods.

As noted, DQN methods do not converge to the exact solution of (1), but
they converge to a solution neighborhood, as it is the case with other methods
(e.g., distributed gradient descent [30] and NN methods [22]) which are based
on the penalty interpretation of (1). Hence, for very high accuracies, they may
not be competitive with distributed second order methods which converge to the
exact solution [27, 28, 38]. However, following the framework of embedding dis-
tributed second order methods into PMM – developed in [28], we apply here the
DQN Newton direction approximations to the PMM methods; we refer to the
resulting methods as PMM-DQN-`, ` = 0, 1, 2. Simulation examples on strongly
convex quadratic costs demonstrate that the PMM-DQN methods compare fa-
vorably with the methods in [27, 28, 38]. Therefore, with respect to the existing
literature and in particular with respect to [22, 28], this paper broadens the
possibilities for distributed approximations of relevant Newton directions, and
hence offers alternative distributed second order methods, which exhibit com-
petitive performance on the considered simulation examples. Analytical studies
of PMM-DQN are left for future work.

This paper is organized as follows. In Section 2 we give the problem state-
ment and some preliminaries needed for the definition of the method and con-
vergence analysis. Section 3 contains the description of the proposed class of
Newton-like methods and convergence results. Specific choices of the diagonal
matrix that specifies the method completely are presented in Section 4. Some
simulation results are presented in Section 5 while Section 6 discusses extensions
of embedding DQN in the PMM framework. Finally, conclusions are drawn in
Section 7, while Appendix provides some auxiliary derivations.
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2 Preliminaries

Let us first give some preliminaries about the problem (1), its penalty interpre-
tation in [15, 22], as well as the decentralized gradient descent algorithm in [30]
that will be used later on.

The following assumption on the fi’s is imposed.
Assumption A1. The functions fi : Rp → R, i = 1, . . . , n are twice contin-
uously differentiable, and there exist constants 0 < µ ≤ L < ∞ such that for
every x ∈ Rp

µI � ∇2fi(x) � LI.

Here, I denotes the p× p identity matrix, and notation M � N means that the
matrix N −M is positive semi-definite.

This assumption implies that the functions fi, i = 1, . . . , n are strongly
convex with modulus µ > 0,

fi(z) ≥ fi(y) +∇fi(y)T (z − y) +
µ

2
‖z − y‖2, y, z ∈ Rp, (2)

and the gradients are Lipschitz continuous with the constant L i.e.

‖∇fi(y)−∇fi(z)‖ ≤ L‖y − z‖, y, z ∈ Rp, i = 1, . . . , n. (3)

Assume that the network of nodes is an undirected network G = (V, E),
where V is the set of nodes and E is the set of all edges, i.e., all pairs {i, j} of
nodes which can exchange information through a communication link.
Assumption A2. The network G = (V, E) is connected, undirected and simple
(no self-loops nor multiple links).

Let us denote by Oi the set of nodes that are connected with the node i
(open neighborhood of node i) and let Ōi = Oi

⋃
{i} (closed neighborhood of

node i). We associate with G a symmetric, (doubly) stochastic n×n matrix W.
The elements of W are all nonnegative and rows (and columns) sum up to one.
More precisely, we assume the following.
Assumption A3. The matrix W = WT ∈ Rn×n is stochastic with elements
wij such that

wij > 0 if {i, j} ∈ E , wij = 0 if {i, j} /∈ E , i 6= j, and wii = 1−
∑
j∈Oi

wij

and there are constants wmin and wmax such that for i = 1, . . . , n

0 < wmin ≤ wii ≤ wmax < 1.

Denote by λ1 ≥ . . . ≥ λn the eigenvalues of W. Then it can be easily seen
that λ1 = 1. Furthermore, the null space of I−W is spanned by e := (1, . . . , 1).

Following [15], [22], the auxiliary function Φ : Rnp → R, and the correspond-
ing penalty reformulation of (1) is introduced as follows. Let x = (x1, . . . , xn) ∈
Rnp with xi ∈ Rp, and denote by Z ∈ Rnp×np the matrix obtained as the
Kronecker product of W and the identity I ∈ Rp×p,Z = W ⊗ I.
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The corresponding penalty reformulation of (1) is given by

min
x∈Rnp

Φ(x) := α

n∑
i=1

fi(xi) +
1

2
xT (I− Z)x. (4)

Applying the standard gradient method to (4) with the unit step size we get

xk+1 = xk −∇Φ(xk), k = 0, 1, ..., (5)

which, denoting the i-th p × 1 block of xk by xki , and after rearranging terms,
yields the Decentralized Gradient Descent (DGD) method [30]

xk+1
i =

∑
j∈Ōi

wij x
k
j − α∇fi(xki ), i = 1, . . . , n. (6)

Clearly, the penalty parameter α influences the relation between (4) and (1)
– a smaller α means better agreement between the problems but also implies
smaller steps in (6) and thus makes the convergence slower. It can be shown,
[22] that if ỹ ∈ Rp is the solution of (1) and x∗ := (ȳ1, . . . , ȳn) ∈ Rnp is the
solution of (4) then, for all i,

‖ȳi − ỹ‖ = O(α). (7)

The convergence of (6) towards x∗ is linear, i.e., the following estimate holds
[40, 15],

Φ(xk)− Φ(x∗) ≤ (1− ξ)k(Φ(x0)− Φ(x∗)), (8)

where ξ ∈ (0, 1) is a constant depending on Φ, α and W.
The matrix and vector norms that will be frequently used in the sequel

are defined here. Let ‖a‖2 denote the Euclidean norm of vector a of arbitrary
dimension. Next, ‖A‖2 denotes the spectral norm of matrix A of arbitrary
dimension. Further, for a matrix M ∈ Rnp×np with blocks Mij ∈ Rp×p, we will
also use the following block norm:

‖M‖ := max
j=1,...,n

n∑
i=1

‖Mij‖2,

where, as noted, ‖Mij‖2 is the spectral norm of Mij . For a vector x ∈ Rnp with
blocks xi ∈ Rp, the following block norm is also used:

‖x‖ :=

n∑
i=1

‖xi‖2.

3 Distributed Quasi Newton method

In this section we introduce a class of Quasi Newton methods for solving (4).
The general Distributed Quasi Newton (DQN) method is proposed in Subsection
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3.1. The method is characterized by a generic diagonal matrix Lk. Global linear
convergence rate for the class is established in Subsection 3.2, while local linear
convergence rate with the full step size ε = 1 is analyzed in Subsection 3.3.
Specific variants DQN-0, 1, and 2, which correspond to the specific choices of
Lk, are studied in Section 4. As we will see, algorithm DQN has certain tuning
parameters, including the step size ε. Discussion on the tuning parameters
choice is relegated to Section 4.

3.1 The proposed general DQN method

The problem we consider from now on is (4), where we recall Z = W ⊗ I and
W satisfies assumption A3.

The problem under consideration has a specific structure as the Hessian
is sparse if the underlying network is sparse. However its inverse is dense.
Furthermore, the matrix inversion (i.e. linear system solving) is not suitable
for decentralized computation. One possibility of exploiting the structure of
∇2Φ(x) in a distributed environment is presented in [22] where the Newton
step is approximated through a number of inner iterations. We present here a
different possibility. Namely, we keep the diagonal part of∇2Φ(x) as the Hessian
approximation but at the same time use the non-diagonal part of ∇2Φ(x) to
correct the right hand side vector in the (Quasi)-Newton equation. Let us define
the splitting

Wd = diag(W ) and Wu = W −Wd,

and Z = Zd + Zu with

Zd = Wd ⊗ I = diag(Z) and Zu = Wu ⊗ I.

Here, diag(W ) denotes the diagonal matrix with the same diagonal as the matrix
W . Hence, matrix Zd is a np×np diagonal matrix whose i-th p× p block is the
scalar matrix wiiI, Zu is a np × np block (symmetric) matrix such that (i, j)-
th p × p off-diagonal blocks are again scalar matrices wijI, while the diagonal
blocks are all equal to zero.

Clearly, the gradient is

∇Φ(x) = α∇F (x) + (I− Z)x,

where I denotes the np× np identity matrix and

F (x) =

n∑
i=1

fi(xi), ∇F (x) = (∇f1(x1), . . . ,∇fn(xn)),

while the Hessian is
∇2Φ(x) = α∇2F (x) + I− Z

where∇2F (x) is the block diagonal matrix with the ith diagonal block∇2fi(xi).
The general Distributed Quasi Newton, DQN, algorithm is presented below.

Denote by k the iteration counter, k = 0, 1, ..., and let xk = (xk1 , ..., x
k
n) ∈ Rnp

7



be the estimate of x∗ at iteration k. Consider the following splitting of the
Hessian

∇2Φ(xk) = Ak −G, (9)

with
Ak = α∇2F (xk) + (1 + θ)(I− Zd) (10)

and
G = Zu + θ(I− Zd)

for some θ ≥ 0. Hence, G is a np × np block (symmetric) matrix whose i-th
p× p diagonal block equals gii I, with gii := θ (1−wii), while the (i, j)-th p× p
off-diagonal block equals gij I, with gij := wij . One can easily see that the
splitting above recovers the splitting for NN methods [22] taking θ = 1. We
keep θ unspecified for now and later on, we will demonstrate numerically that
taking θ = 0 can be beneficial. Also, notice that Ak is block diagonal with the
ith diagonal block

Aki = α∇2fi(x
k
i ) + (1 + θ)(1− wii)I.

Let Lk ∈ Rnp×np be a diagonal matrix composed of diagonal p× p matrices
Λki , i = 1, . . . , n. In this paper, we adopt the following approximation of the
Newton direction skN = −(Ak −G)−1∇Φ(xk):

sk = −(I− LkG)A−1
k ∇Φ(xk). (11)

The motivation for this approximation comes from [19] and the following rea-
soning. Keep the Hessian approximation on the left hand side of the Newton
equation (Ak − G)skN = −∇Φ(xk) diagonal, and correct the right hand side
through the off-diagonal Hessian part. In more detail, the Newton equation can
be equivalently written as:

Ak skN = −∇Φ(xk) + G skN , (12)

where the off-diagonal part s̃k := G skN is moved to the right hand side. If we
pretended for a moment to know the value of s̃k, then the Newton direction is
obtained as:

skN = − (Ak)
−1 (∇Φ(xk)− s̃k

)
. (13)

This form is suitable for distributed implementation due to the need to invert
only the block diagonal matrix Ak. However, s̃k is clearly not known, and hence
we approximate it. To this end, note that, assuming that G∇Φ(xk) is a vector
with all the entries being non-zero, without loss of generality, s̃k can be written
as follows:

s̃k = Lk G∇Φ(xk), (14)

where Lk is a diagonal matrix. Therefore, estimating s̃k translates into estimat-
ing the diagonal matrix Lk, assuming that G∇Φ(xk) is known. We follow [19]
and consider simple approximations of the “true” Lk. E.g., we will consider
Lk = 0 which discards the off-diagonal Hessian part. Also, as we will see ahead,
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we adopt a Taylor approximation method for estimating Lk. Now, substituting
(14) into (13), we obtain the following Newton direction approximation:

sk0 = − (Ak)
−1

(I− Lk G)∇Φ(xk). (15)

Finally, we adopt (11) as the definite form of the Newton direction approxima-

tion, i.e., we permute the matrices (I− Lk G) and (Ak)
−1

. The reason is that
both sk and sk0 have the same inner product with ∇Φ(xk), and hence they have
the same descent properties (for example, Theorem 3.2 ahead holds unchanged
for sk and sk0), while a careful inspection shows that sk allows for a cheaper (in
terms of communications per iteration) distributed implementation.

The reasoning above justifies restriction to diagonal Lk’s, i.e., in view of (14),
adopting diagonal Lk’s does not in principle, i.e., in structure sacrifice the qual-
ity of the Newton direction approximation, while it is computationally cheap.

Then, following a typical Quasi-Newton scheme, the next iteration is defined
by

xk+1 = xk + εsk, (16)

for some step size ε.
Clearly, the choice of Lk is crucial in the approximation of (∇2Φ(xk))−1.

The following general algorithm assumes only that Lk is diagonal and bounded.
Specific choices of Lk will be discussed in Section 4. Actually, all the proposed
variants DQN-0, 1, and 2 utilize diagonal matrices Lk. Parameter θ affects
splitting (9) and the search direction (11). For this moment we are assuming
only that θ is nonnegative and fixed initially, while further details are presented
later on.

In summary, the proposed distributed algorithm for solving (4) is given be-
low.
Algorithm 1: DQN in vector format
Given x0 ∈ Rnp, ε, ρ > 0. Set k = 0.

Step 1. Chose a diagonal matrix Lk ∈ Rnp×np such that

‖Lk‖ ≤ ρ.

Step 2. Set
sk = −(I− LkG)A−1

k ∇Φ(xk).

Step 3. Set
xk+1 = xk + εsk, k = k + 1.

For the sake of clarity, the proposed algorithm, from the perspective of each
node i in the network, is presented in Algorithm 2.
Algorithm 2: DQN – distributed implementation
At each node i, require ρ, ε > 0.

1 Initialization: Each node i sets k = 0 and x0
i ∈ Rp.

9



2 Each node i transmits xki to all its neighbors j ∈ Oi and receives xkj from
all j ∈ Oi.

3 Each node i calculates

dki =
(
Aki
)−1

α∇fi(xki ) +
∑
j∈Oi

wij
(
xki − xkj

) .
4 Each node i transmits dki to all its neighbors j ∈ Oi and receives dkj from

all j ∈ Oi.

5 Each node i chooses a diagonal p× p matrix Λki , such that ‖Λki ‖2 ≤ ρ.

6 Each node i calculates:

ski = −dki + Λki
∑
j∈Ōi

Gij d
k
j .

7 Each node i updates its solution estimate as:

xk+1
i = xki + ε ski .

8 Set k = k + 1 and go to step 3.

Calculation of Λki in step 6 will be specified in the next section, and, for
certain algorithm variants, will involve an additional inter-neighbor communi-
cation of a p-dimensional vector. Likewise, choices of tuning parameters ε, ρ, θ
are discussed throughout the remaining of this section and Section 4.
Remark. It is useful to compare (11) with the direction adopted in NN meth-
ods. Setting θ = 1 and Lk = 0 recovers NN-0, θ = 1 and Lk = −A−1

k recovers
NN-1, while NN-2 can not be recovered in a similar fashion. Hence, DQN in
a sense generalizes NN-0 and NN-1. An approximation Lk = L, that will be
considered later on, does not recover any of NN methods.

Observe that the approximation matrix (I − LkG)A−1
k is not symmetric in

general. This fact induces the need for a safeguarding step in Algorithm 1,
more precisely the elements of Lk are uniformly bounded as stated in Step 1
(Algorithm 1), ‖L‖ ≤ ρ, and the resulting method requires an analysis different
from [22].

3.2 Global linear convergence rate

In this subsection, the global linear convergence rate of Algorithm DQN is estab-
lished. The convergence analysis consists of two parts. First, we demonstrate
that sk is a descent direction. Then we determine a suitable interval for the
step size ε that ensures linear convergence of the iterative sequence.

The following Gershgorin type theorem for block matrices is needed for the
first part of convergence analysis.
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Theorem 3.1. [11] For any C ∈ Rnp×np partitioned into blocks Cij of size
p× p, each eigenvalue µ of C satisfies

1

‖(Cii − µI)−1‖2
≤
∑
i 6=j

‖Cij‖2 (17)

for at least one i ∈ {1, . . . , n}.

Using the above theorem we can prove the following lower bound for all
eigenvalues of a symmetric block matrix.

Corollary 3.1. Let C ∈ Rnp×np be a symmetric matrix partitioned into blocks
Cij of size p× p. Then each eigenvalue µ of C satisfies

µ ≥ min
i=1,...,n

λmin(Cii)−
∑
j 6=i

‖Cij‖2

 ,

where λmin(Cii) is the smallest eigenvalue of Cii.

Proof. Given that C is symmetric, all its eigenvalues are real. Also, Cii
is symmetric and has only real eigenvalues. Now, fix one eigenvalue µ of the
matrix C. By Theorem 3.1, there exists i ∈ {1, . . . , n}, such that (17) holds.
Next, we have

‖(Cii − µI)−1‖2 =
1

minj=1,...,p |λj(Cii)− µ|
,

where λj(Cii) is the j-th eigenvalue of Cii. Thus

min
j=1,...,p

|λj(Cii)− µ| ≤
∑
j 6=i

‖Cij‖2.

We have just concluded that, for any eigenvalue µ of C there exists i ∈ {1, . . . , n}
and j ∈ {1, . . . , p} such that µ lies in the interval

[λj(Cii)−
∑
i 6=l

‖Cil‖2, λj(Cii) +
∑
i 6=l

‖Cil‖2].

Hence, for each µ for which (17) holds for some fixed i, we have

µ ≥ λmin(Cii)−
∑
l 6=i

‖Cil‖2

and the statement follows. 2

We are now ready to prove that the search direction (11) is descent.

Theorem 3.2. Suppose that A1-A3 hold. Let

0 ≤ ρ ≤ αµ+ (1 + θ)(1− wmax)

(1− wmin)(1 + θ)

(
1

αL+ (1 + θ)(1− wmin)
− δ
)

(18)
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for some δ ∈ (0, 1/(αL + (1 + θ)(1 − wmin))). Then sk defined by (11) is a
descent direction and satisfies

∇TΦ(xk)sk ≤ −δ‖∇Φ(xk)‖22.

Proof. Let us first show that sk is descent search direction. As

∇TΦ(xk)sk = −∇TΦ(xk)(I− LkG)A−1
k ∇Φ(xk),

sk is descent if vT (I − LkG)A−1
k v > 0 for arbitrary v ∈ Rnp×np. Given that

(I−LkG)A−1
k is not symmetric in general, we know the above is true if and only

if the matrix

Ck =
1

2
((I− LkG)A−1

k + A−1
k (I−GLk))

is positive definite. Ck is symmetric and thus it should be positive definite if all
of its eigenvalues are positive. The matrix Ck is partitioned in the blocks

Ckii = (Aki )−1 − 1

2
θ(1− wii)(Λki (Aki )−1 + (Aki )−1Λki ), i = 1, . . . , n,

Ckij = −1

2
wij(Λ

k
i (Akj )−1 + (Aki )−1Λkj ), i 6= j.

Corollary 3.1 implies that

λmin(Ck) ≥ min
i=1,...,n

(λmin(Ckii)−
∑
j 6=i

‖Ckij‖2)

The definition of Ak implies

(αµ+ (1 + θ)(1− wii))I � Aki � (αL+ (1 + θ)(1− wii))I (19)

so,
(αµ+ (1 + θ)(1− wmax))I � Aki � (αL+ (1 + θ)(1− wmin))I

and therefore, for every i = 1, . . . , n

‖(Aki )−1‖2 ≤
1

αµ+ (1 + θ)(1− wmax)
.

Moreover, it follows

λmin(Ckii) ≥
1

αL+ (1 + θ)(1− wmin)
− θ(1− wii)ρ
αµ+ (1 + θ)(1− wmax)

and
‖Ckij‖2 ≤

wijρ

αµ+ (1 + θ)(1− wmax)
.
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Now,

λmin(Ck) ≥ min
i=1,...,n

(
1

αL+ (1 + θ)(1− wmin)
− θ(1− wii)ρ
αµ+ (1 + θ)(1− wmax)

−
∑
j∈Oi

wij
ρ

αµ+ (1 + θ)(1− wmax)
)

= min
i=1,...,n

(
1

αL+ (1 + θ)(1− wmin)
− ρ(1− wii)(1 + θ)

αµ+ (1 + θ)(1− wmax)
)

≥ 1

αL+ (1 + θ)(1− wmin)
− ρ (1− wmin)(1 + θ)

αµ+ (1 + θ)(1− wmax)

≥ δ. (20)

Since δ > 0 we conclude that Ck is positive definite. Moreover, vTCkv =
vT (I− LkG)A−1

k v, for any v ∈ Rnp×np and

∇TΦ(xk)sk = −∇TΦ(xk)(I− LkG)A−1
k ∇Φ(xk)

= −∇TΦ(xk)Ck∇Φ(xk)

≤ −δ‖∇Φ(xk)‖22.
(21)

2

The next lemma corresponds to the standard property of descent direction
methods that establish the relationship between the search vector and the gra-
dient.

Lemma 3.1. Suppose that A1-A3 hold. Then

‖sk‖2 ≤ β‖∇Φ(xk)‖2,

where

β =
1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
. (22)

Proof. For matrix Ak, there holds that:

‖A−1
k ‖2 ≤

1

αµ+ (1 + θ)(1− wmax)
. (23)

This can be shown similarly as the upper bound on ‖(Aki )−1‖2 below (19).
Furthermore,

‖G‖2 ≤ (1 + θ)(1− wmin). (24)

This is true as

‖G‖2 = ‖Zu + θ(I− Zd)‖2 ≤ ‖Zu‖2 + θ‖I− Zd‖2
≤ ‖I− Zd‖2 + θ‖I− Zd‖2 ≤ (1 + θ)(1− wmin),
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where we used Zu = Z− Zd � I− Zd � (1− wmin)I. Therefore, we have:

‖sk‖2 ≤ ‖(I− LkG)A−1
k ‖2‖∇Φ(xk)‖2

≤ (1 + ‖Lk‖2‖G‖2)‖A−1
k ‖2‖∇Φ(xk)‖2

≤ 1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
‖∇Φ(xk)‖2.

2

Let us now show that there exists a step size ε > 0 such that the sequence
{xk} generated by Algorithm DQN converges to the solution of (4). Notice
that (4) has a unique solution, say x∗. Assumption A1 implies that ∇Φ(x) is
Lipschitz continuous as well, i.e., with L̃ := αL+ 2(1− wmin), there holds

‖∇Φ(x)−∇Φ(y)‖2 ≤ L̃‖x− y‖2, x, y ∈ Rnp. (25)

Furthermore,
µ̃

2
‖x− x∗‖22 ≤ Φ(x)− Φ(x∗) ≤ 1

µ̃
‖∇Φ(x)‖22 (26)

for µ̃ = αµ and all x ∈ Rnp. The main convergence statement is given below.

Theorem 3.3. Assume that the conditions of Theorem 3.2 are satisfied. Define

ε =
δ

β2L̃
(27)

with β given by (22). Then Algorithm DQN generates a sequence {xk} such
that

lim
k→∞

xk = x∗

and the convergence is at least linear with

Φ(xk+1)− Φ(x∗) ≤
(

1− δ2µ̃

2L̃β2

)(
Φ(xk)− Φ(x∗)

)
, k = 0, 1, . . . .

Proof. The Mean Value Theorem, Lipschitz property of ∇Φ, Theorem 3.2

14



and Lemma 3.1 yield

Φ(xk+1)− Φ(x∗) = Φ(xk + εsk)− Φ(x∗)

= Φ(xk) +

∫ 1

0

∇TΦ(xk + tεsk)εskdt− Φ(x∗)± ε∇TΦ(xk)sk

≤ Φ(xk)− Φ(x∗) + ε

∫ 1

0

‖∇TΦ(xk + tεsk)−∇TΦ(xk)‖2‖sk‖2dt

+ ε∇TΦ(xk)sk

≤ Φ(xk)− Φ(x∗) + ε

∫ 1

0

L̃tε‖sk‖22dt+ ε∇TΦ(xk)sk

= Φ(xk)− Φ(x∗) +
1

2
ε2L̃‖sk‖22 + ε∇TΦ(xk)sk

≤ Φ(xk)− Φ(x∗) + β2 L̃

2
ε2‖∇Φ(xk)‖22 − εδ‖∇Φ(xk)‖22

= Φ(xk)− Φ(x∗) +

(
β2L̃

2
ε2 − εδ

)
‖∇2Φ(xk)‖22. (28)

Define

φ(ε) =
β2L̃

2
ε2 − εδ.

Then φ(0) = 0, φ′(ε) = L̃εβ2 − δ and φ′′(ε) > 0. Thus, the minimizer of φ is
ε∗ = δ/(β2L̃) and

φ(ε∗) = − δ2

2β2L̃
. (29)

Now, (28) and (29) give

Φ(xk+1)− Φ(x∗) ≤ Φ(xk)− Φ(x∗)− δ2

2β2L̃
‖∇Φ(xk)‖22.

From (26), we also have

Φ(xk)− Φ(x∗) ≤ 1

µ̃
‖∇Φ(xk)‖22

and

− δ2

2β2L̃
‖∇Φ(xk)‖22 ≤ −

(
Φ(xk)− Φ(x∗)

) δ2µ̃

2β2L̃
,

so

Φ(xk+1)− Φ(x∗) ≤
(

1− δ2µ̃

2β2L̃

)(
Φ(xk)− Φ(x∗)

)
.

Given that µ̃ = αµ ≤ αL < L̃, we have µ̃/L̃ < 1. Moreover,

δ <
1

αL+ (1 + θ)(1− wmin)
≤ 1

αµ+ (1 + θ)(1− wmax)

≤ 1 + ρ(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmax)
= β
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and

ξ := 1− δ2µ̃

2β2L̃
∈ (0, 1).

We conclude with

Φ(xk+1)− Φ(x∗) ≤ ξ
(
Φ(xk)− Φ(x∗)

)
and

lim
k→∞

Φ(xk) = Φ(x∗).

As Φ ∈ C2(Rn), the above limit also implies

lim
k→∞

xk = x∗.

2

The proof of the above theorem clearly shows that for any ε ∈ (0, δ/(β2L̃)]
algorithm DQN converges. However, taking ε as large as possible implies larger
steps and thus faster convergence.

3.3 Local linear convergence

We have proved global linear convergence for the specific step length ε given
in Theorem 3.3. However, local linear convergence can be obtained for the full
step size, using the theory developed for Inexact Newton methods [8]. The step
sk can be considered as an Inexact Newton step and we are able to estimate the
residual in Newton equation as follows.

Theorem 3.4. Suppose that A1-A3 hold. Let xk be such that ∇Φ(xk) 6= 0.
Assume that sk is generated in Step 2 of Algorithm 1 with

0 ≤ ρ < αµ

(1 + θ)(1− wmin) (αL+ 2(1 + θ)(1− wmin))
.

Then there exists t ∈ (0, 1) such that

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖.

Proof. First, notice that the interval for ρ is well defined. The definition of
the search direction (11) and the splitting of the Hessian (9) yield

∇Φ(xk)+∇2Φ(xk)sk = (GA−1
k +AkLkGA−1

k −GLkGA−1
k )∇Φ(xk) := Qk∇Φ(xk).

Therefore,

‖Qk‖ ≤ ‖GA−1
k ‖+ ‖GA−1

k ‖‖Lk‖‖Ak‖+ ‖GA−1
k ‖‖Lk‖‖G‖.

Moreover,

‖GA−1
k ‖ = max

j
(θ(1− wjj)‖(Akj )−1‖+

∑
i∈Oj

wij‖(Akj )−1‖)

≤ max
j

θ(1− wjj) + 1− wjj
αµ+ (1 + θ)(1− wjj)

.
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Recalling (19) and the fact that the expression above is decreasing with respect
to wjj , we get

‖GA−1
k ‖ ≤

(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmin)
=: γ, (30)

and there holds ‖Ak‖ ≤ αL + (1 + θ)(1 − wmin). Furthermore, (23), (24) and
‖Lk‖ ≤ ρ imply

‖Qk‖ ≤ γ + γρ(1 + θ)(1− wmin) + γρ(αL+ (1 + θ)(1− wmin))

= γ + ργ(αL+ 2(1 + θ)(1− wmin)) (31)

< γ + 1− γ = 1.

Thus, the statements is true with

t = γ + ργ(αL+ 2(1 + θ)(1− wmin)). (32)

2

Theorem 3.4 introduces an upper bound on the safeguard parameter ρ dif-
ferent than the one considered in Theorem 3.2. The relation between the two
bounds depends on the choice of δ in Theorem 3.2. Taking a sufficiently small
δ in Theorem 3.2, we obtain that ρ in Theorem 3.2 is larger. However, taking
δ < 1

αL+(1+θ)(1−wmin) sufficiently close to 1
αL+(1+θ)(1−wmin) , ρ in Theorem 3.4

eventually becomes larger.
One way to interpret the relation between Theorems 3.2 and 3.3 on one

hand, and Theorem 3.4 on the other hand, as far as ρ is concerned, is as follows.
Taking a very small δ, Theorem 3.3 allows for a quite large ρ but on the other
hand it significantly decreases the admissible step size ε. At the same time,
Theorem 3.4 corresponds in a sense to an opposite situation where ε is allowed
to be quite large (in fact, equal to one), while ρ is quite restricted. Therefore,
the two results exploit the allowed “degrees of freedom” in a different way.

For the sake of completeness we list here the conditions for local convergence
of Inexact Newton methods.

Theorem 3.5. [8] Assume that A1 holds and that sk satisfies the inequality

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖, k = 0, 1, . . .

for some t < 1. Furthermore, assume that xk+1 = xk + sk, k = 0, 1, . . . . Then
there exists η > 0 such that for all ‖x0 − x∗‖ ≤ η, the sequence {xk} converges
to x∗. The convergence is linear,

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗, k = 0, 1, . . . ,

where ‖y‖∗ = ‖∇2Φ(x∗)y‖.

The two previous theorems imply the following Corollary.
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Corollary 3.2. Assume that the conditions of Theorem 3.4 hold. Then there
exists η > 0 such that for every x0 satisfying ‖x0 − x∗‖ ≤ η, the sequence {xk}
generated by Algorithm DQN and ε = 1 converges linearly to x∗ and

‖∇2Φ(x∗)(xk+1 − x∗)‖ ≤ t‖∇2Φ(x∗)(xk − x∗)‖, k = 0, 1, . . .

holds with t ∈ (0, 1).

For (strongly convex) quadratic functions fi, i = 1, . . . , n we can also claim
global linear convergence as follows.

Theorem 3.6. Assume that all loss functions fi are strongly convex quadratic
and that the conditions of Theorem 3.4 are satisfied. Let {xk} be a sequence
generated by Algorithm DQN with ε = 1. Then limk→∞ xk = x∗ and

‖xk+1 − x∗‖∗ ≤ t ‖xk − x∗‖∗, k = 0, 1, . . .

for t defined in Theorem 3.4.

Proof. Given that the penalty term in (4) is convex quadratic, if all local
cost functions fi are strongly convex quadratic, then the objective function Φ
is also strongly convex quadratic, i.e., it can be written as

Φ(x) =
1

2
(x− x∗)TB(x− x∗), (33)

for some fixed, symmetric positive definite matrix B ∈ Rnp×np. Recall that x∗

is the global minimizer of Φ. Then

∇Φ(x) = B(x− x∗) and ∇2Φ(x) = B.

Starting from
sk = −(∇2Φ(xk))−1∇Φ(xk) + ek,

we get

‖∇2Φ(xk)ek‖ = ‖∇2Φ(xk)
(
sk + (∇2Φ(xk))−1∇Φ(xk)

)
‖

= ‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖

by Theorem 3.4. Next,

xk+1 = xk + sk = xk − (∇2Φ(xk))−1∇Φ(xk) + ek

= xk − B−1∇Φ(xk) + ek,

and
xk+1 − x∗ = xk − x∗ − B−1∇Φ(xk) + ek.

Therefore,
B(xk+1 − x∗) = B(xk − x∗)−∇Φ(xk) + Bek.

Now,
‖Bek‖ = ‖∇2Φ(xk)ek‖ < t‖∇Φ(xk)‖ = t‖B(xk − x∗)‖,

and
‖B(xk+1 − x∗)‖ = ‖Bek‖ ≤ t‖B(xk − x∗)‖.

2

18



4 Variants of the general DQN

Let us now discuss the possible alternatives for the choice of Lk. Subsection
4.1 presents three different variants of the general DQN algorithm which mutu-
ally differ in the choice of matrix Lk. We refer to the three choices as DQN-0,
DQN-1, and DQN-2. All results established in Section 3 hold for these three al-
ternatives. Subsection 4.1 also provides local linear convergence rates for DQN-2
without safeguarding. Subsection 4.2 gives a discussion on the algorithms’ tun-
ing parameters, as well as on how the required global knowledge by all nodes
can be acquired in a distributed way.

4.1 Algorithms DQN-0, 1, and 2

The analysis presented so far implies only that the diagonal matrix Lk has to
be bounded. Let us now look closer at different possibilities for defining Lk,
keeping the restrictions stated in Theorem 3.2 and 3.4.

DQN-0. We first present the method DQN-0 which sets Lk = 0. Clearly, for
DQN-0, Theorems 3.2 and 3.4 hold, and thus we get linear convergence with the
proper choice of ε, and local linear convergence with ε = 1. The approximation
of the Hessian inverse in this case equals A−1

k , i.e., the Hessian is approximated
by its block diagonal part only. The method DQN-0 corresponds to Algorithm 1
with only steps 1-4 and 7-9 executed, with Λki = 0 in step 7. Clearly, choice
Lk = 0 is the cheapest possibility among the choices of Lk if we consider the
computational cost per iteration k. The same holds for communication cost
per k, as each node needs to transmit only xki per each iteration, i.e., one
p-dimensional vector per node, per iteration is communicated. We note that
DQN-0 resembles NN-0, but the difference in general is that DQN-0 uses a
different splitting, parameterized with θ ≥ 0; actually, NN-0 represents the
special case with θ = 1.

DQN-1. Algorithm DQN-1 corresponds to setting Lk = L, k = 0, 1, . . . ,
where L is a constant diagonal matrix. Assuming that L is chosen such that
‖L‖ ≤ ρ, with ρ specified in Theorem 3.2, global linear convergence for a proper
step size ε and local linear convergence for the full step size ε = 1 again hold.
Algorithm DQN-1 is given by Algorithm 1, where each node utilizes a constant,
diagonal matrix Λi. There are several possible ways of choosing the Λi’s. In this
paper, we focus on the following choice. In the first iteration k = 0, each node i
sets matrix Λ0

i through algorithm DQN-2, stated in the sequel, and then it keeps
the same matrix Λ0

i throughout the whole algorithm. The computational cost
per iteration of DQN-1 is higher than the cost of DQN-0. At each iteration, each
node i needs to compute the corresponding inverse of i-th block of Ak and then
to multiply it by the constant diagonal matrix Λi. Regarding the communication
cost, each node transmits two p-dimensional vectors per iteration – xki and dki
(except in the first iteration k = 0 when it also transmits an additional vector
u0
i ; see ahead Algorithm 3). Although the focus of this paper is on the diagonal

Lk’s, we remark that setting θ = 1 and Lk = −A−1
k recovers the NN-1 method.

DQN-2. Algorithm DQN-2 corresponds to an iteration-varying, diagonal
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matrix Lk. Ideally, one would like to choose matrix Lk such that search direction
sk resembles the Newton step as much as possible, with the restriction that Lk
is diagonal. The Newton direction skN satisfies the equation

∇2Φ(xk)skN +∇Φ(xk) = 0. (34)

We seek Lk such that it makes residual M(Lk) small, where M(Lk) is defined
as follows:

M(Lk) = ‖∇2Φ(xk)sk +∇Φ(xk)‖. (35)

Notice that

M(Lk) = ‖∇2Φ(xk)sk +∇Φ(xk)‖
= ‖ − ∇2Φ(xk)(I − LkG)A−1

k ∇Φ(xk) +∇Φ(xk)‖
= ‖ − ∇2Φ(xk)A−1

k ∇Φ(xk) +∇2Φ(xk)LkGA−1
k ∇Φ(xk) +∇Φ(xk)‖

= ‖ − (Ak −G)A−1
k ∇Φ(xk) +∇2Φ(xk)LkGA−1

k ∇Φ(xk) +∇Φ(xk)‖
= ‖GA−1

k ∇Φ(xk) +∇2Φ(xk)LkGA−1
k ∇Φ(xk)‖.

Therefore,
∇2Φ(xk)sk +∇Φ(xk) = uk +∇2Φ(xk)Lkuk, (36)

where
uk = GA−1

k ∇Φ(xk).

The minimizer of M(Lk) is clearly achieved if Lk satisfies the equation

Lkuk = −(∇2Φ(xk))−1uk, (37)

but (37) involves the inverse Hessian. Thus we approximate (∇2Φ(xk))−1 by
the Taylor expansion as follows. Clearly,

(∇2Φ(xk))−1 = (α∇2F (xk) + I− Z)−1 = (I− Vk)−1, Vk = Z− α∇2F (xk).
(38)

Assume that α < (1 +λn)/L, with λn being the smallest eigenvalue of W. Then

Vk � (λn − αL) I � −I.

Similarly,
Vk � (1− αµ) I ≺ I.

Hence,
ρ(Vk) ≤ ‖Vk‖2 < 1.

Therefore, I− Vk is nonsingular,

(I− Vk)−1 = I + Vk +

∞∑
i=2

Vik,

and the approximation

(∇2Φ(xk))−1 = (I− Vk)−1 ≈ I + Vk (39)
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is well defined. So, we can take Lk which satisfies the following equation

Lkuk = −(I + Vk)uk. (40)

Obviously, Lk can be computed in a distributed manner. We refer to the method
which corresponds to this choice of Lk as DQN-2. The algorithm is given by
Algorithm 2 where step 6, the choice of Lk = diag(Λ1, ...,Λn), involves the steps
presented below in Algorithm 3. Denote by uki the i-th p× 1 block of uk – the
block which corresponds to node i.
Algorithm 3: Choosing Lk with DQN-2

6.1 Each node i calculates
uki =

∑
j∈Ōi

Gij d
k
j .

6.2 Each node i transmits uki to all its neighbors j ∈ Oi and receives ukj from
all j ∈ Oi.

6.3 Each node i calculates Λki – the solution to the following system of equa-
tions (where the only unknown is the p× p diagonal matrix Λki ):

Λki u
k
i = −

[
(1 + wii)I − α∇2fi(x

k
i )
]
uki −

∑
j∈Oi

wij u
k
j .

6.4 Each node i projects each diagonal entry of Λki onto the interval [−ρ, ρ].

Note that step 6 with algorithm DQN-2 requires an additional p-dimensional
communication per each node, per each k (the communication of the uki ’s.)
Hence, overall, with algorithm DQN-2 each node transmits three p-dimensional
vectors per k – xki , dki , and uki .

We next show that algorithm DQN-2 exhibits local linear convergence even
when safeguarding (Step 6.4 in Algorithm 3) is not used.

Theorem 4.1. Suppose that A1-A3 hold and let xk be an arbitrary point such
that ∇Φ(xk) 6= 0. Assume that

α < min

{
1 + λn
L

,
wmin
2L

,
2µ

L2

}
, (41)

and sk is generated by (11) and Algorithm 2, Steps 6.1 -6.3. Then there exists
t ∈ (0, 1) such that

‖∇Φ(xk) +∇2Φ(xk)sk‖ < t‖∇Φ(xk)‖.

Proof. Using (36) and (40) we obtain

‖∇2Φ(xk)sk +∇Φ(xk)‖ = ‖uk +∇2Φ(xk)Lkuk‖
= ‖uk −∇2Φ(xk)(I + Vk)uk‖
= ‖(I−∇2Φ(xk)(I + Z− α∇2F (xk)))uk‖
= ‖Pkuk‖, (42)
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where

Pk = I−∇2Φ(xk)(I + Z− α∇2F (xk))

= I−
(
I + α∇2F (xk)− Z

) (
I + Z− α∇2F (xk)

)
= Z2 − α(Z∇2F (xk) +∇2F (xk)Z) +

(
α∇2F (xk)

)2
Since ‖∇2fi(xi)‖ ≤ L, there follows ‖∇2F (xk)‖ ≤ L and the previous equality
implies

‖Pk‖ ≤ ‖Z2 − α(Z∇2F (xk) +∇2F (xk)Z)‖+ α2L2 := ‖Uk‖+ α2L2. (43)

Now,

Ukij =
n∑
k=1

wikwkjI − α(wij∇2fj(x
k
j ) + wij∇2fi(x

k
i )).

Furthermore, the assumption α < wmin/(2L) implies

n∑
k=1

wikwkj ≥ wiiwij ≥ wijwmin ≥ wij2αL ≥ wij2αµ.

Moreover, ∇2fj(x
k
j ) � µI and

‖Ukij‖2 ≤
n∑
k=1

wikwkj − 2αµwij .

Therefore,

‖Uk‖ ≤ max
j=1,...,n

n∑
i=1

(

n∑
k=1

wikwkj − 2αµwij)

= max
j=1,...,n

n∑
k=1

wkj

n∑
i=1

wik − 2αµ

n∑
i=1

wij

= 1− 2αµ.

So,
‖Pk‖ ≤ h(α), (44)

where h(α) = 1 − 2αµ + α2L2. This function is convex and nonnegative since
µ ≤ L and therefore

min
α
h(α) = h

( µ
L2

)
= 1− µ2

L2
> 0.

Moreover, h(0) = h
(

2µ
L2

)
= 1 and we conclude that for all α ∈ (0, 2µ/L2) there

holds h(α) ∈ (0, 1). As
uk = GA−1

k ∇Φ(xk),
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we have
‖uk‖ ≤ ‖GA−1

k ‖‖∇Φ(xk)‖. (45)

Now,

‖GA−1
k ‖ = max

j
(θ(1− wjj)‖(Akj )−1‖+

∑
i∈Oj

wij‖(Akj )−1‖)

≤ max
j

θ(1− wjj) + 1− wjj
αµ+ (1 + θ)(1− wjj)

=
(1 + θ)(1− wmin)

αµ+ (1 + θ)(1− wmin)
< 1.

Therefore,
‖uk‖ < ‖∇Φ(xk)‖. (46)

Putting together (42)-(46), for θ ≥ 0 and α satisfying (41) we obtain

‖∇Φ(xk) +∇2Φ(xk)sk‖ ≤ h(α)‖uk‖ < h(α)‖∇Φ(xk)‖,

i.e. the statement holds with

t = h(α) = 1− 2αµ+ α2L2 (47)

2

Applying Theorem 3.5 once again, we get the local linear convergence as
stated in the following corollary.

Corollary 4.1. Assume that the conditions of Theorem 4.1 hold. Then there
exists η such that for every x0 satisfying ‖x0 − x∗‖ ≤ η the sequence {xk}, gen-
erated by DQN-2 method with Steps 6.1-6.3 of Algorithm 3 and ε = 1, converges
linearly to x∗ and

‖∇2Φ(x∗)(xk+1 − x∗)‖ ≤ t‖∇2Φ(x∗)(xk − x∗)‖, k = 0, 1, . . . (48)

holds with t given by (47).

We remark that, for strongly convex quadratic fi’s, the result analogous to
Theorem 3.6 holds in the sense of global linear convergence, i.e., inequality (48)
holds for all k and arbitrary initial point x0.
Remark. ***An interesting future research direction is to adapt and analyze
convergence of the DQN methods in asynchronous environments, as it has been
already numerically studied recently in [10]. Therein, it is shown that the stud-
ied second order methods still converge in an asynchronous setting, though with
a lower convergence speed.
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4.2 Discussion on the tuning parameters

Let us now comment on the choice of the involved parameters – matrix W
and scalars α, ρ, ε, θ, and δ. We first consider the general DQN method in
Algorithm 1, i.e., our comments apply to all DQN-` variants, ` = 0, 1, and 2.

Matrix W only needs to satisfy that: 1) the underlying support network is
connected and 2) all diagonal entries wii lie between wmin and wmax, where
0 < wmin ≤ wmax < 1. Regarding the latter condition, it is standard and
rather mild; it is only required for (7) to hold, i.e., to ensure that solving (4)
gives an approximate solution to the desired problem (1). Regarding the second
condition, it can be easily fulfilled through simple weight assignments, e.g.,
through the Metropolis weights choice; see, e.g., [39].

We now discuss the choice of the parameters α, ρ, θ, ε, and δ. First, α defines
the penalty reformulation (4), and therefore, it determines the asymptotic error
that the algorithm achieves. The smaller α, the smaller the limiting (saturation)
error of the algorithm is, but the slower the convergence rate is. Thus, the pa-
rameter should be set a priori according to a given target accuracy; see also [40].
A practical guidance, as considered in [13], is to set α = 1/(KL), where L is the
Lipschitz gradient constant as in the paper, and K = 10-100. Next, parameter
θ ≥ 0 determines the splitting of the Hessian. It can simply be taken as θ = 0,
and a justification for this choice can be found in Section 5. Next, the role of
δ is mainly theoretical. Namely, Theorems 3.2 and 3.3 consider generic choices
of Lk’s, and they are worst-case type results. Therein, δ essentially trades off
the guaranteed worst-case (global linear) convergence factor with the size of
admissible range of the Lk’s (size of the maximal allowed ρ). As per (18), a
reasonable choice to balance the two effects is δ = 1

2(αL+(1+θ)wmin) . Having

set δ, the remaining two parameters, ε and ρ, can be set according to (27)
and (18), respectively. As noted, the described choice of the triple (δ, ρ, ε) is a
consequence of the worst case, conservative analysis with Theorems 3.2 and 3.3
(which still have a theoretical significance, though). In practice, we recommend
setting δ = 0, ε = 1, and ρ as the upper bound in (18) with δ = 0.

Discussion on distributed implementation. The algorithm’s tuning
parameters need to be set beforehand in a distributed way. Regarding weight
matrix W , each node i needs to store beforehand the weights wii and wij ,
j ∈ Oi, for all its neighbors. The weights can be set according to the Metropolis
rule, e.g., [39], where each node i needs to know only the degrees of its im-
mediate neighbors. Such weight choice, as noted before, satisfies the imposed
assumptions.

In order to set the scalar tuning parameters α, θ, ε, and ρ, each node i
needs to know beforehand global quantities wmin, wmax, µ and L. Each of
these parameters represent either a maximum or a minimum of nodes’ local
quantities. For example, wmax is the maximum of the wii’s over i = 1, ..., n,
where node i holds quantity wii. Hence, each node can obtain wmax by running
a distributed algorithm for maximum computation beforehand; for example,
nodes can utilize the algorithm in [34].
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5 Simulations

This section shows numerical performance of the proposed methods on two
examples, namely the strongly convex quadratic cost functions and the logistic
loss functions.

Simulation setup. Two simulation scenarios with different types of nodes’cost
functions fi’s: 1) strongly convex quadratic costs and 2) logistic (convex) loss
functions are considered. Very similar scenarios have been considered in [22, 23,
24]. With the quadratic costs scenario, fi : Rp → R is given by

fi(x) =
1

2
(x− ai)>Bi(x− ai),

where Bi ∈ Rp×p is a positive definite (symmetric matrix), and ai ∈ Rp is a
vector. Matrices Bi, i = 1, ..., n are generated mutually independently, and so
are the vectors ai’s; also, Bi’s are generated independently from the ai’s. Each
matrix Bi is generated as follows. First, we generate a matrix B̂i whose entries
are drawn mutually independently from the standard normal distribution, and
then we extract the eigenvector matrix Q̂ ∈ Rp×p of matrix 1

2 (B̂ + B̂>). We

finally set Bi = Q̂Diag(ĉi)Q̂
>, where ĉi ∈ Rp has the entries generated mutually

independently from the interval [1, 101]. Each vector ai ∈ Rp has mutually inde-
pendently generated entries from the interval [1, 11]. Note that ai–the minimizer
of fi–is clearly known beforehand to node i, but the desired global minimizer of
f is not known by any node i.

The logistic loss scenario corresponds to distributed learning of a linear clas-
sifier; see, e.g., [1] for details. Each node i possesses J = 2 data samples
{aij , bij}Jj=1. Here, aij ∈ R3 is a feature vector, and bij ∈ {−1,+1} is its class

label. We want to learn a vector x = (x>1 , x0)>, x1 ∈ Rp−1, and x0 ∈ R, p ≥ 2,
such that the total logistic loss with l2 regularization is minimized:

n∑
i=1

J∑
j=1

Jlogis

(
bij(x

>
1 a+ x0)

)
+ τ‖x‖2,

Here, Jlogis(·) is the logistic loss

Jlogis(z) = log(1 + e−z),

and τ is a positive regularization parameter. Note that, in this example, we
have

fi(x) =

J∑
j=1

Jlogis

(
bij(x

>
1 a+ x0)

)
+
τ

n
‖x‖2,

f(x) =
∑n
i=1 fi(x). The aij ’s are generated independently over i and j, where

each entry of aij is drawn independently from the standard normal distribu-
tion. The “true” vector x? = ((x?1)>, x?0)> is obtained by drawing its entries
independently from standard normal distribution. Then, the class labels are
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bij = sign
(
(x?1)>aij + x?0 + εij

)
, where εij ’s are drawn independently from nor-

mal distribution with zero mean and standard deviation 0.1.
The network instances are generated from the random geometric graph

model: nodes are placed uniformly at random over a unit square, and the node

pairs within distance r =
√

ln(n)
n are connected with edges. All instances of

networks used in the experiments are connected. The weight matrix W is set as
follows. For a pair of nodes i and j connected with an edge, wij = 1

2 max{di,dj}+1 ,

where di is the degree of the node i; for a pair of nodes not connected by an
edge, we have wij = 0; and wii = 1 −

∑
j 6=i wij , for all i. For the case of reg-

ular graphs, considered in [22, 23, 24], this weight choice coincides with that
in [22, 23, 24].

The proposed methods DQN are compared with the methods NN-0, NN-1,
and NN-2 proposed in [22]. The methods NN-`, with ` ≥ 3 are not numerically
tested in [22] and require a large communication cost per iteration. Recall
that the method proposed in this paper are denoted DQN-` with Lk = 0 as
DQN-0; it has the same communication cost per iteration k as NN-0, where
each node transmits one (p-dimensional) vector per iteration. Similarly, DQN-1
corresponds to NN-1, where two per-node vector communications are utilized,
while DQN-2 corresponds to NN-2 (3 vector communications per node).

With both the proposed methods and the methods in [22], the step size ε = 1
is used. Step size ε = 1 has also been used in [22, 23, 24]. Note that both
classes of methods – NN and DQN – guarantee global convergence with ε = 1
for quadratic costs, while neither of the two groups of methods have guaranteed
global convergence with logistic losses. For the proposed methods, safeguarding
is not used with quadratic costs. With logistic costs, the safeguarding is not
used with DQN-0 and 2 but it is used with DQN-1, which diverges without the
safeguard on the logistic costs. The safeguard parameter ρ defined as the upper
bound in (18) with δ = 0 is employed. Further, with all DQNs, θ = 0 is used.
With all the algorithms, each node’s solution estimate is initialized by a zero
vector.

The following error metric

1

n

n∑
i=1

∥∥xki − x?∥∥2

‖x?‖2
, x? 6= 0,

is used and refered to as the relative error at iteration k.
Figure 1 (left) plots the relative error versus the number of iterations k for

a network with n = 30 nodes, and the quadratic costs with the variable dimen-
sion p = 4. First, we can see that the proposed DQN-` methods perform better
than their corresponding counterparts NN-`, ` = 0, 1, 2. Also, note that the per-
formance of DQN-1 and DQN-2 in terms of iterations match in this example.
Figure 1 (right) plots the relative error versus total number of communications.
We can see that, for this example, DQN-0 is the most efficient among all meth-
ods in terms of the communication cost. Further, interestingly, the performance
of NN-0, NN-1, and NN-2 is practically the same in terms of communication
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cost on this example. The clustering of the performance of NN-0, NN-1, and
NN-2 (although not so pronounced as in our examples) emerges also in Simu-
lations in [22, 23, 24]. Also, the performance of DQN-0 and NN-1 practically
matches. In summary, method DQN-0 shows the best performance in terms of
communication cost on this example, while DQN-1 and 2 are the best in terms
of the number of iterations k.

The improvements of DQN over NN are mainly due to the different splitting
parameter θ = 0. Actually, our numerical experience suggests that NN-` may
perform better than DQN-` with θ = 1 for ` = 1, 2. We provide an intuitive
explanation for the advantages of choice θ = 0, focusing on the comparison
between NN-0 and DQN-0. Namely, the adopted descent directions with both
of these methods correspond to the quality of the zeroth order Taylor expansion
of the following matrix: (

I− (Ak(θ))−1G
)−1 ≈ I. (49)

In (49), with NN-0, we have Ak(θ) = Ak(θ = 1), while with DQN-0, we have
that: Ak(θ) = Ak(θ = 0); note that these two matrices are different. Now, the
error (remainder) of the Taylor approximation is roughly of size ‖(Ak(θ))−1G‖.
In view of the upper bound in (30), we have with NN-0 that the remainder is
of size:

‖(Ak(1))−1G‖ ≈ 1− αµ

2(1− wmin)
, (50)

for small αµ. On the other hand, we have that the DQN-0’s remainder is:

‖(Ak(0))−1G‖ ≈ 1− αµ

1− wmin
.

Therefore, the remainder is (observed through this rough, but indicative, es-
timate) larger with NN-0, and that is why DQN-0 performs better. We can
similarly compare NN-1 (which corresponds to the first order Taylor approxi-
mation of the matrix in (49)) with DQN-0. The remainder with NN-1 is roughly
‖(Ak(1))−1G‖2 ≈ 1− αµ

1−wmin
, which equals to the remainder estimate of DQN-

0. This explains why the two methods perform very similarly. Finally, note
that the upper bound on ‖GA−1

k ‖ in (30) is an increasing function of θ ≥ 0 (the
lower the θ, the better the bound), which justifies the choice θ = 0 adopted here
for DQN.

Figure 2 (left and right) repeats the plots for the network with n = 400
nodes, quadratic costs, and the variable dimension p = 3. One can see that
again the proposed methods outperform their respective NN-` counterparts. In
terms of communication cost, DQN-0 and DQN-1 perform practically the same
and are the most efficient among all methods.

Figure 3 plots the relative error versus number of iterations (left) and num-
ber of per-node communications (right) for the logistic losses with variable di-
mension p = 4 and the network with n = 30 nodes. One can see that again
the proposed methods perform better than the NN-` counterparts. In terms of
the communication cost, DQN-0 is the most efficient among all methods, while
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Figure 1: Relative error versus number of iterations k (left) and versus number
of communications (right) for quadratic costs and n = 30-node network.
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Figure 2: Relative error versus number of iterations k (left) and versus number
of communications (right) for quadratic costs and n = 400-node network.
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DQN-2 is fastest in terms of the number of iterations. Finally, Figure 4 repeats
the plots for variable dimension p = 4 and the network with n = 200 nodes,
and it shows similar conclusions: among all DQN and NN methods, DQN-0 is
the most efficient in terms of communications, while DQN-2 is fastest in terms
of the number of iterations.
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Figure 3: Relative error versus number of iterations k (left) and versus number
of communications (right) for logistic costs and n = 30-node network.

6 Extensions

As noted before, DQN methods do not converge to the exact solution of (1)
but to a solution neighborhood controlled by the step size α. As such, for
high solution accuracies required, they may not be competitive with distributed
second order methods which converge to the exact solution [28, 38, 27].

However, we can exploit the results of [28] and “embed” the DQN algorithms
in the framework of proximal multiplier methods (PMMs), just like [28] embeds
the NN methods into the PMM framework. We refer to the resulting algorithms
as PMM-DQN-`, ` = 0, 1, 2. (Here, PMM-DQN-` parallels DQN-` in terms of
complexity of approximating Hessians, and in terms of the communication cost
per iteration.) It is worth noting that the contribution to embed distributed sec-
ond order methods into the PMM framework is due [28]. Here we extend [28] to
demonstrate (by simulation) that the DQN-type Hessian approximations within
the PMM framework yield efficient distributed second order methods.

We now briefly describe a general PMM-DQN method; for the methodology
to devise distributed second order PMM methods, we refer to [28]. See also the
Appendix for further details. We denote by x̂ k =

(
x̂ k1 , ..., x̂

k
n

)
∈ Rnp the current

iterate, where x̂ ki ∈ Rp is node i’s estimate of the solution to (1) at iteration k.
Besides x̂ k (the primal variable), the PMM-DQN method also maintains a dual
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Figure 4: Relative error versus number of iterations k (left) and versus number
of communications (right) for logistic costs and n = 200-node network.

variable q̂ k =
(
q̂ k1 , ..., q̂

k
n

)
∈ Rn p, where q̂ ki ∈ Rp is node i’s dual variable at

iteration k. Quantities Ĥk, Âk, Ĝ and ĝk defined below play a role in the PMM-
DQN method and are, respectively, the counterparts of ∇2Φ(x k), Ak, G and
∇Φ(x k) with DQN:

Ĥk = ∇2F (x̂ k) + β (I− Z) + εpmm I = Âk − Ĝ (51)

Âk = ∇2F (x̂ k) + β (I− Zd) + εpmm I + β θ (I− Zd) (52)

Ĝ = β Zu + β θ (I− Zd) (53)

ĝk = ∇F (x̂ k) + β (I− Z)x̂ k + q̂ k. (54)

Here, θ ≥ 0 is the splitting parameter as with DQN, β > 0 is the dual step size
and εpmm > 0 relates to the proximal term of the corresponding augmented La-
grangian; see [28] for details. We now present the general PMM-DQN algorithm.
Note from Step 2 the analogous form of the Hessian inverse approximation as
with DQN; the approximation is again parameterized with a (np)×(np) diagonal

matrix L̂k.

Algorithm 4: PMM-DQN in vector format
Given x0 = 0, β, εpmm, ρ > 0, θ ≥ 0. Set k = 0.

Step 1. Chose a diagonal matrix L̂k ∈ Rnp×np such that

‖L̂k‖ ≤ ρ.

Step 2. Set
ŝ k = −(I− L̂kĜ)Â−1

k ĝk.
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Step 3. Set
x̂ k+1 = x̂ k + ŝ k.

Step 4. Set
q̂ k+1 = q̂ k + (I− Z) x̂ k+1; k = k + 1.

The same algorithm is presented below from the distributed implementation
perspective. (Note that here we adopt the notation similar to DQN, i.e., the

(i, j)-th p× p block of Ĝ is denoted by Ĝij ; the i-th p× p diagonal block of L̂k
is denoted by Λ̂ k

i ; and i-th p× p diagonal block of Âk is denoted by Â k
i .)

Algorithm 5: PMM-DQN – Distributed implementation
At each node i, require β, ρ, εpmm > 0, θ ≥ 0.

1 Initialization: Each node i sets k = 0 and x̂0
i = q̂0

i = 0.

2 Each node i calculates

d̂ ki =
(
Â k
i

)−1

∇fi(x̂ ki ) + β
∑
j∈Oi

wij
(
x̂ ki − x̂ kj

)
+ q̂ ki

 .
3 Each node i transmits d̂ ki to all its neighbors j ∈ Oi and receives d̂ kj from

all j ∈ Oi.

4 Each node i chooses a diagonal p× p matrix Λ̂ k
i , such that ‖Λ̂ k

i ‖ ≤ ρ.

6 Each node i calculates:

ŝ ki = −d̂ ki + Λ̂ k
i

∑
j∈Ōi

Ĝij d̂
k
j .

6 Each node i updates its solution estimate as:

x̂ k+1
i = x̂ ki + ŝ ki .

7 Each node i transmits x̂ k+1
i to all its neighbors j ∈ Oi and receives x̂ k+1

j

from all j ∈ Oi.

8 Each node i updates the dual variable q̂ki as follows:

q̂ k+1
i = q̂ ki +

∑
j∈Oi

wij
(
x̂ k+1
i − x̂ k+1

j

)
.

9 Set k = k + 1 and go to Step 2.
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Note that, at Step 2, each node i needs the neighbors’ estimates x̂kj , j ∈ Oi.
For k ≥ 1, the availability of such information is ensured through Step 7 of the
previous iteration k− 1; at k = 0, Step 2 is also realizable as it is assumed that
x̂0
i = 0, for all i = 1, ..., n. As with the DQN methods, different variants PMM-

DQN-` mutually differ in the choice of matrix L̂k. With PMM-DQN-0, we set
L̂k = 0; with PMM-DQN-2, L̂k is set as described below; with PMM-DQN-1,
we set L̂k = L̂ = const to L̂0, i.e., to the value of L̂k from the first iteration of
PMM-DQN-2.

We now detail how L̂k is chosen with PMM-DQN-2. The methodology is
completely analogous to DQN-2: the idea is to approximate the exact Newton
direction ŝkN which obeys the following Newton-type equation:

Ĥk ŝ k + ĝk = 0, (55)

through Taylor expansions. Using (55) and completely analogous steps as with

DQN-2, it follows that L̂k is obtained through solving the following system of
linear equations with respect to L̂k:

L̂k û k = −
(

1

β + εpmm
I +

β

(β + εpmm)2
Z− 1

(β + εpmm)2
∇2F (x̂k)

)
û k

where û k = Ĝ Â−1
k ĝk. (56)

The overall algorithm for setting L̂k with PMM-DQN-2 (step 4 of Algorithm 5)
is presented below.

Algorithm 6: Computing L̂k with PMM-DQN-2

4.1 Each node i calculates
û ki =

∑
j∈Ōi

Ĝij d̂
k
j .

4.2 Each node i transmits û ki to all its neighbors j ∈ Oi and receives û kj from
all j ∈ Oi.

4.3 Each node i calculates Λ̂ k
i – the solution to the following system of equa-

tions (where the only unknown is the p× p diagonal matrix Λ̂i):

Λ̂i û
k
i = −

[
(

1

β + εpmm
+

β wii
(β + εpmm)2

)I − 1

(β + εpmm)2
∇2fi(x̂

k
i )

]
× û ki −

β

(β + εpmm)2

∑
j∈Oi

wij û
k
j .

4.4 Each node i projects each diagonal entry of Λ̂ki onto the interval [−ρ, ρ].

Simulations. We now compare by simulation the PMM-DQN-` methods
with the ESOM-` algorithms proposed in [28], the DQM algorithm in [27], and
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different variants of the Newton Raphson Consensus (NRC) algorithm proposed
in [38].

The simulation setup is as follows. The network is an instance of the
random geometric graph with n = 30 nodes and 166 links. The optimiza-
tion variable dimension is p = 4, and the local nodes costs are strongly con-
vex quadratic, generated at random in the same way as with the quadratic
costs examples in Section 5. With all methods which involve weighted av-
eraging (ESOM-`, PMM-DQN-`, and NRC), we use the Metropolis weights.
We consider the ESOM-` and PMM-DQN-` methods for ` = 0, 1, 2. With the
methods ESOM-` and PMM-DQN-`, we set the proximal constant εpmm = 10
(see [28] for details). Further, we tune the dual step size β separately for each
of these methods to the best by considering the following candidate values:
β ∈ {10−4, 10−3.5, 10−3, ..., 103.5, 104}, i.e., a grid of points equidistant on the
log10 scale with the half-decade spacing. The algorithm DQM has the tuning
step size parameter c > 0 (see [27] for details) which we also tune to the best us-
ing the same grid of candidate values. Regrading the methods proposed in [38],
we consider both the standard (NRC) and the accelerated (FNRC) algorithm
variant. These methods have a communication cost per node, per iteration
which is quadratic in p, due to exchanging local Hessian estimates. (Specifi-
cally, as it is sufficient to transmit the upper-triangular part of a local Hessian
(due to the matrix symmetry), each node per iteration transmits p× (p+ 1)/2
scalars for the Hessian exchange.) This is different from the ESOM, DQM, and
PMM-DQN methods which have a cost linear in p. We also consider the Jacobi
variants in [38] (both the standard – JC and the accelerated – FJC variant)
which approximate local Hessians through diagonal matrices and hence their
communication cost per node, per iteration reduces to a cost linear in p. With
NRC, FNRC, JC, and FJC, we set their step size ε to unity (see [38] for de-
tails), as this (maximal possible) step size value yielded fastest convergence.
We observed that JC and FJC converged with a non-zero limiting error, while
decreasing the value of ε did not improve the limiting error of the method while
slowing down the methods. Hence, with all the methods considered, we tune
their step sizes to the best (up to the finite candidate grid points resolution).
With FNRC and FJC, we set the acceleration parameter φ in the same way
as in [38] (see page 10 of [38].) With all PMM-DQN methods, we do not use
safeguarding (ρ = +∞), and we set θ = 0. With all the methods considered, the
primal variables – solution estimates (and dual variables, if exist) are initialized
with zero vectors. The error metric is the same as with the quadratic example
in Section 5.

Figure 5 compares the PMM-DQN-` algorithms and the ESOM-` algorithms
in [28] in terms of the number of iterations (left) and the number of per-node
communications (right). We can see that, in terms of iterations, for each fixed `,
the corresponding PMM-DQN method performs better than the corresponding
ESOM method. The exception is the case ` = 0 where the two methods are
comparable. The same conclusions hold for the number of communications also.
Further, in terms of the number of iterations, PMM-DQN-1 and PMM-DQN-2
are the best among all methods; in terms of communications, PMM-DQN-1 is

33



the best method among all PMM-DQN and ESOM method considered.
In Figure 6, we compare the best among the PMM-DQN-` methods, the best

among the ESOM-` methods (in terms of iterations, the best are PMM-DQN-1
and ESOM-2, while in terms of communications, the best are PMM-DQN-1 and
ESOM-0), DQM, and the NRC methods group (NRC, FNRC, JC, and FJC). We
can see that the PMM-DQN-1 method converges faster than all other methods,
both in terms of iterations and communications.
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Figure 5: Comparison between the PMM-DQN-` algorithms and the ESOM-`
algorithms in [28]. The figures plot relative error versus number of iterations k
(left) and versus number of communications (right) for quadratic costs and
n = 30-node network.

7 Conclusions

The problem under consideration is defined by an aggregate, network-wide sum
cost function across nodes in a connected network. It is assumed that the cost
functions are convex and differentiable, while the network is characterized by
a symmetric, stochastic matrix W that fulfils standard assumptions. The pro-
posed methods are designed by exploiting a penalty reformulation of the original
problem and rely heavily on the sparsity structure of the Hessian. The general
method is tailored as a Newton-like method, taking the block diagonal part of
the Hessian as an approximate Hessian and then correcting this approximation
by a diagonal matrix Lk. The key point in the proposed class of methods is to
exploit the structure of Hessian and replace the dense part of the inverse Hessian
by an inexpensive linear approximation, determined by matrix Lk. Depending
on the choice of Lk, one can define different methods, and three of such choices
are analyzed in this work. An important characteristic of the whole class of
DQN methods is global linear convergence with a proper choice of the step size.

34



0 50 100 15010-8

10-6

10-4

10-2

100

number of iterations, k

re
l.
 e

rr
o

r

 

 

ESOM-2
PMM-DQN-1
DQM
NRC 
JC
FJC
FNRC

0 50 100 150 20010-8

10-6

10-4

10-2

100

number of per-node communications

re
l.
 e

rr
o

r

 

 

ESOM-0
PMM-DQN-1
DQM
JC
FJC
FNRC
NRC

Figure 6: Comparison between the DQM algorithm in [27], the NRC algorithm
in [38], the best among the PMM-DQN-` algorithms, and the best among the
ESOM-` algorithms. The Figures plot relative error versus number of itera-
tions k (left) and versus number of communications (right) for quadratic costs
and n = 30-node network.

Furthermore, we have shown local linear convergence for the full step size using
the convergence theory of Inexact Newton methods as well as global conver-
gence with the full step size for the special case of strictly convex quadratic loss
functions.

The three specific methods are analyzed in detail, termed DQN-0, DQN-1
and DQN-2. They are defined by the three different choices of matrix Lk – the
zero matrix, a constant matrix, and the iteration-varying matrix that defines a
search direction which mimics the Newton direction as much as possible under
the imposed restrictions of inexpensive distributed implementation. For the last
choice of the time varying matrix, we have shown local linear convergence for
the full step size without safeguarding.

The cost in terms of computational effort and communication of these three
methods correspond to the costs of the state-of-the-art Network Newton meth-
ods, NN-0, NN-1 and NN-2, which are used as the benchmark class in this paper.
The simulation results on two relevant problems, the quadratic loss and the lo-
gistic loss, demonstrate the efficiency of the proposed methods and compare
favorably with the benchmark methods. Finally, applying the recent contri-
butions of [28], the proposed distributed second order methods were extended
to the framework of proximal multiplier methods. Unlike DQN, the modified
methods converge to the exact solution and further enhance the performance
when high solution accuracies are required.
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[18] Krejić, N., Krklec Jerinkić, N., Nonmonotone line search methods with
variable sample size, Numerical Algorithms 68 (2015), pp. 711-739.
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Appendix

Following [28], we briefly explain how we derive the PMM-DQN methods. The
starting point for PMM-DQN is the quadratically approximated PMM method,
which takes the following form (see [28] for details and derivations):

x̂ k+1 = x̂ k − Ĥ−1
k

(
∇F (x̂ k) + q̂ k + β(I− Z)x̂ k

)
(57)

q̂ k+1 = q̂ k + β(I− Z)x̂ k+1. (58)

Here, β > 0 is the (dual) step size, Ĥk is given in (51), and x̂ k ∈ Rnp and
q̂ k ∈ Rnp are respectively the primal and dual variables at iteration k = 0, 1, ...,
initialized by x̂ 0 = q̂ 0 = 0.

The challenge for distributed implementation of (57)–(58) is that the inverse

of Ĥk does not respect the sparsity pattern of the network. The ESOM methods,
proposed in [28], approximate the inverse of Ĥk following the NN-type approx-
imations [22]. Here, we extend such possibilities and approximate the inverse

of Ĥk through the DQN-type approximations. This is defined in (51)–(53) and
Algorithm PMM-DQN in Section 6.

As noted, the matrix Lk = 0 with PMM-DQN-0, and it is Lk = L0 = const
with PMM-DQN-1, where L0 is the matrix from the first iteration of the DQN-2
method. It remains to derive Lk for PMM-DQN-2, as it is given in Section 6.
As noted in Section 6, we approximate the Newton equation in (55). The
derivation steps are the same as with DQN-2, with the following identification:
∇2Φ(xk) in (34) is replaced with Ĥk in (55), and ∇Φ(xk) with ĝ k in (55).
Then, equation (37) with DQN-2 transforms into the following equation with
PMM-DQN-2:

L̂k û k = −Ĥ−1
k û k, (59)

where û k is given in (56). Finally, it remains to approximate Ĥ−1
k through a

first order Taylor approximation, as follows:

Ĥ−1
k =

[
(β + εpmm)

(
I−

(
β

β + εpmm
Z− 1

β + εpmm
∇2F (x̂ k)

)) ]−1

≈ 1

β + εpmm

[
I +

β

β + εpmm
Z− 1

β + εpmm
∇2F (x̂ k)

]
.
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The above Taylor approximation is well defined if the spectral radius of matrix(
β

β+εpmm
Z− 1

β+εpmm
∇2F (x̂ k)

)
is strictly less than one. It is easy to verify

that this will be the case if the (positive) parameters β and εpmm satisfy β >
1
2 max{0, L− εpmm}.
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