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Abstract

Separating hash families are useful combinatorial structures which are generalizations of
many well-studied objects in combinatorics, cryptography and coding theory. In this paper,
using tools from graph theory and additive number theory, we solve several open problems
and conjectures concerning bounds and constructions for separating hash families.

Firstly, we discover that the cardinality of a separating hash family satisfies a Johnson-
type inequality. As a result, we obtain a new upper bound, which is superior to all previous
ones.

Secondly, we present a construction for an infinite class of perfect hash families. It
is based on the Hamming graphs in coding theory and generalizes many constructions
that appeared before. It provides an affirmative answer to both Bazrafshan-Trung’s open
problem on separating hash families and Alon-Stav’s conjecture on parent-identifying codes.

Thirdly, let pt(N, q) denote the maximal cardinality of a t-perfect hash family of length
N over an alphabet of size q. Walker and Colbourn conjectured that p3(3, q) = o(q2). We
verify this conjecture by proving q2−o(1) < p3(3, q) = o(q2). Our proof can be viewed as an
application of Ruzsa-Szemerédi’s (6,3)-theorem. We also prove q2−o(1) < p4(4, q) = o(q2).
Two new notions in graph theory and additive number theory, namely rainbow cycles and
R-sum-free sets, are introduced to prove this result. These two bounds support a question
of Blackburn, Etzion, Stinson and Zaverucha.

Finally, we establish a bridge between perfect hash families and hypergraph Turán
problems. This connection has not been noticed before. As a consequence, many new
results and problems arise.

Keywords: separating hash family, perfect hash family, Johnson-type bound, rainbow cycle,
R-sum-free set.
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1 Introduction

Separating hash families are useful combinatorial structures introduced by Stinson, Wei and
Chen [38]. They are generalizations of many combinatorial objects, for example, perfect hash
families, frameproof codes and codes with the identifiable parent property.

Let us begin with some definitions.

Definition 1.1. Let X and Y be sets of cardinalities n and q, respectively. We call a set F of
N functions f : X → Y an (N ;n, q)-hash family.

Definition 1.2. Let f : X → Y be a function, and let pairwise disjoint subsets C1, C2, . . . , Ct ⊆
X. We say that f separates C1, C2, . . . , Ct if f(C1), . . . , f(Ct) are pairwise disjoint. In partic-
ular, we say that f separates a subset C ⊆ X if f(C) ⊆ Y has |C| distinct values.
Definition 1.3. Let X and Y be sets of cardinalities n and q, respectively, and let F be an
(N ;n, q)-hash family of functions from X to Y . We say that F is an (N ;n, q, {w1, . . . , wt})-
separating hash family (which we will also denote as an SHF (N ;n, q, {w1, . . . , wt})) if it satisfies
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the following property: for all pairwise disjoint subsets C1, C2, . . . , Ct ⊆ X with |Ci| = wi for
1 ≤ i ≤ t, there exists at least one function f ∈ F that separates C1, C2, . . . , Ct. We call the
multiset {w1, . . . , wt} the type of this separating hash family.

For a positive integer q, we denote [q] for the set {1, . . . , q}. Without loss of generality,
we may fix the alphabet set Y to be the set of first q positive integers. And for the sake of
simplicity, we set u =

∑t
i=1 wi throughout this paper. To avoid trivial cases, we assume that

n > q, q ≥ t ≥ 2 and u ≤ n.
The concept of separating hash families was first introduced in the special case t = 2 by

Stinson, Trung and Wei [36] and then generalized by Stinson, Wei and Chen [38]. This notion has
relations with many well-studied objects in combinatorics, cryptography and coding theory, see
[18, 38] for a detailed introduction. We will summarise some objects in which we are interested.

• If w1 = w2 = · · ·wt = 1, an SHF (N ;n, q, {1, . . . , 1}) is known as a t-perfect hash family,
which will be denoted as PHF (N ;n, q, t). Perfect hash families are basic combinatorial
structures and have important applications in cryptography [14, 17, 35, 36], database man-
agement [30], circuit design [31] and the design of deterministic analogues of probabilistic
algorithms [4].

• If t = 2 with w1 = 1 and w2 = w, an SHF (N ;n, q, {1, w}) is known as a w-frameproof
code. The frameproof code is a kind of fingerprinting codes and has applications in the
protection of copyrighted materials. See [15, 19, 35, 37] for results on frameproof codes.

• Codes with the identifiable parent property (or 2-IPP codes) are separating hash families
which are simultaneously of type {1, 1, 1} and {2, 2}, see [1, 3, 6, 16, 27].

Bounds and constructions for separating hash families are central problems in this research
area. Given positive integers N , q and w1, . . . , wt, it is of interest how large the cardinality n of
the preimage set X can be. We use C(N, q, {w1, . . . , wt}) to denote this maximal cardinality.

By a method known as grouping coordinates, the problem of bounding C(N, q, {w1, . . . , wt})
can be reduced to bounding C(u − 1, q, {w1, . . . , wt}), since it has been observed in [7, 18, 38]
that C(N, q, {w1, . . . , wt}) ≤ C(u − 1, q⌈N/(u−1)⌉, {w1, . . . , wt}).

In the literature, researchers are seeking for the minimal positive real number γ such that
C(u − 1, q, {w1, . . . , wt}) ≤ γq holds for arbitrary q. The reader is referred to [7, 18, 35,
36, 38] for the attempts that have been made. In 2008, Stinson, Wei and Chen [38] proved
C(3, q, {1, 1, 2}) ≤ 3q + 2 − 2

√
3m+ 1 and C(3, q, {2, 2}) ≤ 4q − 3 for two special cases. In the

same year, Blackburn, Etizon, Stinson and Zaverucha [18] proved C(u − 1, q, {w1, . . . , wt}) ≤
(w1w2 + u − w1 − w2)q, where w1, w2 ≤ wi for 3 ≤ i ≤ t. In 2011, Bazrafshan and Trung [7]
proved the following theorem:

Theorem 1.4. ([7]) C(u − 1, q, {w1, . . . , wt}) ≤ (u− 1)q.

Moreover, they conjectured that (see Question 1.6) γ = u − 1 is the minimal real number such
that the above bound holds for arbitrary q.

We improve Theorem 1.4 in various aspects, including some tighter bounds and asymptoti-
cally optimal constructions. The novelty of our work is that we develop two new approaches to
study bounds and constructions for codes and hash families with the separating property. We
will explain them in detail in the conclusion section of this paper.

We state our main results as follows.

1.1 Separating hash families

Following the steps of previous papers [7, 18, 38], we discover an important property for
separating hash families that the growth of C(N, q, {w1, . . . , wt}) satisfies a Johnson-type in-
equality. Roughly speaking, C(N, q, {w1, ..., wt}) ≤ ql+max{u− 1, C(N − l, q, {w1− 1, ..., wt})}
holds for every positive integer l (see Lemma 3.1 below). As a result, we obtain the following
new upper bound for separating hash families which is the best known one.

Theorem 1.5. Suppose there exists an SHF (N ;n, q, {w1, . . . , wt}). Let u =
∑t

i=1 wi and
let 1 ≤ r ≤ u − 1 be the positive integer such that N ≡ r (mod u − 1). If C(⌊N/(u −
1)⌋, q, {w1, . . . , wt}) ≥ u, then it holds that n ≤ rq⌈N/(u−1)⌉ + (u− 1− r)q⌊N/(u−1)⌋.
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A novelty of our proof is that we avoid the use of the grouping coordinates method, which
has appeared in all previous proofs. The constraint C(⌊N/(u− 1)⌋, q, {w1, . . . , wt}) ≥ u can be
omitted when N ≥ u− 1 and q ≥ u.

For the coefficient γ defined in Theorem 1.4, the authors of [7] posed the following question:

Question 1.6. ([7]) Is there any type {w1, . . . , wt} for which the constant (u − 1) in Theorem
1.4 can be replaced by another constant strictly smaller than (u− 1)?

We give a negative answer to their question by presenting the following construction:

Theorem 1.7. There exists a PHF (N ;NqN−1, qN−1 + (N − 1)qN−2, N + 1) for any integer
q ≥ 2 and N ≥ 2. As a consequence, γ = u − 1 is the minimal real number such that C(u −
1, q, {w1, . . . , wt}) ≤ γq holds for arbitrary q.

To see that our construction is actually a negative answer to Question 1.6, one just needs to
notice that a u-perfect hash family is also {w1, . . . , wt}-separating for arbitrary

∑t
i=1 wi = u. If

we set N = u−1 then our construction implies the existence of an SHF (u−1;n, q, {w1, . . . , wt})
such that limq→∞

n
q = u − 1 holds for arbitrary

∑t
i=1 wi = u. Therefore, the constant γ can

never be less than u− 1.

1.2 Codes with the identifiable parent property

We have mentioned 2-IPP codes before and the notion was generalized to codes with the
t-identifiable parent property (t-IPP codes) in [35]. We postpone the definition to Section 2 for
the sake of saving space.

Let it(N, q) denote the maximal cardinality of a t-IPP code of length N over an alphabet
of size q. Let v = ⌊(t/2 + 1)2⌋. One can verify that it(N, q) ≤ it(v − 1, q⌈N/(v−1)⌉) (just as the
case for separating hash families). Thus the problem of bounding it(N, q) can be reduced to
bounding it(v−1, q). Alon and Stav [6] proved that it(v−1, q) ≤ (v−1)q, and they conjectured:

Conjecture 1.8. ([6]) There are constructions showing that (v − 1) is the best constant in the
inequality it(v − 1, q) ≤ (v − 1)q.

Our Theorem 1.7 not only answers Question 1.6 but also verifies this conjecture, since it was
observed in [6, 35] that a v-perfect hash family also satisfies the t-identifiable parent property.

1.3 Perfect hash families

As claimed in [18], the exponent ⌈N/(u − 1)⌉ in the bound of Theorem 1.5 is realistic. We
can understand this in two aspects. On the one hand, a probabilistic construction of Blackburn
[13] showed that for any fixed u and any positive real number δ such that δ < N/(u− 1), there
exists a PHF (N ; ⌊qδ⌋, q, u) whenever q is sufficiently large. On the other hand, let pt(N, q)
denote the maximal cardinality of a PHF (N ;n, q, t), it was respectively observed in [6, 28, 32]
that pu(N, q) ≥ (cuq)

N/(u−1) holds for some constant cu. So we can conclude that the exponent
⌈N/(u− 1)⌉ is tight when (u− 1)|N .

But the problem becomes much more difficult when (u−1) ∤ N . It is not known that whether
the exponent is tight. Even for the smallest case, u = 3 and N = 3, Walker and Colbourn [39]
posed the following conjecture:

Conjecture 1.9. ([39]) p3(3, q) = o(q2).

Note that Theorem 1.5 shows p3(3, q) = O(q2). A recent paper [24] showed that p3(3, q) =
Ω(q5/3). Results from finite geometry were used to construct such families. There is still a
huge gap between the upper and lower bounds. For general types of separating hash families,
Blackburn et al. [18] asked a similar question:

Question 1.10. ([18]) Let N and wi be fixed integers. If (u − 1) ∤ N , then for sufficiently
large q and arbitrary small ǫ > 0, does there exist an SHF (N ;n, q, {w1, . . . , wt}) such that
n ≥ q⌈N/(u−1)⌉−ǫ?
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We prove Conjecture 1.9 in Section 5 (see Theorems 5.4 and 5.7 below). We find that perfect
hash families are closely related to a hypergraph Turán problem. With some transformations,
Walker-Colbourn’s conjecture can be proved by a direct application of the famous (6,3)-theorem
of Ruzsa and Szemerédi [34]. In fact, we show

q2−ǫ < p3(3, q) = o(q2)

holds for sufficiently large q and arbitrary ǫ > 0. We also prove

q2−ǫ < p4(4, q) = o(q2)

(see Theorem 6.5 below). Two new notions in graph theory and additive number theory, namely
rainbow cycles and R-sum-free sets, are introduced to prove this result. One can see that these
two bounds suggest that there may be a positive answer to Question 1.10.

1.4 Organization

The rest of this paper is organised as follows. Section 2 is for some preparations. Theorem
1.5 is proved in Section 3 and Theorem 1.7 is proved in Section 4. The subsequent sections
will focus on perfect hash families. We prove q2−o(1) < p3(3, q) = o(q2) in Section 5. As
an application of the Johnson-type bound, this result will be extended to pt(t, q) and related
separating hash families. We prove q2−o(1) < p4(4, q) = o(q2) in Section 6. In Section 7 we will
build the connection between perfect hash families and a class of hypergraph Turán problems.
Section 8 consists of some concluding remarks and open problems.

2 Preliminaries

In this section, we will introduce some notations and terminology. We will also introduce
some simple lemmas that will be used in the subsequent sections.

2.1 Separating hash families and IPP codes

The matrix representation of a separating hash family is very useful when discussing its
properties. An (N ;n, q)-hash family can be described as an N × n matrix on q symbols, which
will be usually denoted as M . The rows of M correspond to the functions in the hash family
and the columns of M correspond to the elements of X . The entry of M in row f ∈ F and
column x ∈ X is just f(x) ∈ Y. We denote the entry of M as M(f, x) for f ∈ F , x ∈ X or
M(i, j) for 1 ≤ i ≤ N , 1 ≤ j ≤ n.

The matrix representation of an SHF (N ;n, q, {w1, . . . , wt}) satisfies the following property:
given disjoint sets of columns C1, . . . , Ct, where |Ci| = wi for 1 ≤ i ≤ t, there exists a row r of
M such that

{M(r, x) : x ∈ Ci} ∩ {M(r, x) : x ∈ Cj} = ∅
for all i 6= j. We say row r separates a subset of columns C ⊆ X if {M(r, x) : x ∈ C}
has exactly |C| distinct values in Y . The column x of M will be written as a q-ary vector
of length N , x = (x(1), x(2), . . . , x(N)), where x(i) ∈ [q] for i ∈ [N ]. For a subset L of the
rows of M , the coordinates of x restricted to L give a word of length |L|, which is denoted as
x|L = (x(i1), x(i2), . . . , x(i|L|)), where ij , 1 ≤ j ≤ |L| are the row indices. We say a column
x ∈ X of M has a unique coordinate i if for any other column y ∈ X , y 6= x, it holds that
y(i) 6= x(i). If there is no confusion, we will not distinguish between a hash family and its
representation matrix.

Next we will introduce the definition of IPP codes.
Let C ⊆ Y N be a code of length N and let D ⊆ C be a set of codewords. The set of

descendants of D, denoted as desc(D), is defined by

desc(D) = {d ∈ Y N : for all i ∈ {1, 2, . . . , N}, d(i) = x(i) for some x ∈ D}.
A set D ⊆ C is said to be a parent set of a word d ∈ Y N if d ∈ desc(D). For d ∈ Y N , let Pt(d)
denote the collection of parent sets of d such that |D| ≤ t and D ⊆ C. Then we call C ⊆ Y N a
t-IPP code if for all d ∈ Y N , either Pt(d) = ∅ or

4



∩D∈Pt(d)D 6= ∅.

2.2 Graph theory

We will use the notion of Hamming graphs when constructing perfect hash families in Section
4. Let k and q be positive integers, the Hamming graph (see [26] for details) H(k, q) has the set
of all k-tuples from an alphabet of q symbols as its vertex set, and two k-tuples are adjacent if
and only if they differ in exactly one coordinate position. This graph is also known as the q-ary
hypercube of dimension k. Here we will fix this q-symbol alphabet set to be [q].

When speaking about a hypergraph we mean a pair G = (V (G), E(G)), where the vertex set
V (G) is identified as the set of first integers [n] and the edge set E(G) is identified as a collection
of subsets of [n]. G is said to be linear if for all distinct A,B ∈ E(G) it holds that |A ∩B| ≤ 1.
We say G is r-uniform if |A| = r for all A ∈ E(G).

An r-uniform hypergraph G is r-partite if its vertex set V (G) can be colored in r colors in
such a way that no edge of G contains two vertices of the same color. In such a coloring, the
color classes of V (G), the sets of all vertices of the same color, are called parts of G. In this
paper we mainly concern r-uniform r-partite hypergraphs with equal part size q. We will see
later that the edge set of such hypergraph is equivalent to an r× |E(G)| matrix over a q-symbol
alphabet.

Given a set H of r-uniform hypergraphs, an H-free r-uniform hypergraph is a graph contain-
ing none of the members of H. The Turán number exr(n,H) denotes the maximum number of
edges in an H-free r-uniform hypergraph on n vertices. In this paper, we will talk about several
hypergraph Turán problems.

Brown, Erdős and Sós [20, 21] introduced the function fr(n, v, e) to denote the maximum
number of edges in an r-uniform hypergraph on n vertices which does not contain e edges
spanned by v vertices. In other words, in such hypergraphs the size of the union of arbitrary e
edges is at least v+ 1. These hypergraphs are called G(v, e)-free (more precisely, Gr(v, e)-free).
The famous (6,3)-theorem of Ruzsa and Szemerédi [34] pointed out that

n2−o(1) < f3(n, 6, 3) = o(n2). (1)

This was extended by Alon and Shapira [5] to

nk−o(1) < fr(n, 3(r − k) + k + 1, 3) = o(nk). (2)

These bounds will be used when considering problems about perfect hash families in the sequel.
For more results on Turán problems of this type, see [25] and the references therein.

The definitions of fr(n, v, e) can be restricted to the case for r-uniform r-partite hypergraphs
with equal part size q. We use f∗

r (q, v, e) to denote the corresponding formula. Note that
f∗
r (q, v, e) ≤ fr(rq, v, e).
In the literature, there are several definitions of hypergraph cycles. The one we use in this

paper was introduced by Berge [10, 11]. For k ≥ 2, a cycle in a hypergraph G is an alternating
sequence of vertices and edges of the form v1, E1, v2, E2, . . . , vk, Ek, v1 such that

(a) v1, v2, . . . , vk are distinct vertices of G,

(b) E1, E2, . . . , Ek are distinct edges of G,

(c) vi, vi+1 ∈ Ei for 1 ≤ i ≤ k − 1 and vk, v1 ∈ Ek.

Next we will introduce the definition of rainbow cycles. Note that in the literature “rainbow
cycles” always stand for edge-colorings, but in this paper we consider rainbow cycles due to
vertex colorings. Given a hypergraph G and a vertex-coloring of G, a subgraph H ⊆ G is called
a rainbow subgraph of G if all joint vertices in H have different colors. In other words, for
arbitrary distinct vertices x, y ∈ {A∩B : A,B ∈ E(H)}, x and y are colored by different colors.
This definition is most meaningful when discussing linear hypergraphs. Let G be an r-uniform
r-partite linear hypergraph, a k-cycle v1, E1, v2, E2, . . . , vk, Ek, v1 is said to be a rainbow cycle
of G if v1, . . . , vk locate in different parts of V (G). For r-partite graphs, a rainbow k-cycle exists
only if k ≤ r.
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Let G be an r-uniform r-partite linear hypergraph with equal part size q. Assume that G can
not have rainbow cycles, then we use g∗r(q) to denote the maximal number of edges that can be
contained in G. Lemma 6.1 shows that hypergraphs with large g∗r(q) can be used to construct
good perfect hash families.

2.3 Additive number theory

It has been shown in [3, 25] that tools from additive number theory can be used to construct
codes with some specified properties. We will introduce some notions from additive number
theory.

Assume m1,m2,m3 ∈ M ⊆ [q] and c1, c2 are positive integers such that c1 + c2 ≤ r, we call
the set M r-sum-free if the equation

c1m1 + c2m2 = (c1 + c2)m3

has no solution except the one with m1 = m2 = m3. A result proved by Erdős, Frankl and Rödl
[22] and Ruzsa [33] will be needed.

Lemma 2.1. ([22, 33]) For arbitrary positive integer r there exists a γr > 0 such that for any

integer q, one can find an r-sum-free subset M ⊆ [q] with |M | > qe−γr

√
log q.

Note that the case r1 = r2 = 1 was originally proved by Behrend [9].
A linear equation with integer coefficients

k
∑

i=1

aixi = 0

in the unknowns xi is homogeneous if
∑k

i=1 ai = 0. We say that M ⊆ [q] has no nontrivial

solution to above equation, if whenever mi ∈ M and
∑k

i=1 aimi = 0, it follows that all mi’s
are equal. Note that if M has no nontrivial solution to above function, then the same holds
for any shift (M + x) ∩ [q] with x ∈ Z, where M + x := {m + x : m ∈ M}. This property
suggests that one can use probabilistic method to construct sets with no nontrivial solution to
a system of homogeneous linear equations. Note that this definition of the nontrivial solution is
a simplification of the original one of Ruzsa [33].

Now we will generalize the definition of the r-sum-free set. Given a set R = {b1, . . . , br} of
r distinct nonnegative integers. A set M is said to be R-sum-free if for any 3 ≤ k ≤ r and any
k-element subset S = {bj1 , bj2 , . . . , bjk} ⊆ R, the equation

(bj2 − bj1)m1 + (bj3 − bj2)m2 + · · ·+ (bjk − bjk−1
)mk−1 + (bj1 − bjk)mk = 0

has no solution in M except the trivial one m1 = m2 = · · · = mk. The rank of R is defined to
be the maximal difference between the elements of R:

r(R) = max
1≤i<j≤r

|bi − bj |.

We are interested in R-sum-free sets M ⊆ [q] with relatively small rank, namely, r(R) = o(qǫ)
for arbitrary ǫ > 0. Lemma 6.2 shows that R-sum-free sets can be used to construct hypergraphs
with large g∗r (q).

2.4 Some lemmas

The following lemma is a variant of a result of Erdös and Kleitman [23].

Lemma 2.2. Every r-uniform hypergraph G contains an r-uniform r-partite hypergraph H with
equal part size q or q + 1 such that

|E(H)|
|E(G)| ≥ r!

rr
.
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Proof. Let |V (G)| = n, take q to be the integer such that rq ≤ n < r(q + 1). We only prove the
lemma for n = rq, otherwise we can set the part size of the desired subgraph to be q + 1. It
suffices to find a partition π of V (G) with π = {B1, . . . , Br} and |Bi| = q for 1 ≤ i ≤ r, such
that Fπ = {A ∈ E(G) : |A ∩ Bi| = 1 for all 1 ≤ i ≤ r} contains the desired number of edges.
Let P (G) denote the collection of all appropriate partitions of V (G). Let us count the number
of the pairs N := |{(A, π) : A ∈ E(G), π ∈ P (G), |A ∩ Bi| = 1 for every Bi ∈ π}|. One can

compute that any A ∈ E(G) is contained in |P (G)|·qr

(rqr )
members of P (G) satisfying the desired

property. Therefore, by double counting, there exists a π ∈ P (G) such that Fπ contains at least

|E(G)| · |P (G)| · qr/
(

rq
r

)

|P (G)| =
|E(G)| · qr

(

rq
r

)

members of E(G). Then this specified π will induce an r-uniform r-partite hypergraph H
containing the desired number of edges.

This lemma implies that for any r-uniform hypergraph G with sufficiently large |V (G)|, there
exists an r-partite subgraph H ⊆ G such that |E(H)| and |E(G)| are of the same order of
magnitude. In other words, one can infer fr(rq, v, e) = Θ(f∗

r (q, v, e)) by Lemma 2.2.
Another simple lemma will be used.

Lemma 2.3. Suppose G is a finite graph with n vertices. If G has no cycles, then G can have
at most n− 1 edges.

Proof. G must have a vertex with degree one since every path in G is finite and must have
an end point. Choose a vertex in G with degree one, then the statement follows trivially by
applying induction on |V |.

With some reformulations, one can combine Lemma 3.2 and Corollary 3.3 of Alon, Fischer
and Szegedy [3] to prove the following result:

Lemma 2.4. ([3]) There exists a set M ⊆ {0, 1, . . . , ⌊(q − 1)/(µ+ 5)⌋} satisfying

|M | ≥ qe−γ(log q)3/4

such that M has no non-trivial solution to all the following equations



















































2m1 + 3m2 + µm3 − (µ+ 5)m4 = 0

5m1 + (µ+ 3)m2 − 3m3 − (µ+ 5)m4 = 0

5m1 + µm2 − 2m3 − (µ+ 3)m4 = 0

2m1 + 3m2 − 5m3 = 0

5m1 + µm2 − (µ+ 5)m3 = 0

2m1 + (µ+ 3)m2 − (µ+ 5)m3 = 0

3m1 + µm2 − (µ+ 3)m3 = 0

(3)

where γ is a constant and µ = ⌈2
√
log q⌉.

Sketch of the proof. Using the technique introduced in the proof of Lemma 3.2 of [3], for 1 ≤
i ≤ 7, one can prove that there exists a set Mi ⊆ {0, 1, . . . , ⌊(q− 1)/(µ+ 5)⌋} and a constant γi
satisfying

|Mi| ≥ qe−γi(log q)3/4

such that Mi has no nontrivial solution to the i-th equation in the above system. In order to
prove the existence of the set M which has no nontrivial solution to all equations, we can apply a
probabilistic method. Take six integers xi such that −⌊(q−1)/(µ+5)⌋ ≤ xi ≤ ⌊(q−1)/(µ+5)⌋,
2 ≤ i ≤ 7, randomly, uniformly and independently. M = M1 ∩ (M2 + x2) ∩ · · · ∩ (M7 + x7) has
no nontrivial solution to any of the above equations. Since Mi+xi ∈ [−⌊(q− 1)/(µ+5)⌋, 2⌊(q−
1)/(µ + 5)⌋] for each 2 ≤ i ≤ 7, then one can compute that every m ∈ M1 has probability at

least e−
∑

7

i=2
γi(log q)3/4 to lie in the intersection. Therefore, the result follows from the linearity

of the expectation, where |M | ≥ qe−γ(log q)3/4 with γ ≤ ∑7
i=1 γi.
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3 A Johnson-type upper bound

The aim of this section is to establish a Johnson-type bound for separating hash families and
we will use it to prove Theorem 1.5. To establish this bound, the idea is to delete some rows
and corresponding carefully chosen columns from the representation matrix of the separating
hash family. Our goal is to show the remaining submatrix satisfies some weaker separating
property. We call this recursive bound a “Johnson-type bound” due to its similarity with the
traditional recursive Johnson bound in coding theory. Note that we always use M to denote the
representation matrix of a separating hash family.

Lemma 3.1. Let 1 ≤ l ≤ N be a positive integer, then it holds that C(N, q, {w1, ..., wt}) ≤
ql +max{u− 1, C(N − l, q, {w1− 1, ..., wt})}. In fact, in the right hand side of the inequality we
can choose the minus of 1 to be after an arbitrary wi, 1 ≤ i ≤ t.

Proof. Choose arbitrary l rows of M and let L denote the collection of these chosen rows.
Denote A ⊆ Y l the maximal collection of columns whose restrictions to L are all distinct (we
just choose one column if there are several columns with the same restrictions to L). It is easy
to see |A| ≤ ql since there are at most ql distinct words of length l. Delete these l rows and the
columns contained in A from M . Let M ′ denote the remaining submatrix. Then M ′ is a q-ary
(N − l)× (n−|A|) matrix. If n−|A| ≤ u− 1, we are done. Otherwise it suffices to show M ′ is a
representation matrix of a separating hash family of type {w1, . . . , wi − 1, . . . , wt} for arbitrary
1 ≤ i ≤ t.

Assume the contrary, M ′ is not {w1, . . . , wi − 1, . . . , wt}-separating for some 1 ≤ i ≤ t.
Without loss of generality, we set i = 1. Then there exist t subsets C1, . . . , Ct of the columns of
M ′ with |C1| = w1−1 and |Ci| = wi for 2 ≤ i ≤ t, such that no row ofM ′ can separateC1, . . . , Ct.
Let c be an arbitrary column of C2 and let c′ be a column in A such that c′|L = c|L. Such c′ ∈ A
must exist by our definition of A. Consequently, no row can separate C1 ∪ {c′}, C2, . . . , Ct in
the original matrix M , which contradicts the fact that M is {w1, . . . , wt}-separating. Thus M ′

satisfies the desired separating property and the lemma follows from n−|A| ≤ C(N − l, q, {w1−
1, ..., wt} and |A| ≤ ql.

Remark 3.2. This lemma is obviously an extension of Lemma 2 of [7]. We think this Johnson-
type bound is very interesting and important since it points out the information hidden in the
structure of separating hash families.

As the first application of Lemma 3.1, we will use it to prove Theorem 1.5. Note that we
can omit the constraint C(⌊N/(u − 1)⌋, q, {w1, . . . , wt}) ≥ u in the theorem by introducing a
maximum term in the expression of the upper bound (just as the case in Lemma 3.1). And
C(⌊N/(u − 1)⌋, q, {w1, . . . , wt}) ≥ u always holds for N ≥ u − 1 and sufficiently large q, for
example, q ≥ u.

Proof of Theorem 1.5. One can verify that N = r⌈N/(u− 1)⌉+ (u− 1− r)⌊N/(u− 1)⌋. We
apply Lemma 3.1 repeatedly for u − 1 times, in which l is chosen to be ⌈N/(u − 1)⌉ (r times)
and ⌊N/(u − 1)⌋ (u − 1 − r times), respectively. The theorem follows from a simple fact that
C(0, q, {1}) = 0.

Remark 3.3. It is not hard to see our bound is an improvement of Theorem 1.4, and hence
an improvement of [7, 18]. One can see ⌈N/(u − 1)⌉ is the best exponential term that can be
obtained by our method, since to reduce the exponential term, one should reduce the maximum
value of l involved in the deletions. In other words, we should find a finer partition of [N ] and
hence more deletion rounds are needed. However, at most (u − 1) deletion rounds can be used,
because C(N, q, {w1, . . . , wt}) can be arbitrary large if t = 1 and N > 0.

Remark 3.4. Since the frameproof code is a special class of separating hash families, it is not
surprising to see our bound contains Theorem 1 of [15] as a special case. By Constructions 2 and
3 in [15], one can find that Theorem 1.5 is asymptotically optimal when q ≥ N , {w1, . . . , wt} =
{1, w}, N ≡ 1 (mod w), or q = Ω(N2), {w1, . . . , wt} = {1, 2}. The following section presents a
construction which shows Theorem 1.5 is also asymptotically optimal when N = u− 1.
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4 A construction for t-perfect hash families with t−1 rows

The aim of this section is to present a construction for PHF (N ;NqN−1, qN−1 + (N −
1)qN−2, N + 1) for arbitrary positive integer q ≥ 2 and N ≥ 2.

One nice feature of our construction is that it is a generalization of many previous ones. When
N = 2, the construction of PHF (2; 2q, q+ 1, 3) has appeared in [29, 39]. And when N = 3, the
construction of PHF (3; 3q2, q2+2q, 4) has appeared in numerous papers, for example, Hollmann
et al. [27], Blackburn [12], Stinson et al. [38] and Bazrafshan et al. [7].

Let us begin with N = 3 as a simple example to illustrate our idea.

Example 4.1. ([7, 12, 27, 38]) There exists a PHF (3; 3q2, q2 + 2q, 4) for any integer q ≥ 2.

Proof. We first construct a 3× q2 submatrix, in which the alphabet set is the (q2 +2q)-element
set defined as {(x, y), (x, 0), (0, y) : 1 ≤ x, y ≤ q, x, y ∈ Z},





(1, 1) (1, 2) · · · (1, q) (2, 1) · · · (2, q) · · · (q, 1) · · · (q, q)
(0, 1) (0, 2) · · · (0, q) (0, 1) · · · (0, q) · · · (0, 1) · · · (0, q)
(1, 0) (1, 0) · · · (1, 0) (2, 0) · · · (2, 0) · · · (q, 0) · · · (q, 0)



.

We denote the three rows of this submatrix as A0, A1, A2, respectively. Then the representation
matrix of the desired perfect hash family can be presented as follows:





A0 A2 A1

A1 A0 A2

A2 A1 A0



 .

We can easily see it is a 3× 3q2 matrix over an alphabet of size q2 + 2q. One can verify (or see
the proof of Theorem 1.7 below) that it is indeed a representation matrix of a 4-perfect hash
family.

In the above matrix A0 acts like an identity map that preserves each element in {(x, y) : 1 ≤
x, y ≤ q, x, y ∈ Z}, while Ai, i = 1, 2, acts like a projection that projects the i-th entry of (x, y)
to zero. Actually, the idea behind this simple construction can be generalized.

Recall the definition of the Hamming graphs in Section 2. Take a q-ary hypercube A of
dimension k, then |V (A)| = qk. For 1 ≤ i ≤ k and arbitrary α = (α(1), . . . , α(k)) ∈ V (A),
define πi to be the map that sets α(i) into zero but preserves all other coordinates of α. We say
πi separates a set S ⊆ V (A) if πi(α) 6= πi(β) for arbitrary distinct α, β ∈ S. Proposition 1 of
[12] establishes an important property of these maps. We present the proof here for the sake of
reader’s convenience.

Lemma 4.2. ([12]) Let S ⊆ V (A) be an arbitrary t-element subset with t ≤ k, then S is
separated by at least k − t+ 1 of the functions π1, . . . , πk.

Proof. Assume the contrary. Without loss of generality, let S = {α1, . . . , αt} and let π1, . . . , πt

be the t functions which can not separate S. Define a colored graph G = (V,E) by V = S
and connect α, β ∈ V by an edge of color i if πi(α) = πi(β). Note that graph G is a subgraph
of a Hamming graph. Since π1, . . . , πt can not separate S, then for every i ∈ [t], there exist
1 ≤ j < l ≤ t such that πi(αj) = πi(αl). So G contains a subgraph G

′

= (V,E
′

) with t vertices

and t edges of distinct colors. By Lemma 2.3 we can deduce that G
′

contains a cycle which can
be denoted as (α1, α2, . . . , αc), where c is an integer such that 1 ≤ c ≤ t.

We are done if we can show such cycle must not exist. Assume that the edge between α1

and α2 is colored by the i-th color. Then α1 and α2 must differ in their i-th coordinate. Since
every edge in this cycle is of distinct color and every pair of connected vertices differ in exactly
one coordinate, then for every j ∈ {2, 3, . . . , c}, αj and αj+1 must agree in their i-th coordinate.
In particular, αc+1 is recognised as α1, which implies that α2(i) = α3(i) = . . . = αc(i) = α1(i).
Thus the desired contradiction follows.

The following lemma is an easy consequence of above lemma.

Lemma 4.3. Let πi (1 ≤ i ≤ k) be the functions defined as above and let π0 denote the identity
map which satisfies π0(α) = α for every α ∈ V (A). Suppose S ⊆ V (A) is a t-element subset
with t ≤ k + 1, then at most t− 1 of the functions π0, π1, . . . , πk can not separate S.
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Proof. Apply Lemma 4.2 and remember the fact that π0 separates every subset of V (A).

Now we can prove Theorem 1.7.

Proof of Theorem 1.7. Take a q-ary hypercube A of dimension N − 1. Obviously |V (A)| =
qN−1. Let π0, π1, . . . , πN−1 be the maps defined as above. Then our desired perfect hash family
can be represented as the following matrix

















π0(A) πN−1(A) · · · · · · π1(A)
π1(A) π0(A) · · · · · · π2(A)

...
...

. . .
...

...
...

. . .
...

πN−1(A) πN−2(A) · · · · · · π0(A)

















,

where for every 0 ≤ i ≤ N − 1, πi(A) := (πi(α))α∈V (A) is a 1 × |V (A)| submatrix. Denote this

representation matrix as M , then M is an N ×NqN−1 matrix. Let Y = ∪N−1
i=0 πi(A) denote the

alphabet set. It is not hard to see |{π0(α) : α ∈ V (A)}| = qN−1 and |{πi(α) : α ∈ V (A)}| =
qN−2 for every 1 ≤ i ≤ N − 1. Then one can verify that |Y | = qN−1 + (N − 1)qN−2. Thus we
can conclude that M is the representation matrix of an (N ;NqN−1, qN−1 + (N − 1)qN−2)-hash
family.

Now it remains to verify that this hash family is indeed an (N + 1)-perfect hash family.
Consider M as the concatenation of N column patterns denoted as (C1|C2| · · · |CN ) with |C1| =
|C2| = · · · = |CN | = qN−1. Take an arbitrary (N + 1)-subset S of the columns of M . We are
going to show that there must exist a row of M that separates S. If S ⊆ Ci for some 1 ≤ i ≤ N ,
then the i-th row of Ci, which corresponds to π0, can separate S, since π0(α) 6= π0(β) for
arbitrary distinct α, β ∈ V (A). Otherwise, let Ci1 , . . . , Cij be the column patterns which
have non-empty intersection with S, where j ≥ 2 is a positive integer. For 1 ≤ l ≤ j, denote
Cil ∩S = Sl. Then

∑j
l=1 |Sl| = N +1 and |Sl| ≤ N for every l. By Lemma 4.3, at most |Sl| − 1

rows of Cil can not separate Sl. Since
∑j

l=1(|Sl| − 1) = N + 1 − l ≤ N + 1 − 2 = N − 1 < N ,
then there must exist a row of (C1|C2| · · · |CN ) that separates ∪l

i=1Sl = S.

Remark 4.4. Our construction has an important property satisfying

lim
q→∞

NqN−1

qN−1 + (N − 1)qN−2
= N

and hence it is asymptotically optimal since we have pN+1(N, q) ≤ Nq by Theorem 1.5. Note
that a u-perfect hash family is {w1, . . . , wt}-separating for arbitrary wi such that wi ≥ 1 and
∑t

i=1 wi = u. Theorems 1.5 and 1.7 can be combined to show

lim
q→∞

C(u − 1, q, {w1, . . . , wt})
q

= u− 1,

which gives a negative answer to Question 1.6. Furthermore, taking into account the fact that
any (⌊(t/2 + 1)2⌋)-perfect hash family is also a t-IPP code, one can see that our construction
also confirms the validity of Conjecture 1.8.

Remark 4.5. It is worth mentioning that Proposition 2 of [12] (an unpublished paper) also

noticed that limq→∞
pu(u−1,q)

q = u− 1. The author used an optimization method and no explicit
construction was given in that paper.

The proof of Lemma 4.2 also leads to a conclusion on Hamming graphs, which we think may
be of independent interest.

Corollary 4.6. Color the edges of H(k, q) with k colors such that the edge (α, β) is colored by
color i if α and β differ in their i-th coordinate. Then H(k, q) contains no cycles with pairwise
distinct colors.
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5 Perfect hash families of strength three with three rows

Constructions for perfect hash families can induce constructions for corresponding separating
hash families. And with the aid of Lemma 3.1, upper bounds for perfect hash families can also
induce upper bounds for related separating hash families. Therefore, from this section we will
focus on perfect hash families.

We have mentioned in Section 1 that if (u− 1) ∤ N , it is very difficult to determine whether
the exponent ⌈N/(u− 1)⌉ in Theorem 1.5 is tight. In the following two sections we will handle
two small cases in such problems, namely, N = u = 3 and N = u = 4. When N = 3 and u = 3,
the corresponding separating hash families only have two alternative types, namely, {1, 2}-
separating and 3-perfect hashing. Bazrafshan and Trung [8] proved that C(3, q, {1, 2}) ≤ q2

and an SHF (3; q2, q, {1, 2}) does exist for q ≥ 2. Walker and Colbourn [39] conjectured that
p3(3, q) = o(q2). In this section, we will verify this conjecture by proving q2−o(1) < p3(3, q) =
o(q2). Furthermore, the upper bound is extended to pt(t, q) and C(u, q, {w1, . . . , wt}) with
∑t

i=1 wi = u.
Let us begin with a simple lemma. Note that we will not distinguish between a perfect hash

family and its representation matrix. We say a word x of the hash family (resp. a column of the
representation matrix) has a unique coordinate i if for any other word (resp. column) y, y 6= x,
it holds that y(i) 6= x(i).

Lemma 5.1. Let X denote the column set (words) of a PHF (N ;n, q, t). Then by deleting at
most Nq words from X, we can get a subset X∗ ⊆ X such that no word in X∗ has a unique
coordinate in X∗.

Proof. We use a greedy algorithm to construct X∗. Delete x1 from X if x1 has a unique
coordinate in X . Denote X1 = X − {x1}. In general, if xi+1 ∈ Xi has a unique coordinate
in Xi, we delete xi+1 from Xi and then denote Xi+1 = Xi − {xi+1}. Continue this procedure
until we get an X∗ with no words containing a unique coordinate in it. At most Nq words will
be deleted from X since we can delete any symbol y ∈ [q] at most one time for any coordinate
i ∈ [N ].

Since all perfect hash families being considered in the following are of size at least q1+ǫ for
some positive constant ǫ, then the deletion of at most Nq words from X can be neglected. Let
PHF ∗(N ;n, q, t) denote the perfect hash family (obtained from PHF (N ;n, q, t)) such that no
word in it contains a unique coordinate. We use p∗t (N, q) to denote the corresponding maximal
cardinality.

Lemma 5.2. In a PHF ∗(t;n, q, t), any two words can agree with at most one coordinate.

Proof. Assume the contrary, then the following submatrix is contained in the representation
matrix of such PHF ∗(t;n, q, t)





















α1(1) α2(1) ∗ ∗ ∗ ∗
α1(2) α2(2) ∗ ∗ ∗ ∗
α1(3) ∗ α3(3) ∗ ∗ ∗

... ∗ ∗ . . . ∗ ∗

... ∗ ∗ ∗ . . . ∗
α1(t) ∗ ∗ ∗ ∗ αt(t)





















,

where in each row, the two bold coordinates are equal. α1, α2 are two words such that α1(i) =
α2(i) for i = 1, 2 and since α1 has no unique coordinates, there exist α3, . . . , αt such that
αj(j) = α1(j) for each 3 ≤ j ≤ t. Therefore, no row of the submatrix can separate {α1, . . . , αt},
violating the t-perfect hashing property.

The following two observations are very useful.

Observation 1. On one hand, any N × n q-ary matrix M can be viewed as an N -uniform
N -partite hypergraph G = (V (G), E(G)) with equal part size q, where the vertex set is defined
as V (G) = ∪N

i=1Vi, Vi = {(i, j) : 1 ≤ j ≤ q} for 1 ≤ i ≤ N , and the edge set is defined as
E(G) = {{(i, x(i))}Ni=1 : x = {x(i)}Ni=1 is a column of M}.
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Observation 2. On the other hand, given an N -uniform N -partite hypergraph G =
(V (G), E(G)) with equal part size q. We can regard E(G) as some N × |E(G)| q-ary matrix
M . Note that V (G) can be partitioned into N pairwise disjoint sets with size q. We can set
Vi = {(i, j) : 1 ≤ j ≤ q} for 1 ≤ i ≤ N , where the first coordinate i corresponds to the i-th
part Vi and the second coordinate j corresponds to the j-th vertex in Vi. Then the matrix M
is formed by setting its column set as {x = {x(i)}Ni=1 : {(i, x(i))}Ni=1 ∈ E(G)}. Such M is said
to be the representation matrix of E(G).

These two observations establish a bridge between q-ary matrices and multipartite hyper-
graphs. Recall the definition of f∗

r (n, v, e) in Section 2.

Lemma 5.3. p∗3(3, q) ≤ f∗
3 (q, 6, 3) ≤ p3(3, q).

Proof. It is not hard to see that a PHF ∗(3;n, q, 3) exists if and only if the following configuration
is not contained in its representation matrix





a ∗ a
b b ∗
∗ c c



 ,

where none of the stars belong to {a, b, c}.
We call this configuration a triangle since these three columns have no identical coordinates

and every pair of columns have exactly one common coordinate. On one hand, it holds that
f∗
3 (q, 6, 3) ≤ p3(3, q), since for arbitrary three columns of a hash family, if no row can separate
them then for each row there exists some coordinate equal to another one. Therefore, these
columns (or corresponding edges) must be spanned by at most six points, which violates the
(6,3)-free property. On the other hand, if some three columns of a PHF ∗(3;n, q, 3) contain
at most six points, then either there exists a pair of two columns having two coordinates in
common or these three columns form a triangle. Both cases are forbidden in a PHF ∗(3;n, q, 3).
Therefore, it holds that p∗3(3, q) ≤ f∗

3 (q, 6, 3) and hence our lemma follows.

Theorem 5.4. p3(3, q) = f3(3q, 6, 3) + O(q) and hence for arbitrary ǫ > 0, q2−ǫ < p3(3, q) =
o(q2) holds for sufficiently large q.

Proof. Apply Lemmas 2.2, 5.1, 5.3 and inequality (1).

As the second application of Lemma 3.1, the upper bound of p3(3, q) can be extended to
pt(t, q) and C(u, q, {w1, . . . , wt}).

Corollary 5.5. C(u, q, {w1, . . . , wt}) = o(q2) for any t ≥ 3 and
∑t

i=1 wi = u. In particular,
pt(t, q) = o(q2) for any t ≥ 3.

Proof. Apply Lemma 3.1 and Theorem 5.4.

Remark 5.6. One can also prove pt(t, q) = o(q2) by applying the graph removal lemma [2], see
[3, 6] for examples of applications of graph removal lemma in such problems. Here our proof ap-
plying Lemma 3.1 is much simpler. When 1+w ≤ q, it was shown in [8] that C(1+w, q, {1, w}) ≤
q2. And for any prime power q, there exists an SHF (w + 1; q2, q, {1, w}). Therefore, for
C(u, q, {w1, . . . , wt}) with t = 2, we can not determine whether C(w1 +w2, q, {w1, w2}) = Ω(q2)
or C(w1 + w2, q, {w1, w2}) = o(q2). It is an interesting problem to determine the right order of
the magnitude of C(w1 + w2, q, {w1, w2}).

Although we can get the lower bound q2−ǫ by a direct application of the (6,3)-theorem
and Lemma 2.2, we prefer a construction which provides the explicit cardinality. A method
introduced in Section 3 of [25] can be used to construct such q-ary codes of length N . Our
method is similar to that one except some transformations which will be mentioned later.

Given integers q ≥ N ≥ 2, M ⊆ {0, 1, . . . , q − 1}, we define an N -uniform N -partite hyper-
graph GM (whose edge set can be viewed as the representation matrix of our desired code) as
follows. The vertex set V (GM ) is defined to be

V (GM ) := {(j, y) : j ∈ [N ], y ∈ Zq}.
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It is easy to see |V (GM )| = Nq. For each j ∈ [N ], we use Vj = {(j, y) : y ∈ Zq} to denote the
vertex set of the j-th part of V (G). For integers 0 ≤ y, m ≤ q, the hyperedge of G is defined to
be the N -element set

A(y,m) = {(1, y + b1m), (2, y + b2m), . . . , (N, y + bNm)},

where B := {b1, . . . , bN} ⊆ {0, 1, . . . , q − 1} is an undetermined N -element set and the second
coordinates y+ bim are taken modulo q. We call B the tangent set of A(y,m). A(y,m) can also
be viewed as a q-ary word of length N . If q is a prime, one can verify that

|A(y,m) ∩ A(y′,m′)| ≤ 1 (4)

holds for (y,m) 6= (y′,m′) by solving a system of two congruence equations.
From now on, we fix the size of the alphabet set q to be a prime or the prime nearest to it.

For a subset M ⊆ {0, 1, . . . , q − 1}, we set

E(GM ) := {A(y,m) : y ∈ Zq, m ∈ M}

to be the edge set of our desired hypergraph, where the set M is determined by the subgraphs
that needed to be forbidden (these subgraphs can also be viewed as the configurations that
needed to be forbidden in the desired code). Obviously |E(GM )| = q|M | and by (4) we can
verify that GM is also linear.

Now, we are going to choose appropriate B and M according to the properties of our desired
codes. For example, to construct a 3-perfect hash family with three rows, we first set N = 3
and then choose B = {0, 1, 2}, where bi = i − 1 for 1 ≤ i ≤ 3. Therefore, to show this specified
GM can indeed induce a PHF (3, n, q, 3), by Lemma 5.3 we only need to guarantee that E(G) is
triangle-free, since it is already linear (we have set q to be a prime). We claim that it suffices to
choose M ⊆ {0, 1, . . . , ⌊(q−1)/2⌋} to be a 2-sum-free set such that the equation m1+m2 = 2m3

has no solution except m1 = m2 = m3.

Theorem 5.7. There exists a constant γ such that p3(3, q) > q2e−γ
√
log q.

Proof. It suffices to show GM contains no triangles for arbitrary 2-sum-free setM ⊆ {0, 1, . . . , ⌊(q−
1)/2⌋}. If otherwise, assume that {A(yi,mi) ∈ GM : 1 ≤ i ≤ 3} forms a triangle. One can verify
that the vertices of this triangle must locate on different parts of V1, V2, V3. Thus we can assume
that











A(y1,m1) ∩A(y2,m2) = {(j2, a2)}
A(y2,m2) ∩A(y3,m3) = {(j3, a3)}
A(y3,m3) ∩A(y1,m1) = {(j1, a1)}

where {j1, j2, j3} = {1, 2, 3} and a1, a2, a3 are some positive integers. Then the following three
equations hold simultaneously











y1 + (j2 − 1)m1 ≡ y2 + (j2 − 1)m2 (mod q)

y2 + (j3 − 1)m2 ≡ y3 + (j3 − 1)m3 (mod q)

y3 + (j1 − 1)m3 ≡ y1 + (j1 − 1)m1 (mod q).

Because of the symmetry of a triangle, we can always assume that j1 < j2 < j3. By a simple
elimination we can infer

(j2 − j1)m1 + (j3 − j2)m2 ≡ (j3 − j1)m3 (mod q),

or simply
m1 +m2 ≡ 2m3 (mod q).

This implies m1+m2 = 2m3 since mi ≤ ⌊(q− 1)/2⌋ for all 1 ≤ i ≤ 3, which contradicts the fact

that M is 2-sum-free. By Lemma 2.1 there exists a 2-sum-free set M with |M | > qe−γ
√
log q for

some constant γ. Therefore, it follows that |E(GM )| = q|M | > |M | > q2e−γ
√
log q.
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6 Perfect hash families of strength four with four rows

It is much more complicated to construct 4-perfect hash families such that p4(4, q) > q2−o(1).
We will use the notion of rainbow cycles and R-sum-free sets defined in Section 2. In fact, we
are going to prove the following result:

Lemma 6.1. p∗t (t, q) ≤ g∗t (q) ≤ pt(t, q).

Proof. First we are going to show that any PHF ∗(t;n, q, t) can induce a t-uniform t-partite linear
hypergraph G containing no rainbow cycles. Let M denote the representation matrix of the hash
family, then M can also be viewed as the representation matrix of E(G) by Observation 1. M
(resp. E(G)) is already linear by Lemma 5.2. It suffices to show M (resp. E(G)) contains no
rainbow cycles. Assume otherwise, the columns (resp. hyperedges) of M (resp. E(G)) indexed
by α1, . . . , αk form a rainbow k-cycle v1, α1, v2, α2, . . . , vk, αk, v1 with k ≤ t. By Observation
1, the i-th part of V (G) can be defined as Vi = {(i, j) : j ∈ [q]}, where the first coordinate
corresponds to the i-th row of M and the second coordinate corresponds to the j-th element in
[q]. Without loss of generality, we can assume that vi is from the i-th part of the vertex set.
Then it holds that αi(i) = αi+1(i) for 1 ≤ i ≤ k−1 and αk(k) = α1(k). The following submatrix
induced by such k-cycle is contained in M :





















α1(1) α2(1) α3(1) α4(1) αk−1(1) αk(1)
α1(2) α2(2) α3(2) α4(2) αk−1(2) αk(2)
α1(3) α3(3) α4(3) αk−1(3) αk(3)

...
. . .

...
...

...
. . . αk−1(k− 1) αk(k− 1)

α1(k) αk(k)





















,

where in each row, the two bold coordinates are equal. Note that in this matrix, the columns
represent the hyperedges and the coordinates in each column represent the vertices contained
in the corresponding hyperedge. It is easy to see none of the first k rows of M can separate
{α1, . . . , αk}. Note that no column of M has unique coordinates, then there exist αk+1, . . . , αt

such that αj(j) = α1(j) for k + 1 ≤ j ≤ t, which can also be depicted by

















α1(k+ 1) αk+1(k +1) ∗ ∗ ∗ ∗
α1(k+ 2) ∗ αk+2(k+ 2) ∗ ∗ ∗

... ∗ ∗ . . . ∗ ∗

... ∗ ∗ ∗ . . . ∗
α1(t) ∗ ∗ ∗ ∗ αt(t)

















.

Therefore, the left t−k rows of M can not separate {α1, αk+1, . . . , αt}. So we can conclude that
no row of M can separate {α1, . . . , αt}, violating the t-perfect hashing property.

It remains to show that any t-uniform t-partite linear hypergraph (with equal part size q) G
without rainbow cycles can induce a PHF (t;n, q, t) such that n = |E(G)|. We also use M to
denote the representation matrix of E(G). We claim that if there exists a t× t submatrix T of
M such that no row can separate it, then the hypergraph induced by T will contain a rainbow
k-cycle with k ≤ t.

We will argue by induction on t. When t = 2, a 2 × 2 submatrix can always be separated
by one of its two rows provided that the two columns of this submatrix are distinct. When
t = 3, if a 3 × 3 submatrix of a 3-uniform 3-partite linear hypergraph can not be separated
by one of its three rows, then this submatrix actually forms a triangle defined in Lemma 5.3.
One can verify that this triangle can be represented as a rainbow 3-cycle {a,E1, b, E2, c, E3}
for some edges E1, E2, E3. Now assume the statement is true for t − 1. Take a t × t matrix
T with columns indexed by C = {α1, . . . , αt} and rows indexed by R = {r1, . . . , rt} such that
no row can separate C. We denote Ci = C − {αi} and Ri = R − {ri} for each 1 ≤ i ≤ t.
Furthermore, we use Tij to denote the (t− 1)× (t− 1) submatrix formed by Ri and Cj . Then
for any submatrix Tij , there must exist a row that separates all columns of Tij since otherwise
Tij contains a rainbow k-cycle with k ≤ t− 1 by the induction hypothesis.
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Without loss of generality, assume r1 separates Ct. Note that this row can not separate C,
so we can assume further that αt(1) = α1(1). Then consider T11, there exists a row in R−{r1}
that separates C−{α1}. We can set this row to be r2. Similarly, there exists 2 ≤ j ≤ t such that
α1(2) = αj(2) since r2 can not separate C. Then j 6= t since α1 and αt have already agreed on
one coordinate, say, αt(1) = α1(1). Assume that α1(2) = α2(2). Now consider T22, then there
exists a row in R − {r2} that separates C − {α2}. Note that this row can not be r1 since α1

and αt agree on their first coordinate. We can set this row to be r3. For the same reason, there
exists j ∈ [t], j 6= 2 such that α2(3) = αj(3). Then j 6= 1 since it already holds α1(2) = α2(2).
If j = t, we are done since {α1, α2, αt} forms a rainbow 3-cycle. So we can set j = 3.

The above discussion can be depicted by the following matrix:













































α1(1) α2(1) α3(1) α4(1) · · · · · · αt−1(1) αt(1)
α1(2) α2(2) α3(2) α4(2) · · · · · · αt−1(2) αt(2)
α1(3) α2(3) α3(3) α4(3) · · · · · · αt−1(3) αt(3)
α1(4) α2(4) α3(4) α4(4) · · · · · · αt−1(4) αt(4)

. . .

. . .

α1(i − 1) · · · αi−2(i− 1) αi−1(i− 1) · · · · · · αt(i+ 1)
α1(i) · · · αi−1(i) αi(i) · · · αt(i+ 1)

α1(i + 1) · · · αi(i+ 1) αi+1(i+ 1) · · · αt(i+ 1)
. . .

. . .













































,

where in each row, the two bold coordinates are equal. We continue this procedure for Ti,i

with i ≥ 3. By our choice, for all 1 ≤ j ≤ i, in row rj it holds that αj−1(j) = αj(j) (α0 is
recognised as αt). Thus no row in {r1, . . . , ri} can separate Ti,i. We can always assume that
ri+1 ∈ R − {ri} is the row that separates C − {αi}. Then there exists a j ∈ [t], j 6= i such
that αi(i + 1) = αj(i + 1) since ri+1 can not separate the whole C. Obviously, j 6= i − 1. If
j ∈ {1, . . . , i− 2} or j = t, then such choice of j will induce a rainbow (i − j + 1)-cycle formed
by {αj , . . . , αi}

























αj(j +1) αj+1(j + 1) ∗ ∗ ∗
∗ αj+1(j + 2) αj+2(j +2) ∗ ∗
...

...
...

. . .
...

...
...

...
. . .

...

∗ ∗ ∗ αi−1(i) αi(i)
αj(i+ 1) ∗ ∗ ∗ αi(i+1)

























or a rainbow (i+ 1)-cycle formed by {α1, . . . , αi, αt}




























α1(1) ∗ ∗ · · · αt(1)
α1(2) α2(2) ∗ · · · ∗

∗ α2(3) α3(3) · · · ∗
...

...
. . . · · ·

...
...

...
...

. . . · · ·
...

∗ ∗ ∗ αi−1(i) αi(i) ∗
∗ ∗ ∗ αi(i+ 1) · · · αt(i+ 1)





























.

If neither one of the above cases holds, we can always assume that j = i + 1 and continue this
procedure.

This procedure will end when it comes to Tt−1,t−1 with αt−1(t) = αt(t). Then {α1, . . . , αt}
will form a rainbow t-cycle and our desired contradiction follows.
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We can use a similar method as that of the previous section to construct 4-perfect hash
family with four rows. However, we can not simply take B = {0, 1, 2, 3} since such choice will
lead to an equation

2m1 + 2m2 − 3m3 −m4 = 0,

whose solution is not easy to determine as suggested by Ruzsa [33]. In order to show p4(4, q) >
q2−o(1), we should choose B more carefully. Recall that we have set q to be a prime.

Lemma 6.2. Let R = {b1, . . . , br} ⊆ {0, . . . , q − 1} be an r-element subset with rank r(R). If
M ⊆ {0, 1, . . . , ⌊(q − 1)/r(R)⌋} is an R-sum-free set, then the hypergraph defined by

E(GM ) = {A(y,m) : y ∈ Zq, m ∈ M},

where A(y,m) = {(i, y + bim) : bi ∈ R}, is an r-uniform r-partite linear hypergraph containing
no rainbow cycles.

Proof. First it is easy to see GM is r-uniform and r-partite with V (GM ) = ∪r
j=1Vj , where

Vj = {(j, y) : y ∈ Zq}, 1 ≤ j ≤ N . To see GM is also linear, one just needs to notice that if
|A(y,m) ∩A(y′,m′)| ≥ 2, then there are b1, b2 ∈ R, b1 6= b2 such that

{

y + b1m ≡ y′ + b1m
′ (mod q)

y + b2m ≡ y′ + b2m
′ (mod q).

Then we can infer (b1 − b2)(m−m′) ≡ 0 (mod q), which is a contradiction with q prime.
Now it remains to show that GM indeed contains no rainbow cycles. Assume the contrary, it

contains a rainbow k-cycle with k ≤ r, denoted by v1, A(y1,m1), v2, A(y2,m2), . . . , vk, A(yk,mk), v1,
where vi ∈ Vji and ji1 6= ji2 for i1 6= i2 by the definition of a rainbow cycle. The following k
equations hold simultaneously:



































y1 + bj2m1 ≡ y2 + bj2m2 (mod q)

y2 + bj3m2 ≡ y3 + bj3m3 (mod q)

...

yk−1 + bjkmk−1 ≡ yk + bjkmk (mod q)

yk + bj1mk ≡ y1 + bj1m1 (mod q).

By a simple elimination, one can infer

(bj2 − bj1)m1 + (bj3 − bj2)m2 + · · ·+ (bjk − bjk−1)mk−1 + (bj1 − bjk)mk ≡ 0 (mod q),

or
(bj2 − bj1)m1 + (bj3 − bj2)m2 + · · ·+ (bjk − bjk−1)mk−1 + (bj1 − bjk)mk = 0,

since mi ≤ ⌊(q − 1)/r(R)⌋ for each 1 ≤ i ≤ k, which implies m1 = · · · = mk taking into account
the fact that M is R-sum-free. Thus y1 = · · · = yk, which is a contradiction. Therefore, we can
conclude that GM contains no rainbow cycles.

Lemmas 6.1 and 6.2 suggest that we can use tools from additive number theory to construct
good perfect hash families. As discussed before Theorem 5.7, we use B to denote the set of
tangents of A(y,m). To construct PHF (4;n, q, 4), we take B = {0, 2, 5, µ + 5}, where b0 =

0, b1 = 2, b2 = 5 and b3 = µ + 5 with µ = ⌈2
√
log q⌉. Note that µ = o(qǫ) for arbitrary small

constant ǫ > 0. By previous lemmas, our goal is to construct a B-sum-free subset M of Zq with
sufficiently large cardinality. The desired hyperedge A(y,m) is defined to be

A(y,m) = {(1, y), (2, y + 2m), (3, y + 5m), (4, y + (µ+ 5)m)}. (5)

The following lemma (together with Lemma 6.2) shows that if we choose M as the set defined
in Lemma 2.4, then the corresponding E(GM ) contains no rainbow cycles.

Lemma 6.3. Choose M as the set defined in Lemma 2.4 and let B be the 4-element set defined
above, then M is B-sum-free.
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Proof. Note that M has no nontrivial solution to all equations in (3), then one can verify this
lemma directly by definition.

Lemma 6.4. The hypergraph defined by

GM = {A(y,m) : y ∈ Zq, m ∈ M},

has no rainbow cycles, where M is the set defined in Lemma 2.4 and A(y,m) is defined in (5).

Proof. Apply Lemmas 6.2 and 6.3 and note that r(B) = µ+ 5.

Theorem 6.5. There exists a constant γ such that p4(4, q) > q2e−γ(log q)3/4 .

Proof. Apply Lemmas 2.4, 6.1 and 6.4. Then the theorem follows from

p4(4, q) ≥ g∗4(q) ≥ |E(GM )| = q|M | > q2e−γ(log q)3/4 .

Remark 6.6. In the above construction of PHF ∗(4, n, q, 4), we choose the tangent set B of the

hyperedge A(y,m) to be B = {0, 2, 5, µ+5} with µ = ⌈2
√
log q⌉. This choice of B has appeared in

[3], where the authors used such B to construct 2-IPP codes. In this paper we choose the same
B as they did since in this way we can save the space for proving Lemma 2.4. Actually, when
|R| = 4 there are many choices of B satisfying the following conditions

(a) M ⊆ {0, 1, . . . , ⌊(q − 1)/r(R)⌋} is R-sum-free,

(b) |M | > q1−o(1),

(c) r(R) = o(qǫ) for arbitrary small ǫ > 0.

However, for |R| ≥ 5, we do not know whether such B exists.

7 Connections to hypergraph Turán problems

In this section we will study perfect hash families in view of hypergraph Turán problems.

Theorem 7.1. For arbitrary positive integers t, N, q, it holds that f∗
N (q, tN −N, t) ≤ pt(N, q).

Furthermore, N !
NN fN (Nq, tN −N, t) ≤ pt(N, q).

Proof. By Lemma 2.2, it suffices to prove the first statement of the theorem. Recall that if a
hypergraph G is N -uniform N -partite with equal part size q, then E(G) can be represented by
an N × |E(G)| q-ary matrix M . If G is G(tN −N, t)-free, then given any collection of t edges
S ⊆ E(G), it is not hard to verify that in its representation matrix there must exist a row that
separates S, since otherwise S can contain at most tN − N vertices, violating the fact that G
is G(tN − N, t)-free. Therefore, M can be viewed as the representation matrix of the desired
perfect hash family.

A direct application of Theorem 7.1 gives the following result.

Corollary 7.2. If 2 ∤ N , then for arbitrary ǫ > 0, it holds that p3(N, q) > q⌈N/2⌉−ǫ.

Proof. This corollary follows from the inequality (2), nk−o(1) < fr(n, 3(r−k)+k+1, 3) = o(nk).
Set N = 2k − 1 and t = 3, by Theorem 7.1 one can infer

p3(N, q) ≥ p∗3(N, q) ≥ f∗
N (q, 3N −N, 3) ≥ N !

NN
fN (Nq, 3N −N, 3) >

N !

NN
(Nq)⌈N/2⌉−o(1).
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8 Concluding remarks

In this paper we mainly study codes and hash families with the separating property. Several
open problems and conjectures concerning the upper or lower bounds are solved. Our two
essential methods to study these objects can be summarized as follows.

The first method is to discover the structural information hidden in the separating property.
As an example, our Johnson-type bound (Lemma 3.1) is used to establish Theorem 1.5 and
Corollary 5.5.

The second one is that we establish a bridge between perfect hash families, graph theory
and additive number theory. For example, we solve Conjecture 1.9 by considering a related
hypergraph Turán problem. We also showed that tools from additive number theory can be
used to construct good perfect hash families. As a result, Theorems 5.7, 6.5 and Corollary 7.2
suggest that there may exist a positive answer to Question 1.10.

Besides these two new methods, we believe that the construction in Section 4 is of interest
since it generalizes many previous ones. Further generalizations of our method are expected.

As a conclusion, we would like to mention several open problems which we think are inter-
esting.

Open Problem 1. If 2 ∤ N , Corollary 7.2 shows that p3(N, q) > q⌈N/2⌉−o(1). Determine
whether p3(N, q) = o(q⌈N/2⌉) or p3(N, q) = Θ(q⌈N/2⌉).

Open Problem 2. For r-uniform r-partite linear hypergraph without rainbow cycles, we
have proved that g∗r (q) = o(q2) and g∗i (q) > q2−o(1) for i = 3, 4. Then does it hold that
g∗r (q) > q2−o(1) for all r ≥ 3?

Open Problem 3. For arbitrary r ≥ 3, does there exist an r-element set R and M ⊆ [q]
such that the conditions in Remark 6.6 are satisfied? Note that the question is true when
r = 3, 4.

Open Problem 4. It has been shown in Theorem 7.1 that pt(N, q) ≥ f∗
N(q, tN − N, t).

Then does there exist an upper bound for pt(N, q) only using f∗
N(q, v, t)?
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[21] W.G. Brown, P. Erdős, and V.T. Sós. Some extremal problems on r-graphs. In New
directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann
Arbor, Mich, 1971), pages 53–63. Academic Press, New York, 1973.
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[34] I.Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, volume 18 of
Colloq. Math. Soc. János Bolyai, pages 939–945. North-Holland, Amsterdam-New York,
1978.

[35] J.N. Staddon, D.R. Stinson, and R. Wei. Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inform. Theory, 47(3):1042–1049, 2001.

[36] D.R. Stinson, T. Trung, and R. Wei. Secure frameproof codes, key distribution patterns,
group testing algorithms and related structures. J. Statist. Plann. Inference, 86(2):595–617,
2000. Special issue in honor of Professor Ralph Stanton.

[37] D.R. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math., 11(1):41–53 (electronic), 1998.

[38] D.R. Stinson, R. Wei, and K. Chen. On generalized separating hash families. J. Combin.
Theory Ser. A, 115(1):105–120, 2008.

[39] R.A. Walker II and C.J. Colbourn. Perfect Hash families: constructions and existence. J.
Math. Cryptol., 1(2):125–150, 2007.

20


	1 Introduction
	1.1 Separating hash families
	1.2 Codes with the identifiable parent property
	1.3 Perfect hash families
	1.4 Organization

	2 Preliminaries
	2.1 Separating hash families and IPP codes
	2.2 Graph theory
	2.3 Additive number theory
	2.4 Some lemmas

	3 A Johnson-type upper bound
	4 A construction for t-perfect hash families with t-1 rows
	5 Perfect hash families of strength three with three rows
	6 Perfect hash families of strength four with four rows
	7 Connections to hypergraph Turán problems
	8 Concluding remarks

