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Abstract. In many urban areas of the developing world, piped water is supplied only intermit-
tently, as valves direct water to different parts of the water distribution system at different times.
The flow is transient, and may transition between free-surface and pressurized, resulting in complex
dynamical features with important consequences for water suppliers and users. Here, we develop a
computational model of transition, transient pipe flow in a network, accounting for a wide variety
of realistic boundary conditions. We validate the model against several published data sets, and
demonstrate its use on a real pipe network. The model is extended to consider several optimization
problems motivated by realistic scenarios. We demonstrate how to infer water flow in a small pipe
network from a single pressure sensor, and show how to control water inflow to minimize damaging
pressure transients.

1. Introduction. From the dry taps of Mumbai to the dusty reservoirs of São
Paolo, urban water scarcity is a common condition of the present, and a likely feature
of the future. Hundreds of millions of people worldwide are connected to water
distribution systems subject to intermittency. This intermittent water supply may
take many forms, from unexpected disruptions to planned supply cycles where pipes
are filled and emptied regularly to shift water between different parts of the network
at different times [17, 33]. In Mumbai, for example, Vaivaramoorthy [33] reports
that on average, residents have water flowing from their taps less than 8 out of
24 hours. Intermittent supply is often inequitable, with low-income neighborhoods
experiencing lower water pressure and shorter supply durations than high-income
ones [31]. Intermittent supply not only limits water availability, but also compromises
water quality and damages infrastructure. With field data from urban India, Kumpel
and Nelson [18] quantified the deleterious effect of intermittency on water quality,
showing that both the initial flushing of water through empty pipes—as well as
periods of low pressure—corresponded with periods of increased turbidity and bacterial
contamination. Christodoulou [7] observed when that a drought in Cypress ushered in
two years of intermittent supply, pipe ruptures increased by 30%–70% per year.

Whereas intermittent water supply creates challenges for water managers and
water users, the phenomenon creates opportunities for applied mathematics. It is an
interesting and difficult mathematical problem to efficiently model transient pipe flow
in networks—including transitions to and from pressurized states—with uncertain or
complex boundary conditions. In this work we introduce a framework to not only
describe intermittent water supply, but also use optimization to improve either our
description of the system, or the operation of the described system in order to reduce
risks such as infrastructure damage.

Intermittent supply falls in somewhat of a modeling gap. Water distribution
software abounds, including the free and open source software EPANET [27] produced
by the US government, as well as many commercial packages [13]. Yet, to the
authors’ knowledge, all these fail to account for filling, emptying, and instances
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of subatmospheric pressure—phenomena that are vitally important for users and
managers dealing with intermittent supply. Sewer system software such as the Storm
Water Management Model (SWMM) [28] and Illinois Transient Model (ITM) [20] to
some extent handle the physics of interest, but are packaged in elaborate graphical
user interfaces and are not readily amenable to model improvements or optimization.

Furthermore, the authors have encountered a relative paucity of research work
dealing with modeling intermittent supply. The work of De Marchis [9] explicitly
studies filling and emptying in a water distribution system in Palermo, Italy, but with
a method of characteristics implementation of the classical water hammer equations.
This treatment assumes pipes are either entirely dry or entirely full, and that air
pressure inside the pipes is always atmospheric. After calibrating a friction parameter,
they found about 5% agreement with empirical data. Subsequent work reported by De
Marchis [10] uses the same model to assess losses in the distribution system. Freni [12],
uses this model to determine pressure valve settings to reduce distribution inequality,
but through scenario comparison rather than optimization. For sewer flow, Sanders [30]
presents a network implementation of the two-component pressure approach (TPA) of
Vasconcelos [37]. The modeling for ITM was published by León in [23]. Urban water
drainage is coupled to free surface flow by Borsche and Klaar [1]. Note that Buosso et
al. [5] give a general review of the storm water drainage literature with more details
than we have provided here.

The present work comprises an effort to address the scarcity of tools available for
those interested in modeling the details of intermittent supply, and to specifically incor-
porate such tools within an optimization framework. We use an underlying model of
coupled systems of one-dimensional hyperbolic conservation laws that strikes a balance
between real-world relevance and both computational and theoretical tractability. Our
computational framework will allow for straightforward implementation of alternative
physical models in future studies.

2. Model. The Preissman slot formulation [25] is used to describe flow within
each pipe, building on existing literature for transient, transition flow in closed conduits.
The flow is assumed to be inviscid and incompressible. The dynamical description
considers depth-averaged flow within a modified geometry that permits a single set
of equations to describe both free-surface and pressurized flow. Consideration of
one-dimensional dynamics is a reasonable approximation given that the ratio of pipe
diameter D to pipe length L is 1% or smaller in realistic scenarios.

The modeled variables are the cross-sectional area A and the discharge Q, which
can be used to compute quantities of practical interest such as pressure head and
velocity. Pressurization effects, though features of compressible flow, are accounted for
by the Preissman slot cross section pictured in Figure 2.1(a). Above a transition height
yf near the physical pipe crown, water fills the narrow slot, contributing hydrostatic
pressure that may be interpreted as the pressure within the full pipe. The slot width Ts
is related to the effective pressure wave speed a in the pressurized pipe via a2 = gAf/Ts,
where g is the acceleration due to gravity and Af is the cross-sectional area at the
transition height yf (determined by the pipe diameter and Ts ). The pressure wave
speed a is, to first order, a function of pipe material only. In practice, the slot width
Ts is a parameter chosen to set the value of pressure wave speed a, which may range
from 20–1250 m/s [37] depending on practical context and numerical constraints. In
each pipe, the governing equations for A and Q are the de St. Venant equations for
free-surface flow [16, 23],

qt + (F(q))x = S, 0 < x < L, 0 < t < T, (2.1)
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Fig. 2.1. (a) The Preissman slot model describes flow in a pipe of diameter D by depth-averaging
over this cross-section. Each filled cross-sectional area A corresponds to a height ξ and length l(ξ).
When ξ exceeds a transition height yf , water fills a narrow slot with width Ts and contributes
additional hydrostatic pressure. (b) An example pipe network.

where L is the length of the pipe, T is the duration of the study period, and

q =

(
A

Q

)
, F =

(
Q

Q2

A + gI(A)

)
, S =

(
0

S

)
, (2.2)

where g is the acceleration due to gravity and the pressure contribution I(A) is given
by

I(A) =

∫ h(A)

0

(h(A)− ξ)l(ξ)dξ, (2.3)

where l(ξ) is the pipe width at height ξ. The quantity p̄ = gI(A)/(A) is the average
hydrostatic pressure over a cross-section. In the Preissman slot description, the
pressure head H is entirely captured by the hydrostatic term p̄, and given by

H ≡ p̄

ρg
=
I(A)

A
. (2.4)

The friction term S is

S = (S0 − Sf )gA, (2.5)

where S0 is the slope of pipe bottom and Sf empirically accounts for friction losses.
In what follows we use the Manning equation

Sf =
M2
rQ|Q|

A2Rh(A)4/3
(2.6)

where Rh(A) = A/Pw is the hydraulic radius, which depends on the wetted perimeter
Pw, which is a function of A and D. The constant Mr is the Manning roughness
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coefficient, which has an empirical value depending on pipe material. Other empir-
ical formulae such as Hazen–Willams or Darcy–Weisbach may also be used. Initial
conditions q(x, 0) are assumed to be known, and boundary conditions q(0, t) and
q(L, t) are assigned based on the network connectivity and external inputs described
in Section 3.2.

The Preissman slot approach has been used, for example, by Trajkovic et al. [32],
who compared the model with experimental data; by Kerger et al. [16], who imple-
mented an exact Riemann solver and introduced a “negative slot” modification to
handle subatmospheric pressure; by León et al., [22], who allowed the pressure wave
speed to vary slightly; and by Borsche and Klar [1], who used a hexagonal cross-section
to simplify the area–height relationship. Other transient flow models for air and water
in single pipes include a “two-component pressure” approach [37, 34]; a single-equation
model with a modified pressure term [3, 4]; a two-component model [23]; and a
three-phase model accounting for air, air–water mixture, and water [15].

Note that the de St. Venant equations themselves make no assumptions about the
channel cross section. The numerical methods in Section 3 may be rather easily adapted
to other cross-sectional geometries, and in our implementation we also include the
option to simulate flow in channels with uniform cross-sections. Our implementation
could therefore be used to simulate other networks like rivers or irrigation canals, but
such options have not yet been explored.

3. Numerical Methods.

3.1. Pipes. Each pipe k is assigned a local coordinate 0 ≤ xk ≤ Lk and divided
into Nk cells of width ∆xk, where the cell centers are at xk,j = j + 1

2∆xk and the cell
boundaries are at xk,j±1/2 = xk,j ± 1

2∆xk for j = 0, . . . , Nk − 1, as shown in Figure
3.1. Each pipe is also padded with ghost cells at xk,−1 and xk,Nk

that are used to set
the boundary conditions, described in Section 3.2. A total of M timesteps of size ∆t
are taken.

Fig. 3.1. Spatial grid layout for finite volume method in pipe k of length Lk.

In what follows we drop the k subscript and assume we are working within a single,
specified pipe. Cell averages of area and discharge (Anj , Q

n
j ) ≡ qnj at the nth timestep

are updated with an explicit third-order Runge–Kutta total variation diminishing
(TVD) scheme [14] that may be written in terms of first-order Euler update steps E(q)
as

q̂ =
3

4
qn +

1

4
E(E(qn)), qn+1 =

1

3
qn +

2

3
E(q̂). (3.1)
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Each Euler step E(q) consists of updating the conservation law terms, the source
terms, and the ghost cell values. For the interior cells, the update is

E(q) = Es(Ec(q)) (3.2)

where the subscript c denotes the conservation law update and the subscript s denotes
the source term update. First we treat the homogeneous conservation law term

qt + (F(q))x = 0 (3.3)

with a Godunov update

Ec(q
n
j ) = qnj −

∆t

∆x

(
Fj+ 1

2
− Fj− 1

2

)
. (3.4)

For the numerical flux function F, we use a Harten–Lax–van Leer (HLL) Riemann
solver similar to that of León et al. [22], which approximates the solution to the
Riemann problem between a pair of cells (with left and right states qL and qR
respectively) with a center state q∗ separated from the left and right states by shocks
with speeds sL and sR, respectively [24].

The expression for the center state flux F∗ = F(q∗) is found by applying the
Rankine–Hugoniot condition across each shock. The Godunov update for this scheme
is found by sampling this solution structure to obtain

Fj± 1
2

=


FL = F(qL) if sL > 0,

F∗ = sRFL−sLFR+sRsL(qR−qL)
sR−sL if sL ≤ 0 ≤ sR,

FR = F(qR) if sR < 0,

(3.5)

where

(qL,qR) =

{
(qj ,qj+1) at j + 1

2 ,

(qj−1,qj) at j − 1
2 .

(3.6)

We computed the shock speeds via

sL = uL − ΩL, sR = uR + ΩR

where uj = Aj/Qj is the velocity in cell j and

Ωj =

{√
(gI(A∗)−gI(Aj))A∗

Aj(A∗−Aj) if A∗ > Aj + ε,

c(A∗) if A∗ ≤ Aj + ε,
(3.7)

where c(A) =
√
gA/l(A) is the gravity wave speed [22]. The center state is approxi-

mated by linearizing the equations to obtain

A∗ =
AL +AR

2

(
1 +

uL − uR
2c̄

)
, (3.8)

where c̄ = (uL + uR)/2. Note that if Aj < A∗, the separating wave is not in fact a
shock, but a rarefaction, and the expression for sj gives the speed of the head (or tail)
of the appropriate rarefaction wave [21]. A tolerance of ε = 10−8 is incorporated into
(3.7) to account for the possibility that when A∗ and Aj are very close, small errors in
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the evaluation of I(A) may cause the expression underneath the radical to become
negative. By Taylor expanding the expression underneath the radical at Aj , one can
verify that the two cases in (3.7) connect continuously, and thus the incorporation of ε
has a minimal effect on the computation. The shock speeds sL and sR may also be
estimated by evaluating û and c(Â) for Roe averages Â and û and taking minima and
maxima for left and right waves, respectively [30], but the authors found the dynamics
of interest in the present work were less robust with this treatment.

Computing the HLL fluxes requires frequently evaluating the pressure term I(A),
the wave speed c(A), and the integral φ(A), which are not analytic expressions of A
for the Preissman slot geometry. To avoid rootfinding at every cell at every time step,
Chebyshev polynomials were used to accurately express these functions of A and their
inverses. Several of the functions are ill-suited to polynomial approximation due to
fractional power singularities at either end of their domain, so we implemented an
accurate interpolation by expanding in a series involving the relevant fractional power
(Appendix A).

The friction and slope source term updates, which only affect the second component,
take the form

ES(Qnj ) = Qnj + ∆t S

(
qnj +

∆t

2
S(qnj )

)
. (3.9)

3.2. Junctions. Each pipe domain is padded with ghost cells, which serve to
compute fluxes to update boundary cells in each pipe’s computational domain. In what
follows, we use the notation (Akext, Q

k
ext) to denote the ghost cell values of A and Q at

the relevant end of pipe k and denote the values of the last cell in the computational
domain by (Akin, Q

k
in). The algorithm uses the network layout to determine what

update routine is used on the ghost cell values (Akext, Q
k
ext). The update routines

fall into three categories: external boundaries, two-pipe junctions, and three-pipe
junctions. Note that the user must specify additional information for the external
boundary routine. For other boundary treatments in networks, see [30], [6], and [19].

3.2.1. External boundary routine. When one end of a pipe is connected to
the outside world, the user may specify a variety of cases, summarized in Figure 3.2,
to describe the external conditions. In each case, the user specification of boundary
condition type allows the solver to update the ghost cell values. For example, in the
network shown in Figure 2.1(b), a time series of Q or A would be specified at each
“inflow” node (cases (2) and (3)). At the labeled “outflow” nodes, the user may choose
between several possible descriptions of how a valve allows water to exit the end of a
pipe. These boundaries may be considered either as either orifice outflow (case (4)) or
unimpeded outflow where no waves are reflected (case (1)). A closed valve may be
simulated as a reflective boundary (case (0)).

As only one pipe is involved, in what follows we drop the k superscript on the
ghost and internal cell values. For cases (0) and (1), the ghost cell values (Aext, Qext)
are updated via

(Aext, Qext) =

{
(Ain,−Qin) case (0): reflect everything,

(Ain, Qin) case (1): reflect nothing.
(3.10)

Case (0) reflects all waves and case (1) reflects none [24]. Physically, case (0) cor-
responds to a dead end and case (1) corresponds to an opening with unimpeded
outflow.
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Reflect

Case (0) Reflect
everything

Case (1) Reflect
nothing

Case (2)
Supercritical

Case (2.1) Inflow: need values for A and Q

Case (2.2) Outflow: go to case (1)
Specify A or Q

Case (3.1) Specify A

Case (3) Subcritical Case (3.2) Specify Q
Case (3.2.0) Satisfies

compatibility
condition

Case (3.2.1) Fails
compatibility

condition

Case (4) Orifice
Outflow

Specify valve
opening

Fig. 3.2. Single pipe boundary cases. User may specify either reflection of all or no waves, a
value for one of the dynamical variables A or Q, or a valve opening.

Cases (2) and (3) arise when the user specifies a time series for either Aext(x, t) or
Qext(x, t) at the external boundary. During each Euler update step, the solver first
determines whether the interior flow is super- or subcritical, depending on whether
the Froude number Fr = u/c(A) is greater than or less than unity, respectively.

In the supercritical case (2), if Qext < 0 at x = 0 or Qext > 0 at x = L, then
outflow case (2.1) applies. Information from the boundary cannot propagate inside the
domain under these conditions, and thus case (2.2) is evaluated in the same manner
as the extrapolation case (1), where all outgoing waves continue untrammeled. For
supercritical inflow, case (2.1) applies. If Qext is specified, the undetermined ghost
cell value of Aext is set to the initial inflow cross-sectional area; otherwise the Froude
number in the ghost cell is set equal to the Froude number just inside the domain.

For subcritical flow, information may propagate in both directions, and the solver
determines a value for the unspecified component Aext or Qext. The approach in the
current work is to attempt to follow an outgoing characteristic and use the value of the
Riemann invariant along this characteristic to solve for the unknown external value.
Sanders and Katopodes [29] used an exact version of this for networks of channels with
uniform cross-section (in this case the Riemann invariants are simple). The same idea
was implemented iteratively for a circular geometry by León et al. [21] and Vasconcelos
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et al. [37]. However, care must be taken to ensure that the characteristic assumption
is valid. Thus our algorithm for case (3.1) works as follows:

1. Calculate the Riemann invariant for the last cell in computational domain
according to R± = Qin/Ain ± φ(Ain), where (Ain, Qin) are values in the last cell, and
φ =

∫
(c/A)dA depends on geometry. φ(A) = 2

√
gA/w for uniform cross-sections of

width w, and has no analytic expression for circular cross sections (see Appendix A
for Chebyshev representation).

2a. If Aext is specified, set

Qext = Aext (Qin/Ain ± (φ(Ain)− φ(Aext))) ,

where the solution is physically valid since Q is allowed to be positive or negative.
Even though a solution will always be found, it may violate the subcritical condition.

2b. If Qext is specified, check for compatibility as described below. If incompatible,
go to case (3.2). Otherwise, rootfind to solve for Aext satisfying

Qin/Ain ± φ(Ain) = Qext/Aext ± φ(Aext).

3. Update ghost cell values to (Aext, Qext).
Rootfinding in step (2b) above is by no means guaranteed to work; indeed, a positive
solution Aext only exists for certain combinations of the parameters. Physically, this
means that not all values of Qext may be continuously connected to the interior
state, and choosing certain Qext forces a shock between the ghost cell and the last
computational cell. For the boundary at x = 0, for a given value of Qext < 0
there is a maximum allowed value of c− = Qin/Ain − φ(Ain). Similarly, for the
boundary at x = L, for a given Qext > 0, there is a minimum allowed value of
c+ = Qin/Ain + φ(Ain). For the uniform cross-section case, one can find analytic
formulas for these maximum/minimum allowed values:

c∗− = −
(g
l

)1/3

|Qext|1/3, c∗+ = 3
(g
l

)1/3

(Qext)
1/3. (3.11)

For the Preissman slot, to find the values of c∗± we estimate the critical point of the
function g(t) = Qext/t ± φ(t) rather than rootfind for the exact value. We define
c∗± = Qext/x̂± φ(x̂), where x̂3 = D

g Q
2
ext (for pipe diameter D), which corresponds to

approximating the gravity wave speed by
√
gh(A). The compatibility condition is

then

if

{
c− > c∗−
c+ < c∗+

}
at

{
x = 0

x = L

}
then Qext is not compatible. (3.12)

Should Qext fail the compatibility condition, case (3.2) applies, and the solver
sets Aext = Ain. This choice causes the HLL center state estimate A∗ < Ain = Aext,
consistent with states separated by shocks in the eyes of the approximate Riemann
solver update.

Lastly, if a valve or gate opening is specified, case (4) applies. Bernoulli’s equation
applied to flow through an orifice gives

Qext = CdA
√

2g(hin − Cchext), (3.13)

where hin = h(Ain), hext is a height between 0 and D that indicates the valve opening,
g is the acceleration due to gravity, and A = A(hext) is the area of the outflow orifice.
The discharge coefficient Cd = 0.78 and the contraction coefficient Cc = 0.83, are
empirical constants from experiment [32]. In this case, Aext = Ain.
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Fig. 3.3. Junction routine schematics for (a) two pipes, and (b) three pipes.

3.2.2. Two-pipe junction routine. In the absence of valves, we apply mass
conservation and assert that water height is constant across a two-pipe junction. Hence,
the ghost cell in pipe k1 is updated by translating water height from the pipe k2 to
the local geometry in pipe k1 and copying the discharge from pipe k2. That is, for
example, pipe k1 gets ghost cell values (Ak1ext, Q

k1
ext) such that hk1(Ak1ext) = hk2(Ak2in )

and Qk1ext = Qk2in . This procedure is shown in Figure 3.3(a).

3.2.3. Three-pipe junction routine. Triple junctions are divided into three
pairs of two-pipe subproblems, which are solved to find fluxes. Each two-pipe sub-
problem contributes half the flux to an incoming pipe, as shown in Figure 3.3(b).
For example, the fluxes at the end of pipe k1 are the sum of half the flux from the
two-pipe junction routine between (Ak1in , Q

k1
in ) and (Ak2in , Q

k2
in ) and half the flux from

the two-pipe junction routine between (Ak1in , Q
k1
in ) and (Ak3in , Q

k3
in ). If the coordinate

systems do not point in the same direction (e.g. both pipes have x = 0 at the triple
junction), then one of the discharge terms must have a relative minus sign before the
two-pipe junction routine is applied. The flux assignment does not otherwise depend
on geometry.

The authors believe this formulation is a simple way to couple the one-dimensional
problems with minimal computational effort, since it recycles the two-junction solver
and introduces no new data structures or solution routines. This routine may be
improved by accounting for geometric effects and energy losses (often referred to as
“minor losses” in pipe flow parlance) due to the specific geometry of the junction. Other
treatments of these types of boundaries include León et al. [19], in which the triple
junction has finite area and a dropshaft, and n-pipe junction implementations [8, 1].

3.3. Model implementation. The computational model (provided in supple-
mentary materials) is written in C++, and the different simulations are initialized
through two text files: an EPANET-compatible file describing network layout, and a
configuration file specifying additional simulation parameters. In addition, a Cython
wrapper is available, allowing simulations to be launched from iPython notebooks.
The simulation running time analyses that are reported in the following sections were
performed on a Mac Pro (Mid 2010) with dual 2.4 GHz quad-core Intel Xeon processors,
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Fig. 4.1. Model (thin lines) and experimental [32] (points) pressure head at locations P7 and
P5, for gate openings e0 = 0.008 m (top) and e0 = 0.015 m (bottom).

using a single thread unless stated otherwise. The authors found that parallelizing
the network using the OpenMP library (so that all pipes are solved simultaneously)
offered no advantage, because doing single-timestep Riemann solver updates along
each pipe is too fast to make it worthwhile to spawn separate threads.

4. Model validation and results.

4.1. Experiments of Trajkovic et al. (1999). Experiments were performed in
a single pipe of flow transitioning from open-channel to pressurized and back [32]. The
experimenters used the Preismann slot to model their results, and their experiments
have been revisited in several other studies [22, 36]. The experiments were performed
in a single pipe of length L = 10 m and diameter D = 0.1 m, set at a slope of
2.7% as reported in [32]. The Manning roughness coefficient was estimated as 0.002
after examining modeling results for a small range of roughness coefficient values.
We consider the “type A” experiments where the initial condition was supercritical
unpressurized flow with h = 0.014 m and Q = 0.0013 m/s throughout the pipe. At
time t = 0 s a gate at x = 9.6 m is closed, causing the pipe to pressurize. At time
t = 30 s, the gate is partially reopened to a height e0, which allows the flow to de-
pressurize if e0 is sufficiently large. This experiment was modeled with ∆x = 0.05 m
and a Courant number of 0.6. Pressure traces at two sensors, P5 and P7, located at
0.5 m and 2.5 m upstream of the gate, respectively, are plotted in Figure 4.1 for three
values of e0 are shown below. Comparison with experimental data shows that the
model arrival times and pressure traces are in good agreement.

4.2. Water Hammer. In this textbook example, similar to a case presented by
Vasconcelos et al. [36], a sudden valve closure gives rise to a so-called water hammer
phenomenon in a pressurized pipe, whereby a shock wave of high pressure travels
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Fig. 4.2. Water hammer example. Time series for H(x = L, t)/H0 and Q(x = 0, t)/Q0.

rapidly up and down the pipe. The setup for this problem consists of a horizontal
frictionless pipe of length L = 600 m and diameter D = 0.5 m. Initially, the pipe has
pressure head H0 = 150 m, and a discharge Q0 = 0.1 m3/s. The upstream pressure
head at x = 0 m is held steady at 150 m, and a reflective boundary is applied at x = L.
The pressure wave speed set by the Preissman slot is 1200 m/s. Results in Figure 4.2
show the time evolution of the nondimensionalized pressure head H(x = L, t)/H0 at
the valve and the discharge Q(x = 0, t)/Q0 at the upstream end. The modeled results
agree with the classical water hammer equations [40], which assert that for a pressure
wave propagating in pressurized pipe, the relationship between the change in pressure
head ∆H and the change in velocity ∆V = ∆Q/Af is

∆H

∆V
=
a

g
,

where Af is the cross-sectional area of the full pipe (corresponding to transition height
yf ), g is the acceleration due to gravity and a is the pressure wave speed. With 600
grid cells and a Courant number of 0.6, we computed |∆H∆V − a

g | = 0.00002.

4.3. Grid refinement. We consider two horizontal, frictionless pipes connected
in serial, each of length 500 m. The left pipe (denoted pipe 0) has diameter 1 m,
and the right pipe (denoted pipe 1) has diameter 0.8 m, allowing for examination of
the effect of a constriction upon the simulated flow. Starting with initial conditions
Q(x, t = 0) = 1 m3/s and h(x, t = 0) = 0.75 m in both pipes, we run the simulation
until t = 100 s. The boundary conditions are specified inflow Q(x = 0, t) = 0.1 m3/s
for pipe 0 and and reflection at x = 500 m for pipe 1. Pressurization occurs in part of
the system, demonstrating the Preissman slot in action. Note that these examples
used a pressure wave speed of 12 m/s corresponding to a relatively wide slot. Running
convergence studies with a physical wave speed on the order of 1000 m/s would have
given the same behavior but requires a much smaller timestep. We run the simulation
with a range of values of ∆x to obtain the results pictured in Figure 4.3, which shows
final pressure head h(x, t = 100) in both pipes. Table 4.1 shows the error at time T ,
defined as ||e||1 =

∑
j,k |hkj −hk(xj , T )|∆x, where hk(xj , T ) is the solution in pipe k on

the finest grid, evaluated at point xj . As expected, we observe first-order convergence,
due to the presence of shocks. The table also lists the computation times of the test,
The computation times scale quadratically with N since the number of timepoints M
must also scale with N to satisfy the CFL condition.

4.4. Realistic network. We next consider, as an illustration of the model’s
ability to handle a realistic scenario, a larger network layout based on a network
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Fig. 4.3. Grid convergence test, water height h(x, t) at t = 100 s.

Table 4.1
Convergence results, solution computed at time t = 100 s.

N M Wall clock time (s) ||e||1
50 200 0.10 0.18251

100 400 0.40 0.10791

200 800 1.54 0.05608

400 1600 5.84 0.02188

800 3200 23.80 0.01380

experiencing intermittent supply in a suburb of Panama City. The network contains
fourteen pipes, ranging 300–1100 m in length and 0.4–1.0 m in diameter. Slope terms
are non-zero in all pipes and Manning coefficient is estimated at 0.015 based on pipe
material. We simulate filling over a period of 1120 seconds, starting with initial
conditions pictured in Figure 4.4(a), to obtain the pressures in Figure 4.4(b)–(f). The
simulated pressure values fall within in a realistic range, as do the filling times of the
pipes that pressurize. The fact that not all pipes pressurize during the simulation
period is also commensurate with observations.

5. Optimization. We now extend the computational model to consider several
optimization problems that are inspired by realistic scenarios. We use the Levenberg–
Marquardt (LM) algorithm, a trust-region method, to determine an unknown quantity
that minimizes an objective function. When the unknown quantity is a time series,
as in Sections 5.1 and 5.2, the degrees of freedom describe either a Hermite spline or
a truncated Fourier series. The LM algorithm requires computing a Jacobian, and
this was calculated using finite differences, since the nonlinearly coupled boundary
conditions made a variational formulation impractical. The Jacobian columns are
computed in parallel using the OpenMP library, which provided considerable time
savings over a serial implementation for the problems considered.

5.1. Recover unknown boundary data. The uncertainty of intermittent wa-
ter supply motivates our first example, in which we are interested in recovering
unknown boundary information based on our knowledge of pressure somewhere in the
network. Below, we provide proof-of-concept for the modeling/optimization framework
by solving a problem where we know the correct answer. Figure 4.5 shows a diagram
of the example network considered. The pipe diameters are all 1 m, and the lengths
are 500 m, 500 m, and 125 m for pipes 0, 1, and 2, respectively, ∆x = 2.5 m for
all pipes, and the number of time steps is M = 700. Inflow to pipe 0 is a constant
1 m3/s. Pipe 1 has a reflective boundary at the downstream end, and the outflow time

12



Fig. 4.4. Pressure head (m) in example (4.4). Grey pipes are empty. Times shown are (a)
t = 0 s (b) t = 240 s, (c) t = 480 s, (d) t = 720 s, (e) t = 960 s, (f) t = 1200 s.

Fig. 4.5. Illustration of boundary recovery example. Inflow Q(0, t) to pipe 0 is prescribed on the
left. Measurements of h(x∗, t) = h∗(t) in pipe 0 are used to find the unknown pipe 2 outflow Q(L, t).

series of pipe 2 is not known. We generate a test data set with the outflow time series
Qtrue(L, t) as depicted in Figure 5.1(a). The slot width is 0.00053 m, corresponding
to a pressure wave speed of 120 m/s. where H(x∗, ti) is the solution at the sensor at
time step i. The degrees of freedom are Hermite spline coefficients or Fourier modes
for the boundary value time series Q(L, t) on the outflow end of pipe 2.

We initialized the optimization routine with Qi(L, t) ≡ 0. The time series H∗(t)
at the sensor resulting from the true boundary condition Qtrue and the initial proposed
boundary condition Qi are shown in Figure 5.1(b). The optimized time series Qf
found with Hermite and Fourier representations are pictured against the initializing
and true time series in Figure 5.2(a). The run times, ratio of initial objective function
value fi to final value ff , and error in Q(L, t) before and after optimization are shown
in Table 5.1. We considered both Hermite splines and Fourier modes with 8 degrees
of freedom. Results are shown in Figure 5.2. Notice that after time δT = a/δx,
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Fig. 5.2. (a) Recovered time series Qf compared with Qtrue and Qi. (b) Error
||Q(x, ti)−Qtrue(x, ti)|| at time ti, where || · ||2 is the discrete L2 norm over the spatial domain.

information has not had time to propagate from the boundary to the sensor so the
Hermite representation has difficulty thereafter. The Fourier series representation
maintains a low level of error through the whole time series as the true solution has
the same value at t = 0 as at t = T .

5.2. Reduction of variation in pressure. We next consider controlling bound-
ary conditions to reduce potential damage to pipes in the water distribution system.
Although the causes of pipe damage are complex and myriad, pressure transients play
a role [11, 2]. Internal pressure contributes to axial, longitudinal and hoop stress
in pipes [26], and pressure transients may help cause both pipe bursts (associated
with high-pressure events) and collapses (associated low-pressure events) [39]. During
filling, the presence of trapped air may amplify pressure peaks and further increase
damage [35, 18]. Within the scope of the Preissman slot model, which does not
explicitly describe air entrainment, we consider the potential for pipe damage by
measuring, at each time step ti, an estimated total variation in the pressure head H,
which we denote 〈dH/dx〉i, defined as

〈dH/dx〉i =

K∑
k=1

Nk−1∑
j=0

|Hi
k,j+1 −Hi

k,j |, (5.1)

where K denotes the number of pipes in the network, Nk the number of grid cells in
pipe k, M the number of time slices, and Hi

k,j = H(A(xj , ti)) for A in pipe k. Note
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Table 5.1
Results for boundary data recovery.

Hermite Fourier

CPU time (s) 176 135

wall clock time (s) 64 51

parallel speedup 2.8 2.6

fi 6.9× 104 6.9× 104

ff 1.9× 10−1 3.2× 10−2

fi/ff 2.7× 10−6 4.6× 10−7

||Qi −Qtrue|| 22.6 22.6

||Qf −Qtrue|| 0.477 0.296

Table 5.2
Mean and maximum 〈dH/dx〉 for different L1/L2.

L1/L2 Mean 〈dH/dx〉 Max 〈dH/dx〉
0.25 5.0609 48.3832

0.50 5.4465 60.9356

0.75 6.1335 60.6128

1.00 3.4518 24.4900

1.25 5.5090 40.9716

1.50 5.1254 34.4893

1.75 5.1019 34.5001

2.00 5.1504 34.6804

that

〈dH/dx〉 ≈
∫ Li

0

∣∣∣∣∂H∂x
∣∣∣∣ dx (5.2)

where ∂H/∂x may only exist in a weak sense due to the presence of shocks. The
quantity 〈dH/dx〉 serves as proxy for pressure gradient that penalizes large water
hammers associated with both high- and low- pressure events, and its minimization
allows for exploration of operational regimes that potentially alleviate hydraulic
contribution to pipe damage.

As we are interested in studying existing networks, rather than planning new ones,
we first study how network geometry affects the time evolution of 〈dH/dx〉. We use
the network structure shown in Figure 4.5 to study how the relative lengths of pipes in
the network affects the interaction of reflected waves coming through a triple junction.
We fix L0 = L1 = 100 m, and L2 is varied between 25 m and 200 m. All boundaries
have Q = 0, and the initial conditions are h = 0.8 m in all pipes and Q = 2 m3/s in
pipe 0, and Q = 1 m3/s in pipes 1 and 2. These conditions were chosen to give a
scenario where the flow transitions from free-surface to pressurized. The simulation
time is 18 s and the pressure wave speed is 120 m/s. A time series of 〈dH/dx〉 for
each network geometry is shown in Figure 5.3.

Mean and maximum values are tabulated in Table 5.2. Interestingly, for L1 = L2

we see the least dramatic pressure variation. Although the peak value of 〈dH/dx〉
varies by up to a factor of two over these different geometries, the mean values are
quite comparable, suggesting that boundary control may still be useful even in different
network geometries where reflected waves interact differently.

We now use the optimization framework to suggest inflow patterns minimizing
〈dH/dx〉 for one of these networks under a pressurization scenario. We define the
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Fig. 5.3. Time series of 〈dH/dx〉 for different L1/L2.

objective function f = 1
2 ||r||2, where the components of r are given by

ri =

√
1

M
〈dH/dx〉i (5.3)

for i = 1, . . . ,M . Motivated by practical applications, we suppose we want to supply
a fixed volume of water Vin over a time period T , and vary the inflow time series
Q(0, t) at the left end of pipe 0 in order to minimize f . Below we present three results
highlighting both the usefulness and limitations of the framework. In all cases, the
network connectivity is kept the same, and boundaries for the outflow ends of pipes
1 and 2 are set to Q = 0. The initial conditions, time series representation, and
simulation time are varied as follows:

(I) L0 = L1 = 100 m, and L2 = 25 m, roughness coefficient = 0.015. Initial
condition is all pipes empty. Degrees of freedom are cubic Hermite spline coefficients,
with the first point Q(0, 0) determined by setting the integral of the Hermite time
series equal to the desired inflow Vin. The initial constant inflow is compared with the
optimized time series in Figure 5.4(a). How 〈dH/dx〉 varies in time is shown in Figure
5.4(b).

(II) L0 = L1 = 100 m, and L2 = 50 m, roughness coefficient = 0.008. Initial
condition is Q(x, t) = 5 m/s in pipe 0, with pipes 1 and 2 empty. The degrees of
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Table 5.3
Numerical results for pressure gradient reduction.

Case DOF a T M CPU time Wall time f0 ff/f0 Vin

I 15 (Hermite) 100 60 15000 5298 772 13.3013 0.2211 120

II 15 (Fourier) 10 120 4000 2819 405 1.53498 0.7401 150

III 15 (Fourier) 100 16 3600 2576 350 1.83238 0.9988 20

freedom are Fourier modes, with the constant mode constrained to 2Vin/T , such that
Vin is the total inflow volume. The optimization starts with a time series Q(0, t) for
pipe 0 which approximates a step function inflow. Pressure wave speed a = 10 m/s
and simulation time T = 120 s. Results are pictured in Figure 5.5.

(III) As in case (II), but with pressure wave speed a = 100 m/s and T = 16 s.
Results for case (II) were computed with a relatively wide slot width, corresponding
to a gravity wave speed of a = 10 m/s. With a more realistic pressure wave speed
of 100 m/s in case (III), the algorithm found only very slight improvements for the
inflow time series, as shown in the table above. This is probably due to the presence
of unphysical oscillations accompanying the initial pressurization event. That the
Preissman slot model, with a narrow slot width, gives rise to such oscillations during
rapid pressurization has been noted previously by Vasconcelos [38], among others.
Vasconcelos suggests filtering or artificial viscosity to damp out these fluctuations,
but also concedes the averaged behavior may present a reasonable approximation of
reality. Even if these oscillations are filtered, averaged, or damped into submission,
they limit the utility of the Preissman slot model for informing smooth optimization
when rapid pressure transients are present. However, in regimes with more gradual
filling or emptying, the Preissman slot model may suffice for both pressure gradient
optimization and boundary value recovery.

6. Conclusions and Future Work. In this work we have introduced the study
and management of intermittent water supply as a problem in applied mathematics, a
problem with interesting theoretical facets as well as compelling practical implications.
We present results from a combined modeling and optimization framework that captures
some of the important dynamics in the systems of interest and demonstrates two
optimization examples with real-world significance. Although the present results
may help guide some ideas for managing pressurized flow, model improvements and
alternative optimization schemes may be necessary to address applications of pressure
gradient reduction and other objectives in larger and/or poorly-mapped networks.

In the future we hope to more carefully extract the physics and timescales relevant
to the application of intermittent water supply in a robust model that retains the
computational tractability of the current one. The code allows for straightforward
implementation of alternative models for single-pipe flow and boundary coupling,
allowing us to make the pressure gradient reduction optimizations more relevant to
real-world data. We also hope deal with questions of water quality and to extend our
implementation to tackle larger networks and other objective functions, aspiring to
examine, understand, and perhaps improve real-world scenarios.

Acknowledgments. We thank John Erickson and Kara Nelson (UC Berkeley
Civil Engineering) for their insight and network layout data.

Appendix A. Fractional-power scaled Chebyshev approximation. The
numerical method frequently requires the height h as a function of the cross-sectional

17



0 10 20 30 40 50 60

t (s)

−3

−2

−1

0

1

2

3

4

5

6
Q

1(
t)

original, f=13.3013
final, f=2.9413

0 10 20 30 40 50 60

t (s)

0

50

100

150

200

250

300

〈d
H
〉

original
optimized

Fig. 5.4. Case (I) results. Top: Initializing and optimal time series Q(0, t). Bottom: 〈dH/dx〉
over time for both inflow time series.

area A. In the Preissman slot geometry, there is no analytic expression for h(A)
below the pipe crown, necessitating some form of approximation. In what follows, all
variables are assumed to be non-dimensionalized, e.g. A→ A/D2 and h→ h/D.

One strategy is to use the relation A = 1
8 (θ − sin(θ)) to solve for θ, and evaluate

h = 1
2 (1− cos(θ/2)). However, rootfinding is cumbersome as the computation must be

performed for every cell during every time step. Furthermore, the authors found that
representation of h(A) with a standard Chebyshev or other polynomial interpolant
proved strikingly useless due to singular behavior at the origin. Comparing Taylor
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series shows that h ∼ A2/3 near h = 0. Using a Chebyshev interpolant of the form

h(A) =

N∑
k=0

akTk

(
cA2/3 − 1

)
, (A.1)

where Tk denotes the kth Chebyshev polynomial on [−1, 1], scales out the singular
behavior and ensures accuracy. The Chebyshev representation allows for fast eval-
uation via a three-term recursion. The current version of the code uses N = 20
Chebyshev points for h(A), a change which speeds up the calculation of h(A) by a
factor of 7 when compared to root-bracketing, without sacrificing double-precision
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Table A.1
Scaling parameter α values chosen.

Function Range α

φ1(A) 0 ≤ A < π/8 1/3

φ2(A) π/8 ≤ A ≤ At 5/12

A1(φ) 0 ≤ φ < φ(π/8) 1

A2(φ) φ(π/8) < φ < φ(At) 3/5

accuracy. (Newton’s method is not desirable for this computation, as the derivative of
f(θ) = A− 1

8 (θ − sin(θ)) is zero at the origin).
We used the same strategy to better approximate the quantity φ(A), which shows

up in the speed estimation for the HLL solver and cannot be analytically expressed in
terms of A. Several other authors use a ninth order McLaurin series for expressing φ
as a function of θ [21, 16], which avoids repeated quadrature but still relies on root
finding for θ in terms of A. Furthermore, this expression also loses accuracy at the
right end of the interval, with errors of order 10−2 near the pipe crown.

The authors thus set out to improve both speed and accuracy in computation of
φ by finding a Chebyshev representation for both φ(A) and φ−1 = A(φ), of the form

φ(A) =

N∑
k=0

akTk(cAα − 1), A(φ) =

N∑
k=0

akTk(cφα − 1). (A.2)

As this geometry has peculiarities near both the pipe floor and pipe crown, we
considered separate expansions on the first and second halves of the interval of interest.
By numerical experiment with accuracy and coefficient decay of expansions, we found
the best values of α for four expansions summarized in Table A.1. Figure A.1 shows
the accuracy and coefficient decay dependence on α for each of these cases. Our
implementation uses N = 20 terms in the expansions, but we tried several other
values of N during our numerical experiments to make sure that that the number of
Chebyshev points did not affect the scaling choices.
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Fig. A.1. Coefficient decay and error as a function of power scaling α with N = 20 terms,
for φi(A) (top) and Ai (bottom). The black hatched lines denote the expansion on the first half of
interval (i = 1), and the green line denotes the expansion on the second half (i = 2).
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