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THE STEADY-STATE CONVECTION-DIFFUSION EQUATION AT
HIGH PÉCLET NUMBERS FOR A CLUSTER OF SPHERES: AN

EXTENSION OF LEVICH’S THEORY∗

JOSEPH A. BIELLO† , RENÉ SAMSON‡ , AND EUGENE SIGAL§

Abstract. This paper describes an approximate analytical model of competitive effects between
members of a dense cluster of absorbing objects, which are modeled as spheres. Neighboring ab-
sorbing spheres compete for diffusing species and thereby reduce each other’s rate of absorption.
Levich’s well-known asymptotic (high Péclet number) theory of convection-diffusion considers only
the inner region of the concentration boundary layer; it does not describe the wake zone accurately.
An extension of the Levich model is constructed for the wake zone. This is used to model intersphere
competitive effects. The model demonstrates that for two neighboring spheres aligned along the flow
direction, the absorption of the downstream sphere is substantially reduced vis-à-vis the upstream
sphere. The model is verified by comparison to numerical simulation studies. Both single-sphere
simulations (reported in this paper) and multisphere simulations (taken from existing literature) are
considered. In the single-sphere case, the discrepancy between the analytical model and the numer-
ical results is maximally 10% at Pe = 10 and much lower at higher Péclet numbers. An appreciable
part of the error stems from the original Levich model itself, rather than from our method of extend-
ing the Levich model. In the multisphere case, the difference between the analytical model and the
numerical studies is generally less than 30%. At small intersphere separations (say, center-to-center
distances < 5 sphere radii), the model tends to overestimate the interference effects. This is related
to the fact that flow stagnancy in the space between two closely packed spheres is not taken into
account in the model.

Key words. diffusion convection mass-transfer

AMS subject classifications. 76R50, 76M45
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1. Introduction. Consider a steady-state model of mass transport in which a
microscopic species moves toward a collection of macroscopic immobile absorption
centers. The motion of the microscopic species consists of a combination of stochastic
movements (diffusion) and externally imposed motion by a carrier fluid (convection).
The macroscopic absorption centers are assumed to be spheres of which the locations
are known and fixed; they are assumed to be all of equal size.

In a recent paper [6] we developed an approximate analytical theory for such a
system in the case of pure diffusion and in the case of diffusion combined with a
relatively weak convective component. It was found that the range of applicability
of the former theory in the convection-diffusion (CD) case was very limited; beyond
Péclet numbers of about 0.6, our theory was found to be unreliable. (The Péclet
number measures the ratio between convective and diffusive fluxes.) As will be shown
below (and as is intuitively quite plausible), the reason for this failure at high Péclet
numbers is that CD-concentration profiles around a sphere exhibit an extreme degree
of fore/aft asymmetry. At the front side of the sphere, the solute is swept up extremely
close to the boundary of the sphere and the concentration gradients are extremely
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steep. At the back side there is an elongated wake zone, where the concentration
slowly regains its asymptotic value. This zone can easily extend to distances of well
over one hundred times the sphere radius. The use of multipolar expansions was an
essential element in our previous paper for finding approximate solutions. For the
steady-state diffusion equation, this is a commonly used technique, and in that case
our model leads to very accurate approximations (errors much lower than 1%) at the
dipolar level. For the CD-equation at high Péclet numbers, it would be unreasonable
to expect that this approach would work as well, since the spherical harmonic functions
are not a good basis set to represent fields with such extreme fore/aft asymmetry.

In order to construct a multisphere CD theory, it is imperative to fully understand
the single-sphere case, in particular with regard to the characteristics of the wake zone.
A downstream sphere that is located in the wake of an upstream sphere will “see”
a concentration field that is strongly depleted by the upstream sphere. For other
two-body configurations (e.g., two spheres that are laterally displaced relative to the
flow direction), the mutual influence between absorbers is likely to be much smaller
(at high Péclet numbers) than in the case of configurations along the flow direction.

Our paper is organized as follows. In section 2, the single-sphere problem is
addressed. Although there is a large amount of work on this subject (see, e.g., [2] for a
prominent paper on the low Péclet number problem, and [7] and [11] for reviews of the
subject), the current paper focuses on the seminal work of Levich [10] pertaining to the
high Péclet number limit. Levich’s work deals with the thin mass-transfer boundary
layer surrounding an absorbing sphere but cannot be used to describe the wake zone
behind the sphere. In section 2, this limitation in Levich’s theory is first discussed
and subsequently removed, thereby creating an extension to Levich’s model that fits
seamlessly with the original boundary layer solution. In section 3, the multisphere
problem is tackled, building on the ideas developed in section 2. Pairwise interactions
between absorbers are described on the basis of the wake field of an upstream absorber.
In section 4, results computed by use of the current model are compared against
numerical simulation results. In section 4.1, the model is compared against single-
sphere numerical data, obtained by use of a commercial, finite-element, general PDE
solver (Comsol). In section 4.2, the model is compared against previously published
numerical simulation studies of heat or mass transfer to a multiplicity of spheres in a
convective flow field [3, 8, 14, 16, 17].

2. Single-sphere problem.

2.1. The Levich solution for the inner field. Consider a single sphere sur-
rounded by a flowing medium spiked with a microscopic solute species with concentra-
tion c(−→r ). The solute is absorbed by the sphere upon contact with its outer boundary.
The steady-state concentration of the solute is given by the convection-diffusion (CD)
equation

(2.1)
(
D ∇2 −−→u (−→r ) .

−→
∇
)
c(−→r ) = 0

with the boundary conditions

(2.2) c(−→r )→ c0 as r →∞

and

(2.3) c(−→r ) = 0 when r = a.
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Here, a is the sphere radius and D is the diffusion constant of the solute in the flow
medium. The velocity field −→u (−→r ) is assumed to be known; c(−→r ) is the concentration
field that is to be computed.

In [6] it was assumed that the velocity field is constant and unidirectional every-
where in space outside the sphere (for another series of papers that is also based on a
constant velocity field, we refer the reader to [9, 12, 13]). This choice, however, leads
to unrealistic mass distributions. Hence, a different choice is now made for the flow
field. Instead we shall consider laminar flow.

In his 1962 book Physicochemical Hydrodynamics [10], Levich presented an in-
genious solution method for the CD-equation in the case of low-Reynolds-number/
high-Péclet-number flow around a sphere, which we summarize below. First, the CD-
equation is cast in dimensionless form. Taking the sphere radius a as the unit of
length, the asymptotic concentration c0 as the unit of concentration and the asymp-
totic (scalar) velocity u0 as the unit of velocity, (2.1)–(2.3) become

(2.4)

(
∇2 − 1

ε
−→u (−→r ) .

−→
∇
)
c(−→r ) = 0

with

(2.5) c(−→r )→ 1 as r →∞

(2.6) c(−→r ) = 0 when r = 1,

and

(2.7)
1

ε
= Pe =

u0 a

D
.

Pe is the Péclet number. The reader is cautioned that with this definition, Pe is
2 times larger than the variable η used in our previous publication [6] and half as
large as the Péclet number as used in many engineering texts (which usually take the
sphere’s diameter rather than its radius as the unit of length).

Following Levich, we are primarily interested in the case that Pe � 1, in other
words, that ε� 1. Levich argues that when Pe� 1, a narrow concentration boundary
layer exists close to the surface of the sphere, where the concentration decreases steeply
from its asymptotic value on the outer edge of the layer to naught on the sphere’s
surface. The rapid decay of c within a radial distance that is much smaller than the
radius of the sphere is strictly speaking only true on the upstream and not on the
downstream side. Nevertheless, on the basis of this assumption, Levich derives an
approximation to the CD-equation which can be solved analytically. His solution has
the form

(2.8) c(−→r ) = cin(r, θ) =
1

γ0

∫ ζ(r,θ)

0

exp

[
−4s3

9

]
ds = 1− Γ(1/3, (4/9) ζ(r, θ)3)

Γ(1/3)
,

where

(2.9) ζ(r, θ) =

[
3

4ε

]1/3
(r − 1) sin(θ)[

π − θ + 1
2 sin(2θ)

]1/3
and

(2.10) γ0 =
Γ (1/3)

121/3
.
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Here, r and θ are the radial and the polar-angular coordinates of the spherical
coordinate system. The sphere is centered on the origin of the coordinate system.
The flow is directed along the z-axis, pointing in the positive z-direction. The point
z = −1 (θ = π) on the z-axis is the stagnation point of the flow on the surface of the
sphere. In (2.8) the integral is expressed in terms of the incomplete gamma function
Γ(α, x) and the complete gamma function Γ(α); see [1].

Figure 1(a) shows a contour plot of the Levich solution for Pe = 100. A two-
dimensional projection is shown in the {x, z}-plane. The solution is rotation-symmetric
around the z-axis, so only the sector x > 0 needs to be shown. On the upstream side of
the sphere, the boundary layer is extremely narrow, as expected. On the downstream
side, the Levich solution exhibits an infinitely long tail around the positive z-axis. In
the transverse direction (perpendicular to the z-axis), there is a steep concentration
gradient, with an unphysical gradient discontinuity at ρ = 0 (ρ being the distance to
the z-axis), as was pointed out before by many authors (see, for example, [5] and [7]).
Concentration gradients must be “washed away” at a sufficiently large distance from
the sphere through the action of diffusion. This is absent in the solution shown in
Figure 1(a).

The discontinuity in the concentration gradient at ρ = 0 is both counterintuitive
and harmful for the further development of a theory encompassing intersphere effects.
We shall have to correct this before we can proceed to multisphere interactions.

2.2. Correction to the Levich solution in the wake zone: The outer
field. The following development is best formulated in terms of cylindrical (rather
than in spherical) coordinates, denoted by the symbols {ρ, z, ϕ}. Here, ρ is the dis-
tance to the z-axis (not to be confused with r, the distance to the origin). The
azimuthal angle ϕ is irrelevant here, because of the axial symmetry of the problem.

The extension of the CD-equation to the wake zone is closely fashioned after
Levich’s method for the inner field. The development hinges on the notion that in the
wake zone, local coordinates along the stream lines and local coordinates orthogonal to
stream lines play two quintessentially distinct roles in the physics of the mass-transfer
process. The coordinate along the stream lines is primarily associated with advection;
i.e., clusters of solute particles are carried along by the flow as a coherent patch with
hardly any distortion. By contrast, the coordinate orthogonal to the stream lines is
most actively involved in the diffusional mixing.

The so-called Stokes stream function for flow past a sphere [4] is (in dimensionless
units)

(2.11) ψ =
ρ2

2

[
1− 3

2r
+

1

2r3

]
,

where

(2.12) r2 = ρ2 + z2 ; ρ = r sin(θ) ; z = r cos(θ).

In cylindrical coordinates, the velocity vector −→u is related to the stream function ψ
as follows:

(2.13) −→u =
1

ρ

[
∂ψ

∂ρ
ẑ − ∂ψ

∂z
ρ̂

]
.

The equation that is to be solved is the CD-equation

(2.14)
1

ρ

∂

∂ρ

(
ρ
∂c

∂ρ

)
+
∂2c

∂z2
− 1

ερ

[
∂ψ

∂ρ

∂c

∂z
− ∂ψ

∂z

∂c

∂ρ

]
= 0
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in the domain z ≥ 1. Apart from the asymptotic boundary condition (2.5), a condition
is imposed on the plane z = 1 to guarantee continuity between the inner and outer
fields; more details about this latter boundary condition are specified below.

Following Levich, a coordinate transformation is now made from the system {ρ, z}
to {ψ,Z} with Z = z. The transformation rules for the first derivative are as follows:

∂

∂ρ

∣∣∣∣
z

=
∂ψ

∂ρ

∣∣∣∣
z

∂

∂ψ

∣∣∣∣
Z

+
∂Z

∂ρ

∣∣∣∣
z

∂

∂Z

∣∣∣∣
ψ

=
∂ψ

∂ρ

∣∣∣∣
z

∂

∂ψ

∣∣∣∣
Z

,(2.15)

∂

∂z

∣∣∣∣
ρ

=
∂ψ

∂z

∣∣∣∣
ρ

∂

∂ψ

∣∣∣∣
Z

+
∂Z

∂z

∣∣∣∣
ρ

∂

∂Z

∣∣∣∣
ψ

=
∂ψ

∂z

∣∣∣∣
ρ

∂

∂ψ

∣∣∣∣
Z

+
∂

∂Z

∣∣∣∣
ψ

.

In the transformed variables, the only term surviving in the advective term is

(2.16) −→u ·
−→
∇c =

1

ρ

∂ψ

∂ρ

∂c

∂Z

∣∣∣∣
ψ

,

while the radial diffusion term becomes

(2.17)
1

ρ

∂

∂ρ

(
ρ
∂c

∂ρ

)
=

1

ρ

(
∂ψ

∂ρ

)
∂

∂ψ

[
ρ

(
∂ψ

∂ρ

)
∂c

∂ψ

∣∣∣∣
Z

]∣∣∣∣
Z

.

Substituting (2.16) and (2.17) into (2.14), we obtain

(2.18)
1

ρ

∂ψ

∂ρ

{
∂

∂ψ

[
ρ

(
∂ψ

∂ρ

)
∂c

∂ψ

∣∣∣∣
Z

]∣∣∣∣
Z

− 1

ε

∂c

∂Z

∣∣∣∣
ψ

}
+
∂2c

∂z2
= 0,

where the axial diffusion term, ∂2c/∂z2, is not explicitly transformed in terms of the
variables ψ and Z.

Consider the limit ε → 0. In Appendix A it is shown that in this limit the term
∂2c/∂z2 is negligible. Under this assumption, it is clear that everywhere in the domain
where uz = (1/ρ)(∂ψ/∂ρ) 6= 0, the factor in curly brackets must be zero. Note that
uz (the axial component of the velocity vector) = 0 on the boundary of the sphere
and 6= 0 everywhere else. Hence, the dominant balance in the limit ε → 0 is the
approximate equation

(2.19)
∂

∂ψ

[
ρ
∂ψ

∂ρ

∂c

∂ψ

]
− 1

ε

∂c

∂z
= 0.

Henceforth, the distinction between z and Z is ignored, lowercase z is used
throughout, and the designation which variable is to be kept constant during dif-
ferentiation is dropped, with the cautionary remark that the differential ∂/∂z is to be
taken at constant ψ.

The factor ρ ∂ψ/∂ρ can be written as

ρ
∂ψ

∂ρ
= 2ψ + P (ρ, z),(2.20)

where

P (ρ, z) =
3

4

ρ4(ρ2 + z2 − 1)

(ρ2 + z2)
5/2

.(2.21)
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We now consider the ratio P (ρ, z)/2ψ in the region {z ≥ 2, ρ ≤ 1} . This is the
region of major interest in the study of interacting absorbers. In that region, the max-
imal value of P (ρ, z)/2ψ is 0.143..., attained on the bounding circle {z = 2, ρ = 1} .
More particularly, we shall be interested in the region quite close to or at the z-axis.
As ρ → 0, P (ρ, z)/2ψ → 0, as ρ2. In conclusion, for the region of practical inter-
est, it is an excellent approximation to assume that ρ∂ψ∂ρ ≈ 2ψ so that (2.19) can be
simplified to

(2.22)
∂

∂ψ

[
2ψ

∂c

∂ψ

]
=

1

ε

∂c

∂z
.

Consider the following coordinate transformation:

(2.23) u =
√

2ψ cos(λ) ; v =
√

2ψ sin(λ) .

If the concentration is assumed to be independent of the angular coordinate λ, then
it is simple to show that (2.22) becomes

(2.24)
1

ε

∂c

∂z
=
∂2c

∂u2
+
∂2c

∂v2
,

which is a two-dimensional nonstationary diffusion equation in two space-like coordi-
nates {u, v} and a time-like coordinate z.

Consider the Green’s function of (2.24) in z > z0:

(2.25) G(u, v, z) =
exp

[
−u

2+v2

4εz

]
4π ε z

.

Equation (2.24) can now be solved as a convolution of initial data at z = z0 with the
Green’s function. If initial data at z = z0 are known,

(2.26) c(u, v, z0) = C0(u, v),

then the solution of (2.24) for z > z0 is

c(u, v, z) =

∫ ∞
−∞

∫ ∞
−∞

C0(u′, v′)G(u− u′, v − v′, z − z0) du′ dv′(2.27)

=

∫ ∞
−∞

∫ ∞
−∞

C0(u′, v′)
exp

[
− (u−u′)2+(v−v′)2

4ε(z−z0)

]
4π ε (z − z0)

du′ dv′.

The double integral can be simplified by transforming back from {u, v} to {ψ, λ}.
Note that the Jacobian of the transformation is unity, so that the transformed integral
becomes

c(u, v, z) =
e

[
− ψ

2ε(z−z0)

]
4π ε (z − z0)

∫ 2π

0

∫ ∞
0

C0(u′, v′) e

[
uu′+v v′
2ε(z−z0)

]
e

[
− ψ′

2ε(z−z0)

]
dψ′ dλ′.(2.28)

The cross term in the exponential is simplified by using

(2.29) uu′ + v v′ = 2
√
ψ ψ′ cos(λ− λ′).

As initial data C0(u, v), we shall use the cross-section of the Levich inner solution—
(2.8)—with the plane z = 1. (The justification for this choice is discussed in section
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4.1 below.) This cross-section is circularly symmetric around the point {z = 1, ρ = 0}
(the north pole of the sphere). Using this circular symmetry, we may write

(2.30) C0(u′, v′) = c0(ψ′).

Hence, the angular integral only concerns the exponential cross term, and the following
equality can be used (see [1]):

(2.31)
1

2π

∫ 2π

0

exp [s cos(λ′)] dλ′ = I0 (s) ,

where I0 (s) is the modified spherical Bessel function of order zero (see [1]). Therefore,
the expression for the concentration is independent of the angle λ (as it must be!) and
becomes
(2.32)

cout(ψ, z) =
exp

[
− ψ

2ε(z−z0)

]
2ε (z − z0)

∫ ∞
0

c0(ψ′) I0

( √
ψ ψ′

ε(z − z0)

)
exp

[
− ψ′

2ε(z − z0)

]
dψ′.

We still need to specify how to compute c0(ψ). In (2.8)–(2.10), Levich’s con-
centration field is expressed in terms of spherical polar coordinates. It must now be
expressed in terms of the variables ψ and z. This is achieved as follows. First, c0 is
expressed in the cylindrical coordinate ρ at z = z0:

(2.33) c0(ρ, z0) =
1

γ0

∫ ζ(ρ,z0)

0

e−
4
9 z

3

dz ; γ0 =
Γ (1/3)

121/3
,

where

(2.34) ζ(ρ, z0) = ζ(ρ, 1) =

[
3

4 ε

] 1
3

ρ− ρ√
ρ2+1[

π − arccos

{
1√
ρ2+1

}
+ ρ√

ρ2+1

] 1
3

.

Second, given a value of ψ′ (the integration variable in (2.32)), the corresponding
value of ρ to be used in the calculation of c0(ψ′) is given by

(2.35) ρ =

√
2ψ′

1− 3
2r0

+ 1
2r30

; r0 =
√
ρ2 + z2

0 =
√
ρ2 + 1.

This is an implicit equation for ρ that is easily solved numerically.
Figures 1(b) and 1(c) show contour plots for Pe = 10 and 100. The function plot-

ted is equal to cout (equation (2.32)) for z > 1 and cin (equation (2.8)) for z ≤ 1. Note
that there is a seamless match between the inner and outer solutions at z = 1. The
horizontal and vertical axes in the plots are ρ and z, respectively, expressed in units
of sphere radius. Comparing these plots with the inner solution (see Figure 1(a)),
it is clear that the problematic aspects of the inner solution in the wake zone have
now disappeared: the gradient discontinuity at the positive z-axis is absent and the
benevolent action of diffusion is clearly present: along the z-axis and elsewhere, the
concentration gradually approaches its asymptotic value (equal to 1) as one moves far-
ther away from the sphere. As expected, this happens faster at Pe = 10 (Figure 1(b))
than at Pe = 100 (Figure 1(c)).
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(a) (b) (c)

Fig. 1. Contour plots for concentration fields. (a) Original Levich solution (2.8) for Pe = 100;
(b),(c) Extended Levich solution (2.32) for Pe = 10 and 100.

3. Multisphere problem. The question to be addressed now is how to use the
single-sphere’s concentration field to model competitive effects between two (or more)
spheres. A brief review is given below of the methodology developed in our previous
paper [6]. A crucial ingredient in this method is the knowledge of a Green’s function
for the corresponding equation. It is shown below how the same concept can be used
in the current case, using the single-sphere (outer) concentration field instead of the
Green’s function.

In [6] it was shown how the monopolar approximation can be used to get a lowest
order theory for a collection of absorbing spheres in the limit of a small Péclet number.
The monopolar theory amounts to solving the following linear system of equations
(one equation for each sphere in the ensemble):

(3.1) 1 =

N∑
j=1

Φij qj ∀i = 1, . . . , N,

where the “charge” qj is related to the mass flux of solute into the sphere labeled j,
and Φij = Φ(−→ri − −→rj ) is the Green’s function for a charge located at −→rj acting on a
charge located at −→ri .

Even though we do not have a Green’s function for the CD-equation with Stokes
flow, it is very tempting to employ the wake function (2.32) for just that purpose.
Apart from a trivial modification, the computed “wake” field has exactly the same
physical content as the Green’s function. It describes the effect of a single absorber on
the concentration field in its surroundings. The only modification we need to make
is to work with the function (1− c) rather than with c itself, so that we have the
required asymptotic behavior at ∞ (asymptotic decay to zero rather than to one).
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By analogy to (3.1) we now consider the linear system of equations

(3.2) 1 =

N∑
j=1

Ωij qj ∀i = 1, . . . , N,

where

(3.3) Ωij = δij + (1− δij) ∗
{

1− cout(~ri − ~rj) if zj < zi,
0 if zj > zi,

where δij is the Kronecker-delta matrix, −→rj is the coordinate of the center of sphere
j, and zj is its z-coordinate.

Consider an assembly of two spheres placed along the z-axis in order of increasing
z-coordinates (z1 < z2). The matrix Ω then has a lower-triangular form,

(3.4) Ω =

(
1 0
ω21 1

)
,

where

(3.5) ω21 = 1− cout(−→r2 −−→r1).

Our goal is to compute the “charges” q1 and q2 which are really the (nondimensional)
flux rates to spheres 1 and 2. From (3.2) it follows that

(3.6) q =

(
q1

q2

)
= Ω−1 1 =

(
1 0
−ω21 1

)(
1
1

)
=

(
1

cout(
−→r2 −−→r1)

)
.

As expected, sphere #1, which is in the upstream location, is not affected by
sphere #2 (hence, q1 = 1), while sphere #2, which is located in the wake of sphere
#1, has a reduced absorption (q2 < 1) given by cout(

−→r2 −−→r1), because its feed stream
has been partly eaten up by sphere #1. The farther the two spheres are apart,
the more the feed stream to sphere #2 is replenished by diffusion and the more q2

approaches 1.
Figure 2 shows computed results. Here, the two spheres are colinear with the z-

axis; their mutual distance is given by z (the horizontal plot axis); the Péclet number
varies from 10 to 1000. The vertical plot axis is q2, the normalized absorption rate
of the second (downstream) sphere. Figure 2(a) plots the z-range from 2 to 100;
Figure 2(b) zooms in on the z-range from 2 to 10. The curves are in order of increasing
Péclet number, as one would expect. The higher the Péclet number, the stronger the
depletion of solute in the wake zone close to the rear side of sphere #1 (the upstream
sphere) and the longer it takes before this deficit is ironed out by the equalizing effect
of diffusion. For high Péclet number, a substantial distance from the upstream sphere
is required before almost-complete replenishment of solute (c close to 1) is achieved.

In Figure 3 an assembly of three spheres is considered, where sphere #1 is centered
at the origin, sphere #3 at {ρ = 0, z = 6}, and sphere #2 at {ρ = variable, z = 3}; in
other words, the centers of the spheres form an isosceles triangle in which spheres #1
and #3 are aligned along the z-axis and #2 is halfway between #1 and #3 but shifted
away from the z-axis by a variable amount. The plot shows how q2 and q3 change
as a function of the ρ-coordinate of sphere #2. The Péclet number = 10. When
sphere #2 is shifted by about 2.5 times the sphere radius, it is completely outside
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the zone of influence of sphere #1, and its q-value is almost equal to 1, as expected.
As long as the ρ-shift of sphere #2 is < 2.5, sphere #3 feels the competitive effect of
both upstream spheres (both #1 and #2). When sphere #2 is sufficiently far away
from the z-axis, sphere #3 doesn’t feel its influence anymore, but the effect of #1 is
undiminished of course. This is why q3 tends to an asymptote that is < 1.

(a) (b)

Fig. 2. (a) Dimensionless rate of absorption by a sphere that is shielded from the flow by
another sphere at an upstream location. Horizontal plot axis z = intersphere distance in units of
sphere radii. (b) Same plot for z ranging from 2 to 10.

Fig. 3. Plot of the rates of absorption q2 and q3 in a cluster of three spheres arranged in an
isosceles triangle. Sphere #2 is displaced from the z-axis by an amount given by the ρ-coordinate
(= the horizontal plot axis). Pe = 10.

4. Model validation.

4.1. Numerical validation of the single-sphere model. In order to validate
the single-sphere model presented in section 2, numerical simulation studies were
carried out in which the CD-equation (without any approximations) around a single
sphere in a Stokesian flow field was solved with the same boundary conditions as
before. Numerical solutions were obtained using a general-purpose commercial finite-
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element software package—Comsol Multiphysics—which is frequently used in scientific
and engineering applications.

In order to satisfy the boundary condition at infinity, so-called infinite elements
were used for the outer computational domain. Infinite domains are often a challenge
in finite-element simulations. One way of tackling this problem is to surround a
“large enough” bounded domain by an infinite region with suitably chosen scaled
coordinates. The size of the inner region was chosen through a convergence study to
ensure sufficient solution accuracy. Since the solution on the boundary of the “inner”
domain is already quite close to the asymptotic value, the gradient in the outer region
can be modeled as a simple parametrized function of the scaled coordinate. For more
details on this subject, see [18].

Two aspects of the numerical model were varied to ensure convergence: the size of
the computational domain (excluding the infinite elements) and the size and the num-
ber of mesh elements. The mesh elements were densely distributed in regions where
concentration gradients were large and were more sparsely distributed in regions of
low concentration gradients. In order to achieve high, uniform accuracy, the distribu-
tion of the mesh elements was prescribed using a priori knowledge of the structure of
the solution.

It was found that a spherical domain of radius 200 (expressed in the basic unit
length of one absorber sphere radius) containing about 800,000 second-order mesh
elements was sufficient to satisfy accuracy requirements. The accuracy requirements
were formulated as follows. A number of marker points were distributed in the com-
putational domain. For convergence, it was stipulated that the calculated values at
each of these marker points should vary by less than 10−3 between computations with
successively higher resolutions. Computations were carried out for Pe values of 10,
100, and 1000, and there were no convergence difficulties in any of these runs.

We introduce the following four metrics to compare the analytical and numerical
solutions:

(4.1) εi = max(cA − cN )|Ωi (i = 1, 2),

(4.2) ε3 =

[ ∫
Ω1
dz dρ (cA − cN )2∫

Ω1
dz dρ [1− 0.5 ∗ (cA + cN )]

2

]1/2

,

and

(4.3) ε4 =
|cA − cN |

cN
.

cA and cN are the analytical and the numerical solutions, respectively. Ω1 and Ω2

are two domains on which the solutions are computed. Ω1 is the cylindrical domain
between z = [−2,+37.5] and ρ < 3, excluding the central sphere (r < 1). The domain
Ω2 is defined as {+2 < z < 37.5 & ρ < 3} and focuses on the wake zone. ε1 and
ε2 measure the maximum difference between cA and cN on Ω1 and Ω2, respectively.
ε3 represents an integral comparison norm on Ω1. The function (1− c) is integrable
over the infinite domain, and we compare the numerical and analytical values of this
function in the normalized L2 sense.

Figure 4(a) shows a contour plot of the concentration difference (cA − cN ) on Ω1

for Pe = 10. It shows that the region of large difference between the two data sets is
close to the surface of the central sphere, and the maximal difference is approximately
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(a) (b)

Fig. 4. (a) Contour plot of the absolute difference between the analytical and the numerical
solution for Pe = 10. (b) Relative difference between the analytical and the numerical solution for
Pe = 10 along the positive z-axis. (The horizontal plot axis represents z − 1.)

+ 10% (the analytical data are systematically higher than the numerical data). At
larger distances from the sphere, the difference decreases to a few percent. Contour
plots for the higher Péclet numbers have the same general appearance as for Pe = 10,
except that they “hug” the z-axis more closely and are generally lower in the whole
domain.

Figure 4(b) shows the relative difference between the analytical and the numerical
solutions as defined by the comparison norm ε4. This is a log-log line plot along the
z-axis. It is clear that close to the surface of the sphere, where both solutions rapidly
tend to zero, the differences are quite substantial. However, for z > 2, ε4 < 0.2 and
rapidly tends to smaller values as z increases.

Table 1 lists the comparison norms ε1 and ε2 for Péclet values of 10, 100, and 1000.
The results are quite satisfactory for Pe = 10 and become even better at Pe = 100
and 1000. The reduction of all the comparison norms with increasing Pe is just what
we expect from an asymptotic theory, valid at high Péclet numbers. Qualitatively,
the same behavior is observed for the original Levich model; see, e.g., Figure 3.10 of
[7].

One detail of our analytical model that was not discussed in section 2 was the
rationale for choosing the location of the plane at which the “inner” and the “outer”
solution are stitched together. The outputs of analytical runs with different choices for
the position of the patching plane were compared with numerical data. The following
conclusions were drawn:

(a) For positions of the patching plane in the range z0 = [−1,+1], the difference
between the analytical model and the numerical model became smaller as z0 → 1.

(b) For positions of the patching plane z0 > 1, although there was a minor
improvement of the concentration field at z > z0, there also was a deterioration
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Table 1
Comparison norms for the single-sphere model as a function of Pe.

Pe ε1 ε2 ε3
10 0.11 0.086 0.25
100 0.067 0.063 0.14
1000 0.044 0.042 0.089

of the concentration field in the region below the patching plane. This included the
occurrence of the embarrassing gradient discontinuity at the z-axis that is inherent in
the original Levich solution, which was one of the reasons for constructing the current
theory in the first place.

By choosing the position of the patching plane at z0 = 1, we are recognizing the
above facts and patching the inner and the outer solution as close as possible to the
Levich boundary layer around the sphere.

A feature of Figure 4(a) that merits further comment is the following. From the
figure it can be seen that the zone where the difference between the model and the
numerics is maximal is very near the z = 1 plane. This leads us to the conclusion that
an appreciable part of the error in our model stems from the original Levich model
itself, rather than from our method of extending the Levich model.

A qualitative difference between an analytical result such as our (2.32) and nu-
merical simulations that should be pointed out is the following: whereas our (2.32)
permits calculation of the concentration at a single field point, such a calculation is
impossible in a numerical scheme, where a complete mesh must be created, and con-
centration values must be calculated at each mesh node. This advantage may seem
insignificant for axisymmetric problems, but it becomes critical for three-dimensional
problems because accurate three-dimensional solutions may require significant com-
putational resources.

Furthermore, the analytical model is very well suited for open domains because
the boundary conditions at infinity are inherently satisfied. A finite-element method,
on the other hand, is better suited for closed domains and provides only approximate
solutions on open domains. Open-domain finite-element modeling techniques require
convergence studies in order to ensure solution accuracy as a function of the model’s
spatial extent (i.e., convergence as a function of model size).

4.2. Numerical validation of the multisphere model. Below, we compare
the output of the model with a number of numerical simulation studies [3, 8, 14, 16, 17].
Interpretation and discussion of the results is postponed to section 4.2.1 below. The
reader is advised to refer to Appendix B for details about the nomenclature.

Tal, Lee, and Sirignano (TLS) [16] have studied the linearized Navier–Stokes
equation and the enthalpy equation for a pair of spheres aligned along the asymptotic
flow direction. For the equation of creeping motion they used an exact analytical
solution in terms of bispherical coordinates (the Stimson–Jeffery solution) [15]. For
the enthalpy equation, a numerical solution (finite differences) was computed. In their
calculations, the Reynolds number was 40 (Re based on sphere diameter), the Prandtl
number was 1, and the distance between the spheres varied. Table 2 compares their
calculated heat transfer results with the extended Levich (EL) model. The difference
between their basic length unit and ours (sphere diameter vs. sphere radius) has to
be taken into account. Table 2 (and all following tables) uses the definitions and
terminology of the current paper (i.e., the length unit and Péclet numbers are based
on sphere radius).
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Table 2
Nondimensional rate of absorption for a pair of spheres along the flow direction. Pe = 20 (basis

sphere radius). z = the intersphere distance (basis sphere radius). The TLS data refer to [16], the
EL data to the current model.

z = 2.4 z = 5
qTLS qEL qTLS qEL

Upstream sphere 0.85 1 0.95 1
Downstream sphere 0.53 0.55 0.63 0.76

Table 3
Nondimensional rate of absorption for a triplet of spheres along the flow direction. Pe =

variable (basis sphere radius). z12 = 4; z23 = 4 (in units of sphere radii). The RKW data refer to
[14], the EL data to the current model.

Pe qRKW
2 qEL

2 qRKW
3 qEL

3

5 0.79 0.80 0.63 0.75
25 0.69 0.69 0.57 0.62
50 0.65 0.64 0.55 0.57
250 0.57 0.51 0.50 0.44
500 0.54 0.46 0.48 0.40
1000 0.51 0.42 0.46 0.35

Ramachandran, Kleinstreuer, and Wang (RKW) [14] have carried out numerical
studies of the Navier–Stokes and the enthalpy equation for a triplet of spheres centered
along a straight line parallel to the flow direction. The range of variables they studied
was 1 ≤ Re ≤ 200, 0.1 ≤ Pr ≤ 10, and intersphere distances between 2 and 10
(based on units of sphere diameters). The authors cast their results in the form of
correlations that describe the dependence of the calculated Nusselt numbers on Re,
Pr, and the intersphere spacings. In order to stay within the range of validity of
these correlations, we focused on the combination Pr = 10 with the following list of
Reynolds numbers: Re = {0.5, 2.5, 5, 25, 50, 100} (based on sphere radius).

Data comparing the two models are listed in Table 3. The intersphere distances
z12 and z23 are both taken equal to 4 sphere radii. The tabulated values q2 and q3

are the integrated flux rates (Nusselt numbers) of spheres #2 and #3, normalized by
the q-value of the leading sphere (q1). These values are listed for the RKW data and
for the EL model, respectively.

Aminzadeh et al. (AACKP) [3] solved the conservation-of-species equation numer-
ically for a pair of spheres aligned along the flow direction using the Stimson–Jeffery
[15] velocity field. Their simulations covered Péclet numbers up to 50 (based on sphere
diameter). In Table 4 our model results (EL) are compared with their computed data
for various values of the intersphere separation and the Péclet number. Tabulated
is the ratio between the integrated mass-flux of the downstream and the upstream
spheres (q2/q1). The tabulated AACKP data had to be visually read off the published
plots, so the listed data entries may not be very accurate.

Tsai and Sterling [17] have done numerical simulations of the combustion of linear
droplet arrays arranged along the flow direction. Their studies covered a Péclet range
(based on sphere diameter) from 10 to 120. Assuming a Prandtl number of around 1,
the Re range was around 10–120. Their main focus was on heat transfer calculations
(Nusselt numbers). Table 5 shows comparative data for two droplets aligned along
the flow direction at a spacing of 4 sphere radii and at variable Pe number. The
absorption data are the ratio between the flux of the trailing sphere to that of the
leading sphere.
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Table 4
Nondimensional rate of absorption for a pair of spheres along the flow direction. Pe = variable

(basis sphere radius). z = the intersphere distance (in units of sphere radii). The AACKP data
refer to [3], the EL data to the current model.

Pe z = 2.0 z = 3.1 z = 8.3
qAACKP qEL qAACKP qEL qAACKP qEL

1.25 0.85 0.71 0.80 0.83 0.90 0.94
2.5 0.76 0.66 0.78 0.79 0.89 0.93
5 0.73 0.60 0.76 0.74 0.87 0.91
25 0.71 0.47 0.70 0.62 0.84 0.84

Table 5
Nondimensional rate of absorption for two spheres along the flow direction. Pe = variable

(basis sphere radius). z12 = 4 (in units of sphere radii). The TS data refer to [17], the EL data to
the current model.

Pe qTS qEL

5 0.73 0.80
15 0.62 0.73
30 0.61 0.68
45 0.58 0.65
60 0.58 0.63

Table 6
Nondimensional rate of absorption for two spheres along the flow direction. Pe = 50 (basis

sphere radius). z12 = variable (in units of sphere radii). The J data refer to [8], the EL data to the
current model.

z qJ qEL

2.5 0.69 0.49
4 0.74 0.64
6 0.78 0.74

Juncu [8] studied the temporal evolution of the heat flow rate to two spheres
aligned along the flow direction. The flow was assumed to be laminar; the Stimson–
Jeffery [15] flow field was used. Most of the calculations were performed at Pe = 100
(basis sphere diameter). Although the emphasis in this paper was on the unsteady-
state heat equation, some steady-state data were tabulated as well. Just as in many
of the aforementioned references, Juncu found that the Nusselt number of both the
leading and the trailing spheres were smaller than that of an isolated sphere. Of
course, the reduction effect for the trailing sphere was generally larger than for the
leading sphere. In Table 6, we have tabulated q2/q1, the ratio of the Nusselt number
(or absorption rate) between the trailing and the leading spheres.

4.2.1. Discussion of Tables 2 through 6. There are some features of the
numerical studies just discussed that are complicating factors in a comparison with
our model:

• most of the data were acquired at relatively high Reynolds numbers [16, 17],
while our model is a laminar-flow model;

• most of the data refer to relatively low Péclet numbers [3], while our model
is a high Péclet number model.

By and large, the agreement between the model and the results of the numerical
studies is reasonably satisfactory. None of the deviations is larger than 30%, and most
of them are considerably smaller. The deviations are neither systematically positive
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Table 7
Dependence of the concentration c in the wake zone on the distance z (in units of sphere radius)

for Pe = 1000.

z c
2.5 0.30
4 0.40

5.5 0.50
8.5 0.60
13 0.70
23 0.80
50 0.90
100 0.95

nor negative in sign. Some trends, even though not completely systematic, include
the following:

• at small intersphere separations, the EL model tends to underpredict the
q-values (normalized absorption rate);

• at relatively low Péclet numbers (say, < 100) and not too small intersphere
separations, the model tends to overpredict q;

• at higher Péclet numbers, the model tends to underpredict the q-values.
The underprediction at small intersphere separations is readily explainable. Our

model is basically a single-sphere theory that is applied to multiple-sphere clusters.
We calculate the interference effect between spheres based on the unperturbed wake
field of a single sphere. This is the root cause of the problem. If a downstream
sphere is very close behind an upstream sphere, clearly the flow field in the interstitial
space between the two spheres will not resemble the unperturbed field of an isolated
sphere. In the interstitial space between two spheres that almost touch, the flowing
medium will be almost stagnant. There, diffusion will be more dominant than in
the unperturbed flow field. This is not captured in our model, and this leads to an
underprediction of q.

The other two trends mentioned above are not so readily explained.

4.2.2. The case of high Péclet number and large intersphere separa-
tion. The numerical studies considered before were characterized by the facts that
both the intersphere separations and the Péclet numbers were mostly relatively small
(separations < 10 sphere radii; Pe < 100). There is a scarcity of data points with rel-
atively large intersphere separations and large Péclet numbers. This is a pity because
it makes it impossible for us to check one of the most interesting (and surprising!)
conclusions of the model, namely, that at high Péclet numbers, even at relatively
large intersphere separations, the downstream sphere can still have a relatively low
absorption rate. As an illustration of this statement, consider the Pe = 1000 curve in
Figure 2. Table 7 highlights the data from that figure and clearly demonstrates how
slowly the curve approaches its asymptotic value.

One expects the hydrodynamic interactions between two spheres to become gradu-
ally less and less important with distance. For center-to-center distances < 10 (sphere
radii), the flow field of the upstream sphere would be expected to be relatively unaf-
fected by the presence of a second downstream sphere. It follows that the combination
of large intersphere separation and large Péclet number should offer a good oppor-
tunity for testing the validity of the current model. For a Péclet-number of 1000,
a distance range between, say, 10 and 50 (sphere radii) should be an excellent test
range.
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5. Conclusions. The convection-diffusion equation has been studied for a single
absorbing sphere in a laminar flow field under high Péclet conditions (convection
dominant over diffusion). The theory of V. G. Levich has been extended in such a
manner that the mathematical and physical inconsistencies in the original model have
been corrected. These corrections concern in particular the description of the wake
zone of the sphere. The resulting so-called extended Levich model makes it possible to
study the interactions between spheres that influence each other’s rate of absorption.
A sphere that is located on the downstream side of a second sphere is shielded from the
flow by the upstream sphere, and its absorption rate might be significantly lower than
it would have been without this shielding effect. From a mathematical model of the
wake zone of a single sphere, a linear interaction model of multisphere interference
effects has been constructed. Model computations show that the spatial range of
these interference effects is quite large, generally decaying as distance−1 in the wake
zone. Depending on the magnitude of the Péclet number, interference effects may
be quite significant, even for spheres that are more than 10 sphere radii apart. At
Pe = 1000 and at an intersphere separation of 10, the normalized absorption rate of
a downstream sphere is as low as ≈ 0.65.

The model was compared against a number of different data sources. For the
single-sphere model, numerical simulations were carried out using commercial finite-
element software. The discrepancies between the analytical model and the numerical
results were mostly < 10% or considerably lower than 10%. An appreciable part of
this discrepancy stems from the original Levich model itself, rather than from our
method of extending the Levich model. For multisphere problems, the model was
compared against previously published numerical simulation studies [3, 8, 14, 16, 17].
In these comparisons, the discrepancies were found to be < 30%. For relatively small
intersphere separations, the model results were generally too low. The most likely
cause of the latter observation is the model’s failure to account for hydrodynamic
interactions between the spheres (flow stagnancy in the space between the spheres).
As a result, for this condition, the model overemphasizes the importance of convection
and underestimates the effect of diffusion.

One type of test condition for which the numerical studies unfortunately do not
contain any data to compare with the model is the combination of large Péclet number
(say, > or preferably � 100) and large intersphere separation (say, > 10, preferably
> 20). Under these conditions, the current model predicts surprisingly large effects
on the absorption rate. It would be of great value to have independent numerical
studies that could be used to validate this aspect of the model.

Appendix A. Justification for neglecting the axial diffusion term in
(2.18). Equation (2.18) contains an axial as well as a radial diffusion term. From
(2.19) onward, the axial diffusion term was dropped. In this appendix, a justification
is given for that simplification.

Referring to the change of variables from {ρ, z} to {ψ,Z} discussed in section 2.1,
the following shorthand notation is used so as to avoid notational clutter:

∂

∂ρ
=

∂

∂ρ

∣∣∣∣
z

;
∂

∂z
=

∂

∂z

∣∣∣∣
ρ

;
∂

∂ψ
=

∂

∂ψ

∣∣∣∣
Z

;
∂

∂Z
=

∂

∂Z

∣∣∣∣
ψ

.(A.1)
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Referring to (2.15), we write

∂2c

∂z2
=

[
∂ψ

∂z

∂

∂ψ
+

∂

∂Z

] [
∂ψ

∂z

∂c

∂ψ
+
∂c

∂Z

]
=
∂ψ

∂z

∂

∂ψ

[
∂ψ

∂z

∂c

∂ψ

]
+
∂ψ

∂z

∂

∂ψ

[
∂c

∂Z

]
+

∂

∂Z

[
∂ψ

∂z

∂c

∂ψ

]
+
∂2c

∂Z2
.

(A.2)

Now, the Z variable is rescaled so that εZ = t, which is the time-like variable in our
diffusion equation. Then (A.2) becomes

(A.3)
∂2c

∂z2
=
∂ψ

∂z

∂

∂ψ

[
∂ψ

∂z

∂c

∂ψ

]
+ ε

{
∂ψ

∂z

∂

∂ψ

[
∂c

∂t

]
+
∂

∂t

[
∂ψ

∂z

∂c

∂ψ

]}
+ ε2

∂2c

∂t2
.

Only the first term on the right-hand side of (A.3) survives when the limit ε → 0 is
taken. In this limit, (2.18) therefore becomes

(A.4)
1

ρ

∂ψ

∂ρ

{
∂

∂ψ

[
ρ
∂ψ

∂ρ

∂c

∂ψ

]
− ∂c

∂t

}
+
∂ψ

∂z

∂

∂ψ

[
∂ψ

∂z

∂c

∂ψ

]
= 0.

Since

(A.5) uz =
1

ρ

∂ψ

∂ρ
, uρ = −1

ρ

∂ψ

∂z

(A.4) can be rewritten as

(A.6) uz

{
∂

∂ψ

[
ρ2uz

∂c

∂ψ

]
− ∂c

∂t

}
+ ρuρ

∂

∂ψ

[
ρuρ

∂c

∂ψ

]
= 0.

uz and uρ are the axial and the (cylindrical-)radial component of the Stokes velocity
field around the central sphere. They are given by

(A.7) uz = 1− 3

2r
+

1

2r3
+

3

4
ρ2

(
1

r3
− 1

r5

)
and

(A.8) uρ = −3

4
ρ z

(
1

r3
− 1

r5

)
,

where r =
√
ρ2 + z2. Contour plots of uz and uρ in the {ρ, z}-plane (not shown here)

show that while uz tends to unity as r → ∞, |uρ| is < or � 0.05 everywhere except
inside two lobes close to the sphere. Even inside those two lobes, its maximum value
is quite limited: max (|uρ|) = 1/

(
4
√

3
)
≈ 0.144.

It is therefore justified to neglect the third term in (A.6) (which depends on uρ)
as compared to the first term (which depends on uz). Since uz 6= 0 everywhere in the
domain except on the surface of the sphere, the expression within the curly brackets
must be = 0, which leads to (2.19).
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Appendix B. Some words regarding nomenclature used in section 4.2.
A few words are in order regarding the nomenclature used in section 4.2. In that
section, the results of the current model are compared with the outcomes of various
numerical studies [3, 8, 14, 16, 17]. These papers are numerical simulation studies
of mass or heat transport to an assembly of absorbing spheres in a flowing medium.
The independent variables in such studies are the Reynolds number and the Péclet
number, while the dependent variables are the Sherwood number (in the case of mass
transport) or the Nusselt number (in the case of heat transport).

The Reynolds and Péclet numbers are defined in the customary manner:

(B.1) Re =
a u

ν
; Pe =

a u

D
; PeT =

a u ρf cp
λ

,

where u is a characteristic (scalar) velocity of the flowing medium, ν is the kinematic
viscosity of the fluid, and D is the diffusion constant of the diffusing species. PeT is
the thermal analogue of the Péclet number: the mass diffusion constant D is replaced
by the thermal diffusivity λ/(ρf cp), where λ is the thermal conductivity (in SI units:
W/(m ◦C)), while ρf and cp are the mass density and the specific heat of the fluid.
The symbol a denotes the size of the absorbing object (in our case, the size of the
spheres). Due care must be exercised here: some authors use the sphere’s diameter,
while others take the sphere’s radius. In our model, a is the sphere’s radius. References
[3, 8, 14, 16, 17], however, use the sphere’s diameter, as is more customary in the
engineering literature. This leads to differences of a factor 2 between “our” and
“their” definitions for Re and Pe.

Section 4.2 also refers to the Prandtl number, defined as

(B.2) Pr =
νρf cp
λ

.

It is simply related to the Reynolds number and the thermal Péclet number PeT :

(B.3) PeT = Pr Re.

As regards the dependent variables (Sherwood or Nusselt number, as the case may
be), the calculated object is the flux of mass or heat: the radial derivative of the
concentration (or enthalpy) at the surface of the absorbing spheres. This quantity is
a function of the angular orientation. In the current study, this aspect is glossed over
by integrating the flux over the surface of each one of the absorbing spheres. What re-
mains is a unique number for every sphere in the assembly, usually a different number
for each individual sphere. It is desirable to normalize these numbers to a common
standard. In our model, this is done by dividing the integrated flux of a particular
sphere by the flux this sphere would have in the absence of all the other spheres in
the assembly, i.e., when the subject sphere is not experiencing the competitive effect
of the other members of the cluster. Although the authors of [3, 8, 14, 16, 17] follow
a slightly different approach, we can nevertheless compare their results with ours by
recalibrating the fluxes of their downstream spheres vis-à-vis the flux of the most
upstream member of the cluster.

In the quoted studies [3, 8, 14, 16, 17] sometimes Re was varied, sometimes Pr,
and sometimes both. Our model does not depend on Re or Pr, only on their product
Pe. The comparisons were always done in such a way that the Péclet numbers in our
model and the quoted studies matched.



1534 JOSEPH A. BIELLO, RENÉ SAMSON, AND EUGENE SIGAL

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1970.
[2] A. Acrivos and T. D. Taylor, Heat and mass transfer from single spheres in Stokes flow,

Phys. Fluids, 5 (1962), pp. 387–394.
[3] K. Aminzadeh, T. R. Al Taha, A. R. H.Cornish, M. S. Kolansky, and R. Pfeffer, Mass

transport around two spheres at low Reynolds numbers, Int. J. Heat Mass Transfer, 17
(1974), pp. 1425–1436.

[4] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cam-
bridge, UK, 1967.

[5] G. K. Batchelor, Mass transfer from a particle suspended in fluid with a steady linear ambient
velocity distribution, J. Fluid Mech., 95 (1979), pp. 369–400.

[6] J. A. Biello and R. Samson, Competitive effects between stationary chemical reaction centres:
A theory based on off-center monopoles, J. Chem. Phys., 142 (2015), 094109.

[7] R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops and Particles, Dover, 1978.
[8] G. Juncu, Unsteady forced convection heat/mass transfer around two spheres in tandem at

low Reynolds numbers, Internat. J. Thermal Sci., 46 (2007), pp. 1011–1022.
[9] J. H. Knight, J. R. Philip, and R. T. Waechter, The seepage exclusion problem for spherical

cavities, Water Resources Res., 25 (1989), pp. 29–37.
[10] V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, 1962.
[11] E. E. Michaelides, Hydrodynamic force and heat/mass transfer from particles, bubbles, and

drops: The Freeman Scholar Lecture, J. Fluids Eng., 125 (2003), pp. 209–238.
[12] J. R. Philip, The scattering analog for infiltration in porous media, Rev. Geophys., 27 (1989),

pp. 431–448.
[13] J. R. Philip, J. H. Knight, and R. T. Waechter, Unsaturated seepage and subterranean

holes: Conspectus, and exclusion problem for circular cylindrical cavities, Water Resources
Res., 25 (1989), pp. 16–28.

[14] R. S. Ramachandran, C. Kleinstreuer, and T.-Y. Wang, Forced convection heat transfer
of interacting spheres, Numer. Heat Transfer A, 15 (1989), pp. 471–487.

[15] M. Stimson and G. B. Jeffery, The motion of two spheres in a viscous fluid, Proc. Roy. Soc.
London Ser. A, 111 (1926), pp. 110–116.

[16] R. Tal, D. N. Lee, and W. A. Sirignano, Heat and momentum transfer around a pair of
spheres in viscous flow, Int. J. Heat Mass Transfer, 27 (1984), pp. 1953–1962.

[17] J. S. Tsai and A. M. Sterling, The combustion of a linear droplet array in a convective,
coaxial potential flow, Combust. Flame, 86 (1991), pp. 189–202.

[18] O. C. Zienkiewicz, C. Emson, and P. Bettess, A novel boundary infinite element, Internat.
J. Numer. Methods Engrg., 19 (1983), pp. 393–404.


	Introduction
	Single-sphere problem
	The Levich solution for the inner field
	Correction to the Levich solution in the wake zone: The outer field

	Multisphere problem
	Model validation
	Numerical validation of the single-sphere model
	Numerical validation of the multisphere model
	Discussion of Tables 2 through 6
	The case of high Péclet number and large intersphere separation


	Conclusions
	Appendix A. 0pt24ptJustification for neglecting the axial diffusion term in (2.18)
	Appendix B. Some words regarding nomenclature used in section 4.2
	References



