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Abstract. We discuss an approach for solving sparse or dense banded linear systems Ax = b
on a Graphics Processing Unit (GPU) card. The matrix A ∈ RN×N is possibly nonsymmetric and
moderately large; i.e., 10 000 ≤ N ≤ 500 000. The split and parallelize (SaP) approach seeks to
partition the matrix A into diagonal sub-blocks Ai, i = 1, . . . , P , which are independently factored
in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal
sub-blocks Ai. This approach, along with the Krylov subspace-based iterative method that it pre-
conditions, are implemented in a solver called SaP::GPU, which is compared in terms of efficiency
with three commonly used sparse direct solvers: PARDISO, SuperLU, and MUMPS. SaP::GPU, which
runs entirely on the GPU except several stages involved in preliminary row-column permutations, is
robust and compares well in terms of efficiency with the aforementioned direct solvers. In a compar-
ison against Intel’s MKL, SaP::GPU also fares well when used to solve dense banded systems that are
close to being diagonally dominant. SaP::GPU is publicly available and distributed as open source
under a permissive BSD3 license.
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1. Introduction. Previously used in niche applications and by a small group of
enthusiasts, general purpose computing on graphics processing unit (GPU) cards has
gained widespread popularity after the release in 2007 of the CUDA programming
environment [35]. Owing also to the release of the OpenCL specification [40] in
2008, GPU computing has been rapidly adopted by numerous groups with computing
needs originating in a broad spectrum of application areas. In several of these areas
though, when compared to the library ecosystem enabling sequential and/or parallel
computing on x86 chips, GPU computing library support continues to be spotty. This
observation motivated an effort whose outcomes are reported in this paper, which is
concerned with solving sparse linear systems of equations on the GPU.

Developing an approach and implementing parallel code for solving sparse linear
systems is not trivial. This, and the relative novelty of GPU computing explain the
scarcity of solutions for solving Ax = b on the GPU, when A ∈ RN×N is possibly
nonsymmetric, sparse, and moderately large; i.e., 10 000 ≤ N ≤ 500 000. An inventory
of software solutions as of 2015 produced a short list of codes that solved Ax = b
on the GPU: cuSOLVER [7], Paralution [1], and SuperLU [16], the latter focused
on distributed memory architectures and leveraging GPU computing at the node
level only. Several CPU multi-core approaches exist and are well established, see
for instance [4, 43, 8, 16]. For a domain-specific application implemented on the
GPU that calls for solving Ax = b, one alternative would be to fall back on one of
these CPU-based solutions. This strategy usually impacts the overall performance of
the algorithm due to the back-and-forth data movement across the PCI host–device
interconnect, which in practice supports bandwidths of the order of 10 GB/s. Herein,
the focus is not on this strategy. Instead, we are interested in carrying out the LU
factorization on the GPU when the possibly nonsymmetric matrix A is sparse or
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dense banded with narrow bandwidth.

There are pros and cons to having a linear solver on the GPU. On the upside,
since a parallel implementation of a LU factorization is memory bound, particularly
for sparse systems, the GPU is attractive owing to its high bandwidths and rela-
tively low latencies. At main-memory bandwidths of roughly 300 GB/s, the GPU is
four to five times faster than a modern multicore CPU. On the downside, the irreg-
ular memory access patterns associated with sparse matrix factorization ablate this
GPU-over-CPU advantage, which is further eroded by the intense logic and integer
arithmetic requirements associated with existing algorithms. The approach discussed
herein alleviates these two pitfalls by embracing a splitting strategy described for
CPU-centric multicore and/or multi-node computing in [38]. Two successive row–
column permutations attempt to increase the diagonal dominance of the matrix and
reduce its bandwidth, respectively. Ideally, the reordered matrix would be (i) diag-
onal dominant, and (ii) dense banded. If (i) is accomplished, no LU factorization
row/column pivoting is necessary, thus avoiding tasks at which the GPU does not
shine: logic and arithmetic operations. Additionally, if (ii) holds, coalesced memory
access patterns associated with dense matrix operations can capitalize on the GPU’s
high bandwidth.

The overall solution strategy adopted herein solves Ax = b using a Krylov-
subspace method and employs LU preconditioning with work-splitting and drop-off.
Specifically, each outer Krylov-subspace iteration takes at least one preconditioner
solve step that involves solving Ây = b̂ on the GPU, where Â ∈ RN×N is a dense
banded matrix obtained from A after a sequence of possibly two reordering stages
that can include element drop-off. Regardless of whether A is sparse or not, the
salient attribute of the approach is the casting of the preconditioning step as a dense
linear algebra problem. Thus, a reordering process is employed to obtain a narrow–
band, dense Â, which is subsequently LU–factored. For the reordering, a strategy
that combines two stages, namely diagonal dominance boosting and bandwidth re-
duction, has yielded well balanced coefficient matrices that can be factored fast on
the GPU leveraging a single instruction multiple data (SIMD)–friendly underlying

data structure. The LU factorization relies on a splitting of the matrix Â in several
diagonal blocks that are factored independently and a correction process to account
for the inter-diagonal block coupling. The implementation takes advantage of the
GPU’s deep memory hierarchy, its multi-SM layout, and its predilection for SIMD
computation.

This paper is organized as follows. Section 2 summarizes the solution algorithm.
The discussion covers first the work-splitting-based LU factorization of dense banded
matrices. Subsequently, the Ax = b sparse case brings into focus strategies for
matrix reordering. Section 3 summarizes aspects related to the GPU implementation
of the solution approaches proposed. Results of a series of numerical experiments
for both dense banded and sparse linear systems are reported in Section 4. Since
reordering strategies play a pivotal role in the sparse linear system solution, we present
benchmarking results in which we compared the reordering strategies adopted herein
to established solutions/implementations. The paper concludes with a series of final
remarks and a summary of lessons learned and directions of future work.

2. Description of the methodology.

2.1. The dense banded linear system case. Assume that the banded dense
matrix A ∈ RN×N has half-bandwidth K � N . Following an approach discussed



GPU-BASED PARALLEL LINEAR SOLVER 3

in [42, 38, 39], we partition the banded matrix A into a block tridiagonal form with

P diagonal blocks Ai ∈ RNi×Ni , where
∑P
i Ni = N . For each partition i, let Bi,

i = 1, . . . , P − 1 and Ci, i = 2, . . . , P be the super- and sub-diagonal coupling blocks,
respectively – see Figure 2.1. Each coupling block has dimension K ×K for banded
matrices with half-bandwidth K = max

i,j,aij 6=0
|i− j|.

As illustrated in Fig. 2.1, the banded matrix A is expressed as the product of a
block diagonal matrix D and a so-called spike matrix S [42]. The latter is made up of
identity diagonal blocks of dimension Ni, and off-diagonal spike blocks, each having
K columns. Specifically,

(2.1) A = DS ,

where D = diag(A1, . . . ,AP ) and, assuming that Ai are non-singular, the so-called
left and right spikes Wi and Vi associated with partition j, each of dimension Ni×K,
are given by

A1V1 =

 0
0

B1

(2.2a)

Ai [Wi | Vi] =

Ci 0
0 0
0 Bi

 , i = 2, . . . , P − 1(2.2b)

APWP =

CP

0
0

 .(2.2c)

Fig. 2.1: Factorization of the matrix A with P = 3.

Solving the linear system Ax = b is thus reduced to solving

Dg = b(2.3)

Sx = g(2.4)

Since D is block-diagonal, solving for the modified right-hand side g from (2.3) is
trivially parallelizable, as the work is split across P processes, each charted to solve
Aigi = bi, i = 1, . . . , P . Note that the same decoupling is manifest in Eq. (2.2), and
the work is spread over P processes.
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The remaining question is how to solve quickly the linear system in (2.4). This

problem can be reduced to one of smaller size, Ŝx̂ = ĝ. To that end, the spikes Vi

and Wi, as well as the modified right-hand side gi and the unknown vectors xi in
(2.4) are partitioned into their top K rows, the middle Ni−2K rows, and the bottom
K rows:

Vi =

V
(t)
i

V′i
V

(b)
i

 , Wi =

W
(t)
i

W′
i

W
(b)
i

 ,(2.5a)

gi =

g
(t)
i

g′i
g
(b)
i

 , xi =

x
(t)
i

x′i
x
(b)
i

 .(2.5b)

A block-tridiagonal reduced system is obtained by excluding the middle partitions of
the spike matrices as:

(2.6)



R1 M1

. . .

Ni Ri Mi

. . .

NP−1 RP−1





x̂1

...
x̂i
...

x̂P−1

 =



ĝ1

...
ĝi
...

ĝP−1

 ,

where the linear system above, denoted Ŝx̂ = ĝ, is of dimension 2K(P − 1)� N ,

Ni =

[
W

(b)
i 0

0 0

]
, i = 2, . . . , P − 1(2.7a)

Ri =

[
IM V

(b)
i

W
(t)
i+1 IM

]
, i = 1, . . . , P − 1(2.7b)

Mi =

[
0 0

0 V
(t)
k+1

]
, i = 1, . . . , P − 2(2.7c)

and

(2.8) x̂i =

[
x
(b)
i

x
(t)
i+1

]
, ĝi =

[
g
(b)
i

g
(t)
i+1

]
, i = 1, . . . , P − 1 .

Two strategies are proposed in [38] to solve (2.6): (i) an exact reduction; and,
(ii) an approximate reduction, which sets Ni ≡ 0 and Mi ≡ 0 and results in a

block diagonal matrix Ŝ. The solution approach adopted herein is based on (ii) and
therefore each sub-system Rix̂i = ĝi is solved independently using the following steps:

Form R̄i = IM −W
(t)
i+1V

(b)
i(2.9a)

Solve R̄ix̃
(t)
i+1 = g

(t)
i+1 −W

(t)
i+1g

(b)
i(2.9b)

Calculate x̃
(b)
i = g

(b)
i −V

(b)
i x̃

(t)
i+1(2.9c)

Note that a tilde was used to differentiate between the actual and approximate values

x̃
(t)
i and x̃

(b)
i obtained upon dropping the Ni and Mi terms. An approximation of
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the solution of the original problem is finally obtained by solving independently and
in parallel P systems using the available LU factorizations of the Ai matrices:

A1x1 = b1 −

 0
0

B1x̃
(t)
2

(2.10a)

Aixi = bi −

Cix̃
(b)
i−1

0
0

 −

 0
0

Bix̃
(t)
i+1

 , i = 2, . . . , P − 1(2.10b)

APxP = bP−

CP x̃
(b)
P−1

0
0

 .(2.10c)

Computational savings can be made by noting that if an LU factorization of the

diagonal blocks Ai is available, the bottom block of the right spike; i.e. V
(b)
i , can

be obtained from (2.2a) using only the bottom K ×K blocks of L and U. However,
obtaining the top block of the left spike requires calculating the entire spike Wi. An
effective alternative is to perform an additional UL factorization of Ai, in which case

W
(t)
i can be obtained using only the top K ×K blocks of the new U and L.

Next, note that the decision to set Ni ≡ 0 and Mi ≡ 0 relegates the resulting
algorithm to preconditioner status. Embracing this path is justified by the follow-
ing observation that although the dimension of the reduced linear system in (2.6) is
smaller that that of the original problem, its half-bandwidth is at least three times
larger. The memory footprint of exactly solving (2.6) is large, thus limiting the size of
problems that can be tackled on the GPU. Specifically, at each recursive step, addi-
tional memory that is required to store the new reduced matrix cannot be deallocated
until the global solution is fully recovered.

Finally, it becomes apparent that the quality of the preconditioner is correlated
to neglecting the Ni and Mi terms. For the sake of this discussion, assume that the
matrix A is diagonally dominant with a degree of diagonal dominance d ≥ 1; i.e.,

(2.11) |aii| ≥ d
∑
j 6=i

|aij | ,∀i = 1, . . . , N .

When d > 1, the elements of the left spikes Wi decay in magnitude from top to
bottom, while those of the right spikes Vi decay from bottom to top [33]. This decay,
which is more pronounced the larger the degree of diagonal dominance of A, justifies
the approximation Ni ≡ 0 and Mi ≡ 0. However, note that having A be diagonal
dominant, although desirable, it is not a prerequisite as demonstrated by numerical
experiments reported herein. Truncating when d < 1 will lead to a preconditioner of
lesser quality.

2.1.1. Nomenclature, solution strategies. Targeted for execution on the
GPU, the methodology outlined above becomes the foundation of a parallel imple-
mentation called herein “split and parallelize” (SaP). The matrix A is split into block
diagonal matrices Ai, which are processed in parallel. The code implementing this
strategy is called SaP::GPU. Several flavors of SaP::GPU can be envisioned. At
one end of the spectrum, one solution path would implement the exact reduction, a
strategy that is not considered herein. At the other end of the spectrum, SaP::GPU
solves the block-diagonal linear system in 2.3 and for preconditioning purposes uses
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the approximation x ≈ g. In what follows, this will be called the decoupled approach,
SaP::GPU-D. The middle ground is the approximate reduction, which sets Ni ≡ 0
and Mi ≡ 0. This will be called the coupled approach, SaP::GPU-C, owing to the

coupling that occurs through the truncated spikes; i.e., V
(b)
i and W

(t)
i+1.

Neither the coupled nor the decoupled paths qualify as direct solvers and SaP::GPU
employs an outer Krylov subspace scheme to solve Ax = b. The solver uses BiCGStab(`)
[46] and left-preconditioning, unless the matrix A is symmetric and positive definite,
in which case the outer loop implements a conjugate gradient method [41]. SaP::GPU
is open source and available at [2, 3].

2.2. The sparse linear system case. The discussion focuses next on solving
Asx = b, where As ∈ RN×N is assumed to be a sparse matrix. The salient attribute
of the solution strategy is its fallback on the dense banded approach described in
§2.1. Specifically, an aggressive row and column permutation process is employed to
transform As into a matrix A that has a large d and small K. Although the reordered
matrix will remain sparse within the band, it will be regarded to be dense banded and
LU- and/or UL-factored accordingly. For matrices As that are either nonsymmetric
or have low d, a first set of row permutations is applied as QAsx = Qb, to either
maximize the number of nonzeros on the diagonal (maximum traversal search) [19],
or maximize the product of the absolute values of the diagonal entries [20, 21]. Both
reordering algorithms are implemented using a depth first search with a look-ahead
technique similar to the one in the Harwell Software Library (HSL) [4].

While the purpose of the first reordering QAs is to render the permuted matrix
diagonally “heavy”, a second reordering seeks to reduce K by using the traditional
Cuthill-McKee CM algorithm [14]. Since the diagonal entries should not be relocated,
the second permutation is applied to the symmetric matrix QAs + AT

s QT . Following
these two reorderings, the resulting matrix A is split to obtain A1 through AP . A
third CM reordering is then applied to each Ai for further reduction of bandwidth.
While straightforward to implement in SaP::GPU-D, this third stage reordering in
SaP::GPU-C mandates computation of the entire spikes, an operation that can signif-
icantly increase the memory footprint and flop count of the numerical solution. Note
that third stage reordering in SaP::GPU-C renders the UL factorization superfluous
since computing only the top of a spike is insufficient.

If Ai is diagonally dominant, the LU and/or UL factorization can be safely car-
ried out without pivoting [24]. Adopting the strategy used in PARDISO [44], we
always perform factorizations of the diagonal blocks Ai without pivoting but with
pivot boosting. Specifically, if a pivot becomes smaller than a threshold value, it is
boosted to a small, user controlled value ε. This yields a factorization of a slightly
perturbed diagonal block, LiUi = Ai + δAi, where ‖δAi‖ = O(u‖A‖) and u is the
unit roundoff [32].

2.2.1. Brief comments on the reordering algorithms. SaP::GPU employs
two reordering strategies, namely Diagonal Boosting (DB) and Cuthill-McKee (CM),
possibly multiple times, to reduce K and increase the degree of diagonal dominance.
DB is applied first at the matrix As level, followed by CM applied at matrix level, and
possibly followed by a set of P third-stage CM reorderings applied at the sub-matrix
Ai level.

Diagonal Boosting. The DB algorithm seeks to improve diagonal dominance in As

and draws on a minimum bipartite perfect matching [12, 28, 11, 13, 17, 26]. There
are several variants of the algorithm aimed at different outcomes, e.g., maximizing
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the absolute value of bottleneck, the sum, the product or other metrics that factor in
the diagonal entries. As a proxy for diagonal dominance, SaP::GPU maximizes the
absolute value of the product of all diagonal entries.

The algorithm that seeks to leverage GPU computing is as follows. Given a matrix
{aij}n×n, find a permutation σ that maximizes

∏n
i=1 |aiσi |. Denoting ai = maxj |aij |

and noting that ai is an invariant of σ, then we are to minimize

log

n∏
i=1

ai
|aiσi |

=

n∑
i=1

log
ai
|aiσi |

=

n∑
i=1

(log ai − log |aiσi |) .

The reordering problem is reduced to minimum bipartite perfect matching in the
following way: given a bipartite graph GC = (VR, VC , E), we define the weight cij of
the edge between nodes i ∈ VR and j ∈ VC as

(2.12) cij =

{
log ai − log |aij | (aij 6= 0)

∞ (aij = 0)
.

If we are able to find a minimum bipartite perfect matching σ such that
∑
ciσi

is
minimized, according to the process of reduction above, then

∏n
i=1 |aiσi

| is maximized.
Bandwidth reduction. Whether QAs is sparse or not, there are P − 1 pairs of
always dense spikes, each of dimension Ni ×K. They need to be stored unless one
employs an LU and UL factorization of Ai to retain only the appropriate bottom
and top components. Large K values pose memory challenges; i.e., storing and data
movement, that limit the size of the problems that can be tackled. Moreover, the
spikes need to be computed by solving multiple right-hand side linear systems with
Ai coefficient matrices. There are 2K such systems for each of the P−1 pairs of spikes.
Evidently, a low K is highly desirable. However, finding the lowest half-bandwidth K
by symmetrically reordering a sparse matrix is NP-hard. The CM reordering provides
simple and oftentimes effective heuristics to tackle this problem. Moreover, as the CM
reordering yields symmetric permutations, it will not displace the “heavy” diagonal
terms obtained during the DB step. However, to obtain a symmetric permutation, one
has to start with a symmetric matrix. To this end, unless A is already symmetric
and does not call for a DB step (which is the case, for instance, when A is symmetric
positive definite), the matrix passed over for CM reordering is (A + AT )/2. Given a
symmetric n × n matrix with m non-zero entries CM works on its adjacency matrix.
CM first picks a random node and adds the node to the work list. Then the algorithm
repeats sorting all its neighboring nodes with non-descending vertex degree and adding
them until all vertices have been added and removed once from the work list. In other
words, CM is essentially a BFS where neighboring vertices are visited in order from
lowest to highest vertex degree.
Third-stage reordering. The DB–CM reordering sequence yields diagonally-heavy
matrices of smaller bandwidth. The band itself however can be very sparse. The
purpose of the third-stage CM reordering is to further reduce the bandwidth within
each Ai and reduce the sparsity within the band. Consider, for instance, the matrix
ANCF88950 that comes from structural dynamics [45]. It has 513 900 nonzeros, N =
88 950, and an average of 5.78 non-zero elements per row. After DB–CM reordering
with no drop-off, the resulting banded matrix has a half-bandwidth K = 205. The
band itself is very sparse with a fill-in of only 0.7% within the band. In its default
solution, SaP::GPU constructs a block banded matrix where each diagonal block Ai,
obtained after the initial DB–CM reorderings, is allowed to have a different bandwidth.
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This is achieved using another CM pass, independently and in parallel for each Ai.
Applying this strategy to ANCF88950, using P = 16 partitions, the half bandwidth
is reduced for all partitions to values no higher than K = 141, while the fill-in within
the band becomes approximately 3%.

Note that this third-stage reordering does nothing to reduce the column-width
of the spikes. However, it helps in two respects: a smaller memory footprint for the
LU/UL factors, and less factorization effort. These are important side effects, since
the LU/UL GPU factorization is currently done in-core considering Ai to be dense
within the band.

3. Brief implementation details.

3.1. Dense banded matrix factorization details. This subsection provides
implementation details regarding how the P partitions Ai are determined, how the
banded matrix A is stored, and how the LU/UL steps are implemented on the GPU.

Number of partitions and partition size. The selection of P must strike a
balance between two conflicting requirements. On the one hand, having a large P
is attractive given that the LU/UL factorization of Ai for i = 1, . . . , P can be done
independently and simultaneously. On the other hand, this negatively impacts the
quality of the resulting preconditioner, due to the approximations in evaluating the
spikes corresponding to the coupling of the diagonal blocks Ai and Ai+1. Since this
adversely impacts the quality of the resulting preconditioner, a high P could lead to
poor preconditioning and an increase in the number of iterations to convergence. In
the current implementation, no attempt is made to automate this selection and some
experimentation is required.

Given a P value, the size of the diagonal blocks Ai is selected to achieve load
balancing. The first Pr partitions are of size bN/P c + 1, while the remaining are of
size bN/P c, where N = P bN/P c+ Pr.

Matrix storage. For general dense banded matrices Ai, we adopt a “tall and thin”
storage in column-major order. All diagonal elements are stored in the K-th column.
The rest of the elements are correspondingly distributed columnwise. This strategy,
shown below for a matrix with N = 8 and K = 2, groups the operands of the LU/UL
factorizations and allows coalesced memory accesses that can fully leverage the GPU’s
bandwidth. 

∗ ∗ a11 a21 a31
∗ a12 a22 a32 a42
a13 a23 a33 a43 a53
a24 a34 a44 a54 a64
a35 a45 a55 a65 a75
a46 a56 a66 a76 a86
a57 a67 a77 a87 ∗
a68 a78 a88 ∗ ∗


LU/UL factorizations. The solution strategy pursued calls for an LU and an op-
tional UL factorization of each dense banded diagonal block Ai. The implementation
requires a certain level of synchronization since for each Ai, the factorization, forward
elimination, and backward substitution phases each consist of Ni−1 dependent steps
that need to be choreographed. One aggravating factor is the GPU lack of native, low
overhead, support for synchronization between threads running in different blocks.
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The established GPU strategy for inter-block synchronization is “exit and launch a
new kernel”. This guarantees synchronization at the GPU-grid level at the cost of
non-negligible overhead. In a trade-off between minimizing the overhead of kernel
launches and maximizing the occupancy of the GPU, we established two execution
paths: one for K < 64, the second one for larger bandwidths. As a side note, the
threshold value of 64 was selected through numerical experimentation over a variety
of problems and is controlled by the number of threads that can be organized in a
block in CUDA [35].

For K < 64, the code was designed to reduce the kernel launch count. Instead of
having Ni−1 kernel launches, each completing a step of the factorization of Ai = LiUi

by updating entries in a (K + 1) × (K + 1) window of elements, a single kernel is
launched to factor Ai. It uses min(K2, 1024) threads per block and relies on low-
overhead stream-multiprocessor synchronization support within the block, without
any need for global synchronization. In a so-called window-sliding method, at each
step of the factorization; i.e., during the process of computing column entries in L
and row entries of U, each thread updates a fixed number of Ai entries. On current
GPU hardware, this fixed number is between 1 and 4. Once all threads in the block
complete their work, they are synchronized and the (K + 1)× (K + 1) window slides
down by one row and to the right by one column. The value 4 is explained as follows.
Assume that K = 63. Then, the sliding window has size 64 × 64. Since the two-
dimensional GPU thread block size is 1024 = 32 × 32, each thread will handle four
entries of the window of focus.

For K ≥ 64, SaP uses multiple blocks of threads to update L and U entries. On
the upside, there are more threads working on the window of focus. On the downside,
there is overhead associated with leaving and reentering the kernel, a process that
has the side effect of flushing the shared memory and registers. The window is larger
than K ×K, and it slides at a stride of eight; i.e., moves down by eight rows and to
the right by eight columns upon exiting and reentering the LU factorization kernel.

Use of registers and shared memory. If the user decides to employ a third-stage
reordering, the coupling sub-blocks Bi and Ci are used to compute the entire spikes
in a scheme that renders a UL factorization superfluous. Then, Bi and Ci are each
first partitioned into sub-blocks of dimension L × K where L is at most 20. Each
forward/backward sweep to get the spikes is unrolled, and in each iteration of the
new loop, one entire sub-block, rather than a vector of length K, is calculated. To
this end, the corresponding elements in the matrix Ai are pre-fetched into shared
memory and the entries of the sub-block are preloaded into registers. This strategy,
in which all operations to calculate the spikes draw on registers and shared memory,
leads to 50% to 70% improvement in performance when compared with an alternative
that calculates the spike elements in a loop without leveraging the low latency/high
bandwidth of the GPU register file and shared memory.

Mixed Precision Strategy. The solution uses a mixed-precision implementation by
falling back on single precision for the preconditioner and switching to double precision
arithmetic in the outer BiCGStab(2) calculations. A battery of tests indicate that
this strategy results in a 50% average reduction in time to solution when compared
with an approach where all calculations are performed in double precision.

3.2. DB reordering implementation details. SaP::GPU organizes the DB
algorithm into four stages, DB-S1 through DB-S4. Due to differences in the nature
and degree of parallelism of these stages, DB implements a hybrid strategy; namely, it
relies on GPU computing for DB-S1 and DB-S4 and on CPU computing for DB-S2
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and DB-S3. A thorough discussion of the implementation is provided in [31]. Therein,
a solution that kept the entire DB implementation on the GPU was discussed and
deemed decisively slower than the hybrid strategy adopted here.

DB-S1: form bipartite graph. This stage assembles a matrix that mirrors the
structure of the original sparse matrix. The sparsity pattern of the input matrix is
maintained and the values of its nonzero entries are modified according to Eq. (2.12).
The stage is highly parallel and involves: (1) calculating for each row of the original
matrix the max absolute value, and (2) updating each value to form the weighted
bipartite graph.

DB-S2: find initial partial match. This stage is not mandatory but the avail-
ability of an initial partial match as a starting point for the next stage was found
to considerably reduce the running time for the overall algorithm [31]. Like in [12],
after setting ui = minj cij and vj = mini(cij − ui), we try to match as many pairs of
nodes as possible. The matched nodes (i, j) should satisfy ui + vj = cij . This yields
augmenting paths of length one. This stage, which was implemented to execute in
parallel, was compute intensive as it had to resolve scenarios where multiple column
nodes would match the same row node. A CPU parallel implementation was found
to be more suitable owing to intense integer arithmetic and control flow overhead.

DB-S3: find perfect match. Finding matches in a bipartite graph GC is equivalent
to finding the shortest paths in an associated reduced graph. Omitting some of the
details, the shortest path problem is tackled using Dijkstra’s algorithm [18], which
is applied to all nodes i that are unmatched in the initial partial match obtained in
DB-S2. This ensures that all row nodes, and therefore all column nodes, are eventually
matched. The theoretical complexity of this stage is O(n · (m + n) · log n), where n
and m are the dimension and number of nonzeros in the input matrix, respectively.
However, thanks to the preprocessing DB-S2, actual run times for finding a perfect
match are acceptable in all situations and this stage is the DB bottleneck only for
about half of the matrices tested [31].

DB-S4: extract permutation and scaling factors. The matrix permutation can
be obtained directly from the resulting perfect match: if the row node i was matched
to the column node j then rows (or columns) i and j must be permuted. Optionally,
scaling factors can be calculated and applied to rows and columns in order to bring
the matrix to a so-called I-matrix form; i.e., a matrix with 1 or −1 on the diagonal
and off-diagonal elements of absolute value less than 1, see [36]. This stage is highly
parallelizable and amenable to GPU computing.

3.3. CM reordering implementation details. The unordered CM algorithm,
which draws on an approach described in [27], is separated into three stages, CM-S1
through CM-S3. A high quality reordering calls for several BFS iterations, which are
called herein “CM iterations”. Just like the DB implementation, the CM solution (i) is
hybrid – the overall algorithm leverages both CPU and GPU computing; and, (ii) it
uses CPU–GPU unified memory, a recent CUDA feature [34], to provide for a simple
and transparent memory management process. The latter feature allows the CUDA
runtime to transparently manage the CPU–GPU data migration as the computation
switches back and forth between the CPU and GPU. Since no explicit, programmer
initiated, data transfer is required, the code is cleaner and more concise.

CM-S1: pre-processing. The first stage is implemented on the GPU to accomplish
two objectives. First, it produces the data structure that is worked upon. As the
input matrix A is not guaranteed to be symmetric, the sparse matrix structure for
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(A+AT )/2 is produced in anticipation of the subsequent two stages of the algorithm.
Second, in order to avoid repetitively sorting the neighbors of a given node, the nodes
with the same row indices are pre-sorted by ascending vertex degree of column index.

CM-S2: perform standard BFS. After experimenting with the implementation, the
strategy adopted started from several nodes and in parallel performed what would be
a traditional CM-S2 & CM-S3 combo. The alternative of considering one node only,
namely the node with the smallest vertex degree, yields a second level BFS tree with
fewer nodes. Eventually, the resulting BFS tree will likely be “tall and thin”. Starting
from several nodes and completing the reordering process for each of them increases
the likelihood of avoiding a “bad” initial node. In practical terms, owing to the use
of parallel computing, this strategy yields smaller bandwidths at a modest increase
in computational overhead.

For each starting node, a standard BFS pass yields the levels of all nodes in the
BFS tree. Since the order of nodes at the same level is not critical in this stage,
parallel computing can help by concurrently visiting the neighbors of all nodes at the
previous level. We use an outer loop to iterate over the levels, and in each iteration,
depending on the number of nodes np added in the previous iteration, we decide
whether this iteration is executed on the GPU or CPU. The heuristics used are as
follows: a kernel handles the iteration on the GPU only if np ≥ 10. There are two
notable implementation details. First, the CM iterations are executed sequentially.
After each iteration, we select the node at the previous level with the lowest vertex
degree which has not yet been selected yet. If no such nodes exist; i.e., all nodes at the
last level have been selected as starting nodes in previous iterations, a random node
which has not been considered is selected. Second, the CM iterations terminate either
when the height of the BFS tree does not increase, or when the maximum number of
nodes over all levels does not decrease compared with the candidate optimal found
so far. This strategy is proposed in [37] with the caveat that we only consider the
leaf with the minimum degree. From practical experience, these heuristics lead to an
algorithm that for most matrices terminates within three CM iterations.

CM-S3: reorder nodes. The previous stage determines the level of each node.
Roughly speaking, nodes are ordered in ascending order, from level 0 up to the maxi-
mum level ml and memory space can be pre-allocated for nodes at each level. Parallel
computing is leveraged by observing that the order of nodes at level l depends only
on the order of nodes at level l − 1. To that end, a pair of read/write pointers is set
for each level, and except for level 0, the read/write pointers of each level will point
to the starting position of the level’s pre-allocated space. We say a thread “works on”
level l if it reads nodes at level l and writes their neighbors that are at level l+1. Thus
the execution thread working on level l will read and modify the read pointer of level
l and the write pointer of level l + 1, and it will only read the write pointer of level
l. Once the thread finishes reading all nodes at level l, it moves on to another level;
otherwise it repeats checking whether or not the thread working on level l − 1 has
written nodes which it has not processed by checking if the read pointer at level l lags
the write pointer at level l. If yes, the thread working on level l processes these nodes,
i.e., writes their neighbors with level l+1, and goes back to checking again whether it
has finished processing or not; otherwise, it spins and waits for the thread working on
the previous level. Note that the parallelism in CM-S3 is rather coarse-grained and
proved to be better suited for execution on the CPU.
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3.4. SaP::GPU–components and computational flow. In the absence of
column/row reordering before the LU factorization and pivoting during the factor-
ization, the SaP::GPU dense banded linear system solver is straightforward to im-
plement. Upon partitioning A into diagonal blocks Ai, each Ai is subject to an LU
factorization that requires an amount of time TLU . Next, in TBC time, the coupling
block matrices Bi and Ci are extracted on the GPU. The Vi and Wi spikes are sub-
sequently computed in an operation that requires TSPK time. Afterwards, in TLUrdcd
time, the spikes are truncated and the steps outlined in Eq. (2.9) are taken to produce

the intermediary values x̃
(t)
i and x̃

(b)
i . At this point, the pre-processing step is over

and two sets of factorizations, for Ai and R̄i, are available for preconditioning during
the iterative phase of the solution. The amount of time spent iterating is TKry, the
iterative methods considered being BiCGStab(2) and conjugate gradient.

The sparse linear system solution is slightly more convoluted at the front end.
A sequence of two permutations, DB requiring TDB and CM requiring TCM time,
are carried out to increase the size of the diagonal elements and reduce bandwidth,
respectively. An additional amount of time TDrop might be spent to drop off-diagonal
elements in order to decrease the bandwidth of the reordered A matrix. Since the
DB and CM reorderings are hybrid, TDtransf is used to keep track of the overhead
associated with moving data back and forth between the CPU and GPU during the
reordering process. An amount of time TAsmbl is spent on the GPU in book-keeping
required to turn the reordered sparse matrix into a dense banded matrix.

Fig. 3.1: Computational flow for SaP::GPU.

The process described above is summarized in Fig. 3.1. The boxes in gray are as-
sociated with the solution of a dense banded linear system. For a sparse linear system
solve that uses a coupled approach; i.e., SaP::GPU-C, the total time is TTotSparse =
TPrepSp + TTotDense, where TPrepSp = TDB + TCM + TDtransf + TDrop + TAsmbl and
TTotDense = TLU + TBC + TSPK + TLUrdcd + TKry. For SaP::GPU-D, owing to the
decoupled nature of the solution, TTotDense = TLU + TKry, where TLU includes an
CM process that reduces the bandwidth of each Ai. The names introduced; i.e., TDB ,
TCM , TLUrdcd, etc., are referenced in the profiling study discussed in §4.3.1 and used
ad verbum on the SaP::GPU web-page [3] to report profiling results for approximately
120 linear systems.
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4. Numerical Experiments. The next three subsections summarize results
from three numerical experiments concerned, in this order, with the solution of dense
banded linear systems, sparse matrix reordering, and the solution of sparse linear sys-
tems. The subsection order is meant to emphasize that dense banded linear system
solution and matrix reordering are two prerequisites for an effective sparse linear sys-
tem implementation in SaP::GPU. The hardware/software setup for these numerical
experiments is as follows. The GPU used was Tesla K20X [6, 5]. SaP::GPU uses
CUDA 7.0 [35], cusp [9], and Thrust [25]. The CPU used was the 3GHz, 25 MB
last level cache, Intel Xeon E5-2690v2. The node used hosted two such CPUs, which
is the maximum possible for this type of chip, for a total of 20 cores executing up
to 40 HTT threads. The two-CPU node was used to run Intel’s MKL version 13.0.1,
PARDISO [43], MUMPS [8], SuperLU [16], and Harwell’s MC60 and MC64 [4]. Unless
otherwise stated, all times reported are in seconds and were obtained on a dedicated
machine. In an attempt to avoid warm up overhead, the results reported represent
averages that drew on multiple successive identical runs.

When reporting below the results of several numerical experiments, one legitimate
question is whether it makes sense to compare performance results obtained on one
GPU with results obtained on two multicore CPUs. The multicore CPU is not the
fastest, as Intel chips with more cores are presently available. Additionally, the Intel
chip’s microarchitecture is not Haswell, which is more recent than the Ivy Bridge
microarchitecture of the Xeon E5-2690v2. Likewise, on the GPU side, one could have
used a Tesla K80 card, which has roughly four times more memory than K20x and
twice its memory bandwidth. Moreover, price-wise, the K80 would have been closer to
the cost of two CPUs than K20x is. Finally, Kepler is not the latest microarchitecture
either, since Maxwell currently enjoys that status. We do not attempt to answer these
questions and hope that the interested reader will modulate this study’s conclusions
by factoring in unavoidable CPU–GPU hardware differences. No claim is made herein
of one architecture being superior since such a claim could be easily proved wrong
by moving from algorithm to algorithm or from discipline to discipline. The sole
and narrow purpose of this section is to report on how apt SaP::GPU is in tackling
linear algebra tasks. To that end its performance is compared to that of established
solutions running on CPUs and also of a recent GPU library.

4.1. Numerical experiments related to dense banded linear systems.
The discussion in this subsection draws on a subset of results reported in [29] and
presents results pertaining to the influence on SaP’s time to solution of the number
of partitions P and of the diagonal dominance d of the coefficient matrix, as well as
a comparison against Intel’s MKL solver over a spectrum of problem dimensions N
and half bandwidth values K.

4.1.1. Sensitivity with respect to P . The entire SaP::GPU solution for dense
banded linear systems is implemented on the GPU. We first carried out a sensitivity
analysis of the time to solution with respect to the number of partitions. The results
are summarized in Fig. 4.1. This behavior; i.e., relatively small gains after a threshold
value of P , is typical. As a rule of thumb, some experimentation is necessary to find
an optimal P value. Otherwise, a conservatively large value should be picked in
the neighborhood of 50 or above. For SaP::GPU-D, larger values of P help with
load balancing, particularly for GPUs with many stream multiprocessors. The same
argument can be made for SaP::GPU-C, with the caveat that the spike truncation
factor comes into play in a fashion that is modulated by the value of d.

It is instructive to see how the solution time is spent by SaP::GPU-C and
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Fig. 4.1: Time to solution as a function of the number of partitions P . Study carried
out for a dense banded linear system with N = 200 000, K = 200, and d = 1.

SaP::GPU-D and understand how changing P influences this distribution of the time
to solution between the major implementation components. The results in Table 4.1
provide this information as they compare the coupled and decoupled strategies in
regards to the factorization times, Dpre vs. Cpre; number of iterations in the Krylov
solver, Dit vs. Cit; amount of time spent iterating to find the solution at a level
of accuracy of at least 10−10, DKry vs. CKry; and the total times, DTot vs. CTot.
These times are defined as Dpre = TLU , Cpre = TLU + TBC + TSPK + TLUrdcd,
DTot = Dpre + DKry, and CTot = Cpre + CKry. Note that for SaP::GPU, quarters
of number of iterations are reported. This is due to the fact that BiCGStab(2) con-
tains three exits points during each iteration. Moving from one to the next roughly
requires the same amount of effort, which justifies the adopted convention.

The number of iterations to convergence suggests that the quality of the coupled-
version of the preconditioner is superior. Yet the price for getting this better precon-
ditioner is higher and SaP::GPU-D ends up winning by taking as little as half the
time required by SaP::GPU-C. When the same factorization is used multiple times,
this conclusion could change since the metric that controls the performance would be
DKry and CKry, or its number of iterations for convergence proxy. Also note that
the return on increasing the number of partitions gradually fades away and for the
coupled strategy there is no reason to go beyond P = 50.

4.1.2. Sensitivity with respect to d. Next, we report on the performance
of SaP::GPU for a dense banded linear system with N = 200 000 and K = 200, for
degrees of diagonal dominance in the range 0.06 ≤ d ≤ 1.2, see Eq. (2.11). The entries
in the matrix are randomly generated and P = 50. The findings are summarized in
Fig. 4.2, where SaP::GPU-C and SaP::GPU-D are compared against the banded
linear solver in MKL. When d > 1 the impact of the truncation becomes increasingly
irrelevant, a situation that places the SaP::GPU at an advantage. As such, there is no
reason to go beyond d = 1.2 since if anything, the results will get better. The more
interesting range is d < 1, when the diagonal dominance requirement is violated.



GPU-BASED PARALLEL LINEAR SOLVER 15

P Dpre Cpre Dit Cit DKry CKry DTot CTot SpdUp

2 1,016.8 1,987.6 1.75 0.75 2,127 1,742.4 3,143.8 3,730 0.84
3 803.7 1,672.5 1.75 0.75 1,446.4 1,179.2 2,250.1 2,851.7 0.79
4 694.7 1,480.7 1.75 0.75 1,105.9 896.3 1,800.6 2,377 0.76
5 630.1 1,371.5 1.75 0.75 900.1 722.7 1,530.2 2,094.2 0.73
6 595.1 1,304.4 1.75 0.75 766.1 611.3 1,361.2 1,915.7 0.71
8 535 1,210.5 1.75 0.75 593.2 471 1,128.3 1,681.5 0.67
10 500 1,166.7 1.75 0.75 491 385.6 991.1 1,552.4 0.64
20 442 1,099.9 1.75 0.75 290.2 220.4 732.1 1,320.3 0.55
30 432.7 1,098.5 1.75 0.75 225 167.7 657.8 1,266.2 0.52
40 410.2 1,087.2 1.75 0.75 186.9 141 597.1 1,228.2 0.49
50 403.5 1,094.8 1.75 0.75 166.6 125.1 570.2 1,219.9 0.47
60 408.4 1,115.9 1.75 0.75 152.7 113.7 561.1 1,229.6 0.46
70 405 1,126.7 1.75 0.75 148.8 105.7 553.8 1,232.4 0.45
80 397.3 1,132.9 1.75 0.75 137.7 101.7 535 1,234.6 0.43
90 397 1,151.4 1.75 0.75 133.5 101.9 530.5 1,253.3 0.42
100 387.8 1,155.9 1.75 0.75 131.6 101.8 519.4 1,257.6 0.41

Table 4.1: Performance comparison over a spectrum of number of partitions P for
coupled (C) vs. decoupled (D) strategies in SaP::GPU. All timings are in milliseconds.
Problem parameters: N = 200 000, d = 1, K = 200. The symbols used are as follows:
Dpre–amount of time spent in preprocessing by the decoupled strategy; Dit–number
of Krylov iterations for convergence; DTot–amount of time to converge. Similar values
are reported for the coupled scenario. SpdUp= DTot/CTot.

SaP::GPU solver demonstrates uniform performance over a wide range of degrees
of diagonal dominance. For instance, SaP::GPU-C typically required less than one
Krylov iteration for all d > 0.08. As the degree of diagonal dominance decreases
further, the number of iterations and hence the time to solution increase significantly
as a consequence of truncating the spikes that now contain non-negligible values.

It is instructive to see how the solution time is spent by SaP::GPU-C and
SaP::GPU-D and understand how changing d influences this distribution of the time
to solution between the major implementation components. The results reported in
Table 4.2 provide this information as they help answer the following question: can one
still use a decoupled approach for matrices that are far from being diagonal dominant?
The answer is yes, except in the most extreme case, when d = 0.06. Note that the
number of iterations to convergence for the decoupled approach quickly recovers away
from small values of d. In the end, the same 2× speedup factor is obtained virtually
over the entire spectrum of d values.

4.1.3. Comparison with Intel’s MKL over a spectrum of N and K.
This section summarizes results of a two-dimensional sweep over N and K. In this
exercise, prompted by the results reported in Figs. 4.1 and 4.2, we fixed P = 50 and
chose matrices for which d = 1. Each row in Table 4.3 lists the value of N , which runs
from 1000 to 1 000 000. Each column lists the dimension of half bandwidth K, which
runs from 10 to 500. Each table row is split in three sub-rows: SaP::GPU-D results
are reported in the first sub-row; SaP::GPU-C in the second sub-row; MKL in the
third sub-row. All timings are in milliseconds. “OOM” stands for “out-of-memory”
– a situation that arises when SaP::GPU exhausts during the solution of the linear
system the GPU’s 6 GB of global memory.

The results reported in Table 4.3 are statistically summarized in Fig. 4.3, which
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Fig. 4.2: Influence of the diagonal dominance d, with 0.06 ≤ d ≤ 1.2, for fixed values
N = 200 000, K = 200 and P = 50.

provides SaP over MKL speedup information. Assume that a test “α” successfully
ran to completion in SaP::GPU-D, requiring T SaP::GPU−D

α , and/or in SaP::GPU-C,
requiring T SaP::GPU−C

α . By convention, in case of failing to solve, a negative value;
i.e. -1, is assigned to T SaP::GPU−D

α or T SaP::GPU−C
α . If a test runs to completion both

in SaP and MKL, the “α” speedup value used to generate the plot in Fig. 4.3 is
computed as sBD ≡ T MKL

α /T SaP
α , where T MKL

α is MKL’s time to solution and T SaP
α ≡

min(max(T SaP::GPU−D
α , 0),max(T SaP::GPU−C

α , 0)). Given that N assumes 10 values and
K takes 6 values, “α” can be one of 60 tests. Since three (N,K) tests, namely
(1 000 000, 200), (1 000 000, 500), and (500 000, 500), failed to solve in SaP, the sample
population for the statistical study in Fig. 4.3 is 57. Out of 57 tests, sBD > 1 in
all but two cases: for (1 000 000, 10) when sBD = 0.87825, and for (2000, 50) when
sBD = 0.99706. The highest speedup was sBD = 8.1255, for (2000, 200). The median
is slightly higher than 2.0, which indicates that of the 57 tests, half were completed
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d Dpre Cpre Dit Cit DKry CKry DTot CTot SpdUp

6·10−2 402.5 1,098.1 353.25 4.25 25,344.3 525.5 25,746.8 1,623.6 15.86
8·10−2 403.6 1,097.3 8.75 0.75 675.3 128 1,079 1,225.3 0.88
0.1 403.5 1,096.9 6.25 0.75 492.6 128.4 896.1 1,225.2 0.73
0.2 403.4 1,097.5 3.75 0.75 312.1 127.3 715.6 1,224.8 0.58
0.3 404.7 1,096.7 2.75 0.75 248.9 127.2 653.6 1,223.9 0.53
0.4 404 1,096.8 2.75 0.75 240.6 127.4 644.6 1,224.2 0.53
0.5 404.4 1,094.9 2.25 0.75 236.7 125.3 641 1,220.2 0.53
0.6 404 1,096.9 2.25 0.75 202.1 127.5 606.1 1,224.4 0.5
0.7 403.4 1,097.6 2.25 0.75 200.1 128.3 603.5 1,225.9 0.49
0.8 402.4 1,097.1 2.25 0.75 197.5 128.3 599.9 1,225.5 0.49
0.9 403.5 1,096.7 1.75 0.75 162.3 127.3 565.8 1,224 0.46
1 402.6 1,097.6 1.75 0.75 162.5 127.4 565.2 1,225 0.46
1.1 402.5 1,097.1 1.75 0.75 162.4 128.3 564.9 1,225.4 0.46
1.2 403.1 1,097.2 1.75 0.75 172 128 575.1 1,225.2 0.47

Table 4.2: Influence of d for coupled (C) vs. decoupled (D) strategies in SaP::GPU
(N = 200 000, P = 50, K = 200). All timings are in milliseconds. Symbols used are
as specified for Table 4.1.

Fig. 4.3: SaP speedup over Intel’s MKL – statistical analysis based on values in Table
4.3.

by SaP two times faster than by MKL. The figure also shows that about 25% of the
tests run, roughly, between three and six times faster in SaP. The red crosses in the
figure represent outliers.

4.2. Numerical experiments related to sparse matrix reorderings. When
solving sparse linear systems, SaP reformulates the sparse problem as a dense banded
linear system that is subsequently solved using SaP::GPU-C or SaP::GPU-D. Ide-
ally, the “sparse–to–dense” transition yields a coefficient matrix that is diagonal heavy;
i.e., has a large d, and has a small bandwidth K. Two matrix reorderings are applied
in an attempt to meet these two objectives. The first one; i.e., the diagonal boosting
reordering, is assessed in section §4.2.1. The second one; i.e., the bandwidth reduction
reordering, is evaluated in §4.2.2.

4.2.1. Assessment of the diagonal boosting reordering solution. The
first set of results, summarized in Fig. 4.4, correspond to an efficiency comparison
between the hybrid CPU–GPU implementation of §3.2 and the Harwell Sparse Library
(HSL) MC64 algorithm [4]. The hybrid implementation outperformed MC64 for 96 out
of the 116 matrices selected from the Florida Sparse Matrix Collection [15]. The left
pane in Fig. 4.4 presents results of a statistical analysis that used a median-quartile
method to measure the spread of the MC64 and DB times to solution. Assume that
T DB
α and T MC64

α represent the times required by DB and MC64, respectively, to complete



18 A. Li, R. Serban, and D. Negrut

N
K

10 20 50 100 200 500

1000
2.433E1 1.755E1 1.816E1 2.067E1 2.755E1 2.952E1

6.637 7.354 1.106E1 1.866E1 2.937E1 2.955E1
1.145E1 1.080E1 1.281E1 2.208E1 2.145E2 2.208E2

2000
2.224E1 1.873E1 1.911E1 2.149E1 2.725E1 5.638E1

6.158 8.514 1.328E1 2.464E1 3.569E1 9.514E1
1.255E1 1.100E1 1.324E1 2.214E1 2.214E2 2.357E2

5000
2.517E1 2.062E1 2.101E1 2.327E1 3.259E1 8.002E1

7.597 9.266 1.622E1 3.049E1 5.866E1 2.372E2
1.307E1 1.233E1 2.145E1 3.827E1 2.531E2 2.944E2

10 000
2.823E1 2.758E1 2.385E1 2.686E1 4.509E1 1.183E2
1.019E1 1.168E1 1.887E1 4.561E1 1.060E2 4.737E2
1.560E1 1.509E1 2.959E1 5.881E1 3.009E2 3.928E2

20 000
3.393E1 3.235E1 3.302E1 4.198E1 5.991E1 2.016E2
1.428E1 1.653E1 2.741E1 6.676E1 1.950E2 9.500E2
2.087E1 2.323E1 4.879E1 1.117E2 3.373E2 5.947E2

50 000
6.433E1 5.825E1 5.869E1 9.085E1 1.466E2 4.361E2
2.713E1 3.048E1 5.470E1 1.444E2 3.668E2 2.337E3
3.263E1 4.107E1 1.030E2 2.597E2 7.151E2 1.107E3

100 000
9.838E1 8.703E1 1.112E2 1.527E2 2.917E2 9.571E2
4.765E1 5.576E1 9.650E1 2.612E2 6.498E2 3.583E3
5.392E1 6.966E1 1.910E2 4.956E2 1.275E3 2.277E3

200 000
1.808E2 1.590E2 1.877E2 3.285E2 5.679E2 2.003E3
8.992E1 1.035E2 1.868E2 5.054E2 1.221E3 6.051E3
9.509E1 1.259E2 3.676E2 9.831E2 2.386E3 4.211E3

500 000
3.720E2 3.651E2 4.425E2 7.240E2 1.411E3 OOM
2.037E2 2.380E2 4.424E2 1.229E3 2.928E3 OOM
2.135E2 2.924E2 8.969E2 2.539E3 6.231E3 1.071E4

1 000 000
7.242E2 7.092E2 9.788E2 1.442E3 OOM OOM
3.970E2 4.633E2 8.640E2 2.443E3 OOM OOM
3.486E2 5.692E2 1.778E3 4.712E3 1.137E4 2.159E4

Table 4.3: Performance comparison, two-dimensional sweep over N and K for P =
50 and d = 1. For each value N , the three rows correspond to the SaP::GPU-D,
SaP::GPU-C, and MKL solvers, respectively.

the diagonal boosting reordering in test α. A relative speedup is computed as

(4.1) SDB−MC64α = log2

T MC64
α

T DB
α

.

These SDB−MC64α values, which can be either positive or negative, are collected in a set
SDB−MC64 which is used to generate the left box plot in Fig. 4.10. The number of tests
used to produce these statistical results was 116. Note that a positive value means that
DB is faster than MC64, with the opposite outcome being the case for negative values
of SDB−MC64α . The median values for SDB−MC64 was 1.2423, which indicates that half of
the 116 tests ran more than 2.3 times faster using the DB implementation. On average,
it turns out that the larger the matrix, the faster the DB solution becomes. Indeed,
as a case study, we analyzed a subset of larger matrices. The “large” attribute was
defined in two ways: first, by considering the matrix size, and second, by considering
the number of nonzero elements. For the 116 matrices considered, we picked the
largest 24 of them; i.e., approximately the largest 20%. To this end, in the first
case, we selected all matrices whose dimension was higher than N =150 000. In the
second case, we selected all matrices whose number of nonzero elements was larger
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Fig. 4.4: Results of a statistical analysis that uses a median-quartile method to mea-
sure the spread of the MC64 and DB times to solution. The speedup factor, or perfor-
mance metric, is computed as in Eq. (4.1).

than 4 350 000. For large N , the median was 1.6255, while for matrices with many
nonzero elements, the median was 1.7276. In other words, half of the large tests ran
more than three times faster in DB. Finally, the statistical results in Fig. 4.10 indicate
that for large tests, with the exception of two outliers, there were no tests for which
SDB−MC64α was negative; i.e., with one exception, DB was faster. When all 116 tests
were considered, MC64 was faster in several cases, with an outlier for which MC64 was
four times faster than DB.

Two facts emerged at the end of this analysis. First, as discussed in [31], the bot-
tleneck in the diagonal boosting reordering was either the DB-S2 stage; i.e., finding
the initial match, or the DB-S3 stage; i.e., finding a perfect match, with an approxi-
mately equal split among them. Secondly, the quality of the reordering turned out to
be identical – almost all matrices displayed the same grand product of the diagonal
entries regardless of whether the reordering was carried out using MC64 or DB.

4.2.2. Assessment of the bandwidth reduction solution. The performance
of the CM solution implemented in SaP was evaluated on a set of 125 sparse matrices
from various applications. These matrices were the 116 used in the previous section
plus several other matrices such as ANCF31770, ANCF88950, and NetANCF 40by40,
etc., that arise in granular dynamics and the implicit integration of flexible multi-body
dynamics [22, 23, 45]. Figure 4.5 presents results of a statistical analysis that used a
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median-quartile method to compare (i) the half bandwidths of the matrices obtained
by Harwell’s MC60 and SaP’s CM; and, (ii) the time to solution; i.e., time to complete
a band-reducing reordering. For (i), the quantity reported is the relative difference
between the resulting bandwidths,

rK ≡ 100× KMC60 −KCM

KCM

,

whereKMC60 andKCM are, respectively, the half bandwidthsK of the matrices produced
by MC60 and CM. For (ii), the metric used was identical to the one introduced in
Eq. (4.1). Note that CM is superior when rK assumes large positive values, which are
also desirable for the time-to-solution plot. As far as rK is concerned, the median value
is 0%; i.e., out of 125 matrices, about half are better off being reordered by Harwell’s
MC60 with the other half being better off reordered by SaP’s CM. On a positive side,
the number of outliers for CM is higher, indicating that there is a propensity for CM to
“win big”. In terms of times to solution, MC60 is marginally faster than CM’s hybrid
CPU/GPU solution. Indeed, the median value of the performance metric is −0.1057;
i.e., it takes half of the tests run with CM at least 1.076 times longer to complete the
bandwidth reduction task.

Fig. 4.5: Comparison of the Harwell MC60 and SaP’s CM implementations in terms of
resulting half bandwidth K and time to solution.

It is insightful to discuss what happens when this statistical analysis is controlled
to only consider larger matrices. The results of this analysis are captured in Fig. 4.6.
Just like in section §4.2.1, the focus is on the largest 20% matrices, where “large” is
understood to mean large matrix dimension N , and then separately, large number of
nonzeros nnz. Incidentally, the cut-off value for the dimension was N =215 000, while



GPU-BASED PARALLEL LINEAR SOLVER 21

for the number of nonzeros was nnz =7 800 000. When the statistical analysis included
the 25 largest matrices based on size N , the median value for the half bandwidth
metric rK was yet again 0.0%. The median value for time to solution changed however,
from −0.1057 to 0.6964 to indicate that for half of these large tests SaP ran more than
1.6 times faster than the Harwell solution. Qualitatively, the same conclusions were
reached when the 25 large matrices were selected on the grounds on nnz count. The
median for rK was 0.4182%, which again suggested that the relative difference in the
resulting bandwidthK yielded by CM and MC60 was practically negligible. The median
time to solution was the same 0.6964. Note though that according to the results shown
in Fig. 4.6, there is no large–nnz test for which the Harwell implementation is faster
than the CM. In fact, 25% of the large tests; i.e., about five tests, run at least three
times faster in CM.

Fig. 4.6: Comparison of the Harwell MC60 and SaP’s CM implementations in terms of
resulting half bandwidth K and time to solution. Statistical analysis of large matrices
only.

Finally, it is worth pointing out the correlations between times to solutions and K
values, on the one hand, and N and nnz, on the other hand. Herein, the correlation
used is the Pearson product-moment correlation coefficient [10]. As a rule of thumb, a
Pearson correlation coefficient of 0.01 to 0.19 suggests a negligible relationship, while a
coefficient between 0.7 and 1.0 indicates a strong positive relationship. The correlation
coefficient between the bandwidth and the dimension N of the matrix turns out to
be small; i.e., 0.15 for MC60 and 0.16 for CM. Indeed, the fact that a matrix is large
doesn’t say much about what K value one can expect upon reordering this matrix.
The correlation between the number of nonzeros and the amount of time to figure out
the reordering is very high though. In other words, the larger the matrix size N , the
longer the time to produce the reordering. For instance, the correlation coefficient
was 0.91 for MC60 and 0.81 for CM. The same observation holds for the number of
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nonzeros entries: when there is a lot of them, the time to produce a reordering is
large. The Pearson correlation coefficient is 0.71 for MC60 and 0.83 for CM. These
correlation coefficients were obtained on a sample size of 125 matrices. Yet the same
trends are manifest for the reduced set of 25 large matrices that we worked with. For
instance, the correlation between dimension N and resulting K is very small at large
N values: 0.04 for MC60 and 0.05 for CM. For the time to solution, the correlation
coefficients with respect to N are 0.89 for MC60 and 0.76 for CM.

4.3. Numerical experiments related to sparse linear systems.

4.3.1. Profiling results. Figure 4.7 plots statistical results that summarize how
the time to solution; i.e., finding x in Ax = b, is spent in SaP::GPU. The raw data
used in this analysis is available on-line [3]; also, a discussion of exactly what it means
to find the solution of the linear system is postponed for section §4.3.4. The labels
used in the plot Fig. 4.7 are inspired by the notation used in section §3.4 and Fig. 3.1.
Consider for instance the diagonal boosting reordering DB employed by SaP. In a
statistical sense, the percent of time to solution spent in DB is represented using a
median-quartile method to measure statistical spread. The raw data used to generate
the DB box was obtained as follows. If a test “α” that runs to completion requires
TDBα > 0 for DB completion, then this test will generate one data entry in an array of
data subsequently used to produce the statistical result. The actual entry that is used
is 100 × TDBα /TTotα , where TTotα is the total amount of time that test “α” takes for
completion. In other words, the entry is the percent of time spent when solving this
particular linear system for performing the diagonal boosting reordering. The bars for
the K-reducing reordering (CM), for multiple data transfers between CPU and GPU
(Dtrsf), etc., are similarly obtained. Not all bars in Fig. 4.7 were generated using
the same number of data entries; i.e., some tests contributed to some but not all bars.
For instance, a symmetric positive definite linear system requires no DB step and such
this test won’t contribute an entry to the array of data used to determine the DB box
in the figure. Of a batch of 85 tests that ran to completion with SaP, the sample
population used to generate the bars is as follows: 85 data points for CM, Dtrsf, and
Kry; 63 data points for DB; 60 for LU; 32 data points for Drop; and 9 data points for
BC, SPK, and LUrdcd. These counts provide insights into the solution path adopted
by SaP in solving the 85 linear systems. For instance, the coupled approach; i.e.,
the SPIKE method of [38] has been employed in the solution of nine of the 85 linear
systems. The rest of them were used via SaP::GPU-D. Of 85 linear systems, 25 were
most effectively solved by SaP resorting to diagonal preconditioning; i.e., after DB all
the entries were dropped off except the heavy diagonal ones. Also, note that several
of the linear systems considered were symmetric positive definite, from where the 60
points count for DB.

A statistical analysis of the time spent in the Krylov-subspace component of the
solution reveals that the median time was 55.84%. The median times for the other
components of the solution are listed in the first row of data in Table 4.4. The second
row of data provides the median values when the Krylov-subspace component, which
dwarfs most of the solution components is eliminated. In this case, the entry for
DB, for instance, was obtained based on data points 100 × TDBα /TTotα , where this
time around TTotα included everything except the time spent in the Krylov-subspace
component of the solution. In other words, TTotα is the time required to compute from
scratch the preconditioner. The median values should be used in conjunction with
the median-quartile boxplot of Fig. 4.7 for the first row of data, and Fig. 4.8 for the
second row of data. Consider, for instance, the results associated with the drop-off
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operation. In the Krylov-inclusive measurement, Drop has a median of 4.1%; i.e.,
half of the 32 tests which employed drop-off spent more than amount in performing
the drop-off, while half were quicker. The spread is rather large and there are several
outliers that suggest that a handful of tests require a very large amount of time be
spent in the drop-off part of the solution.

DB CM Dtransf Drop Asmbl BC LU SPK LUrdcd

3.4 1.4 1.9 4.1 0.7 1.4 24.8 23 4.1
11.4 3.7 4.1 25.5 2.7 2.3 73.4 41.8 6.4

Table 4.4: Median information for the SaP solution components as % of the time
for solution. Two scenarios are considered: the first data row provides values when
the total time; i.e., 100%, included the time spent by SaP in the Krylov-subspace
component. The second row of data is obtained by considering 100% to be the time
required to compute a factorization of the preconditioner. Note that values in each row
of data does not add up to 100% for several reasons. First, these are statistical median
values. Second, there are very many tests that do not include all the components of
the solution. For instance, SPK is computed based on a set of nine points while Drop
is computed using 32 data points, some of them not even obtained in conjunction
with the same test.

Fig. 4.7: Profiling results obtained for a set of 85 linear systems that, out of a collection
of 114, could be solved by SaP::GPU.

The results in Fig. 4.7 and Table 4.4 suggest where the optimization efforts should
concentrate in the future. For instance, the time required for the CPU↔GPU data
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Fig. 4.8: Profiling results obtained for a set of 85 linear systems that, out of a collection
of 114, could be solved by SaP::GPU.

transfer is, in the overall picture, rather insignificant and as such a matter of small
concern. Somewhat surprising, the amount of time spent in drop-off came out higher
than anticipated, at least in relative terms. One caveat is that no effort was made
to optimize this component of the solution. Instead, the effort went into optimizing
the DB and CM solution components. This paid off, as matrix reordering in SaP,
particularly for large matrices, is fast when compared to Harwell and it reached the
point where the drop-off became a more significant bottleneck. Another unexpected
observation was the relative small number of scenarios in which SaP::GPU-C was
preferred over SaP::GPU-D; i.e., in which the SPIKE strategy [38] was employed.
This observation, however, should not be generalized as it might very well be specific to
the SaP implementation. Indeed, it simply states that in the current implementation,
a large number of iterations associated with a less sophisticated preconditioner is
preferred to a smaller count of expensive iterations associated with SaP::GPU-C. Out
of a sample population of 85 tests, when invoked, the median number of iterations
to solution in SaP::GPU-C was 6.75. Conversely, when SaP::GPU-D was preferred,
the median count was 29.375 [3].

4.3.2. The impact of the third stage reordering. It is almost always the
case that upon carrying out a CM reordering of a sparse matrix, the resulting A
matrix has a small number of entries in the first and last rows. Yet, as the row index
j increases, the number of nonzero in row j increases up to approximately j ≈ N/2.
Thereafter, the nonzero count starts decreasing to reach small values towards j ≈ N .
Overall, A has its K value dictated by the worst offender. Therefore, a partitioning
of A into Ai, i = 1, . . . , P would conservatively require that, for instance, A1 and AP

work with a large K most likely dictated by a sub-matrix such as AP/2. Allowing each
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Ai to have its own Ki proved to lead to efficiency gains for two main reasons. First,
in SaP::GPU-C it led to a reduction in the dimension of the spikes, since for each
pair of coupling blocks Bi and Ci, the number of columns in the ensuing spikes was
determined as the larger of the values Ki and Ki+1. Second, SaP::GPU capitalizes
on the observation that, since Ai are independent and governed by their local Ki,
there is nothing to prevent a third reordering, which attempts to further reduce the
bandwidth of Ai. As it comes on the heels of the DB and CM reorderings, this is called
a “third stage reordering” and is applied independently and preferably concurrently
to the P sub-matrices Ai. As illustrated in Table 4.5, the decrease in local Ki can be
significant and it can lead to non-negligible speedups, see Table 4.6.

Mat. Name P Ki before 3rd SR Ki after 3rd SR

ANCF31770 20

123, 170, 204, 229, 247 89, 92, 79, 46, 45
247, 247, 247, 248, 242 48, 48, 59, 50, 58
213, 181, 134, 68, 106 72, 98, 64, 56, 42
129, 124, 124, 113, 82 36, 54, 49, 59, 82

ANCF88950 20

194, 274, 337, 387, 410 116, 74, 65, 109, 112
410, 410, 410, 410, 405 97, 100, 93, 97, 114
352, 296, 227, 116, 176 116, 56, 88, 75, 116
208, 204, 204, 191, 137 50, 96, 97, 118, 75

af23560 10
274, 317, 317, 317, 320 140, 71, 71, 102, 74
339, 334, 317, 314, 283 123, 127, 119, 114, 143

NetANCF40by40 16

256, 378, 458, 533 125, 68, 122, 118
599, 634, 578, 517 85, 93, 97, 91
436, 343, 215, 210 57, 69, 112, 85
275, 295, 257, 178 85, 73, 113, 101

bayer01 8
684, 1325, 1308, 1288 532, 170, 122, 110

879, 501, 493, 508 109, 110, 110, 121

ex19 8
139, 87, 87, 87 136, 87, 87, 87
74, 46, 62, 40 68, 46, 62, 40

finan512 16

1124, 1287, 1316, 1331 587, 288, 288, 288
1331, 1331, 1331, 1331 288, 288, 288, 288
1331, 1331, 1331, 1331 288, 288, 288, 288
1331, 1331, 1331, 1015 288, 288, 227, 211

gridgena 6
247, 405, 405 132, 81, 80
405, 405, 247 122, 72, 105

lhr10c 6
315, 348, 288 427, 247, 293
166, 156, 259 217, 226, 157

rma10 10
180, 281, 702, 678, 495 155, 241, 647, 540, 254
637, 560, 495, 478, 545 496, 422, 217, 349, 358

Table 4.5: Examples of matrices where the third stage reordering (3rd SR) reduced
more significantly the block bandwidth Ki for Ai, i = 1, . . . , P .

4.3.3. Comparison against state of the art. A set of 114 matrices, of which
105 are from the Florida matrix collection, is used herein to compare the robustness
and time to solution of SaP::GPU, PARDISO, SuperLU, and MUMPS. This set of
matrices was selected on the following basis: at least one of the four solvers can retrieve
the solution x within 1% relative accuracy. For a sparse linear system Ax = b, this
relative accuracy was measured as follows. An exact solution x? was first chosen and
then the right-hand side was set to b = Ax?. Each sparse linear solver attempted
to produce an approximation x of the solution x?. If this approximation satisfied
||x−x?||2/||x?||2 ≤ 0.01, then the solve was considered to have been successful. Given
that SaP::GPU is an iterative solver, its initial guess is always x(0) = 0N . Although
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Mat. Name
w/o 3rd SR w/ 3rd SR

SpdUp
P Ki P Ki

ANCF31770 16 248 20 98 1.203
ANCF88950 32 410 20 118 1.537

af23560 10 339 10 143 1.238
NetANCF40by40 16 634 16 125 1.900

bayer01 8 1325 8 532 2.234
ex19 6 139 8 136 1.331

finan512 10 1331 16 587 1.804
gridgena 6 405 6 132 1.636
lhr10c 4 427 6 259 1.228
rma10 10 702 10 647 1.113

Table 4.6: Speed-up “SpdUp” values obtained upon embedding a third stage reorder-
ing step in the solution process, a decision that also changed the number of partitions
P for best performance. When correlating the results reported to values provided in
Table 4.5, this table lists for each matrix A the largest of its Ki values, i = 1, . . . , P .

in many instances the initial guess can be selected to be relatively close the actual
solution, this situation is avoided here by choosing x? far from the aforementioned
initial guess. Specifically, x? had its entries roughly distributed on a parabola starting
from 1.0 as the first entry, approaching the value 400 at N/2, and decreasing to 1.0
for the N th and last entry of x?. The statistical results reported in this section draw
on raw data provided in the Appendix in Table A.2. Figure 4.9 employs a median-
quartile method to measure the statistical spread of the 114 matrices used in this
sparse solver comparison. In terms of size, N is between 8192 and 4 690 002. In terms
of nonzeros, nnz is between 41 746 and 46 522 475. The median for N is 71 328. The
median for nnz is 1 167 967.

On the robustness side, SaP::GPU failed to solve 28 linear systems. In 23 cases,
SaP ran out of GPU global memory. In the remaining five cases, SaP::GPU failed to
converge. The rest of the solvers failed as follows: PARDISO 40 times, SuperLU 22
times, and MUMPS 35 times. These results should be qualified as follows. The GPU
card had 6 GB of GDDR5-type memory. Given that in its current implementation
SaP::GPU is an in-core solver, it does not swap data in and out of the GPU. Conse-
quently, it ran 23 times against this memory-size hard constraint. This issue can be
partially alleviated by considering a better GPU card. Indeed, there are cards that
have as much as 24 GB of global memory, which still comes short of the 64 GB of
RAM that PARDISO, SuperLU, and MUMPS could tap into. Secondly, the PARDISO,
SuperLU, and MUMPS solvers were used with default setting. Adjusting parameters
that control these solvers’ solution process would likely increase their success rate.

Interestingly, for the 114 linear systems considered there was a perfect negative
correlation between speed and robustness. PARDISO was the fastest, followed by
MUMPS, then SaP, and finally SuperLU. Of the 57 linear systems solved both by SaP
and PARDISO, SaP was faster 20 times. Of the 71 linear systems solved both by
SaP and SuperLU, SaP was faster 38 times. Of the 60 linear systems solved both
by SaP and MUMPS, SaP was faster 27 times. Of the 60 linear systems solved both
by PARDISO and SuperLU, PARDISO was faster 60 times. Of the 57 linear systems
solved both by SaP and MUMPS, PARDISO was faster 57 times. And finally, of the 64
linear systems solved both by SuperLU and MUMPS, SuperLU was faster 24 times.

We compare next the four solvers using a median-quartile method to measure
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Fig. 4.9: Statistical information regarding the dimension N and number of nonzeros
nnz for the 114 coefficient matrices used to compare SaP::GPU, PARDISO, SuperLU,
and MUMPS.

statistical spread. Assume that T SaP
α and T PARDISO

α represent the times required by
SaP::GPU and PARDISO, respectively, to finish test α. A relative speedup is com-
puted as

(4.2) SSaP−PARDISOα = log2

T PARDISO
α

T SaP
α

,

with SSaP−MUMPSα and SSaP−SuperLUα similarly computed. These SSaP−PARDISOα values, which
can be either positive or negative, are collected in a set SSaP−PARDISO which is used to
generate a box plot in Fig. 4.10. The figure also reports results on SSaP−SuperLU, and
SSaP−MUMPS. Note that the number of tests used to produce these statistical measures
is different for each comparison: 57 linear systems for SSaP−PARDISO, 71 for SSaP−SuperLU,
and 60 for SSaP−MUMPS. The median values for SSaP−PARDISO, SSaP−SuperLU, and SSaP−MUMPS
are −1.4036, 0.0934, and −0.3242, respectively. These results suggest that when it
finishes, PARDISO can be expected to be about two times faster than SaP. MUMPS
is marginally faster than SaP, which on average can be expected to be only slightly
faster than SuperLU.

Red crosses are used in Fig. 4.10 to show statistical outliers. Favorably, most of
the SaP’s outliers are large and positive. For instance, there are three linear systems
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Fig. 4.10: Statistical spread for SaP::GPU’s performance relative to that of PARDISO,
SuperLU, and MUMPS. Referring to Eq. 4.2, the results were obtained using the data
sets SSaP−PARDISO (with 57 values), SSaP−SuperLU (71 values), and SSaP−MUMPS (60 values).

for which compared to PARDISO, SaP finishes significantly faster, four linear systems
for which it is significantly faster than SuperLU, and four linear systems for which it is
significantly faster than MUMPS. On the flip side, there are two tests where SaP runs
slower than MUMPS and one test where it runs significantly slower then SuperLU.
The results also suggest that about 50% of the linear systems run in SaP in the
range between “as fast as PARDISO or two to three times slower”, 50% of the linear
systems run in SaP in the range “between four times faster to four times slower then
SuperLU”. Relative to MUMPS, the situation is just like for SuperLU if only slightly
shifted towards negative territory: the second and third quartile suggest that 50% of
the linear systems run in SaP in the range “between three times faster to three times
slower then MUMPS”. Again, favorably for SaP, the last quartile is long and reaches
well into high positive values. In other words, when it beats the competition, it beats
it by a large margin.

4.3.4. Comparison against another GPU solver. The same set of 114 ma-
trices used in the comparison against PARDISO, SuperLU, and MUMPS was considered
to compare SaP::GPU with the sparse direct QR solver in cuSOLVER library [7]. For
cuSOLVER, the QR solver was run in two configurations: with or without the appli-
cation of a reversed Cuthill–McKee (RCM) reordering before solving the system. RCM
was optionally applied given that it can potentially reduce the QR factorization fill-in.
cuSOLVER successfully solved 45 out of 114 systems when using either configuration.
There are only three linear systems: ABACUS shell ud, ex11 and jan99jac120,
which were successfully solved by cuSOLVER but not by SaP::GPU. Of the 42 systems
solved both by SaP::GPU and cuSOLVER, cuSOLVER was faster than SaP::GPU in
five cases. In all 69 systems cuSOLVER failed to solve, the implementation ran out of
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memory.

5. Conclusions and future work. This contribution discusses parallel strate-
gies to (i) solve dense banded linear systems; (ii) solve sparse linear systems; and
(iii) perform matrix reorderings for diagonal boosting and bandwidth reduction. The
salient feature shared by these strategies is that they are designed to run in parallel
on GPU cards. BSD3 open source implementations of all these strategies are avail-
able at [2, 3] as part of a software package called SaP. As far as the parallel solution
of linear systems is concerned, the strategies discussed are in-core; i.e., there is no
host-device, CPU-GPU, memory swapping, which somewhat limits the size of the
problems that can be presently solved by SaP. Over a broad range of dense matrix
sizes and bandwidths, SaP is likely to run two times faster than Intel’s MKL. This
conclusion should be modulated by hardware considerations and also the observation
that the diagonal dominance of the dense banded matrix is a performance factor. On
the sparse linear system side, the most surprising result was the robustness of SaP.
Out of a set of 114 tests, most of them using matrices from the University of Florida
sparse matrix collection, SaP failed only 28 times, of which 23 were “out-of-memory”
failures owing to a 6 GB limit on the size of the GPU memory. In terms of per-
formance, SaP was compared against PARDISO, MUMPS, and SuperLU. We noticed
a perfect negative correlation between robustness and time to solution: the faster a
solver, the less robust it was. In this context, PARDISO was the fastest, followed by
MUMPS, SaP, and SuperLU. Surprisingly, the straight split-and-parallelize strategy,
without the coupling involved in the SPIKE-type strategy, emerged as the more often
solution approach adopted by SaP.

The implementation of SaP is somewhat peculiar in that the sparse solver builds
on top of the dense banded one. The sparse–to–dense transition occurs via two re-
orderings: one that boosts the diagonal entires and one that reduces the matrix
bandwidth. Herein, they were implemented as CPU/GPU hybrid solutions which
were compared against Harwell’s implementations and found to be twice as fast for
the diagonal boosting reordering, and of comparable speed for the bandwidth reduc-
tion.

Many issues remain to be investigated at this point. First, given that more than
50% of the time to solution is spent in the iterative solver, it is worth consider the tech-
niques analyzed in [30], which sometimes double the flop rate in sparse matrix-vector
multiplication operations upon changing the matrix storage scheme; i.e., moving from
CSR to ELL or hybrid. Second, an out-of-core and/or multi-GPU implementation
would enable SaP to handle larger problems while possibly reducing time to solution.
Third, the CM bandwidth reduction strategy implemented is dated; spectral and/or
hyper-graph partitioning for load balancing should lead to superior splitting of the
coefficient matrix. Finally, as it stands, with the exception of parts of the matrix
reordering, SaP is entirely a GPU solution. It would be worth investigating how the
CPU can be involved in other phases of the implementation. Such an investigation
would be well justified given the imminent tight integration of the CPU and GPU
memories.
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Appendix A. Solver comparisons raw data. For completeness, we provide
here the raw comparison data for the tested solvers which was used in generating the
figures and plots in the paper. Table A.1 gives the list of tested matrices, specifying
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their size N and number of non-zero elements nnz. Table A.2 reports the run times
to solution (in ms) for the SaP::GPU, PARDISO, SuperLU, and MUMPS solvers.
Table A.3 reports the run times to solution comparison for SaP::GPU and cuSOLVER,
the latter without or with Cuthill-McKee (CM) reordering.

Table A.1: Dimension N and number of non-zero elements of tested matrices.

Name N nnz
1 2cubes sphere 101 492 1 647 264
2 2D 54019 highK 54 019 996 414
3 a2nnsnsl 80 016 347 222
4 a5esindl 60 008 255 004
5 ABACUS shell ud 23 412 218 484
6 af 5 k101 503 625 17 550 675
7 af23560 23 560 484 256
8 ANCF31770 31 770 183 540
9 ANCF88950 88 950 513 900

10 apache1 80 800 542 184
11 apache2 715 176 4 817 870
12 appu 14 000 1 853 104
13 ASIC 100k 99 340 954 163
14 ASIC 100ks 99 190 578 890
15 av41092 41 092 1 683 902
16 bayer01 57 735 277 774
17 bcircuit 68 902 375 558
18 bcsstk39 46 772 2 089 294
19 blockqp1 60 012 640 033
20 bmw3 2 227 362 11 288 630
21 bmwcra 1 148 770 10 644 002
22 boyd1 93 279 1 211 231
23 bratu3d 27 792 173 796
24 bundle1 10 581 770 901
25 c-59 41 282 480 536
26 c-61 43 618 310 016
27 c-62 41 731 559 343
28 cant 62 451 4 007 383
29 case39 40 216 1 042 160
30 case39 A 01 40 216 1 042 160
31 c-big 345 241 2 341 011
32 cfd1 70 656 1 828 364
33 cfd2 123 440 3 087 898
34 circuit 4 80 209 307 604
35 ckt11752 tr 0 49 702 333 029
36 cont-201 80 595 438 795
37 cont-300 180 895 988 195
38 copter2 55 476 759 952
39 CurlCurl 4 2 380 515 26 515 867
40 dawson5 51 537 1 010 777
41 dc1 116 835 766 396
42 dixmaanl 60 000 299 998
43 Dubcova2 65 025 1 030 225
44 dw8192 8192 41 746
45 ecl32 51 993 380 415
46 epb3 84 617 463 625
47 ex11 16 614 1 096 948
48 ex19 12 005 259 879
49 FEM 3D thermal1 17 880 430 740
50 filter3D 106 437 2 707 179
51 finan512 74 752 596 992
52 G3 circuit 1 585 478 7 660 826

Continued on next page
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Table A.1 – continued from previous page
Name N nnz

53 g7jac140 41 490 565 956
54 Ga3As3H12 61 349 5 970 947
55 GaAsH6 61 349 3 381 809
56 garon2 13 535 390 607
57 gas sensor 66 917 1 703 365
58 gridgena 48 962 512 084
59 gsm 106857 589 446 21 758 924
60 H2O 67 024 2 216 736
61 hcircuit 105 676 513 072
62 HTC 336 4438 226 340 904 522
63 ibm matrix 2 51 448 1 056 610
64 inline 1 503 712 36 816 342
65 jan99jac120 41 374 260 202
66 ldoor 952 203 46 522 475
67 lhr10c 10 672 232 633
68 Lin 256 000 1 766 400
69 lung2 109 460 492 564
70 mario002 389 874 2 101 242
71 mark3jac100 45 769 285 215
72 mark3jac140 64 089 399 735
73 matrix 9 103 430 2 121 550
74 minsurfo 40 806 203 622
75 msc23052 23 052 1 154 814
76 ncvxbqp1 50 000 349 968
77 nd24k 72 000 28 715 634
78 NetANCF40by40 63 603 569 262
79 offshore 259 789 4 242 673
80 oilpan 73 752 3 597 188
81 olesnik0 88 263 744 216
82 OPF 10000 43 887 467 711
83 parabolic fem 525 825 3 674 625
84 pdb1HYS 36 417 4 344 765
85 poisson3Db 85 623 2 374 949
86 pwtk 217 918 11 634 424
87 qa8fk 66 127 1 660 579
88 qa8fm 66 127 1 660 579
89 raefsky4 19 779 1 328 611
90 rail 79841 79 841 553 921
91 rajat30 643 994 6 175 377
92 rajat31 4 690 002 20 316 253
93 rma10 46 835 2 374 001
94 s3dkq4m2 90 449 4 820 891
95 shallow water1 81 920 327 680
96 shallow water2 81 920 327 680
97 ship 003 121 728 8 086 034
98 shipsec1 140 874 7 813 404
99 shipsec5 179 860 10 113 096

100 Si34H36 97 569 5 156 379
101 SiO2 155 331 11 283 503
102 sparsine 50 000 1 548 988
103 stomach 213 360 3 021 648
104 t3dh 79 171 4 352 105
105 t3dh a 79 171 4 352 105
106 thermal1 82 654 574 458
107 thermal2 1 228 045 8 580 313
108 torso3 259 156 4 429 042
109 TSOPF FS b162 c4 40 798 2 398 220
110 TSOPF FS b39 c19 76 216 1 977 600
111 vanbody 47 072 2 336 898
112 venkat25 62 424 1 717 792

Continued on next page
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Table A.1 – continued from previous page
Name N nnz

113 xenon1 48 600 1 181 120
114 xenon2 157 464 3 866 688

Table A.2: Run times to solution required by SaP::GPU, PARDISO, SuperLU, and
MUMPS, reported in milliseconds. For PARDISO, SuperLU, and MUMPS, a “-” sign
indicates an instance in which the solver failed to solve that particular linear system.
When SaP::GPU fails, OOM stands for “out of memory” and NC for “no conver-
gence”.

Name
Run times (ms)

SaP::GPU PARDISO SuperLU MUMPS
1 2cubes sphere 1.899E2 2.830E3 1.430E4 1.883E4
2 2D 54019 highK 3.805E3 - - -
3 a2nnsnsl OOM 3.283E2 5.000E2 -
4 a5esindl OOM 1.480E2 2.400E2 -
5 ABACUS shell ud NC - 2.300E2 2.196E2
6 af 5 k101 2.059E4 3.639E3 4.926E4 1.647E4
7 af23560 7.273E2 - 8.500E2 7.375E2
8 ANCF31770 4.132E2 2.054E2 3.700E2 -
9 ANCF88950 1.057E3 5.132E2 8.400E2 -

10 apache1 2.643E3 6.761E2 2.790E3 2.107E3
11 apache2 OOM 9.295E3 1.091E5 3.884E4
12 appu 3.387E2 5.816E4 9.169E4 -
13 ASIC 100k 6.880E2 6.283E2 - 3.920E4
14 ASIC 100ks 4.141E2 5.566E2 - 1.209E3
15 av41092 OOM - - 3.757E3
16 bayer01 3.415E3 - 8.600E2 -
17 bcircuit 4.259E3 3.747E2 1.250E3 7.078E2
18 bcsstk39 1.051E3 3.971E2 1.370E3 1.071E3
19 blockqp1 1.778E2 4.372E2 1.020E3 -
20 bmw3 2 OOM 2.179E3 - 8.652E3
21 bmwcra 1 1.941E4 3.344E3 1.421E4 1.346E4
22 boyd1 1.825E3 7.744E3 2.096E4 -
23 bratu3d 3.019E2 3.948E2 1.080E3 -
24 bundle1 1.803E2 9.836E1 1.700E2 -
25 c-59 OOM 5.325E2 8.970E3 4.750E3
26 c-61 OOM 2.765E2 1.240E3 8.445E2
27 c-62 OOM 7.228E2 1.591E4 -
28 cant 1.373E3 1.451E3 3.100E3 3.735E3
29 case39 OOM - 1.090E3 -
30 case39 A 01 OOM - 1.160E3 -
31 c-big OOM 5.440E3 - -
32 cfd1 6.850E3 1.292E3 3.410E3 3.761E3
33 cfd2 1.038E4 2.455E3 6.490E3 9.109E3
34 circuit 4 OOM - - 3.313E2
35 ckt11752 tr 0 2.122E5 - 5.900E2 2.311E2
36 cont-201 1.400E3 - 1.560E3 -
37 cont-300 7.081E3 - 2.580E4 -
38 copter2 1.583E4 7.445E2 4.040E3 2.816E3
39 CurlCurl 4 OOM - 6.920E3 8.754E3
40 dawson5 4.839E3 4.552E2 1.630E3 7.542E2
41 dc1 1.450E3 - - -
42 dixmaanl 3.998E2 1.739E2 4.900E2 3.881E2
43 Dubcova2 5.102E2 5.035E2 8.900E2 7.417E2
44 dw8192 1.600E3 - 2.400E2 -
45 ecl32 1.306E3 - 3.270E3 4.059E3
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Table A.2 – continued from previous page

Name
Run times (ms)

SaP::GPU PARDISO SuperLU MUMPS
46 epb3 1.358E3 - 1.630E3 5.592E2
47 ex11 NC 5.212E2 - 8.534E2
48 ex19 5.889E3 - - 8.557E1
49 FEM 3D thermal1 1.559E2 3.072E2 6.200E2 -
50 filter3D 3.914E4 1.581E3 4.870E3 4.343E3
51 finan512 9.366E1 4.604E2 1.540E3 5.857E2
52 G3 circuit 8.263E3 1.010E4 1.910E6 4.383E4
53 g7jac140 OOM - 2.410E3 3.750E3
54 Ga3As3H12 3.780E5 3.528E4 1.838E5 4.751E5
55 GaAsH6 1.157E5 3.710E4 1.766E5 5.153E5
56 garon2 2.928E2 1.376E2 2.900E2 1.665E2
57 gas sensor 4.365E3 1.306E3 5.430E3 6.522E3
58 gridgena 1.043E3 3.323E2 6.000E2 5.287E2
59 gsm 106857 OOM 7.766E3 - 2.395E4
60 H2O 1.093E3 3.275E4 1.682E5 -
61 hcircuit 5.423E3 - 5.700E2 -
62 HTC 336 4438 OOM - 3.970E3 6.779E2
63 ibm matrix 2 1.478E4 - 3.760E3 -
64 inline 1 OOM 9.869E3 7.389E4 3.626E4
65 jan99jac120 NC - 1.300E3 1.147E3
66 ldoor OOM 9.608E3 4.746E5 3.518E4
67 lhr10c 5.416E2 - 2.900E2 1.660E2
68 Lin 8.163E4 8.733E3 5.622E4 5.614E4
69 lung2 3.831E2 - 1.240E3 4.693E2
70 mario002 OOM 1.931E3 9.375E4 -
71 mark3jac100 1.008E4 - 1.440E3 4.155E3
72 mark3jac140 1.303E4 - - 7.057E3
73 matrix 9 8.893E2 - 2.222E4 -
74 minsurfo 1.218E2 1.726E2 6.600E2 2.920E2
75 msc23052 2.988E3 1.363E2 - -
76 ncvxbqp1 5.332E3 3.248E2 1.040E3 7.535E2
77 nd24k 4.576E3 6.232E4 4.168E5 8.154E5
78 NetANCF40by40 5.608E2 6.149E2 6.900E2 6.461E2
79 offshore OOM 5.800E3 3.338E4 3.026E4
80 oilpan 3.740E3 1.084E3 1.250E3 1.763E3
81 olesnik0 7.074E3 - 1.590E3 -
82 OPF 10000 4.635E3 - 4.600E2 3.754E2
83 parabolic fem 1.132E4 3.158E3 1.695E5 6.120E3
84 pdb1HYS 4.348E3 9.211E2 - 3.354E3
85 poisson3Db 1.361E3 - 8.610E3 1.009E4
86 pwtk 1.355E4 1.792E3 7.380E3 6.869E3
87 qa8fk 1.375E3 - 4.720E3 -
88 qa8fm 1.732E2 1.236E3 4.670E3 6.683E3
89 raefsky4 6.230E3 2.674E2 - -
90 rail 79841 1.402E3 4.115E2 7.300E2 6.852E2
91 rajat30 6.414E3 - - -
92 rajat31 2.022E4 3.161E4 - -
93 rma10 1.654E3 - 1.150E3 5.840E2
94 s3dkq4m2 2.884E3 1.385E3 3.710E3 3.852E3
95 shallow water1 6.940E1 4.238E2 1.320E3 1.237E3
96 shallow water2 9.859E1 3.862E2 1.300E3 8.518E2
97 ship 003 2.356E4 4.211E3 2.084E4 2.761E4
98 shipsec1 4.926E4 2.926E3 1.098E4 1.266E4
99 shipsec5 NC 3.807E3 1.859E4 1.937E4

100 Si34H36 OOM 1.118E5 - 1.620E6
101 SiO2 5.196E3 3.544E5 - 5.940E6
102 sparsine NC 5.760E4 2.450E5 5.218E5
103 stomach 7.074E2 - 2.519E4 1.001E5
104 t3dh 1.459E4 - 1.539E4 -

Continued on next page
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Table A.2 – continued from previous page

Name
Run times (ms)

SaP::GPU PARDISO SuperLU MUMPS
105 t3dh a 1.462E4 - 1.560E4 -
106 thermal1 1.477E3 4.087E2 7.700E2 8.733E2
107 thermal2 1.482E5 8.112E3 - 1.759E4
108 torso3 5.410E3 - - 6.761E4
109 TSOPF FS b162 c4 OOM - 4.830E3 -
110 TSOPF FS b39 c19 OOM - 2.900E3 -
111 vanbody 5.213E3 3.543E2 - 8.035E2
112 venkat25 4.182E3 - 1.160E3 5.768E2
113 xenon1 4.086E3 1.006E3 2.240E3 2.560E3
114 xenon2 3.354E3 4.459E3 1.294E4 1.680E4

Table A.3: Run times to solution required by SaP::GPU and cuSOLVER, reported in
milliseconds. A “-” sign indicates a solver failure in solving a certain linear system.

Name SaP::GPU
cuSOLVER

w/o CM w/ CM
1 2cubes sphere 1.899E2 - -
2 2D 54019 highK 3.805E3 - -
3 a2nnsnsl - - -
4 a5esindl - - -
5 ABACUS shell ud - 1.371E3 -
6 af 5 k101 2.059E4 - -
7 af23560 7.273E2 3.398E3 3.576E3
8 ANCF31770 4.132E2 1.120E3 1.128E5
9 ANCF88950 1.057E3 5.000E3 -

10 apache1 2.643E3 2.507E4 -
11 apache2 - - -
12 appu 3.387E2 - -
13 ASIC 100k 6.880E2 - -
14 ASIC 100ks 4.141E2 - -
15 av41092 - - -
16 bayer01 3.415E3 - -
17 bcircuit 4.259E3 5.951E3 -
18 bcsstk39 1.051E3 6.356E3 4.761E3
19 blockqp1 1.778E2 - -
20 bmw3 2 - - -
21 bmwcra 1 1.941E4 - -
22 boyd1 1.825E3 - -
23 bratu3d 3.019E2 9.900E3 -
24 bundle1 1.803E2 - -
25 c-59 - - -
26 c-61 - - -
27 c-62 - - -
28 cant 1.373E3 8.742E3 7.895E3
29 case39 - - -
30 case39 A 01 - - -
31 c-big - - -
32 cfd1 6.850E3 - -
33 cfd2 1.038E4 - -
34 circuit 4 - - -
35 ckt11752 tr 0 2.122E5 2.123E5 6.945E4
36 cont-201 1.400E3 1.384E3 1.109E4
37 cont-300 7.081E3 - -
38 copter2 1.583E4 - -
39 CurlCurl 4 - - -
40 dawson5 4.839E3 7.836E3 1.828E4
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Table A.3 – continued from previous page

Name SaP::GPU
cuSOLVER

w/o CM w/ CM
41 dc1 1.450E3 - -
42 dixmaanl 3.998E2 8.235E2 -
43 Dubcova2 5.102E2 1.865E4 -
44 dw8192 1.600E3 2.162E3 3.249E2
45 ecl32 1.306E3 5.090E4 -
46 epb3 1.358E3 8.472E3 4.014E3
47 ex11 - 4.252E3 6.155E3
48 ex19 5.889E3 4.048E2 4.021E2
49 FEM 3D thermal1 1.559E2 2.596E4 2.438E3
50 filter3D 3.914E4 - -
51 finan512 9.366E1 4.192E3 -
52 G3 circuit 8.263E3 - -
53 g7jac140 - - -
54 Ga3As3H12 3.780E5 - -
55 GaAsH6 1.157E5 - -
56 garon2 2.928E2 1.169E3 2.339E5
57 gas sensor 4.365E3 - -
58 gridgena 1.043E3 4.315E3 7.840E3
59 gsm 106857 - - -
60 H2O 1.093E3 - -
61 hcircuit 5.423E3 3.989E4 -
62 HTC 336 4438 - - -
63 ibm matrix 2 1.478E4 - -
64 inline 1 - - -
65 jan99jac120 - 1.295E5 1.160E5
66 ldoor - - -
67 lhr10c 5.416E2 4.549E4 2.646E4
68 Lin 8.163E4 - -
69 lung2 3.831E2 2.628E3 2.658E5
70 mario002 - - -
71 mark3jac100 1.008E4 4.068E4 1.274E4
72 mark3jac140 1.303E4 5.925E4 1.804E4
73 matrix 9 8.893E2 - -
74 minsurfo 1.218E2 2.394E3 3.478E3
75 msc23052 2.988E3 - 1.220E4
76 ncvxbqp1 5.332E3 3.580E4 -
77 nd24k 4.576E3 - -
78 NetANCF40by40 5.608E2 1.219E4 -
79 offshore - - -
80 oilpan 3.740E3 - 7.322E4
81 olesnik0 7.074E3 - -
82 OPF 10000 4.635E3 1.250E3 1.075E4
83 parabolic fem 1.132E4 - -
84 pdb1HYS 4.348E3 4.569E4 -
85 poisson3Db 1.361E3 - -
86 pwtk 1.355E4 - -
87 qa8fk 1.375E3 - -
88 qa8fm 1.732E2 - 5.096E4
89 raefsky4 6.230E3 - -
90 rail 79841 1.402E3 9.077E3 -
91 rajat30 - - -
92 rajat31 2.022E4 - -
93 rma10 1.654E3 4.818E3 -
94 s3dkq4m2 2.884E3 - 2.920E4
95 shallow water1 6.940E1 1.118E4 7.923E4
96 shallow water2 9.859E1 1.101E4 7.900E4
97 ship 003 2.356E4 - -
98 shipsec1 4.926E4 - -
99 shipsec5 - - -
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Table A.3 – continued from previous page

Name SaP::GPU
cuSOLVER

w/o CM w/ CM
100 Si34H36 - - -
101 SiO2 5.196E3 - -
102 sparsine - - -
103 stomach 7.074E2 - -
104 t3dh 1.459E4 - -
105 t3dh a 1.462E4 - -
106 thermal1 1.477E3 5.195E3 -
107 thermal2 1.482E5 - -
108 torso3 5.410E3 - -
109 TSOPF FS b162 c4 - - -
110 TSOPF FS b39 c19 - - -
111 vanbody 5.213E3 - -
112 venkat25 4.182E3 3.138E4 2.141E5
113 xenon1 4.086E3 6.709E4 -
114 xenon2 3.354E3 - -
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