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A COMPLEX VERSION OF THE CAHN–HILLIARD EQUATION FOR
GRAYSCALE IMAGE INPAINTING

LAURENCE CHERFILS1, HUSSEIN FAKIH2, AND ALAIN MIRANVILLE2

Abstract. Our aim in this article is to propose a generalization of the Bertozzi–
Esedoglu–Gillette–Cahn–Hilliard equation, introduced for binary image inpainting, for
grayscale image inpainting. In particular, we consider the solution to the correspond-
ing Cahn–Hilliard inpainting model as a complex valued function. We are interested
in the study of the well-posedness and of the asymptotic behavior, in terms of finite-
dimensional attractors, of the associated dynamical system. We have to face two major
difficulties here. The first one comes from the fact that we no longer have the conserva-
tion of mass, i.e., of the spatial average of the order parameter u, contrary to the classical
Cahn–Hilliard equation. The second one is due to the estimates on the nonlinear terms,
combined with the fact that the order parameter u is complex valued. We finally give
numerical simulations which confirm and extend previous ones on the efficiency of the
binary model.

1. Introduction

Image inpainting involves filling in parts of an image or a video from the surrounding
area. It is essentially some type of interpolation. Its applications include restoration of old
paintings by museum artists [31], removing scratches from old photographs [9], altering
scenes in photographs [46], and restoration of motion pictures [49].

The work of Bertalmio et al. in [4] is very important, as it proposed a new direction in
image inpainting by considering PDE’s models. In particular, there, the authors proposed
boundary conditions for PDE’s image inpainting models. These boundary conditions
consist of the constant grayscale image intensity and the direction of the isophote vectors
at the boundary of the inpainting region. The isophote vector ∇⊥u is the orthogonal
gradient vector (e.g., in R2, ∇⊥u = (−∂u

∂y
, ∂u
∂x

)).
Furthermore, Bertalmio et al. proposed in [3] a new PDE’s model for image inpainting

based on the Navier–Stokes equations. More precisely, the idea is to use a reformulation
of the Navier–Stokes equations with an anisotropic term (to keep the no slip boundary
conditions) and, of course, a fidelity term (such a term is essential in image inpainting, as
it forces the solution to the PDE’s to stay close to the original image outside the inpainting
region).

Esedoglu and Shen [33] proposed two PDE’s models for image inpainting based on the
Mumford–Shah model. The first one is obtained by a simple modification of the fidelity
term, while the second one is obtained by considering the Euler’s elastic approximation
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(other PDE’s inpainting models can be found in, e.g., [1], [14], [15], [16], [32], [39], [40],
[41], [54], and [65]).

A simplified version of the Euler’s elastic model is the Ginzburg–Landau energy. In
particular, the Cahn–Hilliard equation can be derived as an H−1−gradient flow of the
Ginzburg–Landau energy, as proved by Fife [37].

The Cahn–Hilliard equation plays an important role in materials science and describes
phase separation processes. This can be observed, e.g., when a binary alloy is cooled down
sufficiently. One then observes a partial nucleation (i.e., the apparition of nucleides in the
material) or a total nucleation, the so-called spinodal decomposition: the material quickly
becomes inhomogeneous, forming a fine-grained structure in which each of the two com-
ponents appears more or less alternatively. In a second stage, which is called coarsening
and occurs at a slower time scale, these microstructures coarsen. Such phenomena play
an essential role in the mechanical properties of the material, e.g., strength. We refer the
reader to, e.g., [11], [12], [20], [29], [48], [50], [52], [53], [59], and [60] for more details.

It is also interesting to note that the Cahn–Hilliard equation, or some of its variants, is
relevant in other contexts, in which phase separation and coarsening/clustering processes
can be observed or come into play. We can mention, for instance, population dynamics
(see [23]), bacterial films (see [47]), wound healing and tumor growth (see [21], [36], [45],
[55], and [56]), thin films (see [61] and [67]), image processing and inpainting (see [5], [6],
[10], [13], [17], and [25]), and even the rings of Saturn (see [68]) and the clustering of
mussels (see [51]).

Binary image inpainting with fourth-order PDE’s. Bertozzi, Esedoglu, and Gillette
proposed in [5] the following two-scale variant of the Cahn–Hilliard equation:

(1.1)
∂u

∂t
+ ε∆2u− 1

ε
∆f(u) + λ0χΩ\D(x)(u− h) = 0, ε > 0, λ0 > 0,

in view of applications to binary image inpainting. Here, h = h(x) is a given (damaged)
image and D ⊂ Ω is the inpainting region (Ω is the total region). Furthermore, the term
λ0χΩ\D(x)(u−h) is the fidelity term (χ denotes the indicator function). There are several
motivations to use such a term (instead of, e.g., a condition of the form u = h outside
the inpainting domain), in particular, in view of the analysis of the model. Indeed, no
regularity assumption on D is necessary and no perfect h outside D is required (it could,
for instance, be noisy). Finally, the nonlinear term f is regular and cubic, typically,
f(s) = 4s3− 6s2 + 2s. The idea in this model is to solve (1.1) up to steady state in order
to obtain an inpainted version u(x) of h(x).

This equation was studied, endowed with Neumann boundary conditions, in [6], [7],
[10], [17], and [18].

Well-posedness results for (1.1) have been obtained in [6] (see also [24] for the study of
the nonlocal version of the problem and [10] for the study of the stationary problem).

Furthermore, the asymptotic behavior, in terms of finite-dimensional attractors, of (1.1)
has been studied in [17]. More precisely, such sets provide information on all the possible
dynamics of the system and are expected to have a rich geometric structure; they contain
in particular all steady states and heteroclinic orbits. Moreover, the finite-dimensionality
means, roughly speaking, that, even though the initial phase space is infinite-dimensional,
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the reduced dynamics can be characterized by a finite number of parameters. We refer
the reader to, e.g., [26], [57], and [66] for discussions on this subject.

Finally, the existence of local (in time) solutions to (1.1) with logarithmic nonlinear
terms has been studied in [18] (note indeed that the original Cahn–Hilliard equation was
actually proposed with thermodynamically relevant logarithmic nonlinear terms which
follow from a mean-field model; regular (and, in particular, cubic) nonlinear terms are
approximations of such logarithmic nonlinear terms). In that case, we can obtain better
results than those obtained with polynomial nonlinear terms in [17], as far as the conver-
gence time is concerned, in particular. We also note that double obstacle nonlinear terms
give better results than those obtained with polynomial nonlinear terms, see [7].

Color image inpainting with fourth-order PDE’s. We proposed in [19] the following
color inpainting model:

(1.2)
∂ci
∂t

= ∆µi + λ0χΩ\D(x)(hi − ci), i = 1, ..., n,

(1.3) µi =
∂F (c)

∂ci
− ε2∆ci −

1

n

n∑
i=1

∂F (c)

∂ci
, i = 1, ..., n,

where F (c) = 1
n

∑n
i=1 c

2
i (1 − ci)

2, h = (h1, ..., hn) being the original image and n the
number of colors in the original image h. System (1.2)–(1.3) is endowed with Neumann
boundary conditions. We studied in [19] the well-posedness of the problem, as well as the
existence of finite-dimensional attractors. Furthermore, we obtained consistency results
with the diphasic model. Finally, we gave numerical simulations which confirm that the
one step algorithm with threshold proposed in [17] is efficient, also in the context of
multi-color inpainting.

Grayscale image inpainting with fourth-order PDE’s. The authors in [10] pro-
posed the following model (total variation in H−1):

(1.4)
∂u

∂t
−∆p+ λ0χΩ\D(x)(u− h) = 0, p ∈ ∂TV (u),

where

TV (u) =

{ |Du| if |u(x)| ≤ 1 a.e. in Ω,

+∞ otherwise,
in view of applications to grayscale image inpainting. In particular, they proved that the
corresponding stationary problem has a bounded variation solution.

Furthermore, the authors in [64] proposed two grayscale inpainting models. The first
one consists in generalizing the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard model by split-
ting the grayscale image bit-wise into channels,

u(x) approximated by
n∑
k=1

uk(x)2−(k−1),

where n > 0 is the number of channels, and then in applying the Bertozzi–Esedoglu–
Gillette–Cahn–Hilliard equation to each binary channel uk separately. The second one is
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based on the LCIS (Low Curvature Image Simplifier) model. This latter model reads

∂u

∂t
+ div(g(∆u)∇∆u) + λ0χΩ\D(x)(u− h) = 0,

where g is the thresholding function, g(s) = 1
1+s2

. Since g(∆u)∇∆u = ∇(arctan(∆u)),
we can rewrite the equation as follows:

∂u

∂t
+ ∆(arctan(∆u)) + λ0χΩ\D(x)(u− h) = 0.

Note that this model can be seen as a generalization of the Rudin–Osher–Fatemi ([63])
and Perona–Malik ([62]) models.

Finally, the authors in [8] proposed system (1.2)–(1.3) in view of applications to graysca-
le image inpainting.

Proposed model. Let u = u1 + iu2 be the phase variable and Ω be a bounded domain
in RN (N ≤ 3) with a regular boundary Γ. We postulate that the free energy can be
written as follows (see also [42]):

(1.5) E(u) =

∫
Ω

[ε
2
| − i∇u|2 +

1

4ε
|u|4 − 1

2ε
|u|2
]
dx.

Here and below, we denote by | · | the modulus of a complex number.
Assuming proper boundary conditions, the variation of the energy (1.5) with respect

to the phase field u is given by

(1.6) ∂E(u) =

∫
Ω

[
− ε∆u+

1

ε
|u|2u− 1

ε
u
]
∂udx,

which yields

(1.7)
∂E(u)

∂u
= −ε∆u+

1

ε
|u|2u− 1

ε
u,

and the descent equation can be written as follows:

(1.8)
∂u

∂t
= −∂E(u)

∂u
= ε∆u− 1

ε
|u|2u+

1

ε
u.

Equation (1.8) can be seen as a complex version of the Ginzburg–Landau (Allen–Cahn)
equation. In particular, Grossauer and Scherzer [42] proposed this equation in view of
applications to image processing and, more precisely, to image inpainting. In that case,
they proposed to treat the image data as complex: the real part of u(x, t) corresponds
to the actual grayscale value of the image at (x, t), while the imaginary part is such that
u(x, t) is on the boundary of a circle of radius 1 in the complex plane. This leads to a
coupled system of equations for u1(x, t) and u2(x, t) which Grossauer and Scherzer solved
by an explicit numerical scheme, assuming Dirichlet boundary conditions, u(x, t)|∂D =
u(x, 0)|∂D. Finally, the authors in [2] proposed a mesh adaptation strategy to solve (1.8)
by a finite element scheme.

The complex version of the Cahn–Hilliard equation can be derived exactly as the stan-
dard Cahn–Hilliard equation, namely,
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∂u

∂t
= ∆

∂E
∂u
,

hence

(1.9)
∂u

∂t
+ ε∆2u− 1

ε
∆
(
|u|2u− u

)
= 0.

We can note that, as in the case of the complex Ginzburg–Landau equation (1.8), the
minima of the nonlinear term satisfy |u| = 1.

Now, in order for such a model to have applications to image inpainting, we need
to add a fidelity term to keep the solution constructed close to the given image in the
complement of the inpainting domain, where image information is available. Let h1 be
the given (damaged) image, h1 : Ω→ [−1, 1]. We then introduce the function h,

h : Ω→ C, h(x) = h1(x) + ih2(x),

where h satisfies the constraint |h| = 1, which yields

h2(x) =
√

1− (h1(x))2.

We assume that h1 ∈ L2(Ω), so that h2 ∈ L2(Ω) and h ∈ L2(Ω;C); for simplicity, we will
also denote by L2(Ω) the L2−functions with values in C (i.e., L2(Ω;C); a similar notation
will hold for the corresponding Sobolev spaces). We finally consider the following complex
Bertozzi–Esedoglu–Gillette–Cahn–Hilliard model:

(1.10)
∂u

∂t
+ ε∆2u− 1

ε
∆f(u) + λ0χΩ\D(x)(u− h) = 0,

where D b Ω is the inpainting domain, ε, λ0 > 0, and f(z) = |z|2z − z, z ∈ C. This
equation is endowed with Neumann boundary conditions as in the original Bertozzi–
Esedoglu–Gillette–Cahn–Hilliard equation,

(1.11)
∂u

∂ν
=
∂∆u

∂ν
= 0, on Γ.

Furthermore, we will assume, in the numerical simulations (but not in the mathematical
analysis), that the imaginary part of the initial datum is given by

(1.12) u2(0, x) = Im[u(0, x)] =
√

1− (Re[u(0, x)])2 =
√

1− (u1(0, x))2.

Here and below, Re[ϕ] and Im[ϕ] denote the real and the imaginary parts of ϕ, respec-
tively.

One main idea when considering Cahn–Hilliard models in image inpainting is to keep
the continuity of the isophote vectors at the boundary of the inpainting domain of the
constructed image (see [5] and [6]), which is much desirable. Furthermore, compared with
other models, the Cahn–Hilliard equation is more efficient, as far as the convergence time
is concerned, and allows to reconstruct images with large inpainting regions.

The total variation (inH−1) model proposed in [10] and the LCIS model proposed in [64]
lose some inpainting advantages of the Cahn–Hilliard inpainting. Furthermore, the bit-
wise model proposed in [64] and the vector-valued model proposed in [8], while preserving
the inpainting advantages of the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard model, may
be too heavy numerically and may not always be applicable when the number of channels
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(i.e., of shades of gray) in the original damaged image is large, since, in that case, we need
to compute the n channels uk, k = 1, ..., n.

Our main aim in this article is to propose a simple model for grayscale image inpainting
which preserves the inpainting advantages obtained with the Bertozzi–Esedoglu–Gillette–
Cahn–Hilliard model, i.e., it is not too heavy numerically and is fast, as far as the con-
vergence time is concerned. In particular, we can recover the binary inpainting results
obtained in [5] and [6] (see Figure 1) and we only need to compute two solutions (the
real and imaginary parts of the order parameter) whatever the number of channels in the
damaged image is.

As already encountered in the binary model in [17], one essential difficulty to study
the well-posedness and the existence of finite-dimensional attractors is that we no longer
have the conservation of mass, i.e., of the spatial average of the order parameter, contrary
to the original Cahn–Hilliard equation. A second essential difficulty, when compared to
(1.1), is that (1.10) is complex valued (note indeed that (1.1) and (1.10) have exactly
the same structure). This makes the derivation of estimates on the nonlinear term (and,
consequently, the proof of dissipativity; note that the dissipativity is also used in an
essential way in the proof of existence of a solution) much more delicate. This is addressed
in Sections 2 to 4. We can also note that the functional framework considered in [19] for
the color inpainting model is different from what we have here, since, there, the sum of
the components is equal to one.

As far as the numerical simulations are concerned, the authors in [6] give numerical
evidence that the steady states of the modified Cahn–Hilliard equation (1.1) are not
unique. More precisely, they depend on the initial condition inside the inpainting domain.
Furthermore, computing inpainted images with a small ε only may not allow to extend
the level lines into the missing domain as desired. This problem can a priori also appear
when solving equation (1.10). Therefore, we follow the strategy devised in [5] and [6], i.e.,
we consider a dynamic two steps scheme involving the diffuse interface thickness ε. More
precisely, we consider a large value of ε to connect the edges and then a smaller one in order
to obtain the inpainting results. Furthermore, when solving (1.10), the solutions may also
regularize outside the inpainting domain. Since, in image inpainting, the image is known
outside the inpainting region, we use, in the final inpainting results, the information on
the image known outside the inpainting domain to obtain better results (see Section 5).
In particular, we give numerical simulations with the two steps scheme which preserve the
efficiency of the binary inpainting and also confirm that (1.10) gives indeed good results
in the context of grayscale inpainting.

Notation. We denote by 〈u〉 the spatial average of a function u ∈ L1(Ω),

〈u〉 =
1

Vol(Ω)

∫
Ω

u(x)dx,

and set
v = u− 〈u〉,

v being the mean-free part of u. Furthermore, ū denotes the conjugate of u.
We then set

Ḣ−1(Ω) = {ϕ ∈ H−1(Ω), 〈ϕ, 1〉H−1(Ω),H1(Ω) = 0}
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and
L̇2(Ω) = {ϕ ∈ L2(Ω), 〈ϕ〉 = 0}.

We denote by ((·, ·)) the usual L2−Hermitian product, with associated norm ‖ · ‖; in
particular, for two complex valued functions ϕ and ψ in L2(Ω),

((ϕ, ψ)) =

∫
Ω

ϕψdx.

We further set ‖ · ‖−1 = ‖(−∆)−1 · ‖, where (−∆)−1 denotes the inverse minus Laplace
operator associated with Neumann boundary conditions and acting on functions with null
spatial average. More generally, ‖ · ‖X denotes the norm on the Banach space X.

Throughout the article, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line. Similarly, the same letter Q
denotes monotone increasing (with respect to each argument) functions which may vary
from line to line, or even in a same line. In general, these quantities depend on ε and λ0.

2. A priori estimates

We assume in Sections 2 to 4 that h ∈ L2(Ω); in particular, h does not necessarily
satisfy the constraint |h| = 1.

Estimates on the nonlinear term. We first have the

Proposition 2.1. Let u ∈ L4(Ω). Then, there exists c0 > 0 such that

Re

[
((f(v + 〈u〉)− f(〈u〉), v))

]
≥ c0

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx− ‖v‖2.

Proof. We first have

f(v + 〈u〉)− f(〈u〉) =(|v|2 + |〈u〉|2 + 2Re[v]Re[〈u〉] + 2Im[v]Im[〈u〉]− 1)v

+ (|v|2 + 2Re[v]Re[〈u〉] + 2Im[v]Im[〈u〉])〈u〉.

Noting that
Re[v̄〈u〉] = Re[v]Re[〈u〉] + Im[v]Im[〈u〉],

it follows that [
f(v + 〈u〉)− f(〈u〉)

]
v̄ =(|v|2 + |〈u〉|2 + 2Re[v̄〈u〉]− 1)|v|2

+ (|v|2 + 2Re[v̄〈u〉])〈u〉v̄

and

Re
[
(f(v + 〈u〉)− f(〈u〉))v̄

]
=(|v|2 + |〈u〉|2 + 2Re[v̄〈u〉]− 1)|v|2

+ (|v|2 + 2Re[v̄〈u〉])Re[v̄〈u〉].
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Integrating over Ω, we obtain

Re

[
((f(v + 〈u〉)− f(〈u〉), v))

]
=

∫
Ω

[
|v|4 + |v|2|〈u〉|2 + 2(Re[v̄〈u〉])2

]
dx+ 3

∫
Ω

Re[v̄〈u〉]|v|2dx− ‖v‖2

≥
∫

Ω

[
|v|4 + |v|2|〈u〉|2 + 2(Re[v̄〈u〉])2

]
dx− 3

∫
Ω

|Re[v̄〈u〉]||v|2dx− ‖v‖2.

Using properties of complex numbers, namely,

|Re[z]| ≤ |z| and |zz′| = |z||z′|, ∀z, z′ ∈ C,

we find

3

∫
Ω

|Re[v̄〈u〉]||v|2dx = 2

∫
Ω

|Re[v̄〈u〉]||v|2dx+

∫
Ω

|Re[v̄〈u〉]||v|2dx

≤ α

∫
Ω

|v|4dx+ β

∫
Ω

|Re[v̄〈u〉]|2dx+ γ

∫
Ω

|v|4dx+ ζ

∫
Ω

|v|2|〈u〉|2dx,

where α, β, γ, ζ are nonnegative constants which satisfy α + γ < 1, β < 2, and ζ < 1.
The last inequality has been obtained by employing Young’s inequality (e.g., α = 21

41
, β =

41
21
, γ = 3

8
, and ζ = 2

3
). We finally deduce that

Re

[
((f(v + 〈u〉)− f(〈u〉), v))

]
≥ c0

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx− ‖v‖2,

where c0 > 0.
�

Proposition 2.2. Let w ∈ H1(Ω). Then,

Re

[
((∇f(w),∇w))

]
≥ −‖∇w‖2.

Proof. We first note that

((∇f(w),∇w)) =

∫
Ω

|w|2|∇w|2dx+ 2
N∑
j=1

∫
Ω

Re

[
w
∂w̄

∂xj

](
w
∂w̄

∂xj

)
dx− ‖∇w‖2,

hence

Re

[
((∇f(w),∇w))

]
=

∫
Ω

|w|2|∇w|2dx+ 2
N∑
j=1

∫
Ω

(
Re

[
w
∂w̄

∂xj

])2

dx− ‖∇w‖2

≥ −‖∇w‖2.

�
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Absorbing set in Ḣ−1(Ω). We first recall that B0 is an absorbing set if it is bounded
and if, for every bounded subset B, ∃t0 = t0(B) such that u0 ∈ B and t ≥ t0 =⇒
u(t) ∈ B0, u0 being the initial datum. When such a set exists, the associated dynamical
system is called dissipative.

Integrating (1.10) over Ω, we have

(2.1)
d

dt
〈u〉+ λ0〈χΩ\D(x)(u− h)〉 = 0.

We thus rewrite (1.10) as follows:

(2.2)
∂v

∂t
+ ε∆2v − 1

ε
∆f(u) + λ0χΩ\D(x)(u− h)− λ0〈χΩ\D(x)(u− h)〉 = 0

and (2.2) is equivalent to

(2.3)
∂(−∆)−1v

∂t
− ε∆v +

1

ε
(f(v + 〈u〉)− 〈f(u)〉)

+λ0(−∆)−1

(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
= 0.

We further have the

Lemma 2.3. For every u ∈ L4(Ω), there holds

λ0

∣∣∣∣Re
[
(((−∆)−1

(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
, v))

]∣∣∣∣
≤ c0

2ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx+ c‖h‖2 + c′.

Proof. We first note that

λ0

∣∣∣∣Re
[
(((−∆)−1

(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
, v))

]∣∣∣∣
≤ λ0

∣∣∣∣(((−∆)−1
(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
, v))

∣∣∣∣.
Since 〈v〉 = 0, we have

λ0

∣∣∣∣(((−∆)−1
(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
, v))

∣∣∣∣
= λ0

∣∣∣∣((χΩ\D(x)(u− h), (−∆)−1v))

∣∣∣∣
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and Hölder’s inequality yields

λ0

∣∣∣∣((χΩ\D(x)(u− h), (−∆)−1v))

∣∣∣∣
≤ c‖u− h‖‖v‖
≤ c(‖v‖2 + |〈u〉|‖v‖) + c′‖h‖2

≤ c0

2ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx+ c‖h‖2 + c′.

�

Proposition 2.4. Problem (1.10) has an absorbing set in Ḣ−1(Ω).

Proof. We multiply (2.3) by v̄ and have, integrating over Ω and by parts and taking the
real part,

(2.4)

1

2

d

dt
‖v‖2

−1 + ε‖∇v‖2 +
1

ε
Re

[
((f(v + 〈u〉)− f(〈u〉), v))

]
+λ0Re

[
(((−∆)−1

(
χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉

)
, v))

]
= 0.

It follows from Proposition 2.1 and Lemma 2.3 that

(2.5)
1

2

d

dt
‖v‖2

−1 + ε‖∇v‖2 +
c0

2ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx

≤ c(‖v‖2 + ‖h‖2 + 1),

hence

(2.6)
d

dt
‖v‖2

−1 + ε‖∇v‖2 +
c0

ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx ≤ c.

In particular, it follows from (2.6) that

(2.7)
d

dt
‖v‖2

−1 + c‖v‖2
−1 ≤ c′, c > 0.

We finally deduce from Gronwall’s lemma that

(2.8) ‖v‖2
−1 ≤ e−ct‖v0‖2

−1 + c′, c > 0, ∀t ≥ 0,

where the constants c and c′ are independent of v0 and t, hence the result.
�

Absorbing set in L̇2(Ω). As a consequence of (2.6) and (2.8), we have the

Corollary 2.5. We assume that v0 belongs to a bounded subset B of Ḣ−1(Ω). Then, there
exists t0 = t0(B) ≥ 0 such that, for every t ≥ t0, there holds∫ t+r

t

‖∇v‖2ds ≤ c(r)

and ∫ t+r

t

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dxds ≤ c(r),
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r > 0 given.

We further have the

Lemma 2.6. For every u ∈ L4(Ω), there holds

λ0

∣∣∣∣Re
[
((χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉, v))

]∣∣∣∣
≤ c0

2ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx+ c‖h‖2 + c′.

Remark 2.7. The proof of Lemma 2.6 is similar to the one of Lemma 2.3.

Proposition 2.8. Problem (1.10) has an absorbing set in L̇2(Ω).

Proof. We multiply (2.2) by v̄ and have

(2.9)

1

2

d

dt
‖v‖2 + ε‖∆v‖2 +

1

ε
Re

[
((∇f(u),∇u))

]
+λ0Re

[
((χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉, v))

]
= 0.

It follows from Proposition 2.2 and Lemma 2.6 that

(2.10)

1

2

d

dt
‖v‖2 + ε‖∆v‖2 ≤ 1

ε
‖∇v‖2 + c‖h‖2 + c′

+
c0

2ε

∫
Ω

(
|v|4 + |v|2|〈u〉|2 +

(
Re[v̄〈u〉]

)2
)
dx.

We then deduce from Corollary 2.5 and the uniform Gronwall’s lemma that
(2.11) ‖v‖2 ≤ c, ∀t ≥ t0 + r,

where the constant c is independent of v0 and t. Finally, integrating (2.6) and (2.10)
between 0 and t0 + r and using (2.11), we obtain

(2.12) ‖v‖2 ≤ Q(‖v0‖), ∀t ≥ 0.

�

Dissipativity of the spatial average. We have the

Proposition 2.9. Let u be a solution to (1.10). Then, for every u0 ∈ L2(Ω), the spatial
average of the order parameter satisfies

|〈u〉| ≤
(
Q(‖v0‖) + |〈u0〉|

)
e−ct + c′, c > 0, ∀t ≥ 0,

where c = c(ε, λ0) and c′ = c′(ε, λ0) are two constants which are independent of u0 and t.

Proof. Setting u = 〈u〉+ v in (2.1), we have
d

dt
〈u〉+

λ0

Vol(Ω)

∫
Ω\D

(〈u〉+ v − h)dx = 0.

Therefore,
d

dt
〈u〉+ ξ〈u〉 = − λ0

Vol(Ω)

∫
Ω\D

(v − h)dx,
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where ξ = λ0Vol(Ω\D)
Vol(Ω)

, hence

d

dt
(eξt〈u〉) = − λ0

Vol(Ω)
eξt
∫

Ω\D
(v − h)dx

and

〈u〉 = e−ξt〈u0〉 −
λ0

Vol(Ω)
e−ξt

∫ t

0

eξs
∫

Ω\D
(v − h)dxds.

Noting that
|z + z′| ≤ |z|+ |z′|, ∀z, z′ ∈ C,

we find

|〈u〉| ≤ e−ξt|〈u0〉|+ ce−ξt
∫ t

0

eξs(‖v‖+ ‖h‖)ds, ∀t ≥ 0,

where c = λ0

Vol(Ω)
1
2
. We then deduce from (2.11) and (2.12) that

|〈u〉| ≤
(
Q(‖v0‖) + |〈u0〉|

)
e−ct + c′, c > 0, ∀t ≥ 0,

where the constants c and c′ are independent of u0 and t, hence the result.
�

Absorbing set in H2(Ω). We have the

Lemma 2.10. Let u be a regular solution to (1.10). Then,∣∣∣Re[((∆f(u),∆2u))]
∣∣∣ ≤ ε2

4
‖∆2u‖2 + c

and ∣∣∣Re[((χΩ\D(x)(u− h),∆2u))]
∣∣∣ ≤ ε

4λ0

‖∆2u‖2 + c(‖u‖2 + ‖h‖2).

Proof. First, observe that∣∣∣Re[((∆f(u),∆2u))]
∣∣∣ ≤ ∣∣∣((∆f(u),∆2u))

∣∣∣
≤ ‖∆f(u)‖‖∆2u‖

≤ 2

ε2
‖∆f(u)‖2 +

ε2

8
‖∆2u‖2.

We further have (see, e.g., [66])

‖∆f(u)‖2 ≤ ε4

16
‖∆2u‖2 + c

and, owing to Young’s inequality,∣∣∣Re[((∆f(u),∆2u))]
∣∣∣ ≤ ε2

4
‖∆2u‖2 + c.
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On the other hand, we have∣∣∣Re[((χΩ\D(x)(u− h),∆2u))]
∣∣∣ ≤ ∣∣∣((χΩ\D(x)(u− h),∆2u))

∣∣∣
≤ ‖u− h‖‖∆2u‖

≤ ε

4λ0

‖∆2u‖2 + c(‖u‖2 + ‖h‖2).

�

Lemma 2.11. Let u be a solution to (1.10). Then,
d

dt
|〈u〉|2 ≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2).

Proof. We first have
d

dt
|〈u〉|2 =

d

dt

(
Re[〈u〉]

)2

+
d

dt

(
Im[〈u〉]

)2

.

Noting that, owing to (2.1),
d

dt
Re[〈u〉] = −λ0〈χΩ\D(x)Re[u− h]〉

and
d

dt
Im[〈u〉] = −λ0〈χΩ\D(x)Im[u− h]〉,

it follows that
d

dt

(
Re[〈u〉]

)2

= 2Re[〈u〉] d
dt
Re[〈u〉]

≤ c|〈u〉|
∣∣∣∣ ∫

Ω\D
Re[u− h]dx

∣∣∣∣
≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2)

and, similarly,
d

dt

(
Im[〈u〉]

)2

≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2).

We finally deduce that
d

dt
|〈u〉|2 ≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2).

�

Proposition 2.12. Problem (1.10) has an absorbing set in H2(Ω) which is compact in
L2(Ω).

Proof. We multiply (1.10) by ∆2ū and have

(2.13)
1

2

d

dt
‖∆u‖2+ε‖∆2u‖2+

1

ε
Re[((∆f(u),∆2u))]+λ0Re[((χΩ\D(x)(u−h),∆2u))] = 0,

hence, owing to Lemma 2.10,

(2.14)
1

2

d

dt
‖∆u‖2 +

ε

2
‖∆2u‖2 ≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2).
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It then follows from Lemma 2.11 that

(2.15)
d

dt
(‖∆u‖2 + |〈u〉|2) + ε‖∆2u‖2 ≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2), ∀t ≥ 0.

Assuming that u0 belongs to a bounded subset B of L2(Ω), we further note that Propo-
sition 2.8 and Proposition 2.9 yield that there exists t1 = t1(B) ≥ 0 such that

(2.16) ‖v‖2 ≤ c and |〈u〉|2 ≤ c, ∀t ≥ t1,

where the constant c is independent of u0 and t. We also have, integrating (2.10) over
(t, t+ r), for r ∈ (0, 1) fixed, and owing to (2.11),

(2.17)
∫ t+r

t

‖∆u‖2ds ≤ c(r).

We finally deduce from (2.15), (2.16), (2.17), and the uniform Gronwall’s lemma that

(2.18) ‖u‖2
H2(Ω) ≤ c, ∀t ≥ t1 + r, r > 0 fixed,

where the constant c is independent of u0 and t.
�

3. Well-posedness and existence of the global attractor

a) Well-posedness.

Proposition 3.1. Let z and z′ be regular solutions to (1.10). Then, there exists a non-
negative constant c0 > 0 such that

Re[((f(z)−f(z′), z − z′))] ≥ c0

∫
Ω

(
|z−z′|4+|z|2|z−z′|2+

(
Re[z(z − z′)]

)2
)
dx−‖z−z′‖2

and ∣∣∣∣∣Re[((f(z)− f(z′), 〈z − z′〉))]

∣∣∣∣∣
≤ c(‖z‖2

L4(Ω) + ‖z′‖2
L4(Ω) + 1)(‖z − z′‖2 + |〈z − z′〉|2).

Proof. Setting w = z − z′, we have

((f(z)− f(z′), z − z′)) = ((|z|2z − |z − w|2(z − w)− w,w))

and, using the fact that

|z − w|2 = |z|2 + |w|2 − 2Re[zw̄],

we find

((f(z)− f(z′), z − z′)) = ((|w|2w − |w|2z + |z|2w + 2Re[zw̄]z − 2Re[zw̄]w − w,w)).

It thus follows that
Re[((f(z)− f(z′), z − z′))] =∫

Ω

(
|w|4 + |z|2|w|2 + 2

(
Re[zw̄]

)2
)
dx− 3

∫
Ω

|w|2Re[zw̄]dx−
∫

Ω

|w|2dx,
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which yields, owing to Young’s inequality (see the proof of Proposition 2.1),

Re[((f(z)− f(z′), z − z′))] ≥ c0

∫
Ω

(
|w|4 + |z|2|w|2 +

(
Re[zw̄]

)2
)
dx−

∫
Ω

|w|2dx,

where c0 > 0.
On the other hand, we have

Re[((f(z)− f(z′), 〈z − z′〉))] = Re[〈z − z′〉]
∫

Ω

Re[f(z)− f(z′)]dx

+Im[〈z − z′〉]
∫

Ω

Im[f(z)− f(z′)]dx.

Observe now that

|f ′(z)| ≤ 3|z|2 + 1.

Therefore, ∣∣∣∣∣Re[〈z − z′〉]
∫

Ω

Re[f(z)− f(z′)]dx

∣∣∣∣∣
=

∣∣∣∣∣Re[〈z − z′〉]
∫

Ω

Re[w]

∫ 1

0

Re[f ′(z + s(z − z′))]dsdx

∣∣∣∣∣
≤ c|〈w〉|

∫
Ω

(|z|2 + |z′|2 + 1)|w|dx

≤ c(‖z‖2
L4(Ω) + ‖z′‖2

L4(Ω) + 1)(‖w‖2 + |〈w〉|2).

Similarly, ∣∣∣∣∣Im[〈z − z′〉]
∫

Ω

Im[f(z)− f(z′)]dx

∣∣∣∣∣
≤ c(‖z‖2

L4(Ω) + ‖z′‖2
L4(Ω) + 1)(‖w‖2 + |〈w〉|2),

so that ∣∣∣∣∣Re[((f(z)− f(z′), 〈z − z′〉))]

∣∣∣∣∣
≤ c(‖z‖2

L4(Ω) + ‖z′‖2
L4(Ω) + 1)(‖w‖2 + |〈w〉|2).

�

Theorem 3.2. For every u0 ∈ L2(Ω) and every T > 0, the initial-boundary value problem
associated with (1.10) has a unique solution u such that

u ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H2(Ω)) ∩ L4([0, T ], L4(Ω)).
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Proof. We first note that it is easy to show that the operator (−∆)−1 is self-adjoint and
compact in L̇2(Ω). There thus exists an orthonormal basis of L̇2(Ω) associated with the
eigenvalues λj, j ≥ 1, of −∆,

λ1 = inf
ϕ∈(H1(Ω)∩L̇2(Ω))\{0}

‖ϕ‖2
H1(Ω)

‖ϕ‖2
,

−∆Nj = λjNj, Nj ∈ H2(Ω) ∩ L̇2(Ω),
∂Nj

∂ν
= 0, on Γ, j ≥ 1,

0 < λ1 ≤ λ2 ≤ ...,

where the family {Nj}j is assumed to be normalized in the norm of L̇2(Ω), i.e.,

((Ni, Nj)) = δij,

where

δij =

{
1 if i = j,

0 otherwise.

We denote by Em the space

Em = span{N1, N2, ..., Nm}

and by Pm the orthogonal projection from H1(Ω) ∩ L̇2(Ω) onto Em,

Pmh =
m∑
j=1

((h,Nj))Nj.

The variational formulation of the problem reads: Find um : [0, T ] → 〈um〉 + Em,

um(t) = 〈um(t)〉+ vm(t) = 〈um(t)〉+
m∑
j=1

umj
(t)Nj, such that

(3.1)

d

dt

((
(−∆)−1

m∑
i=1

umi
(t)Ni, Nj

))

+ ε
(( m∑

i=1

umi
(t)∇Ni,∇Nj

))
+

1

ε
((f(〈um〉+ vm), Nj))

− 1

ε
((〈f(〈um〉+ vm)〉, Nj)) + λ0(((−∆)−1(χΩ\D(x)(〈um〉+ vm − h)), Nj))

− λ0(((−∆)−1(〈χΩ\D(x)(〈um〉+ vm − h)〉), Nj)) = 0, j = 1, ...,m,

(3.2)
d

dt
〈um〉+ ξ〈um〉 = − λ0

Vol(Ω)

∫
Ω\D

(vm − h)dx,

(3.3) vm(0) = Pmu0,

(3.4) 〈um(0)〉 = 〈u0〉.
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We can rewrite (3.1) and (3.3) as

(3.5)
∂(∆)−1vm

∂t
− ε∆vm +

1

ε
(f(〈um〉+ vm)− 〈f(〈um〉+ vm)〉)

+λ0(∆)−1(χΩ\D(x)(〈um〉+ vm − h)− 〈χΩ\D(x)(〈um〉+ vm − h)〉) = 0, in E ′m,

(3.6) vm(0) = Pmu0,

and we finally rewrite equation (3.1) as follows:

M−1dY

dt
+ εMY +H(Y ) = 0,

where M = −((∆Ni, Nj))i,j=1,...,m, Y =


um1

.

.

.
umm

, and

H(Y ) =


((1
ε
(f(〈um〉+ vm)− 〈f(〈um〉+ vm)〉) + λ0(−∆)−1Ξm, N1))

.

.

.
((1
ε
(f(〈um〉+ vm)− 〈f(〈um〉+ vm)〉) + λ0(−∆)−1Ξm, Nm))

 ,

where Ξm = χΩ\D((〈um〉 + vm − h)) − 〈χΩ\D((〈um〉 + vm − h))〉. Note that 〈um〉 can be
expressed as a function of vm by solving (3.2). The matrix M is invertible and positive
definite and H(Y ) depends continuously on Y . Applying Cauchy’s theorem, we find that
there exists a time tm ∈ (0, T ) and a solution Y to

dY

dt
+ εM2Y +MH(Y ) = 0

on the time interval [0, tm[. Having vm, we then deduce 〈um〉 (from (3.2)).
It follows from the a priori estimates derived in the previous section for the solution

um(t) (u(t) being replaced by um(t); note that, in that case, these formal a priori estimates
are now fully justified within the Galerkin approximation) that any local solution to (1.10)
is actually a global solution defined on the whole interval [0, T ].

It then follows from the a priori estimates that, up to a subsequence which we do not
relabel,

(3.7) um ⇀ u weakly in L2(0, T,H2(Ω)),

(3.8)
∂um
∂t

⇀
∂u

∂t
weakly in L

4
3 (0, T,W−2, 4

3 (Ω)),

as m→∞. It follows from (3.7), (3.8), and the Aubin-Lions compactness theorem that

(3.9) um → u strongly in L
4
3 (0, T, L

4
3 (Ω))

and um(x, t)→ u(x, t) a.e. (x, t) ∈ Ω× [0, T ]. Moreover, since f is a continuous,

f(um(x, t))→ f(u(x, t)) a.e.
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and, since f(um) is bounded in L
4
3 (ΩT ), ΩT = Ω× (0, T ),

f(um) ⇀ f(u) weakly in L
4
3 (ΩT ),

owing to the weak dominated convergence theorem. Finally, we deduce that (−∆)−1 ∂vm
∂t

⇀

(−∆)−1 ∂v
∂t

weakly in L
4
3 (ΩT ). Thus, passing to the limit in (3.5), we obtain

(3.10)
∂(−∆)−1v

∂t
− ε∆u+

1

ε
(f(u)− 〈f(u)〉)

+λ0(−∆)−1(χΩ\D(x)(u− h)− 〈χΩ\D(x)(u− h)〉) = 0, in L
4
3 (ΩT ).

Finally, we easily pass to the limit in (3.2), at least in a weak sense, i.e., solving explicitly
this ODE.

Let now z and w be two solutions to (1.10) with initial data z0 and w0, respectively.
We set u = z − w and u0 = z0 − w0 and have

(3.11)
∂u

∂t
+ ε∆2u− 1

ε
∆(f(z)− f(w)) + λ0χΩ\D(x)u = 0, in Ω,

(3.12)
∂u

∂ν
=
∂∆u

∂ν
= 0, on Γ,

(3.13) u|t=0 = u0 = z0 − w0, in Ω.

Integrating (3.11) over Ω, we obtain

(3.14)
d

dt
〈u〉+ λ0〈χΩ\D(x)u〉 = 0,

hence, setting again v = u− 〈u〉,

(3.15)
∂v

∂t
+ ε∆2v − 1

ε
∆(f(z)− f(w)) + λ0(χΩ\D(x)u− 〈χΩ\D(x)u〉) = 0.

We multiply (3.15) by (−∆)−1v̄ and find, noting that

((〈f(z)− f(w)〉, v)) = 0,

the differential equality

(3.16)
1

2

d

dt
‖v‖2

−1 + ε‖∇v‖2 +
1

ε
Re[((f(z)− f(w), v))]

+ λ0Re[(((−∆)−1(χΩ\D(x)u− 〈χΩ\D(x)u〉), v))] = 0.

Note that
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∣∣∣∣λ0(((−∆)−1(χΩ\D(x)u− 〈χΩ\D(x)u〉), v))

∣∣∣∣ =

∣∣∣∣λ0((χΩ\D(x)u, (−∆)−1v))

∣∣∣∣
≤ c‖u‖‖v‖
≤ c(‖v‖2 + |〈u〉|2),

which yields, owing to Proposition 3.1,

(3.17)
1

2

d

dt
‖v‖2

−1 + ε‖∇v‖2 +
c0

ε

∫
Ω

(
|u|4 + |z|2|u|2 +

(
Re[z(u)]

)2
)
dx

≤ c(‖z‖2
L4(Ω) + ‖w‖2

L4(Ω) + 1)(‖v‖2 + |〈u〉|2).

We further multiply (3.14) by 〈ū〉 and have

(3.18)

1

2

d

dt
|〈u〉|2 ≤ λ0|〈χΩ\D(x)u〉||〈ū〉|

≤ c‖u‖|〈u〉|
≤ c(‖v‖2 + |〈u〉|2)

and, recalling the interpolation inequality
‖v‖2 ≤ c‖v‖−1‖∇v‖,

it follows from (3.17) and (3.18) that

(3.19)
d

dt
(‖v‖2

−1 + |〈u〉|2) + 2ε‖∇v‖2 +
2c0

ε

∫
Ω

(
|u|4 + |z|2|u|2 +

(
Re[z(u)]

)2
)
dx

≤ c(‖z‖4
L4(Ω) + ‖w‖4

L4(Ω) + 1)(‖v‖2
−1 + |〈u〉|2).

We finally deduce from Gronwall’s lemma that

(3.20) ‖z(t)− w(t)‖2
H−1 ≤ Q(T, ‖z0‖, ‖w0‖)‖z0 − w0‖2

H−1 , 0 ≤ t ≤ T,

hence the uniqueness, as well as the continuous dependence with respect to the initial
data in the H−1−norm.

�

b) Existence of the global attractor. It follows from Theorem 3.2 and (3.20) that we
have the continuous (with respect to the H−1−norm) semigroup

S(t) : L2(Ω)→ L2(Ω), u0 7→ u(t), t ≥ 0

(i.e. S(0) = I, S(t + s) = S(t) ◦ S(s), t, s ≥ 0). We then deduce from Proposition 2.12
that S(t) possesses a bounded absorbing set B0 which is compact in L2(Ω) and bounded
in H2(Ω). We thus deduce from standard results (see, e.g., [57] and [66]) the following
theorem.

Theorem 3.3. The semigroup S(t) possesses the connected global attractor A such that
A is compact in L2(Ω) and bounded in H2(Ω).
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Remark 3.4. It is easy to see that we can assume, without loss of generality, that B0 is
positively invariant by S(t), i.e., S(t)B0 ⊂ B0, ∀t ≥ 0.

4. Existence of exponential attractors

Let z and w be two solutions to (1.10) with initial data z0 and w0, respectively. We set
u = z − w and u0 = z0 − w0 and have

(4.1)
∂u

∂t
+ ε∆2u− 1

ε
∆(f(z)− f(w)) + λ0χΩ\D(x)u = 0, in Ω,

(4.2)
∂u

∂ν
=
∂∆u

∂ν
= 0, on Γ,

(4.3) u|t=0 = u0 = z0 − w0, in Ω.

Furthermore, it is sufficient here to take initial data belonging to the bounded absorbing
set B0 defined in the previous section.

Lemma 4.1. Let u = z − w be a solution to (4.1)–(4.3). Then, we have

−Re[((∇(f(z)− f(w)),∇u))] ≤ c‖u‖2
H1(Ω) + ε2‖∆u‖2.

Proof. We first note that

f(z)− f(w) = |u|2u− |u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u− u.
It follows from Proposition 2.2 that

Re[((∇(|u|2u− u),∇u))] ≥ −‖∇u‖2.

Besides from Proposition 2.12 and the continuous embedding H2(Ω) ⊂ C(Ω) we have that∣∣∣∣Re[((−|u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u,∆u))]

∣∣∣∣
≤
∣∣∣∣((−|u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u,∆u))

∣∣∣∣
≤ 3‖|u|2z + |z|2u‖‖∆u‖
≤ c(‖u‖2

L4(Ω)‖z‖L∞(Ω) + ‖z‖2
L∞(Ω)‖u‖)‖∆u‖

≤ c‖u‖4
H1(Ω) + ε2‖∆u‖2.

Observe now that

‖u‖4
H1(Ω) ≤ c(‖z‖2

H1 + ‖w‖2
H1)‖u‖2

H1

≤ c‖u‖2
H1 ,

we infer∣∣∣∣Re[((−|u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u,∆u))]

∣∣∣∣ ≤ c‖u‖2
H1(Ω) + ε2‖∆u‖2.
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We finally deduce that
−Re[((∇(f(z)− f(w)),∇u))]

= −Re[((∇(|u|2u− u),∇u))]−Re[((−|u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u,∆u))]

≤ ‖∇u‖2 +

∣∣∣∣Re[((−|u|2z + |z|2u+ 2Re[zū]z − 2Re[zū]u,∆u))]

∣∣∣∣
≤ c‖u‖2

H1(Ω) + ε2‖∆u‖2.

�

Proposition 4.2. Let u = z − w be a solution to (4.1)–(4.3). Then, there exist two
constants c and c′ which only depend on B0 such that

‖z − w‖2 ≤ c

t
ec
′t‖z0 − w0‖2

H−1(Ω), ∀t > 0.

Proof. We multiply (4.1) by tū to find

(4.4)
1

2

d

dt
(t‖u‖2)+εt‖∆u‖2 +

t

ε
Re[((∇(f(z)−f(w)),∇u))]+λ0t‖χΩ\D(x)u‖2 =

1

2
‖u‖2,

which yields, owing to Lemma 4.1,

(4.5)
d

dt
(t‖u‖2) + λ0t‖χΩ\D(x)u‖2 ≤ ct‖u‖2

H1(Ω) + ‖u‖2.

Note that (3.19) yields

(4.6)

d

dt
(‖v‖2

−1 + |〈u〉|2) + 2ε(‖∇v‖2 + |〈u〉|2)

+
2c0

ε

∫
Ω

(
|u|4 + |z|2|u|2 +

(
Re[z(u)]

)2
)
dx ≤ c(‖v‖2

−1 + |〈u〉|2).

By using Gronwall’s lemma, on account of (4.6), we find

(4.7) ‖z(t)− w(t)‖2
H−1(Ω) ≤ cec

′t‖z0 − w0‖2
H−1(Ω).

Therefore, integrating (4.6) over (0, t), we obtain, owing to (4.7),

(4.8)
∫ t

0

‖u‖2
H1(Ω)ds ≤ cec

′t‖u0‖2
H−1(Ω).

Finally, using Gronwall’s lemma, on account of (4.5), and employing (4.8) we infer

(4.9) ‖z(t)− w(t)‖2 ≤ c

t
ec
′t‖z0 − w0‖2

H−1(Ω), ∀t > 0.
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�

Proposition 4.3. The semigroup S(t) is uniformly Hölder continuous on [0, T ] × B0 in
the topology of H−1(Ω), i.e.,

‖S(t1)z0 − S(t2)w0‖H−1(Ω) ≤ c(‖z0 − w0‖H−1(Ω) + |t1 − t2|
1
2 ),

where the constant c only depends on T and B0.

Proof. The Lipschitz continuity with respect to the initial data is an immediate corollary
of (3.20). Actually, it suffices to prove the Hölder continuity with respect to time. We
have

(4.10)

‖u(t1)− u(t2)‖H−1(Ω) =

∥∥∥∥∫ t2

t1

∂u

∂t
dτ

∥∥∥∥
H−1(Ω)

≤
∣∣∣∣ ∫ t2

t1

∥∥∥∥∂u∂t
∥∥∥∥
H−1(Ω)

dτ

∣∣∣∣
≤ |t1 − t2|

1
2

∣∣∣∣ ∫ t2

t1

∥∥∥∥∂u∂t
∥∥∥∥2

H−1(Ω)

dτ

∣∣∣∣ 12 .
Multiplying (2.3) by ∂v̄

∂t
, we find, noting that

〈
∂v̄
∂t

〉
= 0,

(4.11)

ε

2

d

dt
‖∇u‖2 +

∥∥∥∥∂v∂t
∥∥∥∥2

−1

+
1

ε
Re[((f(u),

∂v

∂t
))]

+λ0Re[((χΩ\D(x)(u− h), (−∆)−1∂v

∂t
))] = 0.

Here, ∣∣∣λ0Re[((χΩ\D(x)(u− h), (−∆)−1∂v

∂t
))]
∣∣∣

=
∣∣∣λ0((χΩ\D(x)(u− h), (−∆)−1∂v

∂t
))
∣∣∣

≤ c‖u− h‖
∥∥∥∥∂v∂t

∥∥∥∥
−1

≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2) +
1

4

∥∥∥∥∂v∂t
∥∥∥∥2

−1

.

Furthermore, ∣∣∣∣1εRe[((f(u),
∂v

∂t
))]

∣∣∣∣ ≤ c‖∇f(u)‖
∥∥∥∥∂v∂t

∥∥∥∥
−1

,

which yields

(4.12) ε
d

dt
‖∇u‖2 +

∥∥∥∥∂v∂t
∥∥∥∥2

−1

≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2) + c′‖∇f(u)‖2.
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From (3.14), we have that

〈∂u
∂t
〉 ≤ c‖u‖

and, (4.12) can be written as

(4.13) ε
d

dt
‖∇u‖2 +

∥∥∥∥∂v∂t
∥∥∥∥2

−1

+ 〈∂u
∂t
〉2 ≤ c(‖v‖2 + |〈u〉|2 + ‖h‖2) + c′‖∇f(u)‖2.

Note that

‖∇f(u)‖ = ‖f ′(u)∇u‖
≤ Q(‖u‖L∞(Ω))‖∇u‖
≤ c‖∇u‖,

owing to the definition of B0 and the continuous embedding H2(Ω) ⊂ C(Ω). We then
deduce from (2.18) and (4.13) that

(4.14)
∫ t2

t1

∥∥∥∥∂u∂t
∥∥∥∥2

H−1(Ω)

≤ c,

where the constant c only depends on B0 and T such that t1, t2 ∈ [0, T ], so that (4.10)
yields

(4.15) ‖u(t1)− u(t2)‖H−1(Ω) ≤ c|t1 − t2|
1
2 ,

where the constant c only depends on B0 and T such that t1, t2 ∈ [0, T ].
�

We finally deduce from Theorem 3.2, Proposition 4.2, and Proposition 4.3 the following
result (see, e.g., [26] and [27]).

Theorem 4.4. The semigroup S(t) possesses an exponential attractorM⊂ B0, i.e.,
(i) M is compact in H−1(Ω);
(ii) M is positively invariant, S(t)M⊂M, ∀t ≥ 0;
(iii) M has finite fractal dimension in H−1(Ω);
(iii) M attracts exponentially fast the bounded subsets of L2(Ω),

∀B ⊂ L2(Ω) bounded, distH−1(Ω)(S(t)B,M) ≤ Q(‖B‖L2(Ω))e
−ξt,

ξ > 0, t ≥ 0,

where the constant ξ is independent of B and distH−1(Ω) denotes the Hausdorff semidis-
tance between sets defined by

distH−1(Ω)(A,B) = sup
a∈A

inf
b∈B
‖a− b‖H−1(Ω).

Remark 4.5. Setting M̃ = S(1)M, we can prove that M̃ is an exponential attractor for
S(t), but now in the topology of L2(Ω) (see, e.g., [28]).
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SinceM (or M̃) is a compact attracting set, we deduce from Theorem 4.4 the following
corollary.

Corollary 4.6. The semigroup S(t) possesses the finite-dimensional global attractor A ⊂
B0.

Remark 4.7. i) We can also follow [6] to prove the continuity of the isophote vectors at
the boundary of the inpainting domain for problem (1.10) when λ0 is large.
ii) An important particular case of problem (1.10) arises when the initial imaginary part
vanishes (i.e., u2(0, x) = 0), meaning that the damaged image (binary image in that case)
has two values, −1 and 1. In that case, numerical simulations (we have not been able to
prove it) show that the imaginary part of the solution remains zero for all times.
iii) We studied the (global) dynamics of the system when λ0 and ε are constants. More
generally, all constants here and in the previous sections depend on λ0 and ε and grow
as these quantities go to +∞ and 0, respectively. In particular, the dependence on λ0 is
an important issue in view of inpainting applications (see [6]) and a natural question is
whether one can have an upper bound on the dimension of the global attractor which is
independent of this quantity (here, the upper bound that we obtain explodes as λ0 goes
to +∞). A natural (but involved, see, e.g., [66]) problem would be to find a lower bound
on this dimension (possibly, in terms of λ0). This will be investigated elsewhere.

5. Numerical simulations

The author in [34] and [35] proposed a convexity splitting scheme for gradient flow-
derived equations which results in an unconditionally gradient stable time discretization
scheme. In particular, the scheme is stable for any arbitrarily large time step. Here,
the idea consists in dividing the energy functional into two parts, a convex one and a
concave one. Then, the convex part is treated implicitly, while the concave one is treated
explicitly. This scheme has been used as a specific fast solver for the Bertozzi–Esedoglu–
Gillette–Cahn–Hilliard equation, see [5], [6], [7], and [10].

As in the case of the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation, (1.10) is not a
gradient flow. However, it is the sum of a gradient descent with respect to the H−1−inner
product for the original Cahn–Hilliard energy and a gradient descent with respect to the
L2−inner product for the additional fidelity energy. We recall that the complex Cahn–
Hilliard energy is given by

E(u) =

∫
Ω

(ε
2
|∇u|2 +

1

ε
(
1

4
|u|4 − 1

2
|u|2)

)
dx,

while the additional fidelity energy reads

E ′(u) =
λ0

2

∫
Ω\D
|u− h|2dx.

In view of this, we write E(u) = E1(u)− E2(u) and E ′(u) = E ′1(u)− E ′2(u), where

E1(u) =

∫
Ω

(ε
2
|∇u|2 +

c1

2
|u|2
)
dx,
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E2(u) =

∫
Ω

(
− 1

ε
(
1

4
|u|4 − 1

2
|u|2) +

c1

2
|u|2
)
dx,

E ′1(u) =

∫
Ω

c2

2
|u|2dx,

and
E ′2(u) =

∫
Ω

(
− λ

2
|u− h|2 +

c2

2
|u|2
)
dx,

c1 and c2 being nonnegative constants which need to be chosen large enough so that the
energies E1(u), E2(u), E ′1(u), and E ′2(u) are convex.

As far as the Euler time discretization for this problem is concerned, the time step
δt > 0 is fixed. The resulting time-stepping scheme reads

un+1
h − unh
δt

= −∇H−1(E1(un+1
h )− E2(unh))−∇L2(E ′1(un+1

h )− E ′2(unh)),

where∇H−1 and∇L2 denote the gradient descents with respect to theH−1− and L2−inner
products, respectively. This translates into a numerical scheme of the form
un+1
h − unh
δt

+ε∆2un+1
h −c1∆un+1

h +c2u
n+1
h =

1

ε
∆f(unh)+λ0(χΩ\D(x)(h−unh))−c1∆unh+c2u

n
h.

Therefore, using the operator splitting (see [22], [30], [38], and [44]), the final scheme
reads

1

δt
((un+1

h , φ)) + ((∇µn+1
h ,∇φ)) + c1((∇un+1

h ,∇φ)) + c2((un+1
h , φ))

=
1

δt
((unh, φ)) + λ0((χΩ\D(x)(h(x)− unh), φ))

+ c1((∇unh,∇φ)) + c2((unh, φ)), ∀φ ∈ H1(Ω),

((µn+1
h , ψ))− ε((∇un+1

h ,∇ψ)) =
1

ε
((f(unh), ψ)), ∀ψ ∈ H1(Ω).

In this scheme, we use a P1−finite element for the space discretization. The numerical
simulations are performed with the software Freefem++ (see [43]).

Having this convexity splitting in mind, we follow the dynamic two-steps numerical
algorithm proposed in [5] and [6] to obtain good inpainting results. The idea here is that
the edges in the image should be connected with a large value of the diffuse interface
thickness ε and then, switching the interface diffuse thickness ε to a smaller value (which
depends on the mesh discretization), we obtain the final inpainting result. In the grayscale
inpainting tests below, we further use the information outside the inpainting domain in
the given image to obtain better inpainting results.

Binary image test. The gray region in Figure 1(a) corresponds to the inpainting region.
We run the complex version of the modified Cahn–Hilliard equation with ε = 0.1. We are
close to a steady state at t = 592, as shown in Figure 1(b) (real part of the solution which
is equal to the solution, see Remark 4.7 (ii)). Then, we take ε = 0.001 and run again the
complex version of the modified Cahn–Hilliard equation, taking Figure 1(b) as an initial
datum. We are close to a steady state at t = 677, as shown in Figure 1(c) (real part of
the solution which is equal to the solution, see Remark 4.7 (ii)). In this test, λ0 = 90000,
δt = 1, c1 = 3000, and c2 = 270000. Furthermore, Ω is a (0, 0.5) × (0, 0.5)−square. The
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(a) (b) (c)

Figure 1. (a) Inpainting region in gray. (b) Solution at t = 592, ε = 0.1.
(c) Solution at t = 677, ε = 0.001.

triangulation is obtained by dividing it into 100 × 100 rectangles and by dividing each
rectangle along the same diagonal.

Grayscale image tests. Figure 2 shows the efficiency of our proposed model in dis-
occlusion applications (disocclusion means the recovery of hidden parts of objects in an
image by interpolation from the neighborhood of the occluded area; for more details, see,
e.g., [54]). Figure 2(a) and Figure 2(b) correspond to the damaged image and the masked
part, respectively. We then run the complex version of the modified Cahn–Hilliard equa-
tion with a large value of the diffuse interface thickness (ε = 0.1). We are close to a
steady state at t = 99, as shown in Figure 2(c) (real part), and switch ε to a smaller value
(ε = 0.001). We are close to a steady state at t = 875, as shown in Figure 2(d) (real
part) and in Figure 2(e) (imaginary part). Finally, we use the information on the image
in Ω\D given in the damaged image 2(a) in the inpainting result 2(d) to obtain the final
inpainting result in Figure 2(f). Here, λ0 = 100000, δt = 1, c1 = 3000, and c2 = 300000.

Figure 3 shows the efficiency of our proposed model to remove texts. Figure 3(a) and
Figure 3(b) correspond to the damaged image and the masked part, respectively. As
above, we first run the complex version of the modified Cahn–Hilliard equation with a
large value of the diffuse interface thickness (ε = 0.1). We are close to a steady state
at t = 273 and then switch ε to a smaller value (ε = 0.001). We are close to a steady
state at t = 2265, as shown in Figure 3(c). Finally, we use the information on the image
outside D given in the damaged image 3(a) in the inpainting result 3(c) to obtain the final
inpainting result in Figure 3(d). Here, λ0 = 10000, δt = 1, c1 = 3000, and c2 = 30000.

In our final test, Figure 4(a) and Figure 4(b) correspond to the damaged image and
the masked part, respectively. As above, we first run the complex version of the modified
Cahn–Hilliard equation with a large value of the diffuse interface thickness (ε = 0.1). We
are close to a steady state at t = 115 and then switch ε to a smaller value (ε = 0.001).
We are close to a steady state at t = 1162, as shown in Figure 4(c). Finally, we use
the information on the image in Ω\D given in the damaged image 4(a) in the inpainting
result 4(c) to obtain the final inpainting result in Figure 4(d). Here, λ0 = 100000, δt = 1,
c1 = 3000, and c2 = 300000.



COMPLEX CAHN–HILLIARD EQUATION 27

(a) (b) (c)

(d) (e) (f)

Figure 2. (a) Damaged image (128 × 102 pixels). (b) Masked part. (c)
Real part of the solution at t = 99 with ε = 0.1. (d) Real part of the
solution at t = 875 with ε = 0.001. (e) Imaginary part of the solution at
t = 875 with ε = 0.001. (f) Using the information of the image outside D
given in (a) in the inpainting result (d).

Conclusion. We proposed in this article a complex version of the Bertozzi–Esedoglu–
Gillette–Cahn–Hilliard equation, introduced for binary image inpainting, in view of appli-
cations to grayscale image inpainting. Though the equation has the same structure as the
binary model, we had, owing to the fact that the order parameter is now complex valued,
to derive proper and careful estimates on the nonlinear term. In particular, we proved the
existence and uniqueness of solutions, as well as the existence of the finite-dimensional
global attractor. Furthermore, we obtained numerical simulations which show the effi-
ciency of the model.
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