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Abstract

A new augmented method is proposed for elliptic interface problems with a piecewise variable
coefficient that has a finite jump across a smooth interface. The main motivation is not only to get
a second order accurate solution but also a second order accurate gradient from each side of the
interface. The key of the new method is to introduce the jump in the normal derivative of the
solution as an augmented variable and re-write the interface problem as a new PDE that consists of
a leading Laplacian operator plus lower order derivative terms near the interface. In this way, the
leading second order derivatives jump relations are independent of the jump in the coefficient that
appears only in the lower order terms after the scaling. An upwind type discretization is used for
the finite difference discretization at the irregular grid points near or on the interface so that the
resulting coefficient matrix is an M-matrix. A multi-grid solver is used to solve the linear system
of equations and the GMRES iterative method is used to solve the augmented variable. Second
order convergence for the solution and the gradient from each side of the interface has also been
proved in this paper. Numerical examples for general elliptic interface problems have confirmed
the theoretical analysis and efficiency of the new method.

Keywords

Elliptic interface problem; accurate gradient computation; variable coefficient with discontinuity;
interface; M-matrix; convergence proof; discrete Green function

1. Introduction

In this paper, we develop an efficient numerical method to solve an elliptic interface problem
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V- (BE)Vux)=f(x), xeQ\I, Q=0TUQ", (1.1)

[u](X)=w(X), [fua](X)=v(X), XeT, (12

in one and two space dimensions, where for example, [¢] = [¢dlr(X) = ¢*(X) = v~ (X) is the
difference of the limiting values of ¢/(X) from Q* and Q™ sides, respectively, Up=n - V=2
is the normal derivative of solution ¢«(X), and n(X) is the unit normal direction at a point X
on the interface pointing to Q* side, see Fig. 1 for an illustration. The domain and the
interface are used in Example 6.2 and Example 6.3 in Section 6. We use X to represent a
point in the domain while X a point on the interface G. Since a finite difference

discretization will be used, we assume that x) € C(Q%), B(x) € CL(Q*), excluding I'; and T

€ C?, we C¥(I), v€ CYI). All the parameters and 20 and o2 are assume to be bounded. For
the regularity requirement of the problem, we also assume that BX) = fFy>0and fx) €
CY(Q\I), for a constant v> 0 so that u(x) € C2*Y(Q%), see [19, 8]. For the error analysis,
piecewise higher regularity assumptions are needed for the solution, see Section 3 and
Section 5.

Many free boundary and moving interface problems can be modelled by differential
equations involving not only the solution to the governing equations, but also its gradient of
the solution at the free boundary or moving interface from each side. Such examples include
the Stefan problems and crystal growth modeling the interface between ice and water in
which the velocity of the interface depends on the temperature of the heat equation and its
gradient at the interface (called the Stefan condition), [12, 45]; the Hele-Shaw flow [30, 32];
the coupling between a Darcy’s system and Stokes or Navier-Stokes equations [36]; and
open and traction problems [46, 50]. The most expensive part of simulations from our
research on those problems is to solve one or several elliptic interface problems, for
example, two generalized Helmholtz and one Poisson equations when we solve the 2D
incompressible Navier-Stokes equations involving interface using the projection method
[46]. The goal of this paper is to present an efficient new finite difference method based a
uniform Cartesian mesh that not only provides accurate solution globally but also its
accurate gradient from each side of the interface.

For the elliptic interface problem (1.1)-(1.2), the solution has low global regularity, lower
than AL is w# 0. Thus, a direct finite difference or finite element method will not work, or
work poorly. Nevertheless, it is reasonable to assume that the solution is piecewise smooth
excluding the interface. For example, if the coefficient is a piecewise constant in each sub-
domain, then the solution in each sub-domain is an analytic function in the interior, but has
jump in the solution or/and the normal derivative due to the source or dipole distribution
from the PDE limiting theory [33]. The gradient used in this paper is defined as the /iming
gradient from each side of the interface.

INote that some of the proof is similar to the contents in Section 6.1.2 in [43].
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Naturally, finite element methods can be and have been applied to solve the interface
problem. It is well known that a second order accurate approximation to the solution of an
interface problem with w= 0 and v= 0 can be generated by the Galerkin finite element
method with the standard linear basis functions if the triangulation is aligned with the
interface, that is, a body fitted mesh is used, see for example, [7, 9, 13, 66]. Some kind of
posterior techniques or at least quadratic elements are needed in order to get second order
accurate gradient from each side of the interface. The cost in the mesh generation coupled
with unstructured linear solver is hardly competitive with the algorithm proposed in this
paper in our opinion.

There are also quite a few finite element methods using Cartesian meshes. The immersed
finite element (IFEM) was developed for 1D and 2D interface problems in [40] and [44],
respectively. Since then, many IFEM methods and analysis have appeared in the literature,
see for example, [14, 25], with applications in [48, 67]. The IFEM distinguishes from other
FE methods in terms of degree of the freedom and structure of the coefficient matrix, for
example, the extended finite element method (XFEM) in which enrichment functions are
added near the interface [60]; unfitted finite element method based on the Nitsche’s method
in [23]. Other related work in this direction can be found in [10, 35, 20, 28] and others. Note
that, the methods developed in [29, 31] using a Petrov-Galerkin finite elements discretization
in which the non-conforming IFE space and the standard linear finite element space are used
as the trial and test functional spaces, respectively. A partially penalty IFE method has been
proposed in [49]. Another type of methods are based on discontinuous Galerkin [65, 53] or
weak Galerkin[62] methods with some penalties. In those methods, some parameters are
chosen to achieve the optimal convergence. In general, discontinuous or weak Galerkin
methods are flexible because there are more choices of the degree of freedom, which in turn
implies these types of methods may be computationally more expensive. Those methods are
usually better suited for hyperbolic problems and conservation laws. Another interesting
development is the spectral solution representation technique [4, 5, 6, 3, 34] which is also
based on integral forms. In this technique, the interface problem is decomposed into two
problems, one with zero interface data and the other with zero exterior boundary data which
is solved by introducing an interface space AH-(Q) and constructing an orthogonal basis of
this space.

Finite difference methods have also played very important role in scientific computing and
solving engineering problems. Advantages of finite difference methods based on Cartesian
meshes include simplicity, easy to programming, and can utilize many existing fast solvers.
Note that error estimates from finite element methods are based on integral forms which
may not exactly predict the actual errors near the interface for being averaging out compared
with that from finite difference methods that are based on the point-wise (L*°) norm. Many
new finite difference methods based Cartesian mesh have been developed for interface
problems, see for example, the ghost fluid method [51], the matched boundary interface
method [70], the kernel free boundary integral method [68], the virtual node method [27].
The Difference Potential method [16, 59] has been developed for 1D elliptic and parabolic
problems in [1]. In [54], the difference potential method with second-order accuracy in the
solution and in the gradient has been developed for elliptic interface problems with variable
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coefficients in [15]. The fourth-order extension of the method for the elliptic interface
problems is developed in [2].

Most of numerical methods for interface problems based on structure meshes are between
first and second order accurate for the solution but the accuracy for the gradient is usually
one order lower. Note that the gradient recovering techniques for examples, [61, 69], hardly
work for structured meshes because of the arbitraries of the interface and the underlying
mesh. The mixed finite element approach and a few other methods that can find accurate
solution and the gradient simultaneously in the entire domain are often lead to a saddle
problem and are computational expensive which are not ideal choices if we are only
interested in the accurate gradient near the interface or boundary. It is the purpose of this
paper to develop a new method that has second order accurate solution globally and second
order accurate gradient at the interface. Note that for Poisson equations with singular source
along an interface, it has been proved in [8] that both the computed solution and gradient are
second order accurate by a factor of log /in the infinity norm. In [39], an augmented
immersed interface method (AlIM) is proposed to solve the elliptic interface problems with
piecewise constant coefficient. Both of the solution and the gradient are shown to be second
order accurate for all the examples, which will be proved in this paper. The method in [39]
provided a clue for accurate gradient computation at the interfaces or boundaries. The
method implicitly put the gradient near the interface as an unknown (augmented variable).
While there are quite few accurate and consistent numerical methods for interface problems,
the stability of those methods nevertheless often ignored. In [42], a maximum principle
preserving scheme is proposed for variable discontinuous coefficients. A quadratic
optimization is used in determine the finite difference coefficients at grid points near the
interface so that the coefficient matrix is an M-matrix which is the key in the proof of the
convergence of the method. This is another consideration for our method to keep the
coefficient matrix to be an M-matrix.

In this paper, we propose a new approach that can provide second order solution globally
and second order accurate gradient on/y along the interface for a variable coefficient that has
a finite jump along the interface. The method has advantages of both of the methods in [39]
and [42]. The idea is to introduce the jump in the normal derivative of the solution as an
augmented variable. With the augmented variable, the immersed interface method is second
order accurate both for the solution and first order derivatives [8, 58]. By a suitable
transform of the PDE, the leading terms of the second order derivative jump relations needed
for the 11M are independent of the coefficient. The lower order derivative terms at irregular
grid points that are near or on the interface are discretized using an upwinding discretization
within the centered five-point stencil. Thus the coefficient matrix of the finite difference
equations is an M-matrix without using an optimization procedure in [42]. It has been shown
that the finite difference solution is second order accurate if the augmented variable is also
second order accurate. The augmented variable should be chosen so that the flux jump
condition is satisfied. This leads to a second discretization involving the finite difference
solution and the augmented variable. The GMRES iteration is utilized to solve the Schur
complement for the augmented variable with a new preconditioning strategy. By using the
estimates of the discrete Green function, we have shown that the augmented variable has
second order accuracy, so is the finite difference solution subsequently.
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The rest of the paper is organized as follows. In the next section, we explain the algorithm in
one-dimension since it is easy to understand and explain followed by the convergence proof.
In Section 4, we explain the algorithm in two dimensions followed again by the convergence
analysis in Section 5. In Section 6, we present some two dimensional numerical examples.
We conclude in the last section.

2. The one-dimensional algorithm

A model interface problem in one dimension has the following form

(61LI)$:.f(w)’ YIS ((1, a) U (Oé, b)a
w@)=t uB)=uy  [dy=w, [Pule=v, (21

where a< a < bis an interface (a point). We assume that conditions for S(x), fx) described
in the introduction section hold with Q™ = (a, @) and Q" = (a, ). We will drop the subscripts
a in the jump expressions such as [¢], and [Bux], and simply use [¢] and [Bu,] if there is no
confusion.

Let x;= a+ /hbe a uniform mesh with 7= (b- &@/Nand /=0, 1, ---, V. We define ¢g=[t)],
as the augmented variable. Assume that x;< a < x;1. We call x;and x;1 as /rregular grid
points while others are call regu/ar grid points. The finite difference scheme at a regular grid
point x;, /= jand /= j+ 1 can be written as

Bi—1/2 Ui1—28,; Ui+ Bis1/2 Ui _ fxi)

Bih? B (2.2)

where

Bic1y2=B(xi=h/2),  Biy1/2=B(xi+h/2), BFW' 2.3)

At the irregular grid points x;and xz1, we use the following equivalent differential equation

Bous_f

BB (24)

Uzt

This is one of the key ideas of the new augmented approach. In this way, we can get second
jump conditions [u,,] in terms of lower order jump conditions and derivatives of the
solution.
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If we know the jump [¢,] = g in addition to the original jJump conditions [¢] and [Bu,], then

we know the following jump relations

[u]=w,  [us]=q,

€T
larl= [ ] -2 4 2te= [f] - [ ] wi=Fa. 55

If B(x)/B(x)) = 0, then the finite difference discretization at the irregular grid point x;can be
written as

RN A e e P
- B(z;) h

where Cis a correction term, see [43]

h h h ho 0 (27)
and C"2(Up1, U, Upy) is part of the finite difference equation,

1 —a)us Tjtr1—Q 2 Uzx
CFD(Uj—l,Uj»Uj+1):—%l—(I]+1h2 e 2ng e

_w @) (@10 [t

TR RE 2h2 ’ (2.8)

in which [uy,] is discretized by, see (2.5),

/N

The case when B,(x))/B8(x)) <0 can be treated in the similar way. We omit the details here.
We can derive a similar finite difference scheme at the irregular grid point xz. The finite
difference scheme has the following properties.

. It is consistent. The local truncation errors at regular grid points are of O(/#), and
O(/) at irregular grids points x;and X .

. The finite difference scheme can be written as
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ApRU+BQR=F1 (2.9)

where the coefficient matrix Ay is an M-matrix, irreducible, tri-diagonal, and
diagonally dominant, U is the column vector formed by the finite difference
solution, and Bis a column vector with at most two nonzero entries at j-th and (/
+ 1)-th locations, Qs the approximate value of g = [u,]. Note that Ay is
invertible and the two component of £;and £z have been modified.

2.1. Discretization of the flux jump condition

Next we discuss the interpolation scheme to approximate the interface condition [Bu,] = v.
First we re-write the jump condition as follows

[Bua)=BTug —B"uz =" (ug +4)=5"uy
= S =g (2.10)

This can be discretized as

B B U, 140U U1 4Cs) =
A (MUj—1+72Uj+7v3Uj11+ 3)+q—ﬂ—+7 2.11)

where 31, ¥, ¥3, and the correction term C; are determined again using the idea of the 1IM
so that the interpolation scheme is a second order approximation of (2.10), that is,

gr-p-
B+

v
(mu(zj—1)+r2u(z;)+y3u(@t1)+Cs) +[Urc]—ﬁ—+20(h2)~
In the matrix-vector form, the above equation can be written as

SU+GQ=F, (2.12)

where Sis a row vector whose sum is zero.

We define the residual of the flux jump condition given an approximation Qas

R(Q)=SU+GQ—Fz, (2.13)

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Lletal.

Page 8

which is the discrete form of /g) = [Bu,] — v. If we put the two equations (2.9) and (2.12)
together, we get

Eliminating U in equation (2.14) gives the Schur complement equation for Q
(G=SA,'B)Q=F>~SA;'F1. (215)

The equation (2.15) can be solved if the Schur complement is nonsingular. Once Qs
computed, one can substitute it in equation (2.9) to solve for U. The cost of computation in

this process is to solve linear systems with the form Agx = bthree times, A;lFl, A;lBQ,
and finally (2.9). Since matrix Ay, is tridiagonal and row diagonally dominant, the Thomas
algorithm is guaranteed to be stable and the solution can be obtained in O(/) operations.

3. Convergence analysis of the 1D algorithm

In this section, we show second order convergence of the solution globally and its first order
derivative at the interface, as well as the augmented variable of the proposed new method.
The proof is simpler than that of the two dimensional case but serves the purpose of
understanding and the tools used in the proof.

We use the following notations. We denote the errors as EY = U - u with EY={/; —u(;) for
the solution and £9= Q- g for the augmented variable, respectively, where t(x)) is the true
solution at x; We use Cto represent a generic error constant. We start with the analysis by
assuming that the coefficient S(x) is a piecewise constant, the domain is (0, 1), and a
Dirichlet boundary condition at the two end points for simplicity.

Theorem 3.1: Assume that B(X) is a piecewise constant and ((X) Is in piecewise C*
excluding the interface a. If Q is a second order accurate approximation to g, i.e.|E9 < CI#,
then we also have ||EY|co < CH.

Proof: Let T be the local truncation error of system (2.9), that is,

AputBg=F1+T" (3.1)

where u is the vector formed by the true solution at the grid points x;, gis the jump of the
derivative of the solution [¢,] across the interface a. Subtracting equation (3.1) from (2.9)
yields

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.
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where F¥ = —-T¥ - BFY. Notice that |T¥| < Ch?*and B;= 0 at regular grid points while
T} < Chand|T,,| < Ch,and 3, 0(1), B;4y~O(L) Since | < CI?, we have

1

"
F ~ O(h?)at regular points while F;~O(h), F’;,,~O(h). Also when Bis piecewise
constant, the matrix Az can be simplified as

From [37], we have

h(&?j*l)&'}j,, Z:1, 2, - ,j,
h

AN =G LT )= 5 i
(An)y; (i) { (@i=D)aj, i=j,j+1,....N=1, (33

where

is the Green’s function that is the solution of the following

A, G(z;T)=0(z—T), O<z<l, 0<T<I,
G(0;2)=0, G(1;7)=0.

The global error of vthen can be represented as

Since 0 < G(x;; x)) < 1, we have the inequality
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B <

j—1 N—1
(|F§-‘|+|F}‘H|+Z|Fk|+ > |Fk|> ~h (O(h)+(N—2)O(h?))~O(h?),

k=1 k=j+2

since NV~ 1/A. This shows that || F4|eo < C/#, hence the proof is completed.

Next, we show that the Schur complement system is non-singular.

Theorem 3.2: With the same assumptions as in Theorem 3.1 and 8~ # B, then the
coefficient matrix (a number for the 1D problem) of the Schur complement is non-singular.

Proof: Note that from (2.9), that is, A,U(Q) + BQ = F4, we have A,leQ:A,lel—U(Q)
and the Schur complement can be re-written as

(G—SA,'B)Q=GQ—-SA,; ' BQ=GQ—SA,'F1+SU(Q)
=(SU(Q )+GQ) (SA,'F1+G - 0)
=(SU(Q)+GQ)—(SU(0)+G - 0)

=R(Q)—R(0).

If Q#0and B # B, then R(Q) # R(0). For the one-dimensional problem, we have
(G—-SA;'B)=(G-SA;'B)1=R(1)~R(0) # 0.

Now we are ready to show that the augmented variable Qs also second order accurate.

Theorem 3.3: With the same assumptions as in Theorem 3.1 and 8~ # *, then we have |EY|

=|Q- g < CH.

Proof: Similarly to the definition of the local truncation error T, we define the local
truncation 77 of gas

Su+Gq=F+T9, (35)

where u and g are defined as before. From (2.14), we know that

I N

Eliminating EY, we get the Schur complement system for £9
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(G=SAT'B)E'=-T"+SA'T". (37)

We already know that the (G — SA™1B) is non-singular and || 7%|co < C/2. The key is to show
that || SA1TY|eo < CH2.

Let b = A™1TY from the definition of the Green function in (3.3), we can write

N-1
b;=h Z T G(zi;m1).
I=1 (3.8)

At the first glance, it seems that £7~ O(4) since the interpolation operator ||§|co ~ 1/5.
Nevertheless, the following analysis shows that the terms of O(1//) are cancelled out to O(1)
and thus £9~ O(/P) is true. Let A;j= b;— bi1, i=2, ..., N- 1. Then we have (note that both
SA1T¢and Sb are scalars for the 1D problem)

SATIT =8 b:Sj_lbj_1+Sjbj+Sj+1 bj+1
=5j-1(b;—A;)+5;bj+Sj+1(bj+Aj+1)
=(5j-1+5j+8j+1)b;—Sj-14;+5114 11
==5j-18;+5j+1841.

Notice the term b;is cancelled out. This is because the interpolation operator is for the first
order derivative of ¢(x), and the consistency condition requires that Sp-1 + Sj+ Spp = 0.
Now what is left to prove is that A;~ Azq ~ O(/F), which leads to £9~ /7 Since Si-q ~ Siq
~ O(1/h). The final step of the proof is explained below.

N—-1
|Ai| =[b;i—bi—1]|=h 121 T} - |G (zi20) =G (zi-1520)]

N—1
< h21¢ _Z+1|Tﬂ+ h*(|T}+|T}4, )  from the continuity of G(z;, x7),
5.
~ O(h?).

This completes the proof.

As the result of Theorem 3.1-Theorem 3.3, we conclude that the solution U is also second
order approximation to u, which is summarized in the following theorem.

Theorem 3.4: With the same assumptions as in Theorem 3.1 and 8~ # 87, and B is
piecewise constant, then ||EY|co = ||U - Ulleo < CF2.

Proof: Since the Schur complement matrix is a constant independent of #and | 79 < C/?,
and just proved |SA™1TY < C/#, from (2.15), we have the conclusion.

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Lletal.

Page 12

Not only we get second order accurate solution and the augmented variable, but also second

order accurate derivative ;- and ;" if the derivative is computed using the scheme (2.10),
that is,

o % <ﬂi+7q) " (3.9)

assuming that g~ # B*. Since the computed Qis second order accurate, we immediately have
the following theorem.

Theorem 3.5: Assume B Is two different piecewise constants andU is computed using the
above formula with g being replaced by Q, the computed augmented variable. Then
du

Uy —ug | < Ch? whereuz = lim =—(z).

3.1. An example of the 1D Stefan problem

Our numerical experiments in one-dimension have confirmed our theoretical analysis that
both of the solution U ~ () and the augmented variable Q ~ [u,] are second order accurate
in the L* norm. We show an example of 1D Stefan problem, see for example, [11, 18], in
which the free boundary a(?) is moving. The governing equations are

%:%, for O<z<a(t), ¢>0,

u(z,t)=0, for x> a(t), t>0,

where a(f) is subject to the Stefan condition

do ou
G W="5,®,0),  a0)=0.

The boundary and initial conditions are

The model is from [55]. We can find an analytic solution listed below,

erf(z/(2 V)

afe) a(t)=2w V1,

u(z,t)=1

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.
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where erf is the error function and w is the solution of the transcendental equation

w2 - - - - .
Vrw - erf(w)e”” =1 The function Az a(2) is determined from the analytic solution.

We use a second order time splitting technique to solve the problem, that is, solve the
differential equation with a(?) fixed, then update the new location of a(4). The augmented
equation now is the boundary condition at a(#. In Table 1, we show a grid refinement
analysis of the errors in the solution at all grid points, and the free boundary a(#), and the
first order derivative v (a(t)), at the final time £= 3. We use the lower case for the analytic
solution, and the upper case as the computed solutions. We observe that all of them have
average second order convergence.

4. The algorithm for two dimensional problems

In this section, we present the algorithm for two dimensional problems. The key is the
modification of the finite difference scheme at irregular grid points. We first discuss the
interface relations using an equivalent representation of the interface problem.

4.1. The jump relations in the local coordinates

As explained in the introduction section, we re-write the elliptic interface problem near the
interface as

[ulp=w,  [unlp=0¢, (4.2)

where g(X) is the augmented variable only defined along the interface G which should be
chosen such that the flux jump condition

[ Bun]p (X)=0(X)

is satisfied. In this way, the Laplacian term A has been separated from S(x, y) which makes
the discretization easier with our proposed augmented method. This is one of the key ideas
of the new method.

From the description of Section 3.1 in [38, 43], we restate some theoretical results on the
reformulated elliptic interface problem (4.1)—(4.2). Assume that the interface in the
parametric form is
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P={(X(s).Y(s), X(s) €C%Y(s)€C?},  (yq

where sis a parameter, for example, the arc-length. At a point of the interface (X, Y), the
local coordinate system in the normal and tangential directions is defined as (see Figure 2
for an illustration),

é=(z—X)cosf+(y—Y )sind
n=—(z—X)sinf+(y—Y )cosb, (4.4)

where @is the angle between the x-axis and the normal direction, pointing to the Q* sub-
domain. Under such new coordinates system, the interface can be parameterized as

¢=x(n) with x(0)=0, x(0)=0. (45)

The curvature of the interface at (X, Y) is y”(0).

If we know the jump in the solution [¢] = wand the normal derivative [u,] = g (not the
original flux jump condition [Bu,] = V), then we can have the following jump relations at a
point (X, Y’) on the interface which is necessary to derive the accurate finite difference
method.

Theorem 4.1: For the elliptic interface problem (4.1)—-(4.2), given[u] = w and[uy) = q, then
at the interface, the following jump relations hold

[U]:w’ " [uﬁ]:w ’ [ug]/:g, ’
[um]]fqu +w [Ugn]:w X +q,

[uge]=q (x”—ﬁ—i) —u’ - {%] Ug — [%ﬂ “5_%w/+ {%] (4.6)

where w’, g and w” are the first and second order surface derivatives of w and g on the
interface, which are all evaluated at (€,n ) = (0, 0). Here we skip the derivation which is
similar to those derived in equation (3.5) in Section 3.1 in [43] assuming that [u] = w and

[Bun] = v are given. Note also that we can express the jump conditions in terms of u™, u;]L

+
and ug.

Once we have the jump relations in the local coordinates, we can get back the jump relations
in the x- and )~ directions according to (9.47) in [43]
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[ug]=[ug¢]cosh—[uylsing,  [uy]=[ue]sind+[uy]cosh,
(U] =[uge|cos?0—2[ ug,|cosfsing+[uy, |sin6,
[y ) =[ uge]sin?0-+2[ ug,]cosOsingd+[ u,y, |cos?0. 4.7

4.2. The finite difference scheme for the 2D problem

For simplification of discussion, we use a uniform a mesh

ri=a+ih, 1=0,1,---M; y;=c+jh, j=0,1,---,N, (4.8)

assuming Q = (&, b) x (¢, d). The interface G is represented by the zero level set of a
Lipschitz continuous function ¢(x, )), that is

I={(zy), ¢@y)=0, (z,y)€Q}. (49

In the neighborhood of the interface, we assume that ¢(x, J) € C2. In implementation, the
level set function is defined at the grid points as {¢;} corresponding to ¢(x; ). Ata grid
point (x; y)), we define

max

pij = max{@i-1,4,Pijs it 15, Pig-1,Pij+1ls  (4.10)

min

e =min{p;_1j, Pij, Pi+1,4s Pij—1, Pij+1}- (4.11)

mazx, min

A grid point (x; ) is called regularif " ;™ >0, otherwise it is called /rregular.

The set of orthogonal projections (Xj, Y, k=1, 2,---, Npof all irregular grid points on the
interface from a particular side, say Q* side, forms a discretization of the interface I'. We
refer the reader to Section 1.6.4 in [43] about how to find approximate orthogonal
projections. Then the discrete augmented variable Q, of the continuous one g(s) is defined at
those orthogonal projections. Given a discrete quantity along the interface, we can
interpolate the quantity at the discrete points to get its value, the tangential derivative
anywhere along the interface. For example, assume that (x;, ) is an irregular grid point, and

the interface cuts the grid line at (=7, ) corresponding to the orthogonal projection X, =

(Xk Y. We need to get the values of Qand its tangential derivative at ( =;;, ). We first
reconstruct the interface in the local coordinates as &~ Czf + D with error O(7*). We
refer the readers to Section 11.1.5 in [43] about how to find Cand D. We then approximate

Q) as Q(n) = Qx+ win+ worf locally with error O(77) and Q' (1) = wy + 2w,y with
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error (7). The coefficient w; and w, are determined from Qvalues at the two closest
orthogonal projections.

4.2.1. The finite difference scheme at a regular grid point—At a regular grid point

(X, ¥)), the finite difference scheme is the classic conservative one with the scaling

Bi—1/2,;Ui-1,j4+Bit1/2,Uis1,j+Bij—1/2Usj-1+Bi j412Uij41—Bi Ui fi

Jig.
h2By B (4.12)
where ;= £(X; ¥)), Bi-112,;= B(xi— h/2, y;) and so on, and
Bij=Bi-1/2,jBir1/25+Bij—1/2HBijr1/2- (4.13)

4.2.2. The finite difference scheme at an irregular grid point—We assume that we
know the jump conditions [¢] = wand [u,] = g, not the original flux jump condition [Bu,)] =
V. This makes it easier to derive accurate and stable finite difference scheme. At an irregular
grid point, we discretize the re-written equation (4.1) using a dimension by dimension
approach, and an upwinding discretization for the first order derivative terms.

Let (x; ) be an irregular grid point. If the interface does not cut through the interval (X1,
Xp1) along the line y'= yj that is, (x;, ) is regular in the x-direction, then the finite
difference approximation for (Bu,) x before the scaling is

Bi—1/2,jUi-1,+Biv1/2,5Uit 15— (Bi-1/2,5+Bit1/2,§)Ui.;
72 (4.14)

The final finite difference equation will be scaled in the similar way as those at regular grid
points.

Now assume the interface cuts the grid line (x) = y;in the interval (X1, Xx1), say at (z7;,
¥, with ;=243 h, 0 < |a5;| <1. Without lost of generality, we assume that (x; ) €

Q™. We discretize the reformulated equation (4.1), that is,

Brtg  Pyty [~
6= 5 g (4.15)

Uyt +

where £, g7, -+, are the limiting values at ( z7;, y)) from Q~ side. We use an upwinding
scheme for the first order term 3.« /3, that is,

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Lletal. Page 17

Bz (Uij=Ui—1j , Cij Bz
s~ g—{ (U”l’rUi'j +Cf2j) otherwise,
(4.16)
where for example, C“Z:O if (X1, ) € Q. Otherwise we have
~ Ti:—T;

== ([ut{us] (1-lafi h) . where afj=—— (4.17)

see Lemma 10.6 in [43] for the formulas of the correction, where the jumps again are

defined at ( =, ). Similarly, for the second order term vy, the finite difference
approximation for vy, can be written as

UZ*L]_2U7,]+UZ+17]_C£

U (T4, ) ~ 72 " (4.18)

where the correction term ij is

(1—[aZ])?h?

Cl=lultlua] Ao bt e === (4 19

4.2.3. Approximating [uxx] and [uyy]—Given [¢] = wand [u,] = galong the interface,
from (4.7) and (4.6) we have the following

[ug]=cosf [ug]—sind [u,]=gcosd—w'sind),
Uy]=sind [ue]+cosd [u,|=gsinf+w’ cosb,
Y 3 n
[Upa]=c08%0 [uge]—2sinfcost [ug,]+sin?0 [w,,]

"

/ " ’ " " + n + !
=—2sinfcost (w' x +q )+sin0 (—qx +w )+cos?d {q (X *g_i) —w fg—lw + {%] - [%] (cosf uy; +sinfd u, ) — [

[uyy]:sin29 [uge]+2sinfcosh [u571]+c0520 [tpy]

’ " ’ " " " h " + ’
=2sinfcosd (w' x +q )+cos? (—qx +w )+sin26 {q (X —g—i) —w _51 w + [%} — mj—g] (cosf uy +sinf uy )— [

where v/ and ¢’ are the first order, and /" is the second order, derivatives along the
interface, respectively. In the derivation above, we have used the following formulas
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Ug=UzCOs0+Uuysing,  u,=—1u,sinf-+u,coso. (4.20)

Most of terms in [uy,] and [v,] are computable except terms of &7, 4, and w,,. Note that
these functions are defined on the interface. Using Taylor expansion, we have & (X, Y) =
a(x;, y) + Oh), ug (X, Y)=uy (z;,y;)+0(h)and u, (X, Y )=u, (z,y;)+O(h). We simply
replace &~ with Uj;and treat - and u,, using the upwinding scheme to increase the diagonal
dominance of the resulting linear system of finite difference equations. For example, for the
terms containing v in [Uy,] we use

Uit1,;—Ui,j (o .
Atmp (41%+#) lfAtmp > 0,

q&} sinf— [&} cos@) cos?fu-= —
B [ x A Ui j—Ui—1 ij :
tmp \ — T/ + 7 ot herw1se,

where  Ayp,= ({%’1] sinf— [%] cos(-)) cos?6,

Q

and once again, for example, C;;=0 if (xx1, y)) € Q". Otherwise

Chi=— ([ul+[u] (1-ag) ). (4.21)

The linear system of finite difference equations can be written as
ApU+BQ=F1, (4.22)

where U is the vector formed by the finite difference approximation { U} to the solution
{ux; ¥}, Q is the vector formed by the discrete augmented variable { Qx} to the
augmented variable {[ ou (X, Yk>]}’ F1 is the modified right hand side, Bis a sparse matrix
corresponding to the correction terms for the [u,] term.

Remark 4.2

. The finite difference stencil is still standard five-point centered. This is different
from the maximum principal preserving scheme [42] in which the finite
difference stencil is a nine-point one.

. Ay, s an M-matrix and irreducible, thus it is invertible. No optimization is needed
compared to that in [42] because we assume that [un] is given instead of [Buy],
which makes easier to discretize the interface problem. The trade-off is that we
also need to solve the augmented variable.
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4.3. Discretizing the flux jump condition

At every approximate orthogonal projections of all irregular grid points on the interface, we
use the same least squares interpolation described in Section 4 in [39] to interpolate the flux
jump condition [Buy)] = v.

At one orthogonal projection X4 = (Xj, Y%) corresponding to an irregular grid point (x; ),
the second order accurate least squares interpolation scheme approximating [Su,] = vcan be
written as

> vUy+Li (B(x), W,Q,V)=0
[%5 =X | <op (4.23)

where & is a parameter of 2/~ 35, L stands for a linear relation of its augmenters, the
discrete form of m(X), g(X), and L X). The consistency condition requires that

> =0

[xij —Xg| <op (4.24)

Note that the interpolation coefficients should depend on the index 4 as well, we omit it for
simplicity of notations.

In the matrix vector form, the interpolation at all projections of irregular grid points from
one particular side can be written as

SU+GQ=F3, (4.25)

for some sparse matrices Sand G. If we put (4.22) and (4.25) together we get

H‘h g} {g}:{g} (4.26)

Eliminating Uin equation (4.26) gives the Schur complement equation for Q
(G-SA;'B)Q=F2—SA,'F1, or A™Q=F*"". (497

We use the GMRES iterative method to solve the Schur complement system and do not
explicitly form the matrices Ay, B, S, G, and A;Ch“’”. The matrix and vector multiplication

Asehir Q needed for the GMRES iteration involves two consecutive steps: the first step is to
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solve the interface problem (4.22) given Q; the second step is to find the residual of the flux
jump condition, that is, A(Q) = [B(X)U(Q)] —V. We refer the readers to Section 5.1 in [39]
for the details.

4.4. Computing the gradient on the interface

At one orthogonal projection Xy corresponding to an irregular grid point (x; ¥)), we use a
similar (two-sided SVD) interpolation to approximate the normal derivative at X, from Q™
side

u,(Xp)= > A5 Uy+Li (B(x), W, Q, V)
[xij =X | <6n (4.28)

to get one of 4, (X;,) or »;} (X;,), then use g(X) to get the other, say
u) (X)) =q(X)+u, (X;,). The linear system of equations has the same coefficient matrix as

that in (4.23) for y;'s, so there is almost no additional cost. The term L, (3(x), W, Q, V) is
again a correction term due to the jumps in the involved quantities.

If needed, at a grid point, the partial derivatives vy and ), can be calculated using the
standard 3-point central finite difference formula with (at an irregular grid point) or without
(at a regular grid point) a correction term. Beadle and Layton [8] have shown that the
computed derivatives using 1IM are second order accurate in the L*° norm at all grid points.

4.5. A new preconditioning strategy

The number of GMRES iteration grows linearly with the mesh size Nif there is no
preconditioning technique employed. The preconditioning technique proposed in [39] works
well for a piecewise constant coefficient but not for a variable coefficient. The idea of new
preconditioning technique is more like a diagonal preconditioning technique for the Schur
complement. At an orthogonal projection X, = (X, Yi) where the augmented variable is
defined, we use the re-scaled residual of the flux jump condition

B (X)Uy (Xi) =B~ (Xp)U,, (Xg)—v(Xy)

(Xk) " (4.29)

Rrescaled (Xk): 72

where B(XQ = (B (X + BT(XW)/2, to discretize the flux jump condition.

5. Convergence proof for the 2D Problems

In this section, we provide a convergence proof for two dimensional problems. For
simplicity, we assume that a Dirichlet boundary condition is prescribed along the boundary
0Q. We use U and u to represent the vectors of approximate and exact solution at grid points;
TYand EY=U - u are the vectors of the local truncation errors and the global error. We have
EYq/, = 0 for the values at grid points on the boundary. Similarly, we define T7and E9= Q
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- q as the vectors of the local truncation error and the global error for the augmented
variable. According to the definition, we have

A U+BQ=F;, A,E"+BE=T" (51)

SU+GQ=F,, SE"+GE’=TY, (52)

where the local truncation error vector T is defined as T¥ = F; —Axu—Bq and so on.

Lemma 5.1: Assume that t(X) is in piecewise CY(Q\I') excluding the interfaceT . If the
augmented variable is a second order approximation to | gu ( X)], that is, |E9co < CH, then
the computed solution of the finite difference equations (4.22) /s also second order accurate,
that is, ||E||eo < CHP.

Proof: From the construction of the numerical scheme we know that a component of BE? is
zero at a regular grid point x;and bounded by Chat an irregular grid point x;since JE7/jo <
CI? as one of the conditions in the theorem. Note that Ay, is an M-matrix and A,EY = -BEY
+ T¥that is bounded by C/? at regular grid points and Ch at irregular grid points. From
Theorem 3.3 in [43] or the convergence analysis of 1M in [8], we conclude that the global
error is bounded by C2. Also from [57, 58], the partial derivatives using the 1M is also
second order accurate.

The next part is to show that the computed augmented variable is also second order accurate
by a factor of log /. In this case, we first assume that the coefficient is piecewise constant so
that we can apply some theoretical results from [41].

Theorem 5.2: Assume that i(x) is in piecewise C{Q\I') excluding the interface T, and the
coefficient B(x) fs a piecewise constant 3~ and 8*, then computed augmented variable is
second order accurate by a fact of|log A, that is |[E9|e < CI#|log Al.

Proof: From (5.1)-(5.2), we have
(G=SA4;'B)EI=—T+SA,'T". (53)

Note that solvability of the above linear system has been shown in [39]. We first prove that
the right hand side above is bounded by C/?. Since the interpolation for the flux jump
condition is a second order one, we have //T%)s < CH. For the second term, from the
interpolation scheme in (4.23), we consider one component and carry out the derivation
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(SAIT") = X i (4,MTY)
[xij—Xg| <p

= Y 7Gx, xi) k2T,

|xij—Xk| S(Sh l,’l”

=>"h*m, > “/i,th(Xlr,quj)) ,

Lr [%ij —Xp| <6n

ij

(5.4)

where G"(x, X ) is the discrete Green function defined as

_ 1
Gh (Xijaxl'rn):(Ahlelmﬁ) 5 Gh (8Qh,X1m):0,
i (5.5)

where e, is the unit grid function whose values are zero at all grid points except at X, =
(X;, ¥m) where its component is e/, = 1, see for example [21]. Note that in the neighborhood
of ki — Xx/< &p, the points involved in the interpolation is close to Xy, we can continue to
derive

_ GM (xpy,xi5)— G (%, X
(SA,'T) =3 h* 7 < > Yig (G?(xzr,Xth et J)h e k)>>
br x5 —Xk| <6n
h x
=2 h* 7, < 2 %JG?(leXk)) +> k7, < > g (W) +O(h)>
Lr i =X | <op Lr .
: 8Gh (xp, X
=20 Ty ( X i (71 o k)> +O(h)> :

Lr |x77j _Xk‘ <o,

The first term in the top line above is zero due to the consistency of the interpolation scheme
for the flux jump condition. We have /z;/< C/? and at regular grid points, and /z;/< Chat

irregular grid points, from the estimate of ‘9;_? (3.16) in [41] we further derive

|<SAh1T“>k|§§h3|m< > bl (m)ww}

[xi—Xp| <n

< X Rn < >l (W) +O(h)> + X hm ( >l <m> +O(h)>

l,’(‘,Q;fg \xiijk| Séh l,’I‘,QZT ‘Xi]' 7Xk| Séh

< ¥ h4< D (m)+0<h))+ > n <|x~ L _ (e fmm) +O(h)>

[’T792€9 |xij 4Xk| S‘Sh l’r’ﬂfz”. —X} ‘ Séh
2 C 2 3 2 C 3
=M X >, () #4009 | 402 2 S (%) hO0)
Peij =Xk <6n \ L, 2;7 ' ' [xij =X | <op \ L, Q" l :

< Ch?|logh|+ Ch?,
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where (/" and Q; are the sets of all irregular and regular grid points, respectively. In the
derivation above we have used the facts that /y;/~ 1/h, [z;{< CI#? at regular grid points and /
7)/< Chat irregular grid points, respectively. We have also used the estimate of the Riemann
sum for the double integral J I 1/4x2+)2+Hh)dxdy < Clog A/. Note also that the total number
of regular grid points is O(1//2) while the total number of irregular grid points is O(1/). It

has been shown that Schur complement matrix A3<"*" is non-singular, thus we have
|47 B, < Ch*[loghl.

We have shown that the right hand side for the error of the augmented variable has the order
of /2 log A. From Section 6.1.2 in [43], we know that the left hand side of (5.3) is

ou

schur . aﬂ
Apchur = {6%@")] - {B%(O)} " 69)

where T(E9) can be regarded as the solution of the numerical method applied to the
following problem

V- (BVD)=T}(x); idlo=0, (57

(5.8)

where T (x) € C'is an interpolation function of T on the entire domain while T?(X) € C'
is an interpolation function of T7along the interface. From the maximum principal, we

know that /a/< CI? and
Thus we have

gat
on

< C'h2 Therefore the second term in (5.6) is bounded by CIP.

Ajehrpi= [ 532(ED] =5+ 927 (B~ 42 (B1)+0(h?)
=BT EI-[B98 (E1)+0(h?),

since S is a piecewise constant that has been divided by, from [8], we know that the solution
and the derivative are both second order accurate when the IIM is applied, which implies

that|| 20 (EY)|| < Ch* We have already proved that || ;""" E4|| < C'h? this leads to //
EYfoo < CIP.

Remark 5.3: /n the preconditioning strateqy, we can write, for example, equation (6.24) in
[43],
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U~ oU
I (EY)=y [ﬂ%(Eq) +Fr+0(h?),

(5.9)
where y Is a constant, and Fr is a vector, then we have

A Q= [B5HQ)] - [8570)] =5+ 5 (@55 (@~ [57(0)]
=(B*—B"7) Q- Fr— [ 352 (0)] +0(h?),

which means that the Schur complement matrix is nearly a diagonal. This may explain why
the number of the GMRES iterations Is independent of the mesh size and the jump in . For
variable coefficient B(X), with the new preconditioning strategy, we would have

A;hr Q==D(B(x))Q+Fr+O(h?),

where D(B(X)) is a diagonal matrix whose entries are (B —Br)/Brs Br=(8i +B5)/2.

Remark 5.4: While the proof above is for piecewise constant coefficient, the conclusion is
also true, or at least asymptotically in terms of h, for variable coefficient f(x) = fy >0
assuming that B(x) € C*(Q¥) since those terms involved are lower order terms of h. This is
because the coefficient matrix Ay(B) = A1+ Bp) and||Bf| — 0 as h— 0, where Ay, Is the
discrete Laplacian. This is another advantage using the reformulated PDE.

6. Numerical examples

We present a variety of numerical experiments to show the performance of the new
augmented method for accurate solutions and its first order gradient at the interface. All the
experiments are computed with the double precision and are performed on a desktop
computer with Pentium(R) Dual-Core CPU, 2.59 GHz, 4GB memory. We also list the CPU
time (s) in tables. We present errors in L* norms and estimate the convergence order using

1 ) 1E2n || oo

= og .
1Og2 ”EhHoo

The tolerance of the GMRES iteration is set to be 1078 and the initial value is set to be 0 in
all computations. In all tables listed in this section, we use “Iter” to represent the number of
GMRES iterations, “/A/” the number of control points, “/A’ the number of the grid lines in
each direction of the rectangular domain and “CPU(s)” the run time in seconds.

Example 6.1:
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) sin(z4y)  inQ7, | sin(z+y)+2 inQ,
u(x)_{ log(x2+y?) inQF, ﬂ(x)_{ cos(z+y)+2 inQT, 6.1)

where the interface is the zero level set of /(% ¥)= \/#*+y* =05 anyq = [-1, 1]x [-1, 1].
The source term RX), and the interface jump conditions: [u] and [Buy,] are derived from the
exact solution.

This is an almost arbitrary example with a genuine piecewise smooth non-linear solution,
and a variable coefficient with a variable discontinuity along the interface. We present a grid
refinement analysis in Table 2. The second column is the maximum error of the solution
while the third column is the approximate convergence order. The fourth and sixth column
are the errors of the normal derivatives at the interface from Q™ and Q™ sides, respectively.
The fifth and seventh columns are the approximate convergence order of the computed
normal derivative. The last but two column is the number of is the number of GMRES
iterations, and the last but one is orthogonal projections of irregular grid points from Q* side.
The last column is the total CPU time in second. We can observe from Table 2 that the new
augmented 1IM is second order accurate both in the solution globally and the gradient at the
interface from each side. The total CPU time also shows that the method is very fast with the
optimal computational complexity (O(A2) log(A2)). We also observe that the number of
GMRES iteration is a constant independent of the mesh size.

Now we use the same exact solution and interface but with a large jump in the coefficient
along the interface

B(x)= 10e!9® nQ-,
*)= sin(z+y)+2 inQF. 6.2)

The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change.
The results are shown in Table 3. We observe that the errors are larger than that in Table 2.
This is due to the variations of the coefficient. Since the re-scaled PDE has the form

Au+1VB(z) - Vust - - We would expect the error term contains By, and By, that are
O(1) for Table 2 and O(102) for Table 3 due to the term 100X, This explains well in the
difference in the errors. Nevertheless, all the nice features are the same as the previous
example.

An example with more general jump conditions
There are some applications in which we may have more general jump conditions. Here we
consider an example with a more general jump condition, ¢(X)u," —d(X)u,, =v(X) with
aX) = x2+1, d(X) = y2 + 1. Our method still can work with the modified augmented
equation (4.25) (now it is ¢(X)u,} —d(X)u,, =v(X)) and different preconditioning

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.



1duosnuey Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnue Joyiny

Lletal.

Page 26

techniques. The convergency analysis may not apply directly anymore. In Table 4, we list
the grid refinement analysis which has the same predicted convergency and efficiency.

Example 6.2: A general interface example with piecewise constant coefficient.

The example is from [39]. The interface is the zero level set function
p(x)=r—(0.5+0.2sin(50)), (6.3)

and the true solution is

2
x €0,

U(X):{ §+Colog(27’) +

The interface is both convex and concave and has relatively large curvature at some places,
see Figure 1. We repeat this example with the new preconditioning technique with g+ = 1000
and g~ =1 on the domain Q =[-1, 1] x [-1, 1]. The results are shown in Table 5 that are
almost the same as the original fast IIM in [39]. Once again we observe that both the
solution and the gradient are second order accurate and the number of GMRES iterations is
independent of the mesh size. For this example, the interface has large curvature at some
places. We need a reasonable fine mesh to resolve the interface.

6.1. An example for more general self-adjoint elliptic interface problems

With some modifications, the method developed in this paper has been generalized to more
general interface problems

V- (Bx)Vu(x))—o(x)u(x)=f(x).  (6.5)

The regularity requirement for the existence of the solution includes additional conditions
o(x) € AQ*) and o(x) = 0. While we still get second order accuracy both in the solution and
the gradient, the coefficient matrix from the modified algorithm may not be an M-matrix
anymore. Nevertheless, those affected entries are of O(1) compared O(1//2) when o(x) =0,

that is, A7*0=A7=C(1+B),) with //Byj/< CI?. Thus we have asymptotic convergence as
those presented in the paper as #— 0.

Example 6.3: A general example with o(x) # 0. We present a more general example with a
non-zero o(X) term with different interfaces, an ellipse and a five-star. The true solution and
coefficient are
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(%)= —2342y3 inQ, B(x)= 14-e=+2y mnQ,
wx= sin(z+y) nQF, | sin(2z—y)+3 inQF, (6.6)

| cos(zy)+2 inQ,
U(X)_{x2+y2+1 Q" (67

where again Q = [-1, 1]1x[-1, 1]. This is a very general example for a self-adjoint ellijptic
interface problem with non-linear solution. We test our method for two different interfaces.

In Table 6, we show a grid refinement analysis for an elliptic interface ¢(x, J) = (x0.6)2+()/
0.4)2-1. We observe once again second order convergence for the global solution and the
gradient at the interface.

In Table 7, we show a grid refinement analysis for a skinny ellipse (X, }) = X% + (J/0.25)2

- 1in the domain [-1.5, 1.5] x [-1.5, 1.5]. Once we have the mesh fine enough to resolve
the interface (here V= 64), we observe once again second order convergence for the global
solution and the gradient at the interface although the largest error often appears near the tips
of the longer axis of the ellipse.

If we increase the aspect ratio of the ellipse further, we can approximate the situations in
which the domain has cracks, see Figure 5 in which we tried to find the electric potential in a
domain containing an approximated crack ¢(x, J) = (x0.5)2 + (y0.0625)2 — 1 within the
domain [-1, 1] x [-1, 1]. In this case, we have the PDE V - (V) = 0, [tlr = 0 and [Bu,] =
0, where gis the conductivity. The potential is given at the boundary with high potential on
the right. Figure 5 (a) is the case with the ratio 8" : g~ = 1: 1000, while Figure 5 (b) the
ratio is 8" : B~ = 1000 : 1. Note that, we have tested the code against the analytic solution
(6.6) for which we get the same convergence order. More sophisticated techniques and
analysis can be found in [17, 64, 56, 52, 63].

In Table 8, we show a grid refinement analysis for the five-star interface ¢(x, ) = r— (0.5

+ 0.2 sin 6) in polar coordinates (7, 8), 0 < 8 <2 While we still observe average second
order convergence for the global solution and the gradient at the interface, the errors are
fluctuated more even though the average convergence rate is the same, compared with the
elliptic interface. We do observe that again for complicated interfaces, we need to resolve the
interface for an accurate solution and its gradient.

7. Conclusions

In this paper, we proposed a new augmented immersed interface method for general elliptic
interface problems with variable coefficients that have finite jumps across a general
interface, and non-homogeneous jump conditions. Not only the computed solution is second
order globally, but also its gradient at the interface from each side of the interface. The
method is designed for closed smooth interfaces not for open-ended interface such as cracks.
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For closed interfaces but with corners, the method still can work with possible large errors
near the corners. The convergence of method has been shown both in one and two
dimensions under appropriate regularity assumptions and a piecewise constant S(x). For a
variable coefficient S(x), the conclusions are still true if /7is small enough, that is, in the
asymptotic sense. Whether this can be improved and why the preconditioning technique
works well are two open questions.
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Fig. 1.

A diagram of a rectangular domain Q = Q* U Q™ with an interface I'. The coefficient 8(x)
has a finite jump across the interface I'. The interface and domain in this figure are used in
Example 6.2 and Example 6.3 in Section 6.
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Fig. 2.
A diagram of an irregular grid point (x; J), its orthogonal projections on the interface (X,
Y}, and the local coordinates at (X, Y% in the normal and tangential directions.
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(a): The solution plot of Example 6.1. (b): The error plot of the computed solution. The error
seems to be piecewise smooth as well which is important for accurate gradient computation.
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Fig. 4.
(a): The computed solution plot of Example 6.2. (b): The solution plot of Example 6.3.
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Fig. 5.
Electric potential in a domain containing a thin elliptic object. (a) The conductivity of the
object is large (1 : 1000); (b) The conductivity of the object is small (1000 : 1).
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	6. Numerical examples
	Example 6.1: (6.1)where the interface is the zero level set of , and Ω = [−1, 1]× [−1, 1]. The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the exact solution.This is an almost arbitrary example with a genuine piecewise smooth non-linear solution, and a variable coefficient with a variable discontinuity along the interface. We present a grid refinement analysis in Table 2. The second column is the maximum error of the solution while the third column is the approximate convergence order. The fourth and sixth column are the errors of the normal derivatives at the interface from Ω− and Ω+ sides, respectively. The fifth and seventh columns are the approximate convergence order of the computed normal derivative. The last but two column is the number of is the number of GMRES iterations, and the last but one is orthogonal projections of irregular grid points from Ω+ side. The last column is the total CPU time in second. We can observe from Table 2 that the new augmented IIM is second order accurate both in the solution globally and the gradient at the interface from each side. The total CPU time also shows that the method is very fast with the optimal computational complexity (O(N2) log(N2)). We also observe that the number of GMRES iteration is a constant independent of the mesh size.Now we use the same exact solution and interface but with a large jump in the coefficient along the interface(6.2)The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change. The results are shown in Table 3. We observe that the errors are larger than that in Table 2. This is due to the variations of the coefficient. Since the re-scaled PDE has the form , we would expect the error term contains  and  that are O(1) for Table 2 and O(102) for Table 3 due to the term 10e10x. This explains well in the difference in the errors. Nevertheless, all the nice features are the same as the previous example.
	Example 6.1: (6.1)where the interface is the zero level set of , and Ω = [−1, 1]× [−1, 1]. The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the exact solution.This is an almost arbitrary example with a genuine piecewise smooth non-linear solution, and a variable coefficient with a variable discontinuity along the interface. We present a grid refinement analysis in Table 2. The second column is the maximum error of the solution while the third column is the approximate convergence order. The fourth and sixth column are the errors of the normal derivatives at the interface from Ω− and Ω+ sides, respectively. The fifth and seventh columns are the approximate convergence order of the computed normal derivative. The last but two column is the number of is the number of GMRES iterations, and the last but one is orthogonal projections of irregular grid points from Ω+ side. The last column is the total CPU time in second. We can observe from Table 2 that the new augmented IIM is second order accurate both in the solution globally and the gradient at the interface from each side. The total CPU time also shows that the method is very fast with the optimal computational complexity (O(N2) log(N2)). We also observe that the number of GMRES iteration is a constant independent of the mesh size.Now we use the same exact solution and interface but with a large jump in the coefficient along the interface(6.2)The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change. The results are shown in Table 3. We observe that the errors are larger than that in Table 2. This is due to the variations of the coefficient. Since the re-scaled PDE has the form , we would expect the error term contains  and  that are O(1) for Table 2 and O(102) for Table 3 due to the term 10e10x. This explains well in the difference in the errors. Nevertheless, all the nice features are the same as the previous example.
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	An example with more general jump conditions
	Example 6.2: A general interface example with piecewise constant coefficient.The example is from [39]. The interface is the zero level set function(6.3)and the true solution is(6.4)The interface is both convex and concave and has relatively large curvature at some places, see Figure 1. We repeat this example with the new preconditioning technique with β+ = 1000 and β− = 1 on the domain Ω = [−1, 1] × [−1, 1]. The results are shown in Table 5 that are almost the same as the original fast IIM in [39]. Once again we observe that both the solution and the gradient are second order accurate and the number of GMRES iterations is independent of the mesh size. For this example, the interface has large curvature at some places. We need a reasonable fine mesh to resolve the interface.
	Example 6.2


	6.1. An example for more general self-adjoint elliptic interface problems
	Example 6.3: A general example with σ(x) ≠ 0. We present a more general example with a non-zero σ(x) term with different interfaces, an ellipse and a five-star. The true solution and coefficient are(6.6)(6.7)where again Ω = [−1, 1]×[−1, 1]. This is a very general example for a self-adjoint elliptic interface problem with non-linear solution. We test our method for two different interfaces.In Table 6, we show a grid refinement analysis for an elliptic interface φ(x, y) = (x/0.6)2+(y/0.4)2−1. We observe once again second order convergence for the global solution and the gradient at the interface.In Table 7, we show a grid refinement analysis for a skinny ellipse φ(x, y) = x2 + (y/0.25)2 − 1 in the domain [−1.5, 1.5] × [−1.5, 1.5]. Once we have the mesh fine enough to resolve the interface (here N ≥ 64), we observe once again second order convergence for the global solution and the gradient at the interface although the largest error often appears near the tips of the longer axis of the ellipse.If we increase the aspect ratio of the ellipse further, we can approximate the situations in which the domain has cracks, see Figure 5 in which we tried to find the electric potential in a domain containing an approximated crack φ(x, y) = (x/0.5)2 + (y/0.0625)2 − 1 within the domain [−1, 1] × [−1, 1]. In this case, we have the PDE ∇ · (β∇u) = 0, [u]Γ = 0 and [βun] = 0, where β is the conductivity. The potential is given at the boundary with high potential on the right. Figure 5 (a) is the case with the ratio β+ : β− = 1 : 1000, while Figure 5 (b) the ratio is β+ : β− = 1000 : 1. Note that, we have tested the code against the analytic solution (6.6) for which we get the same convergence order. More sophisticated techniques and analysis can be found in [17, 64, 56, 52, 63].In Table 8, we show a grid refinement analysis for the five-star interface φ(x, y) = r − (0.5 + 0.2 sin θ) in polar coordinates (r, θ), 0 ≤ θ < 2π. While we still observe average second order convergence for the global solution and the gradient at the interface, the errors are fluctuated more even though the average convergence rate is the same, compared with the elliptic interface. We do observe that again for complicated interfaces, we need to resolve the interface for an accurate solution and its gradient.
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