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Abstract

A new augmented method is proposed for elliptic interface problems with a piecewise variable 

coefficient that has a finite jump across a smooth interface. The main motivation is not only to get 

a second order accurate solution but also a second order accurate gradient from each side of the 
interface. The key of the new method is to introduce the jump in the normal derivative of the 

solution as an augmented variable and re-write the interface problem as a new PDE that consists of 

a leading Laplacian operator plus lower order derivative terms near the interface. In this way, the 

leading second order derivatives jump relations are independent of the jump in the coefficient that 

appears only in the lower order terms after the scaling. An upwind type discretization is used for 

the finite difference discretization at the irregular grid points near or on the interface so that the 

resulting coefficient matrix is an M-matrix. A multi-grid solver is used to solve the linear system 

of equations and the GMRES iterative method is used to solve the augmented variable. Second 

order convergence for the solution and the gradient from each side of the interface has also been 

proved in this paper. Numerical examples for general elliptic interface problems have confirmed 

the theoretical analysis and efficiency of the new method.
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1. Introduction

In this paper, we develop an efficient numerical method to solve an elliptic interface problem
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(1.1)

(1.2)

in one and two space dimensions, where for example, [u] = [u]Γ(X) = u+(X) − u−(X) is the 

difference of the limiting values of u(X) from Ω+ and Ω− sides, respectively, 

is the normal derivative of solution u(X), and n(X) is the unit normal direction at a point X 
on the interface pointing to Ω+ side, see Fig. 1 for an illustration. The domain and the 

interface are used in Example 6.2 and Example 6.3 in Section 6. We use x to represent a 

point in the domain while X a point on the interface G. Since a finite difference 

discretization will be used, we assume that f(x) ∈ C(Ω±), β(x) ∈ C1(Ω±), excluding Γ; and Γ 

∈ C2, w ∈ C2(Γ), v ∈ C1(Γ). All the parameters and  and  are assume to be bounded. For 

the regularity requirement of the problem, we also assume that β(x) ≥ β0 > 0 and f(x) ∈ 
Cν(Ω\Γ), for a constant ν > 0 so that u(x) ∈ C2+ν(Ω±), see [19, 8]. For the error analysis, 

piecewise higher regularity assumptions are needed for the solution, see Section 3 and 

Section 5.

Many free boundary and moving interface problems can be modelled by differential 

equations involving not only the solution to the governing equations, but also its gradient of 

the solution at the free boundary or moving interface from each side. Such examples include 

the Stefan problems and crystal growth modeling the interface between ice and water in 

which the velocity of the interface depends on the temperature of the heat equation and its 

gradient at the interface (called the Stefan condition), [12, 45]; the Hele-Shaw flow [30, 32]; 

the coupling between a Darcy’s system and Stokes or Navier-Stokes equations [36]; and 

open and traction problems [46, 50]. The most expensive part of simulations from our 

research on those problems is to solve one or several elliptic interface problems, for 

example, two generalized Helmholtz and one Poisson equations when we solve the 2D 

incompressible Navier-Stokes equations involving interface using the projection method 

[46]. The goal of this paper is to present an efficient new finite difference method based a 

uniform Cartesian mesh that not only provides accurate solution globally but also its 

accurate gradient from each side of the interface.

For the elliptic interface problem (1.1)–(1.2), the solution has low global regularity, lower 

than H1 is w ≠ 0. Thus, a direct finite difference or finite element method will not work, or 

work poorly. Nevertheless, it is reasonable to assume that the solution is piecewise smooth 

excluding the interface. For example, if the coefficient is a piecewise constant in each sub-

domain, then the solution in each sub-domain is an analytic function in the interior, but has 

jump in the solution or/and the normal derivative due to the source or dipole distribution 

from the PDE limiting theory [33]. The gradient used in this paper is defined as the liming 
gradient from each side of the interface.

1Note that some of the proof is similar to the contents in Section 6.1.2 in [43].
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Naturally, finite element methods can be and have been applied to solve the interface 

problem. It is well known that a second order accurate approximation to the solution of an 

interface problem with w ≡ 0 and v ≡ 0 can be generated by the Galerkin finite element 

method with the standard linear basis functions if the triangulation is aligned with the 

interface, that is, a body fitted mesh is used, see for example, [7, 9, 13, 66]. Some kind of 

posterior techniques or at least quadratic elements are needed in order to get second order 

accurate gradient from each side of the interface. The cost in the mesh generation coupled 

with unstructured linear solver is hardly competitive with the algorithm proposed in this 

paper in our opinion.

There are also quite a few finite element methods using Cartesian meshes. The immersed 

finite element (IFEM) was developed for 1D and 2D interface problems in [40] and [44], 

respectively. Since then, many IFEM methods and analysis have appeared in the literature, 

see for example, [14, 25], with applications in [48, 67]. The IFEM distinguishes from other 

FE methods in terms of degree of the freedom and structure of the coefficient matrix, for 

example, the extended finite element method (XFEM) in which enrichment functions are 

added near the interface [60]; unfitted finite element method based on the Nitsche’s method 

in [23]. Other related work in this direction can be found in [10, 35, 20, 28] and others. Note 

that, the methods developed in [29, 31] using a Petrov-Galerkin finite elements discretization 

in which the non-conforming IFE space and the standard linear finite element space are used 

as the trial and test functional spaces, respectively. A partially penalty IFE method has been 

proposed in [49]. Another type of methods are based on discontinuous Galerkin [65, 53] or 

weak Galerkin[62] methods with some penalties. In those methods, some parameters are 

chosen to achieve the optimal convergence. In general, discontinuous or weak Galerkin 

methods are flexible because there are more choices of the degree of freedom, which in turn 

implies these types of methods may be computationally more expensive. Those methods are 

usually better suited for hyperbolic problems and conservation laws. Another interesting 

development is the spectral solution representation technique [4, 5, 6, 3, 34] which is also 

based on integral forms. In this technique, the interface problem is decomposed into two 

problems, one with zero interface data and the other with zero exterior boundary data which 

is solved by introducing an interface space HΓ(Ω) and constructing an orthogonal basis of 

this space.

Finite difference methods have also played very important role in scientific computing and 

solving engineering problems. Advantages of finite difference methods based on Cartesian 

meshes include simplicity, easy to programming, and can utilize many existing fast solvers. 

Note that error estimates from finite element methods are based on integral forms which 

may not exactly predict the actual errors near the interface for being averaging out compared 

with that from finite difference methods that are based on the point-wise (L∞) norm. Many 

new finite difference methods based Cartesian mesh have been developed for interface 

problems, see for example, the ghost fluid method [51], the matched boundary interface 

method [70], the kernel free boundary integral method [68], the virtual node method [27]. 

The Difference Potential method [16, 59] has been developed for 1D elliptic and parabolic 

problems in [1]. In [54], the difference potential method with second-order accuracy in the 

solution and in the gradient has been developed for elliptic interface problems with variable 

LI et al. Page 3

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficients in [15]. The fourth-order extension of the method for the elliptic interface 

problems is developed in [2].

Most of numerical methods for interface problems based on structure meshes are between 

first and second order accurate for the solution but the accuracy for the gradient is usually 

one order lower. Note that the gradient recovering techniques for examples, [61, 69], hardly 

work for structured meshes because of the arbitraries of the interface and the underlying 

mesh. The mixed finite element approach and a few other methods that can find accurate 

solution and the gradient simultaneously in the entire domain are often lead to a saddle 

problem and are computational expensive which are not ideal choices if we are only 

interested in the accurate gradient near the interface or boundary. It is the purpose of this 

paper to develop a new method that has second order accurate solution globally and second 

order accurate gradient at the interface. Note that for Poisson equations with singular source 

along an interface, it has been proved in [8] that both the computed solution and gradient are 

second order accurate by a factor of log h in the infinity norm. In [39], an augmented 

immersed interface method (AIIM) is proposed to solve the elliptic interface problems with 

piecewise constant coefficient. Both of the solution and the gradient are shown to be second 

order accurate for all the examples, which will be proved in this paper. The method in [39] 

provided a clue for accurate gradient computation at the interfaces or boundaries. The 

method implicitly put the gradient near the interface as an unknown (augmented variable). 

While there are quite few accurate and consistent numerical methods for interface problems, 

the stability of those methods nevertheless often ignored. In [42], a maximum principle 

preserving scheme is proposed for variable discontinuous coefficients. A quadratic 

optimization is used in determine the finite difference coefficients at grid points near the 

interface so that the coefficient matrix is an M-matrix which is the key in the proof of the 

convergence of the method. This is another consideration for our method to keep the 

coefficient matrix to be an M-matrix.

In this paper, we propose a new approach that can provide second order solution globally 

and second order accurate gradient only along the interface for a variable coefficient that has 

a finite jump along the interface. The method has advantages of both of the methods in [39] 

and [42]. The idea is to introduce the jump in the normal derivative of the solution as an 

augmented variable. With the augmented variable, the immersed interface method is second 

order accurate both for the solution and first order derivatives [8, 58]. By a suitable 

transform of the PDE, the leading terms of the second order derivative jump relations needed 

for the IIM are independent of the coefficient. The lower order derivative terms at irregular 

grid points that are near or on the interface are discretized using an upwinding discretization 

within the centered five-point stencil. Thus the coefficient matrix of the finite difference 

equations is an M-matrix without using an optimization procedure in [42]. It has been shown 

that the finite difference solution is second order accurate if the augmented variable is also 

second order accurate. The augmented variable should be chosen so that the flux jump 

condition is satisfied. This leads to a second discretization involving the finite difference 

solution and the augmented variable. The GMRES iteration is utilized to solve the Schur 

complement for the augmented variable with a new preconditioning strategy. By using the 

estimates of the discrete Green function, we have shown that the augmented variable has 

second order accuracy, so is the finite difference solution subsequently.
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The rest of the paper is organized as follows. In the next section, we explain the algorithm in 

one-dimension since it is easy to understand and explain followed by the convergence proof. 

In Section 4, we explain the algorithm in two dimensions followed again by the convergence 

analysis in Section 5. In Section 6, we present some two dimensional numerical examples. 

We conclude in the last section.

2. The one-dimensional algorithm

A model interface problem in one dimension has the following form

(2.1)

where a < α < b is an interface (a point). We assume that conditions for β(x), f(x) described 

in the introduction section hold with Ω− = (a, α) and Ω+ = (α, b). We will drop the subscripts 

α in the jump expressions such as [u]α and [βux]α and simply use [u] and [βux] if there is no 

confusion.

Let xi = a + ih be a uniform mesh with h = (b − a)/N and i = 0, 1, ⋯, N. We define q = [ux]α 
as the augmented variable. Assume that xj ≤ α < xj+1. We call xj and xj+1 as irregular grid 

points while others are call regular grid points. The finite difference scheme at a regular grid 

point xi, i ≥ j and i ≥ j + 1 can be written as

(2.2)

where

(2.3)

At the irregular grid points xj and xj+1, we use the following equivalent differential equation

(2.4)

This is one of the key ideas of the new augmented approach. In this way, we can get second 

jump conditions [uxx] in terms of lower order jump conditions and derivatives of the 

solution.
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If we know the jump [ux] = q in addition to the original jump conditions [u] and [βux], then 

we know the following jump relations

(2.5)

If βx(xj)/β(xj) ≥ 0, then the finite difference discretization at the irregular grid point xj can be 

written as

(2.6)

where C is a correction term, see [43]

(2.7)

and CFD(Uj−1, Uj, Uj+1) is part of the finite difference equation,

(2.8)

in which [uxx] is discretized by, see (2.5),

The case when βx(xj)/β(xj) < 0 can be treated in the similar way. We omit the details here. 

We can derive a similar finite difference scheme at the irregular grid point xj+1. The finite 

difference scheme has the following properties.

• It is consistent. The local truncation errors at regular grid points are of O(h2), and 

O(h) at irregular grids points xj and xj+1.

• The finite difference scheme can be written as
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(2.9)

where the coefficient matrix Ah is an M-matrix, irreducible, tri-diagonal, and 

diagonally dominant, U is the column vector formed by the finite difference 

solution, and B is a column vector with at most two nonzero entries at j-th and (j 
+ 1)-th locations, Q is the approximate value of q = [ux]. Note that Ah is 

invertible and the two component of Fj and Fj+1 have been modified.

2.1. Discretization of the flux jump condition

Next we discuss the interpolation scheme to approximate the interface condition [βux] = v. 

First we re-write the jump condition as follows

(2.10)

This can be discretized as

(2.11)

where γ1, γ2, γ3, and the correction term C3 are determined again using the idea of the IIM 

so that the interpolation scheme is a second order approximation of (2.10), that is,

In the matrix-vector form, the above equation can be written as

(2.12)

where S is a row vector whose sum is zero.

We define the residual of the flux jump condition given an approximation Q as

(2.13)
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which is the discrete form of r(q) = [βux] − v. If we put the two equations (2.9) and (2.12) 

together, we get

(2.14)

Eliminating U in equation (2.14) gives the Schur complement equation for Q

(2.15)

The equation (2.15) can be solved if the Schur complement is nonsingular. Once Q is 

computed, one can substitute it in equation (2.9) to solve for U. The cost of computation in 

this process is to solve linear systems with the form Ahx = b three times, , 

and finally (2.9). Since matrix Ah is tridiagonal and row diagonally dominant, the Thomas 

algorithm is guaranteed to be stable and the solution can be obtained in O(N) operations.

3. Convergence analysis of the 1D algorithm

In this section, we show second order convergence of the solution globally and its first order 

derivative at the interface, as well as the augmented variable of the proposed new method. 

The proof is simpler than that of the two dimensional case but serves the purpose of 

understanding and the tools used in the proof.

We use the following notations. We denote the errors as Eu = U − u with  for 

the solution and Eq = Q − q for the augmented variable, respectively, where u(xi) is the true 

solution at xi. We use C to represent a generic error constant. We start with the analysis by 

assuming that the coefficient β(x) is a piecewise constant, the domain is (0, 1), and a 

Dirichlet boundary condition at the two end points for simplicity.

Theorem 3.1: Assume that β(x) is a piecewise constant and u(x) is in piecewise C4 

excluding the interface α. If Q is a second order accurate approximation to q, i.e. |Eq| ≤ Ch2, 

then we also have ||Eu||∞ ≤ Ch2.

Proof: Let Tu be the local truncation error of system (2.9), that is,

(3.1)

where u is the vector formed by the true solution at the grid points xi, q is the jump of the 

derivative of the solution [ux] across the interface α. Subtracting equation (3.1) from (2.9) 

yields
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(3.2)

where F̃u = −Tu − BEq. Notice that  and Bi = 0 at regular grid points while 

 and , and . Since |Eq| ≤ Ch2, we have 

 at regular points while . Also when β is piecewise 

constant, the matrix Ah can be simplified as

From [37], we have

(3.3)

where

is the Green’s function that is the solution of the following

The global error of u then can be represented as

(3.4)

Since 0 ≤ G(xi; xj) ≤ 1, we have the inequality
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since N ~ 1/h. This shows that ||Eu||∞ ≤ Ch2, hence the proof is completed.

Next, we show that the Schur complement system is non-singular.

Theorem 3.2: With the same assumptions as in Theorem 3.1 and β− ≠ β+, then the 
coefficient matrix (a number for the 1D problem) of the Schur complement is non-singular.

Proof: Note that from (2.9), that is, AhU(Q) + BQ = F1, we have 

and the Schur complement can be re-written as

If Q ≠ 0 and β− ≠ β+, then R(Q) ≠ R(0). For the one-dimensional problem, we have 

.

Now we are ready to show that the augmented variable Q is also second order accurate.

Theorem 3.3: With the same assumptions as in Theorem 3.1 and β− ≠ β+, then we have |Eq| 

= |Q − q| ≤ Ch2.

Proof: Similarly to the definition of the local truncation error Tu, we define the local 

truncation Tq of q as

(3.5)

where u and q are defined as before. From (2.14), we know that

(3.6)

Eliminating Eu, we get the Schur complement system for Eq
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(3.7)

We already know that the (G − SA−1B) is non-singular and ||Tq||∞ ≤ Ch2. The key is to show 

that ||SA−1Tu||∞ ≤ Ch2.

Let b = A−1Tu, from the definition of the Green function in (3.3), we can write

(3.8)

At the first glance, it seems that Eq ~ O(h) since the interpolation operator ||S||∞ ~ 1/h. 

Nevertheless, the following analysis shows that the terms of O(1/h) are cancelled out to O(1) 

and thus Eq ~ O(h2) is true. Let Δi = bi − bi−1, i = 2, …, N − 1. Then we have (note that both 

SA−1Tu and S b are scalars for the 1D problem)

Notice the term bj is cancelled out. This is because the interpolation operator is for the first 

order derivative of u(x), and the consistency condition requires that Sj−1 + Sj + Sj+1 = 0. 

Now what is left to prove is that Δj ~ Δj+1 ~ O(h3), which leads to Eq ~ h2 Since Sj−1 ~ Sj+1 

~ O(1/h). The final step of the proof is explained below.

This completes the proof.

As the result of Theorem 3.1–Theorem 3.3, we conclude that the solution U is also second 

order approximation to u, which is summarized in the following theorem.

Theorem 3.4: With the same assumptions as in Theorem 3.1 and β− ≠ β+, and β is 
piecewise constant, then ||Eu||∞ = ||U − u||∞ ≤ Ch2.

Proof: Since the Schur complement matrix is a constant independent of h and |Tq| ≤ Ch2, 

and just proved |SA−1Tu| ≤ Ch2, from (2.15), we have the conclusion.
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Not only we get second order accurate solution and the augmented variable, but also second 

order accurate derivative  and  if the derivative is computed using the scheme (2.10), 

that is,

(3.9)

assuming that β− ≠ β+. Since the computed Q is second order accurate, we immediately have 

the following theorem.

Theorem 3.5: Assume β is two different piecewise constants and  is computed using the 
above formula with q being replaced by Q, the computed augmented variable. Then 

, where .

3.1. An example of the 1D Stefan problem

Our numerical experiments in one-dimension have confirmed our theoretical analysis that 

both of the solution U ≈ u(x) and the augmented variable Q ≈ [ux] are second order accurate 

in the L∞ norm. We show an example of 1D Stefan problem, see for example, [11, 18], in 

which the free boundary α(t) is moving. The governing equations are

where α(t) is subject to the Stefan condition

The boundary and initial conditions are

The model is from [55]. We can find an analytic solution listed below,
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where erf is the error function and ω is the solution of the transcendental equation 

. The function f(t, α(t)) is determined from the analytic solution.

We use a second order time splitting technique to solve the problem, that is, solve the 

differential equation with α(t) fixed, then update the new location of α(t). The augmented 

equation now is the boundary condition at α(t). In Table 1, we show a grid refinement 

analysis of the errors in the solution at all grid points, and the free boundary α(t), and the 

first order derivative , at the final time t = 3. We use the lower case for the analytic 

solution, and the upper case as the computed solutions. We observe that all of them have 

average second order convergence.

4. The algorithm for two dimensional problems

In this section, we present the algorithm for two dimensional problems. The key is the 

modification of the finite difference scheme at irregular grid points. We first discuss the 

interface relations using an equivalent representation of the interface problem.

4.1. The jump relations in the local coordinates

As explained in the introduction section, we re-write the elliptic interface problem near the 

interface as

(4.1)

(4.2)

where q(X) is the augmented variable only defined along the interface G which should be 

chosen such that the flux jump condition

is satisfied. In this way, the Laplacian term Δu has been separated from β(x, y) which makes 

the discretization easier with our proposed augmented method. This is one of the key ideas 

of the new method.

From the description of Section 3.1 in [38, 43], we restate some theoretical results on the 

reformulated elliptic interface problem (4.1)–(4.2). Assume that the interface in the 

parametric form is
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(4.3)

where s is a parameter, for example, the arc-length. At a point of the interface (X, Y ), the 

local coordinate system in the normal and tangential directions is defined as (see Figure 2 

for an illustration),

(4.4)

where θ is the angle between the x-axis and the normal direction, pointing to the Ω+ sub-

domain. Under such new coordinates system, the interface can be parameterized as

(4.5)

The curvature of the interface at (X, Y ) is χ″(0).

If we know the jump in the solution [u] = w and the normal derivative [un] = q (not the 

original flux jump condition [βun] = v), then we can have the following jump relations at a 

point (X, Y ) on the interface which is necessary to derive the accurate finite difference 

method.

Theorem 4.1: For the elliptic interface problem (4.1)–(4.2), given [u] = w and [un] = q, then 
at the interface, the following jump relations hold

(4.6)

where w′, g′ and w″ are the first and second order surface derivatives of w and g on the 

interface, which are all evaluated at (ξ,η ) = (0, 0). Here we skip the derivation which is 

similar to those derived in equation (3.5) in Section 3.1 in [43] assuming that [u] = w and 

[βun] = v are given. Note also that we can express the jump conditions in terms of u+, , 

and .

Once we have the jump relations in the local coordinates, we can get back the jump relations 

in the x- and y- directions according to (9.47) in [43]
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(4.7)

4.2. The finite difference scheme for the 2D problem

For simplification of discussion, we use a uniform a mesh

(4.8)

assuming Ω = (a, b) × (c, d). The interface G is represented by the zero level set of a 

Lipschitz continuous function φ(x, y), that is

(4.9)

In the neighborhood of the interface, we assume that φ(x, y) ∈ C2. In implementation, the 

level set function is defined at the grid points as {φij} corresponding to φ(xi, yj). At a grid 

point (xi, yj), we define

(4.10)

(4.11)

A grid point (xi, yj) is called regular if , otherwise it is called irregular.

The set of orthogonal projections (Xk, Yk), k = 1, 2,⋯, Nb of all irregular grid points on the 

interface from a particular side, say Ω+ side, forms a discretization of the interface Γ. We 

refer the reader to Section 1.6.4 in [43] about how to find approximate orthogonal 

projections. Then the discrete augmented variable Qk of the continuous one q(s) is defined at 

those orthogonal projections. Given a discrete quantity along the interface, we can 

interpolate the quantity at the discrete points to get its value, the tangential derivative 

anywhere along the interface. For example, assume that (xi, yj) is an irregular grid point, and 

the interface cuts the grid line at ( , yj) corresponding to the orthogonal projection Xk = 

(Xk, Yk). We need to get the values of Q and its tangential derivative at ( , yj). We first 

reconstruct the interface in the local coordinates as ξ ≈ Cη2 + Dη3 with error O(η4). We 

refer the readers to Section 11.1.5 in [43] about how to find C and D. We then approximate 

Q(η) as Q(η) = Qk + ω1η + ω2η2 locally with error O(η3) and Q′(η) = ω1 + 2ω2η with 
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error O(η2). The coefficient ω1 and ω2 are determined from Q values at the two closest 

orthogonal projections.

4.2.1. The finite difference scheme at a regular grid point—At a regular grid point 

(xi, yj), the finite difference scheme is the classic conservative one with the scaling

(4.12)

where fij = f (xi, yj), βi−1/2,j = β(xi − h/2, yj) and so on, and

(4.13)

4.2.2. The finite difference scheme at an irregular grid point—We assume that we 

know the jump conditions [u] = w and [un] = q, not the original flux jump condition [βun] = 

v. This makes it easier to derive accurate and stable finite difference scheme. At an irregular 

grid point, we discretize the re-written equation (4.1) using a dimension by dimension 

approach, and an upwinding discretization for the first order derivative terms.

Let (xi, yj) be an irregular grid point. If the interface does not cut through the interval (xi−1, 
xi+1) along the line y = yj, that is, (xi, yj) is regular in the x-direction, then the finite 

difference approximation for (βux)x before the scaling is

(4.14)

The final finite difference equation will be scaled in the similar way as those at regular grid 

points.

Now assume the interface cuts the grid line y(x) = yj in the interval (xi−1, xi+1), say at ( , 

yj), with . Without lost of generality, we assume that (xi, yj) ∈ 
Ω−. We discretize the reformulated equation (4.1), that is,

(4.15)

where f−, β−, ⋯, are the limiting values at ( , yj) from Ω− side. We use an upwinding 

scheme for the first order term , that is,

LI et al. Page 16

SIAM J Numer Anal. Author manuscript; available in PMC 2017 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4.16)

where for example,  if (xi−1, yj) ∈ Ω−. Otherwise we have

(4.17)

see Lemma 10.6 in [43] for the formulas of the correction, where the jumps again are 

defined at ( , yj). Similarly, for the second order term uxx, the finite difference 

approximation for uxx can be written as

(4.18)

where the correction term  is

(4.19)

4.2.3. Approximating [uxx] and [uyy]—Given [u] = w and [un] = q along the interface, 

from (4.7) and (4.6) we have the following

where w′ and q′ are the first order, and w″ is the second order, derivatives along the 

interface, respectively. In the derivation above, we have used the following formulas
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(4.20)

Most of terms in [uxx] and [uyy] are computable except terms of u−,  and . Note that 

these functions are defined on the interface. Using Taylor expansion, we have u−(X, Y) = 

u−(xi, yj) + O(h),  and . We simply 

replace u− with Uij and treat  and  using the upwinding scheme to increase the diagonal 

dominance of the resulting linear system of finite difference equations. For example, for the 

terms containing  in [uxx] we use

and once again, for example,  if (xi−1, yj) ∈ Ω−. Otherwise

(4.21)

The linear system of finite difference equations can be written as

(4.22)

where U is the vector formed by the finite difference approximation {Uij} to the solution 

{u(xi, yj)}, Q is the vector formed by the discrete augmented variable {Qk} to the 

augmented variable {[ ]}, F1 is the modified right hand side, B is a sparse matrix 

corresponding to the correction terms for the [un] term.

Remark 4.2

• The finite difference stencil is still standard five-point centered. This is different 
from the maximum principal preserving scheme [42] in which the finite 
difference stencil is a nine-point one.

• Ah is an M-matrix and irreducible, thus it is invertible. No optimization is needed 
compared to that in [42] because we assume that [un] is given instead of [βun], 
which makes easier to discretize the interface problem. The trade-off is that we 
also need to solve the augmented variable.
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4.3. Discretizing the flux jump condition

At every approximate orthogonal projections of all irregular grid points on the interface, we 

use the same least squares interpolation described in Section 4 in [39] to interpolate the flux 

jump condition [βun] = v.

At one orthogonal projection Xk = (Xk, Yk) corresponding to an irregular grid point (xi, yj), 

the second order accurate least squares interpolation scheme approximating [βun] = v can be 

written as

(4.23)

where δh is a parameter of 2h ~ 3h, Lk stands for a linear relation of its augmenters, the 

discrete form of w(X), q(X), and v(X). The consistency condition requires that

(4.24)

Note that the interpolation coefficients should depend on the index k as well, we omit it for 

simplicity of notations.

In the matrix vector form, the interpolation at all projections of irregular grid points from 

one particular side can be written as

(4.25)

for some sparse matrices S and G. If we put (4.22) and (4.25) together we get

(4.26)

Eliminating U in equation (4.26) gives the Schur complement equation for Q

(4.27)

We use the GMRES iterative method to solve the Schur complement system and do not 

explicitly form the matrices Ah, B, S, G, and . The matrix and vector multiplication 

 needed for the GMRES iteration involves two consecutive steps: the first step is to 
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solve the interface problem (4.22) given Q; the second step is to find the residual of the flux 

jump condition, that is, R(Q) = [β(X)Un(Q)] −V. We refer the readers to Section 5.1 in [39] 

for the details.

4.4. Computing the gradient on the interface

At one orthogonal projection Xk corresponding to an irregular grid point (xi, yj), we use a 

similar (two-sided SVD) interpolation to approximate the normal derivative at Xk from Ω− 

side

(4.28)

to get one of  or , then use q(Xk) to get the other, say 

. The linear system of equations has the same coefficient matrix as 

that in (4.23) for γij’s, so there is almost no additional cost. The term  is 

again a correction term due to the jumps in the involved quantities.

If needed, at a grid point, the partial derivatives ux and uy can be calculated using the 

standard 3-point central finite difference formula with (at an irregular grid point) or without 

(at a regular grid point) a correction term. Beadle and Layton [8] have shown that the 

computed derivatives using IIM are second order accurate in the L∞ norm at all grid points.

4.5. A new preconditioning strategy

The number of GMRES iteration grows linearly with the mesh size N if there is no 

preconditioning technique employed. The preconditioning technique proposed in [39] works 

well for a piecewise constant coefficient but not for a variable coefficient. The idea of new 

preconditioning technique is more like a diagonal preconditioning technique for the Schur 

complement. At an orthogonal projection Xk = (Xk, Yk) where the augmented variable is 

defined, we use the re-scaled residual of the flux jump condition

(4.29)

where β̄(Xk) = (β−(Xk) + β+(Xk))/2, to discretize the flux jump condition.

5. Convergence proof for the 2D Problems

In this section, we provide a convergence proof for two dimensional problems. For 

simplicity, we assume that a Dirichlet boundary condition is prescribed along the boundary 

∂Ω. We use U and u to represent the vectors of approximate and exact solution at grid points; 

Tu and Eu = U − u are the vectors of the local truncation errors and the global error. We have 

Eu|∂Ωh = 0 for the values at grid points on the boundary. Similarly, we define Tq and Eq = Q 
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− q as the vectors of the local truncation error and the global error for the augmented 

variable. According to the definition, we have

(5.1)

(5.2)

where the local truncation error vector Tu is defined as Tu = F1 −Ahu−Bq and so on.

Lemma 5.1: Assume that u(x) is in piecewise C4(Ω\Γ) excluding the interface Γ. If the 

augmented variable is a second order approximation to [ ], that is, ||Eq||∞ ≤ Ch2, then 
the computed solution of the finite difference equations (4.22) is also second order accurate, 
that is, ||E||∞ ≤ Ch2.

Proof: From the construction of the numerical scheme we know that a component of BEq is 

zero at a regular grid point xij and bounded by Ch at an irregular grid point xij since ||Eq||∞ ≤ 

Ch2 as one of the conditions in the theorem. Note that Ah is an M-matrix and AhEu = −BEq 

+ Tu that is bounded by Ch2 at regular grid points and Ch at irregular grid points. From 

Theorem 3.3 in [43] or the convergence analysis of IIM in [8], we conclude that the global 

error is bounded by Ch2. Also from [57, 58], the partial derivatives using the IIM is also 

second order accurate.

The next part is to show that the computed augmented variable is also second order accurate 

by a factor of log h. In this case, we first assume that the coefficient is piecewise constant so 

that we can apply some theoretical results from [41].

Theorem 5.2: Assume that u(x) is in piecewise C4(Ω\Γ) excluding the interface Γ, and the 
coefficient β(x) is a piecewise constant β− and β+, then computed augmented variable is 
second order accurate by a fact of |log h|, that is ||Eq||∞ ≤ Ch2|log h|.

Proof: From (5.1)–(5.2), we have

(5.3)

Note that solvability of the above linear system has been shown in [39]. We first prove that 

the right hand side above is bounded by Ch2. Since the interpolation for the flux jump 

condition is a second order one, we have ||Tq||∞ ≤ Ch2. For the second term, from the 

interpolation scheme in (4.23), we consider one component and carry out the derivation
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(5.4)

where Gh(xlr, xij) is the discrete Green function defined as

(5.5)

where elm is the unit grid function whose values are zero at all grid points except at xlm = 

(xl, ym) where its component is elm = 1, see for example [21]. Note that in the neighborhood 

of |xij − Xk| ≤ δh, the points involved in the interpolation is close to Xk, we can continue to 

derive

The first term in the top line above is zero due to the consistency of the interpolation scheme 

for the flux jump condition. We have |τlr| ≤ Ch2 and at regular grid points, and |τlr| ≤ Ch at 

irregular grid points, from the estimate of  (3.16) in [41] we further derive
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where  and  are the sets of all irregular and regular grid points, respectively. In the 

derivation above we have used the facts that |γij| ~ 1/h, |τlr| ≤ Ch2 at regular grid points and |
τlr| ≤ Ch at irregular grid points, respectively. We have also used the estimate of the Riemann 

sum for the double integral ∫∫ 1/(x2+y2+h)dxdy ≤ C|log h|. Note also that the total number 

of regular grid points is O(1/h2) while the total number of irregular grid points is O(1/h). It 

has been shown that Schur complement matrix  is non-singular, thus we have 

.

We have shown that the right hand side for the error of the augmented variable has the order 

of h2 log h. From Section 6.1.2 in [43], we know that the left hand side of (5.3) is

(5.6)

where Ũ(Eq) can be regarded as the solution of the numerical method applied to the 

following problem

(5.7)

(5.8)

where  is an interpolation function of Tu on the entire domain while 

is an interpolation function of Tq along the interface. From the maximum principal, we 

know that |ũ| ≤ Ch2 and . Therefore the second term in (5.6) is bounded by Ch2. 

Thus we have

since β is a piecewise constant that has been divided by, from [8], we know that the solution 

and the derivative are both second order accurate when the IIM is applied, which implies 

that . We have already proved that , this leads to ||
Eq||∞ ≤ Ch2.

Remark 5.3: In the preconditioning strategy, we can write, for example, equation (6.24) in 
[43],
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(5.9)

where γ is a constant, and FΓ is a vector, then we have

which means that the Schur complement matrix is nearly a diagonal. This may explain why 
the number of the GMRES iterations is independent of the mesh size and the jump in β. For 
variable coefficient β(x), with the new preconditioning strategy, we would have

where D(β̄(x)) is a diagonal matrix whose entries are .

Remark 5.4: While the proof above is for piecewise constant coefficient, the conclusion is 
also true, or at least asymptotically in terms of h, for variable coefficient β(x) ≥ β0 > 0 

assuming that β(x) ∈ C∞(Ω±) since those terms involved are lower order terms of h. This is 
because the coefficient matrix Ah(β) = Ah(I + Bh) and ||Bh|| → 0 as h → 0, where Ah is the 
discrete Laplacian. This is another advantage using the reformulated PDE.

6. Numerical examples

We present a variety of numerical experiments to show the performance of the new 

augmented method for accurate solutions and its first order gradient at the interface. All the 

experiments are computed with the double precision and are performed on a desktop 

computer with Pentium(R) Dual-Core CPU, 2.59 GHz, 4GB memory. We also list the CPU 

time (s) in tables. We present errors in L∞ norms and estimate the convergence order using

The tolerance of the GMRES iteration is set to be 10−6 and the initial value is set to be 0 in 

all computations. In all tables listed in this section, we use “Iter” to represent the number of 

GMRES iterations, “Nb” the number of control points, “N” the number of the grid lines in 

each direction of the rectangular domain and “CPU(s)” the run time in seconds.

Example 6.1: 
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(6.1)

where the interface is the zero level set of , and Ω = [−1, 1]× [−1, 1]. 
The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the 
exact solution.

This is an almost arbitrary example with a genuine piecewise smooth non-linear solution, 

and a variable coefficient with a variable discontinuity along the interface. We present a grid 

refinement analysis in Table 2. The second column is the maximum error of the solution 

while the third column is the approximate convergence order. The fourth and sixth column 

are the errors of the normal derivatives at the interface from Ω− and Ω+ sides, respectively. 

The fifth and seventh columns are the approximate convergence order of the computed 

normal derivative. The last but two column is the number of is the number of GMRES 

iterations, and the last but one is orthogonal projections of irregular grid points from Ω+ side. 

The last column is the total CPU time in second. We can observe from Table 2 that the new 

augmented IIM is second order accurate both in the solution globally and the gradient at the 

interface from each side. The total CPU time also shows that the method is very fast with the 

optimal computational complexity (O(N2) log(N2)). We also observe that the number of 

GMRES iteration is a constant independent of the mesh size.

Now we use the same exact solution and interface but with a large jump in the coefficient 

along the interface

(6.2)

The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change. 

The results are shown in Table 3. We observe that the errors are larger than that in Table 2. 

This is due to the variations of the coefficient. Since the re-scaled PDE has the form 

, we would expect the error term contains  and  that are 

O(1) for Table 2 and O(102) for Table 3 due to the term 10e10x. This explains well in the 

difference in the errors. Nevertheless, all the nice features are the same as the previous 

example.

An example with more general jump conditions

There are some applications in which we may have more general jump conditions. Here we 

consider an example with a more general jump condition,  with 

c(X) = x2+1, d(X) = y2 + 1. Our method still can work with the modified augmented 

equation (4.25) (now it is ) and different preconditioning 
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techniques. The convergency analysis may not apply directly anymore. In Table 4, we list 

the grid refinement analysis which has the same predicted convergency and efficiency.

Example 6.2: A general interface example with piecewise constant coefficient.

The example is from [39]. The interface is the zero level set function

(6.3)

and the true solution is

(6.4)

The interface is both convex and concave and has relatively large curvature at some places, 

see Figure 1. We repeat this example with the new preconditioning technique with β+ = 1000 

and β− = 1 on the domain Ω = [−1, 1] × [−1, 1]. The results are shown in Table 5 that are 

almost the same as the original fast IIM in [39]. Once again we observe that both the 

solution and the gradient are second order accurate and the number of GMRES iterations is 

independent of the mesh size. For this example, the interface has large curvature at some 

places. We need a reasonable fine mesh to resolve the interface.

6.1. An example for more general self-adjoint elliptic interface problems

With some modifications, the method developed in this paper has been generalized to more 

general interface problems

(6.5)

The regularity requirement for the existence of the solution includes additional conditions 

σ(x) ∈ C(Ω±) and σ(x) ≥ 0. While we still get second order accuracy both in the solution and 

the gradient, the coefficient matrix from the modified algorithm may not be an M-matrix 

anymore. Nevertheless, those affected entries are of O(1) compared O(1/h2) when σ(x) = 0, 

that is,  with ||Bh|| ≤ Ch2. Thus we have asymptotic convergence as 

those presented in the paper as h → 0.

Example 6.3: A general example with σ(x) ≠ 0. We present a more general example with a 
non-zero σ(x) term with different interfaces, an ellipse and a five-star. The true solution and 
coefficient are
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(6.6)

(6.7)

where again Ω = [−1, 1]×[−1, 1]. This is a very general example for a self-adjoint elliptic 
interface problem with non-linear solution. We test our method for two different interfaces.

In Table 6, we show a grid refinement analysis for an elliptic interface φ(x, y) = (x/0.6)2+(y/
0.4)2−1. We observe once again second order convergence for the global solution and the 

gradient at the interface.

In Table 7, we show a grid refinement analysis for a skinny ellipse φ(x, y) = x2 + (y/0.25)2 

− 1 in the domain [−1.5, 1.5] × [−1.5, 1.5]. Once we have the mesh fine enough to resolve 

the interface (here N ≥ 64), we observe once again second order convergence for the global 

solution and the gradient at the interface although the largest error often appears near the tips 

of the longer axis of the ellipse.

If we increase the aspect ratio of the ellipse further, we can approximate the situations in 

which the domain has cracks, see Figure 5 in which we tried to find the electric potential in a 

domain containing an approximated crack φ(x, y) = (x/0.5)2 + (y/0.0625)2 − 1 within the 

domain [−1, 1] × [−1, 1]. In this case, we have the PDE ∇ · (β∇u) = 0, [u]Γ = 0 and [βun] = 

0, where β is the conductivity. The potential is given at the boundary with high potential on 

the right. Figure 5 (a) is the case with the ratio β+ : β− = 1 : 1000, while Figure 5 (b) the 

ratio is β+ : β− = 1000 : 1. Note that, we have tested the code against the analytic solution 

(6.6) for which we get the same convergence order. More sophisticated techniques and 

analysis can be found in [17, 64, 56, 52, 63].

In Table 8, we show a grid refinement analysis for the five-star interface φ(x, y) = r − (0.5 

+ 0.2 sin θ) in polar coordinates (r, θ), 0 ≤ θ < 2π. While we still observe average second 

order convergence for the global solution and the gradient at the interface, the errors are 

fluctuated more even though the average convergence rate is the same, compared with the 

elliptic interface. We do observe that again for complicated interfaces, we need to resolve the 

interface for an accurate solution and its gradient.

7. Conclusions

In this paper, we proposed a new augmented immersed interface method for general elliptic 

interface problems with variable coefficients that have finite jumps across a general 

interface, and non-homogeneous jump conditions. Not only the computed solution is second 

order globally, but also its gradient at the interface from each side of the interface. The 

method is designed for closed smooth interfaces not for open-ended interface such as cracks. 
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For closed interfaces but with corners, the method still can work with possible large errors 

near the corners. The convergence of method has been shown both in one and two 

dimensions under appropriate regularity assumptions and a piecewise constant β(x). For a 

variable coefficient β(x), the conclusions are still true if h is small enough, that is, in the 

asymptotic sense. Whether this can be improved and why the preconditioning technique 

works well are two open questions.
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Fig. 1. 
A diagram of a rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ. The coefficient β(x) 

has a finite jump across the interface Γ. The interface and domain in this figure are used in 

Example 6.2 and Example 6.3 in Section 6.
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Fig. 2. 
A diagram of an irregular grid point (xi, yj), its orthogonal projections on the interface (Xk, 
Yk), and the local coordinates at (Xk, Yk) in the normal and tangential directions.
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Fig. 3. 
(a): The solution plot of Example 6.1. (b): The error plot of the computed solution. The error 

seems to be piecewise smooth as well which is important for accurate gradient computation.
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Fig. 4. 
(a): The computed solution plot of Example 6.2. (b): The solution plot of Example 6.3.
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Fig. 5. 
Electric potential in a domain containing a thin elliptic object. (a) The conductivity of the 

object is large (1 : 1000); (b) The conductivity of the object is small (1000 : 1).
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	6. Numerical examples
	Example 6.1: (6.1)where the interface is the zero level set of , and Ω = [−1, 1]× [−1, 1]. The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the exact solution.This is an almost arbitrary example with a genuine piecewise smooth non-linear solution, and a variable coefficient with a variable discontinuity along the interface. We present a grid refinement analysis in Table 2. The second column is the maximum error of the solution while the third column is the approximate convergence order. The fourth and sixth column are the errors of the normal derivatives at the interface from Ω− and Ω+ sides, respectively. The fifth and seventh columns are the approximate convergence order of the computed normal derivative. The last but two column is the number of is the number of GMRES iterations, and the last but one is orthogonal projections of irregular grid points from Ω+ side. The last column is the total CPU time in second. We can observe from Table 2 that the new augmented IIM is second order accurate both in the solution globally and the gradient at the interface from each side. The total CPU time also shows that the method is very fast with the optimal computational complexity (O(N2) log(N2)). We also observe that the number of GMRES iteration is a constant independent of the mesh size.Now we use the same exact solution and interface but with a large jump in the coefficient along the interface(6.2)The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change. The results are shown in Table 3. We observe that the errors are larger than that in Table 2. This is due to the variations of the coefficient. Since the re-scaled PDE has the form , we would expect the error term contains  and  that are O(1) for Table 2 and O(102) for Table 3 due to the term 10e10x. This explains well in the difference in the errors. Nevertheless, all the nice features are the same as the previous example.
	Example 6.1: (6.1)where the interface is the zero level set of , and Ω = [−1, 1]× [−1, 1]. The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the exact solution.This is an almost arbitrary example with a genuine piecewise smooth non-linear solution, and a variable coefficient with a variable discontinuity along the interface. We present a grid refinement analysis in Table 2. The second column is the maximum error of the solution while the third column is the approximate convergence order. The fourth and sixth column are the errors of the normal derivatives at the interface from Ω− and Ω+ sides, respectively. The fifth and seventh columns are the approximate convergence order of the computed normal derivative. The last but two column is the number of is the number of GMRES iterations, and the last but one is orthogonal projections of irregular grid points from Ω+ side. The last column is the total CPU time in second. We can observe from Table 2 that the new augmented IIM is second order accurate both in the solution globally and the gradient at the interface from each side. The total CPU time also shows that the method is very fast with the optimal computational complexity (O(N2) log(N2)). We also observe that the number of GMRES iteration is a constant independent of the mesh size.Now we use the same exact solution and interface but with a large jump in the coefficient along the interface(6.2)The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change. The results are shown in Table 3. We observe that the errors are larger than that in Table 2. This is due to the variations of the coefficient. Since the re-scaled PDE has the form , we would expect the error term contains  and  that are O(1) for Table 2 and O(102) for Table 3 due to the term 10e10x. This explains well in the difference in the errors. Nevertheless, all the nice features are the same as the previous example.
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	An example with more general jump conditions
	Example 6.2: A general interface example with piecewise constant coefficient.The example is from [39]. The interface is the zero level set function(6.3)and the true solution is(6.4)The interface is both convex and concave and has relatively large curvature at some places, see Figure 1. We repeat this example with the new preconditioning technique with β+ = 1000 and β− = 1 on the domain Ω = [−1, 1] × [−1, 1]. The results are shown in Table 5 that are almost the same as the original fast IIM in [39]. Once again we observe that both the solution and the gradient are second order accurate and the number of GMRES iterations is independent of the mesh size. For this example, the interface has large curvature at some places. We need a reasonable fine mesh to resolve the interface.
	Example 6.2


	6.1. An example for more general self-adjoint elliptic interface problems
	Example 6.3: A general example with σ(x) ≠ 0. We present a more general example with a non-zero σ(x) term with different interfaces, an ellipse and a five-star. The true solution and coefficient are(6.6)(6.7)where again Ω = [−1, 1]×[−1, 1]. This is a very general example for a self-adjoint elliptic interface problem with non-linear solution. We test our method for two different interfaces.In Table 6, we show a grid refinement analysis for an elliptic interface φ(x, y) = (x/0.6)2+(y/0.4)2−1. We observe once again second order convergence for the global solution and the gradient at the interface.In Table 7, we show a grid refinement analysis for a skinny ellipse φ(x, y) = x2 + (y/0.25)2 − 1 in the domain [−1.5, 1.5] × [−1.5, 1.5]. Once we have the mesh fine enough to resolve the interface (here N ≥ 64), we observe once again second order convergence for the global solution and the gradient at the interface although the largest error often appears near the tips of the longer axis of the ellipse.If we increase the aspect ratio of the ellipse further, we can approximate the situations in which the domain has cracks, see Figure 5 in which we tried to find the electric potential in a domain containing an approximated crack φ(x, y) = (x/0.5)2 + (y/0.0625)2 − 1 within the domain [−1, 1] × [−1, 1]. In this case, we have the PDE ∇ · (β∇u) = 0, [u]Γ = 0 and [βun] = 0, where β is the conductivity. The potential is given at the boundary with high potential on the right. Figure 5 (a) is the case with the ratio β+ : β− = 1 : 1000, while Figure 5 (b) the ratio is β+ : β− = 1000 : 1. Note that, we have tested the code against the analytic solution (6.6) for which we get the same convergence order. More sophisticated techniques and analysis can be found in [17, 64, 56, 52, 63].In Table 8, we show a grid refinement analysis for the five-star interface φ(x, y) = r − (0.5 + 0.2 sin θ) in polar coordinates (r, θ), 0 ≤ θ < 2π. While we still observe average second order convergence for the global solution and the gradient at the interface, the errors are fluctuated more even though the average convergence rate is the same, compared with the elliptic interface. We do observe that again for complicated interfaces, we need to resolve the interface for an accurate solution and its gradient.
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