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Abstract

Dealing with hardware and software faults is an important problem as parallel and distributed
systems scale to millions of processing cores and wide area networks. Traditional methods for
dealing with faults include checkpoint-restart, active replicas, and deterministic replay. Each of
these techniques has associated resource overheads and constraints. In this paper, we propose an
alternate approach to dealing with faults, based on input augmentation. This approach, which
is an algorithmic analog of erasure coded storage, applies a minimally modified algorithm on
the augmented input to produce an augmented output. The execution of such an algorithm
proceeds completely oblivious to faults in the system. In the event of one or more faults, the
real solution is recovered using a rapid reconstruction method from the augmented output. We
demonstrate this approach on the problem of solving sparse linear systems using a conjugate
gradient solver. We present input augmentation and output recovery techniques. Through
detailed experiments, we show that our approach can be made oblivious to a large number of
faults with low computational overhead. Specifically, we demonstrate cases where a single fault
can be corrected with less than 10% overhead in time, and even in extreme cases (fault rates
of 20%), our approach is able to compute a solution with reasonable overhead. These results
represent a significant improvement over the state of the art.

1 Introduction

The next generation of parallel and distributed systems are projected to scale to millions of
processing cores and beyond. Distributed systems already span wide geographic areas. In these
regimes, hardware and software faults present major challenges for scalable execution of programs.
In this paper, we consider the solution of an n× n nonsingular linear system

Ax = b (1)

in an environment with faults.
Existing fault tolerant computations can be broadly classified as algorithmic or system-supported.

Algorithmic fault tolerance mechanisms alter the algorithm to render it robust to faults. This requires
deep algorithmic and analytical insight to quantify fault tolerance properties and associated overheads.
It can also change the algorithmic cost and complexity significantly. System supported fault tolerance
schemes include checkpoint-restart, active replicas, and deterministic replay. Checkpoint-restart
schemes involve the overheads of consistent checkpointing and I/O, particularly for ultra-scale
platforms, where I/O capacity and bandwidth are both at a premium relative to the compute
capability. Furthermore, the asynchronous nature of many highly scalable algorithms makes it costly
to identify consistent checkpoints and to perform associated rollbacks. Variants of these schemes
include in-memory checkpointing, use of persistent storage (flash memory), and application-specified
checkpoints.

1

ar
X

iv
:1

41
2.

73
64

v1
  [

cs
.N

A
] 

 2
3 

D
ec

 2
01

4



Active replicas, commonly used in mission-critical real-time applications, execute multiple replicas
of each task. Failures are detected and replicas are managed to support real-time constraints. While
the runtime characteristics of these schemes can be controlled (e.g., through worst-case runtime
estimation), resource overheads of such schemes are high, since tolerating a k-process failure among
p processes requires (k + 1)p active processes. This cost is significant – as an example, tolerating 10
faults in an ensemble of 1000 cores (a 1% error rate) requires 11,000 processes! Yet other systems
such as MapReduce use the concept of deterministic replay. In this model, computation proceeds in
steps with checkpoints at the end of each step. Processes are monitored within the steps, and in the
event of a failure, the computation associated with the failed process is replayed at an alternate node.
While this model has been successfully applied to a large set of wide-area distributed applications, it
has the drawbacks of staged execution and increased job makespan, particularly when the number of
faults is large. Furthermore, checkpointing to persistent storage (typically a distributed file system)
can add significant overhead, particularly, when steps are small.

Our contribution in this paper is the design of a new type of method for solving (1) that we call
a fault oblivious algorithm. The essence of the idea is that we develop an algorithm that allows us
to recover the correct solution to the problem even if some of the computational units involved in
the solution process fail during the execution of the algorithm. More specifically, given system (1),
we design an augmented system:

Ãx̃ = b̃ (2)

together with a solution strategy such that using the solution strategy to solve (2) in an environment
with faults would have the following properties:

1. Deterministic finite termination. The solution process terminates in finite steps. When it
terminates, it indicates one and only one of the two cases: (i) it fails to solve (2) to a specified
precision; (ii) an approximate solution x̃ to (2) within the specified precision has been found.

2. Recoverability of the intended solution. In case (ii) above, we are able to recover the intended
solution x to (1) from x̃ through an inexpensive computation.

As discussed above, a variety of existing fault tolerant techniques such as check-pointing and
replication give us finite termination and trivially satisfy recoverability. Thus, our goal in designing
the augmented system is that the computational complexity of a solution process with deterministic
finite termination is bounded by the computational complexity of available fault-tolerant techniques.
In other words – we want augmented systems that enable us to solve a given problem in an
environment with faults more quickly than existing techniques.

Our design for the augmented system (2) is a linear coding of the input system (1). For this
reason, we refer to (2) as the encoded system, and the input system (1) the raw system. There are
three major components of our approach that we discuss in the next three sections.

• The fault model – Section 2. We need to define the types of the faults and their semantics
that our coded linear solver can handle.

• The encoding scheme – Section 3. We add a set of rows and columns to the matrix to render
the new linear system singular, but consistent. It remains this way for up to k component-wise
faults in the solution vector x̃.

• The solution process and recovery scheme – Section 4. Our solution process is to run a
conjugate gradient algorithm. We show that when this algorithm terminates, it does so at a
consistent solution of the encoded system. We then describe how to recover the true solution
x in light of the encoding.
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Because of the close relationship between the encoding scheme, solution process, and recovery
scheme, we adopt a co-design approach for these three tasks.

For simplicity, in this manuscript, we restrict ourselves to the case where A is symmetric positive
definite (SPD). We report experiments on the efficiency of our encoding in Section 6. Our main
findings are that the encoded system takes minimal additional work to solve in the presence of a
fault. In the presence of a substantial number of faults (20% of components failing), it takes 5 times
the number of iterations of a linear solver. However, note that each iteration of this solver requires
no additional overhead to achieve fault tolerance. Thus, this is a substantial savings compared with
a checkpoint-restart system.

2 Fault model

We view the execution of the algorithm in two stages – the setup phase and the execution phase. The
setup phase consists of the input augmentation step of the algorithm. During this phase, we assume
that a small amount of reliable work can be done. In the presence of faults, this can be achieved
using more expensive fault tolerance techniques such as replicated execution or deterministic replay.
Since this step is a very small fraction of the overall computation (less than 1% for typical systems),
the overhead is not significant. Please note that in current systems, the entire execution is performed
in this reliable model. Thus, we may assume that we have this ability, although we wish to limit
our use of these expensive schemes to minimize performance overhead.

The execution phase of the algorithm corresponds to the solve over the augmented system. In
this phase, we assume an ensemble of message passing processes executing the solver. During this
phase of execution, we assume fail-stop failures; i.e., in the event of a fault, a process halts. No
further messages are received from this process by any of the other processes. Indeed there are
other fault models as well, ranging from transient (soft) faults to Byzantine behavior. Soft faults
manifest themselves in the form of erroneous data. This data, when incorporated into data at other
processes, can lead to cascading error in programs.

Our proposed method can be extended to these other fault classes using existing fault detection
schemes. In such schemes, messages are signed with a checksum, allowing us to detect on-the-wire
errors. Asserts in the program, corresponding to predicates whose violation signifies an error can
be used to detect soft errors in processes. If either of these soft efforts are detected, the receiving
process simply drops messages, thus emulating a fail-stop error. When a soft error is detected at a
process, the process is killed, once again resulting in a fail stop failure. Asserts work similarly when
Byzantine failures are detected. Thus, a combination of tolerance to fail-stop failures with fault
detection techniques allows us to deal with a broad set of faults.

Please note that there are other system software related issues associated with the proposed fault
oblivious paradigm. Specifically, in many APIs a single process failure can cause the entire program
to crash. In yet other scenarios, a crashed process can cause group communication operations
(reductions, broadcasts, etc.) to block. These kinds of program behavior would not allow leveraging
of our proposed schemes. We assume program behavior in which faulty processes simply drop out
of the ensemble, while the rest continue. This paper does not address the design of such a fault
oblivious API. Rather it algorithmically establishes the feasibility and superior performance of the
erasure coded computation scheme for linear solvers.

3 Encoding scheme

Let x∗ be the true solution of the linear system Ax = b. Let k ≤ n be the number of allowed faults
during its execution. Let E ∈ Rn×k be an encoding matrix that we’ll specify completely shortly.

3



We design the augmented matrix Ã ∈ R(n+k)×(n+k) as follows:

Ã =

[
A AE

ETA ETAE

]
. (3)

We choose the encoding of x∗ to be an embedding into Rn+k, i.e.,

x̃∗ =

[
x∗

0

]
(4)

Accordingly, the encoding of b is given by

b̃ = Ãx̃∗ =

[
b

ETb

]
(5)

3.1 Basic properties

We now establish a few properties of these systems in terms of their rank, a characterization of the
solutions, and the semi-definiteness of Ã.

PROPOSITION 1 A null space basis of Ã is

[
E
−Ik

]
.

Proof. From the design of Ã in (3) and A being SPD, we have rank(Ã) = n. Thus the null space
has dimension k. Then, by inspection, Ã

[
E
−Ik
]

= 0 and
[

E
−Ik
]

has column rank k. �

As a corollary of the above proposition, we have the following proposition regarding the non-
ambiguity of the solution encoding (4).

PROPOSITION 2 Let [ yz ] be any solution of (2) where y ∈ Rn. Once z ∈ Rk is specified, then the
components of y are uniquely determined. Moreover, if z = 0, then y = x∗.

Proof. Note that
[
x∗
0

]
is a solution to (2). Thus, any solution to (2) can be written as:[

y
z

]
=

[
x∗

0

]
+

[
E
−Ik

]
a

for a unique a ∈ Rk. Due to the non-zero structure, we have a = −z. Hence, y is uniquely
determined as x∗ −Ez. The final statement follows from z = 0. �

We now prove that Ã as given in (3) is symmetric positive semidefinite (SPSD).

PROPOSITION 3 If A is symmetric positive definite, then Ã as defined in (3) is SPSD.

Proof. Let the Cholesky factorization of A be A = LLT . Then, by inspection, we have

Ã =

[
L

ETAL−T

] [
L

ETAL−T

]T
.

�
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3.2 Solution degeneracies and faults

The matrix Ã has rank n, despite having n+ k rows and columns. We now show how a specific use
of this degeneracy allows us to have fault tolerant solutions to (2). Let x̃ ∈ R(n+k) be the encoded
solution. For the same of clarity in presentation, we assume that faults can only occur within
the components of x̃1:n, i.e., the redundant components x̃(n+1):(n+k) introduced by the encoding
cannot be faulty. Please note that this is not a limitation of our scheme. We let the set of faulty
indices be F ⊂ [n]. We constrain the cardinality |F| ≤ k. Let C be the set of non-faulty (or
correct) components. Without loss of generality, we consider the system (2) in three components
corresponding to the correct, faulty, and redundant components of the solution. This is equivalent
to a permutation, after which we have that the solution is:

x̃ =

 c
f
r

 correct = x̃C
faulty = x̃F
redundant.

(6)

The overall permuted system is:A11 A12 Z1

AT
12 A22 Z2

ZT1 ZT2 R

cf
r

 =

 b1

b2

ETb

 where


Z1 = A11E1 + A12E2

Z2 = AT
12E1 + A22E2

R = ETAE

As our solver progresses, the components in f become “stuck” at some intermediate values as faults
occur. We describe the semantics of these faults more formally in the next section (Section 4). The
goal of this section is to show that we can recover solutions even when setting f to some arbitrary
value.

Thus, for our erasure coded solvers, we need a condition on the matrix E such that:
1. There is always a solution to (2) for any f as long as |F| ≤ k (Proposition 5).
2. Given any solution computed with faulty components (|F| ≤ k), we can extract a solution to

(2) (Proposition 6).
The condition on the matrix E that is essential to these results is the Kruskal rank. Recall the
definition:

DEFINITION 4 (Kruskal rank [7]) The Kruskal rank, or k-rank, of a matrix is the largest number k
such that every subset of k columns is linearly independent.

Notice that the condition for a matrix to be of Kruskal rank k is much stronger than being rank
k. The following proofs require that the Kruskal rank of ET is k in order to handle up to k faults.
Some intuition for this requirement is that we need the matrix E to encode redundancies to any
possible faults with a number up to k. Recovering the solution will require us to invert a matrix for
the components where the solution was faulty, and hence, we need all possible subsets of k rows of E
to be invertible – giving us the Kruskal rank condition. We now present these two results formally:

PROPOSITION 5 Let ET ∈ Rk×n have Kruskal rank k and let F be an arbitrary subset of [n] with
|F| ≤ k. Then there exists a solution to (2) with x̃F = f for any f . When |F| = k, such a solution
is unique.

Proof. Note that any solution of (2) has the form:[
x∗

0

]
+

[
E
−I

]
a

5



for some a ∈ Rk. Let us permute this solution as in (6):cf
r

 =

x∗1x∗2
0

+

E1

E2

−I

a.

It suffices to show that there exists a such that f = x∗2 +E2a. Because the rows of E2 correspond to
the faulty components, this is a set of |F| columns from ET . These columns are linearly independent
by the Kruskal rank condition. Thus, there exists a solution to this underdetermined linear system.
If |F| = k, then the system is square and non-singular, so the vector a is unique. �

According to our fault model, as faults occur during an iterative process, the components of f
become stuck (i.e., they are not updated because of lost messages). Thus, the actual system that
we solve is what we call a purified system consisting of only non-faulty components:[

A11 Z1

ZT1 R

] [
c
r

]
=

[
b1

ETb

]
−
[
A12

ZT2

]
f . (7)

By Proposition 5, if the encoding matrix ET has Kruskal rank k, there exists a solution to the
purified subsystem (7) from a solution to (2) with xF = f fixed. We now ask the reverse question.

Suppose [ cr ] is any solution to (7), will
[
c
f
r

]
be a solution to (2) (under the permutation)? The

following proposition shows the answer is yes. The reason we need this proof is that there are many
possible solutions to the purified subsystem. We need to establish that all solutions to (7) with f
fixed will lend us a full solution to (2).

PROPOSITION 6 Let ET ∈ Rk×n have Kruskal rank k. Let [ cr ] be any solution to the purified

system (7), where |F| ≤ k. Then
[
c
f
r

]
is a solution to (2).

Proof. This proof is equivalent to checking whether the following equation is satisfied by the purified
solution: [

AT
12 Z2

] [c
r

]
= b2 −A22f . (8)

We establish this fact algebraically from the solution of the purified system. First note that ET2 is a
k-by-|F| matrix with full column rank, and thus it has a left-inverse (ET2 )† = (E2E

T
2 )−1E2. Now

consider the two equations in the purified system:

A11c + Z1r = b1 −A12f (9)

ZT1 c + Rr = ETb− ZT2 f . (10)

The result of (10)−ET1 (9) is:

ET2 A
T
12c + ET2 Z2r = ET2 b2 −ET2 A22f .

To complete the proof, we premultiply this equation by left inverse (ET2 )†. �
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Algorithm 1

1: Let x0 be the initial guess and r0 = b−Ax0, β0 = 0.
2: for t = 0, 1, . . . until convergence do
3: βt = (rt, rt)/(rt−1, rt−1)
4: pt = rt + βtpt−1
5: qt = Apt
6: αt = (rt, rt)/(qt,pt)
7: xt+1 = xt + αtpt
8: rt+1 = rt − αtqt
9: end for

4 The solution process and recovery scheme

Proposition 3 establishes Ã being SPSD when A is SPD. Thus we can apply the conjugate gradient
(CG) method to solve a singular but consistent linear system (2) [1]. For the n+ k eigenvalues of Ã,
we have 0 = λ̃1 = · · · = λ̃k < λ̃k+1 ≤ · · · ≤ λ̃n+k. Let the eigenvalues of A be 0 < λ1 ≤ · · · ≤ λn.
Because of the interlacing property, we have λ1 ≤ λ̃k+1 and λn ≤ λ̃n+k. The effective condition

number of Ã is defined as κe(Ã) =
λ̃n+k

λ̃k+1
. Specifically, we use the following two-term recurrence

form of CG [9].
We consider the setting when Algorithm 1 is executed in a distributed environment. For the

encoded system (2), this means the encoded matrix Ã and the encoded vectors are distributed among
multiple processes by rows. Let the index set associated with process i be Ii, then [n+ k] =

⋃
i Ii.

According to our fault model, the operations of Algorithm 1 affected by faults in a distributed
environment are the aggregation operations — inner products and the matrix-vector multiplication
Apt. Thus our erasure-coded CG can be defined by specifying the semantics of these two aggregation
operations under faults. At the t-th iteration of erasure-coded CG, let the set of failed processes be
Pt. Then the set of faulty indices is Ft =

⋃
i∈Pt
Ii. We assume that each viable process can detect

the breakdown of its neighbor processes. Based on this assumption, we specify the semantics of the
two aggregation operations as follows

• Inner products (rt, rt) and (qt,pt). The viable processes carry out the all-reduce operation by
skipping the faulty components Ft in the vectors.

(rt, rt) =
(
(rt)[n+k]\Ft

, (rt)[n+k]\Ft

)
(11)

(qt,pt) =
(
(qt)[n+k]\Ft

, (pt)[n+k]\Ft

)
Furthermore, we require no reuse of aggregation operation results. This means that when
computing αt, (rt, rt) is recomputed simultaneously with (qt,pt). Similarly when computing
βt, (rt−1, rt−1) is recomputed simultaneously with (rt, rt). For this purpose, we have to
maintain both rt and rt−1.

• Matrix-vector multiplication qt = Apt. A viable process carries out its local aggregation
operation for computing AIi,:pt by skipping the faulty components Ft in pt.

AIi,:pt = AIi,[n+k]\Ft
(pt)[n+k]\Ft

Given the above semantics on aggregation operations, the erasure-coded CG on x̃ can be effectively
considered as an iterative solve process on the subsystem defined on x̃[n+k]\Ft

, as given in (7). Note
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that the RHS of the purified subsystem (7) depends on f , the snapshot value of x̃Ft . For this reason,
we require each viable process to cache the freshest snapshot values it have received from its neighbor
processes. Another technical issue we need to consider when faults happen is the update to the
search direction pt. In fault-free CG with exact arithmetic, we have (rt,pt−1) = 0. However, given
the semantics of inner product as defined in (11), the orthogonality of rt and pt−1 will generally
not hold. We truncate the update pt = rt + βtpt−1 to be

pt = rt

whenever new faults occur before the next update to pt.
Now we consider the recovery of the solution to the raw system (1). Suppose the erasure-coded

CG converges on the encoded system (2) after T iterations. Let the encoding matrix ET ∈ Rk×n
have Kruskal rank k. Let F ∈ [n] be the set of all faulty indices upon convergence such that |F| ≤ k.
In erasure-coded CG, the snapshot value f of the faulty components x̃F are cached on the viable
processes. Because of the semantics of aggregation operations, the erasure-coded CG solves the
purified subsystem defined in (7). Let the returned approximate solution be [ cr ]. According to
Proposition 6, then

x̃ =

cf
r

 .
is a solution to the encoded system (2). Then, by Proposition 1, we can recover the intended solution
to the raw system (1) through the equation[

x∗

0

]
= x̃ +

[
E
−Ik

]
r. (12)

And by Proposition 2, the recovery equation (12) is non-ambiguous.

5 Related work

The paper [2] also considers the problem of designing a fault-tolerant linear solver. They model the
faults by encapsulating all fault prone operations as an unreliable preconditioning operator and then
build the fault-tolerant linear solver within the framework of flexible Krylov subspace methods, like
flexible GMRES [11]. The flexible outer iteration is required to be completely reliable. In contrast,
our erasure-coded approach does not require any part of the distributed environment to be reliable.
Another salient difference between [2] and our approach is on the kinds of tolerable faults. In [2] the
targeted faults are value errors resulted from numerical operations, while our erasure-coded approach
targets more general fail-stop failures (subsystem breakdowns) in a distributed environment. It’s
not hard to understand that the approach in [2] can not recover from such faults because of the
permanent data loss when subsystems breakdown in a distributed environment.

The fault-tolerant linear solver in [2] can be considered as a natural application of the theory of
inexact and flexible Krylov subspace methods [5, 12, 13]. For inexact Krylov subspace methods,
the magnitude of perturbations need to be controlled to maintain the convergence, although
the perturbations can happen anywhere in the result of a numerical operation. In contrast, our
erasure-coded approach does not presume any bound on the perturbations; but it does require the
perturbations to be sparse in the affected components. However, the theory of inexact and flexible
Krylov subspace methods can still provide the mathematical framework and tools to guide the
design and analysis of the erasure-coded linear solvers.
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Table 1: Test matrices

Matrix n nnz Type

Ltridiag500 500 1, 498 1D model problem
mhdb416 416 2, 312 electromagnetics problem

nos3 960 15, 844 structural problem

6 Experimental results

In this section, we report on experimental results with varying degrees of faults and associated
overhead. The main purpose of these experiments is to demonstrate the feasibility of the idea of
an erasure-coded linear solver. Through these experiments, we intend to identify critical research
problems to be solved in order to realize the idea of an erasure-coded linear solver in a distributed
setting.

6.1 Experiment design

In our experiments we uses three SPD test matrices, with their sizes (n), number of nonzeros
(nnz), and types shown in Table 1. Ltridiag500 is a 500× 500 1D model matrix with the stencil[
−1 2 −1

]
. mhdb416 and nos3 are from University of Florida Sparse Matrix Collection [4]. We

implemented a MATLAB code to simulate the erasure-code CG described in Section 4. In our
current simulation, we inject fault components only at the end of a CG iteration. Furthermore,
we assume all the faults happen at the same time. More extensive and thorough simulations that
allow faults happen anywhere in a CG iteration and temporally interspersed are relegated to future
work. For a given k number of tolerable faults, we design the n× k encoding matrix E as a random
Gaussian matrix scaled by 1√

n
, i.e.,

E =
1√
n
Ē, Ēij ∼ N (0, 1), i = 1, . . . , n, j = 1, . . . , k

This matrix has Kruskal rank k with high probability.

6.2 Experimental Results

For each test matrix in Table 1, we run an erasure-coded CG simulation code for k = 0, 1, 20%n
number of faults. The RHS b of the raw system (1) are synthesized using random solution vectors
x in (0, 1)n. We set the number of maximum CG iterations to be 10n, and monitor the convergence
using the stopping criterion ‖rt‖2 ≤ 10−10. For each value of k, the k fault components are randomly
selected from [n]. These fault components are injected simultaneously at the end of one randomly
selected CG iteration that is no larger than 0.25n. We refer to this CG iteration as the fault point.
In Figures 1 - 3, we plot the residual norm vs. CG iteration for the three test matrices; and from
left to right for k = 0, 1, 20%n. The fault point is marked by the red cross.

To evaluate the quality of the recovered solution x∗, we compute the relative residual achieved
by x∗ on the raw system (1):

‖b−Ax∗‖2
‖b‖2

.

We summarize the number of iterations and relative residuals on the raw system for three test
matrices in Tables 2–4. We observe that on Ltridiag500 and nos3, when there is only 1 fault, the
erasure-coded CG can recover a solution with almost the same quality as if there is no fault. And the
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Figure 1: Ltridiag500 residual norm. From left to right k = 0, 1, 20%n. The fault point is marked
by the red cross.
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Figure 2: mhdb416 residual norm. From left to right k = 0, 1, 20%n. The fault point is marked by
the red cross.
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Figure 3: nos3 residual norm. From left to right k = 0, 1, 20%n. The fault point is marked by the
red cross.

number of iterations are also comparable. When there are 20% fault components, the erasure-coded
CG can still recover an approximate solution with good quality, although the number of iterations
increase substantially. In contrast to Ltridiag500 and nos3, on mhdb416, the erasure-coded CG
reaches the maximum number of iterations (i.e., 10n) for all the three values of k. Comparing the
solution quality of k = 0 to those of k = 1, 20%n in Table 3 indicates more iterations are required
for the latter two cases.

7 Future work

The current manuscript describes and documents our preliminary investigation along the idea of
erasure-coded linear solvers. To further develop the theory and techniques for practically realizing
this idea, we plan to explore the following directions.

• More thorough simulation and prototype tests. Our current experimental simulation assumes
the faults can only occur at the end of a CG iteration, as well as being simultaneously. We
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Table 2: Results on Ltridiag500

k Iteration number Relative residual on raw system

0 500 1.39× 10−14

1 540 3.76× 10−15

20%n 2, 640 3.72× 10−11

Table 3: Results on mhdb416

k Iteration number Relative residual on raw system

0 4, 160 1.19× 10−9

1 4, 160 1.47× 10−5

20%n 4, 160 2.09× 10−6

plan to design and test under a more realistic simulation, where the faults could happen
anywhere during a CG iteration, as well as being temporally interspersed.

• Structure and sparse random projection design of the encoding matrix. Our current design of
the encoding matrix E uses the random Gaussian matrix, which is very dense. To enhance
both the encoding and recovery efficiency, we plan to adopt structure and sparse random
projections [3, 6, 8], which allow fast matrix-vector multiplications.

• Improve the convergence of erasure-coded CG. Our current erasure-coded CG adopts the
truncation strategy when new faults occur. Our preliminary experiments indicate that such
a strategy may result in slow and wavy convergence when there is a large number of faults.
We plan to adapt the flexible CG technique [10] to our erasure-coded CG solver in order to
improve its convergence speed.
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