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Abstract

Detecting and explaining the relationships among interacting components has long been a focal 

point of dynamical systems research. In this paper, we extend these types of data-driven analyses 

to the realm of public policy, whereby individual legislative entities interact to produce changes in 

their legal and political environments. We focus on the U.S. public health policy landscape, whose 

complexity determines our capacity as a society to effectively tackle pressing health issues. It has 

long been thought that some U.S. states innovate and enact new policies, while others mimic 

successful or competing states. However, the extent to which states learn from others, and the state 

characteristics that lead two states to influence one another, are not fully understood. Here, we 

propose a model-free, information-theoretical method to measure the existence and direction of 

influence of one state’s policy or legal activity on others. Specifically, we tailor a popular notion of 

causality to handle the slow time-scale of policy adoption dynamics and unravel relationships 

among states from their recent law enactment histories. The method is validated using surrogate 

data generated from a new stochastic model of policy activity. Through the analysis of real data in 

alcohol, driving safety, and impaired driving policy, we provide evidence for the role of geography, 

political ideology, risk factors, and demographic and economic indicators on a state’s tendency to 

learn from others when shaping its approach to public health regulation. Our method offers a new 

model-free approach to uncover interactions and establish cause-and-effect in slowly-evolving 

complex dynamical systems.
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1. Introduction

The U.S. Institute of Medicine has called public policies among the most powerful tools to 

improve population health [1]. But widespread adoption of such policies is complicated by 

the U.S. federal system, in which decision-making on a variety of areas affecting people’s 

health and livelihoods remains the responsibility of state or local government. Of key 

interest is how to promote the diffusion of effective policies and programs across these 

decentralized government units. There are currently few lessons learned to help guide 

federal or state decision-makers in meeting this challenge [2], and even less is known about 

the types of policies that different legislative bodies may be more likely to adopt or repeal 

[3].

In an effort to understand state-to-state policy variation, recent work has focused on 

identifying internal and external factors that characterize the likelihood that a given state will 

adopt a new policy [4]. A common belief is that some states consistently act as innovators of 

new policy [4–6], while other states follow in their footsteps, enacting legislation that is 

designed to emulate successful policies [7] or reduce potential economic competition [8]. 

Thus, the evolution of the public policy landscape can be described using the language of 

complex networks [9] and dynamical systems, whereby individual states form a set of 

interacting elements, possibly leading to the propagation of individual laws. Toward 

explaining the dynamics of these processes, several approaches have sought to isolate the 

determinants of whether a given state will adopt a new law. In the event history analysis 

approach [10], internal and cross-state pressures are included in models to predict state 

adoption of a specific law between any given state pairs (dyads). Further work using this 

approach has identified state factors associated with policy diffusion in the regulatory 

domains of tobacco [11], health insurance [7], schools [12], and others [13, 14].

We propose that the field of dynamical systems can greatly contribute to the analysis of 

policy diffusion. This paper builds on a series of complex dynamical systems methods that 

detect connectivity, causality, and information flow between variables in time series data 

[15–28]. The attractiveness of these methods has been demonstrated in the reconstruction of 

climate networks [29, 30], the inference of functional connectivity in neuroscience and 

finance [31–33], and in the quantification of interactions among animals [34–39]. From 

these methods, a modern approach to reconstructing influences and their covariates from 

recorded data has blossomed, but typically, it requires a vast amount of rich and highly-

variable data. Reconstruction of networks with limited data often depends on the solution of 

an optimization problem that fits observed data to a particular model [40, 41]. Changes in 

the public policy landscape, however, are relatively slow and are the consequence of a 

variety of difficult-to-model factors, thus requiring advancements to assess influence from 

arbitrarily large periods of inactivity.

Here, we investigate a series of competing hypotheses about factors that may act as 

determinants of one state’s tendency to adopt new public health laws based on changes in 

the laws of another. Specifically, we offer a new quantitative method to examine the 

relationship between a state’s characteristics and the amount of information, defined in 
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terms of entropy [42], that is transferred between pairs of states. Considering interactions in 

a model-free, information-theoretical framework permits exploratory investigations without 

requiring the a priori definition of the types of interactions among states that signify policy 

emulation. We illustrate its application to state laws within the domains of alcohol, driving 

safety, and impaired driving regulation.

We choose to examine policies regarding alcohol and traffic safety because motor vehicle 

collisions (MVCs) remain one of the leading causes of preventable death in the United 

States, with over 33,000 deaths in 2012 [43], and are estimated to incur a total economic 

cost of nearly $100 billion [44]. Alcohol consumption represents a significant risk factor for 

disease and injury [45] and has been proposed as a primary contributor to fatal MVCs, 

accounting for 31 % of MVC fatalities in 2012 [43]. Significant variation exists between 

these figures by state — MVC death rate varies fourfold by state [43], and the percentage of 

these fatalities due to alcohol currently ranges from 16% in Utah to 44% in Montana [46]. 

Responsibility for establishing alcohol and traffic laws primarily lies with individual states. 

However, despite evidence of the effectiveness of specific policies in lowering mortality and 

morbidity [47, 48], the total number of adopted and retained laws vary considerably among 

states. In this study, we focus on law enactments and changes to states’ beer tax rates, 

dramshop liability laws, host liability laws, Sunday sales bans, and beer keg registration (for 

alcohol regulation); distracted driving laws, driver and occupant protection laws, graduated 

driver’s license (GDL) programs, and child restraints (for driving regulations); and open 

container laws, penalties for driving under the influence (DUI), and zero tolerance laws (for 

impaired driving regulation).

Based on these laws, we compute the amount and direction of influence that one state has on 

another by examining if the union of historical law activity in two states better enables the 

prediction of future law activity in one of them. This prediction is defined in terms of an 

entropy reduction, and we name the new measure of causality “union transfer entropy.” In 

order to validate the method, we also establish a new stochastic model to simulate law 

activity that captures many salient features of the evolution of a state’s changing legal and 

political environment. We investigate how policy diffusion relates to variation in the states’ 

health outcomes, their geographic contiguity, and other explanatory variables, which have all 

been proposed as determinants of states’ law enactment [47, 48]. Thus, in a novel 

information-theoretical framework, we systematically dissect the contribution of these state 

attributes, laying the foundation for causal analysis in public health policy.

2. Datasets

Law enactment data originates from the public use State Health Policy Research Dataset 

(SHePRD) [49] and includes regulations, taxes, and other enforcement mechanisms from the 

domains of alcohol regulation, general driving regulations, and impaired driving regulations, 

across all N = 50 states, and for the years 1980 – 2010. The laws were selected based on 

published evidence of their impact on reducing morbidity and mortality. The laws we use 

can be found in Appendix A and Tables Al, A2, and A3 for alcohol, general driving, and 

impaired driving regulations, respectively. In these tables, we also provide the number of 

states that have enacted legislation relating to the law between 1980 – 2010. For each law, 
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and within the horizon of January 1, 1980 until December 31, 2010, legal databases were 

searched to identify the specific day a law change became effective, including law 

implementation (a law first comes into existence with the specified effective date), 

amendment (a material change in an existing law is enacted on the specified date), or repeal 

(an existing law is reversed, effective on the specified date).

These data are assembled by day into a time series of length T = 11323 (i.e., 31 years) that 

describes, for each state and for each law, whether or not any activity occurred on a given 

day. More formally, for each state i = 1, …, N, for each considered law k in that state (out of 

K total laws), k = 1, …, K, and for each day t = 1, …, T, a binary variable xik(t) takes value 

1 if the law k in state i was implemented, repealed, or experienced material change on day t, 
and it is 0 otherwise. For instance, if the beer tax rate in New York increased from 11 % to 

14 % on a particular day t, the variable corresponding to New York and “beer tax rate” 

should be 1 at day t.

In addition to the dates of law activity for each state, various features of each state are 

identified in order to build pairwise measures of dissimilarity between two states i and j, 
where i and j each range from one to 50. The dissimilarities considered in this work are 

presented in Table 1 and comprise measures that characterize geographic or cultural 

dissimilarity (in rows 1–3), and differences in health outcomes (rows 4–5), demographics 

(rows 6–8), and economic factors (rows 9–10). We denote symmetric measures of 

dissimilarity by υ(i, j) and directed measures as υ(j → i), with subscripts for each of the 

measures listed in Table 1.

3. Union transfer entropy for inferring causality among states

To estimate the magnitude and direction of influences among states from either real or 

simulated law activity, a data-driven approach is developed to quantify the amount of 

information flow between two states. For this purpose, we consider a type of conditional 

mutual information [22] related to the union of law activity over a historical period. In this 

section, we define union transfer entropy, explain a method for its calculation, and explain 

how we use it to quantify interactions among states from their legal histories. While the 

exposition is tailored toward unraveling influences among states, we present our approach in 

rather general terms to ease its application to other slowly-evolving systems.

We start with a dynamical sy stem composed of N distinct units (in this case, N = 50 states), 

each with k = 1, …, K binary-valued time series xik(t) where t = 1, …, T is the discrete time 

variable. For our public health problem, xik(t) is the value of the k-th law in state i on day t. 
We further allow for the case where the K time series of each unit i can be assembled into 

groups Xiℓ(t) = {xik(t)}k∈group ℓ, such that ∪ℓXiℓ(t) forms the set of available time series data, 

the index ℓ spans the set of groups, and group ℓ includes the values of k associated with the ℓ-
th group. In our study, such a representation is useful to group the K laws into the law 

domains of alcohol, safe driving, and impaired driving (ℓ = 1, 2, and 3), since inter-state 

influence likely varies across these domains. We then analyze the inter-state influences 

within these domains as if they were independent problems.
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We seek to establish a measure, so called union transfer entropy and denoted Iℓ(j → i), 
where i, j = 1, …, N and j ≠ i, quantifying the influence that Xjℓ(t) has on Xiℓ(t), in order to 

elucidate the contribution of state attributes on law enactment. This calculation examines 

whether or not the union of all law activity in one state over a historical horizon enables a 

better prediction of the law activity in another state.

3.1. Model-free measurement of inter-state influence from law activity

The procedure for measuring the directed influence from one state to another is divided into 

two parts. First, the law activity for a pair of states is used to form an empirical probabilistic 

representation of whether or not law activity tends to occur in one state on a particular day 

with respect to any recent law activity in both states. These probabilities are then 

incorporated into the calculation of a type of conditional mutual information between law 

processes of two states, which quantifies the information flow.

3.1.1. Calculation of empirical probabilities—Given two states i and j and a law 

variable k, a joint distribution on a triplet of law activity indicators over the horizon t = 1, …, 

T is formed based on a sliding window of length T̄ (see Figure 1) that includes

1. Whether or not any activity in law k occurred in state i on day t, which is given 

by the binary random variable xik(t);

2. Whether or not any activity in law k occurred in state i in the previous T̄ days 

following day t, which is denoted as ; and

3. The same as (2), but for state j, which is denoted as yjk(t).

This joint distribution P(xik(t), yik(t), yjk(t)) ∈ [0, 1] is estimated using the empirical 

frequencies of each possible binary outcome observed in the data as

(3.1)

To make the method less sensitive to noise, we combine the empirical distributions for all 

laws under a given group (law domains of alcohol, safe driving, or impaired driving) into 

joint distributions P(Xiℓ(t), Yiℓ(t), Yjℓ(t)), from which the conditional distributions P (Xiℓ(t)|
Yjℓ(t)) and P (Yiℓ(t)|Yiℓ(t), Yjℓ(t) are calculated through appropriate marginalizations and use 

of conditional probability formulae [58].

Considering the union yik(t) of law activity over the previous T̄ days allows for the method 

to account for processes which only a small number of events (where xik = 1) occur in a 

given window. On the other hand, if many events over a historical period are reduced to a 

value yik(t) = 1 by taking the union of events over such a window, valuable information that 

may help determine causality can be lost. As such, this method is expected to be more 

appropriate for slowly-varying processes.
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3.1.2. Calculation of conditional mutual information—The new measure of 

causality we use to identify information flow from state i to state j for group ℓ, denoted Iℓ(j 
→ i), is defined as

(3.2)

The information flow is the difference between two conditional entropies [42] H 
(Xiℓ(t)lYiℓ(t)) and H(Xiℓ(t)|Yiℓ(t), Yjℓ(t)), which can be computed as

(3.3)

(3.4)

where we choose the logarithm to be natural. The first term can be interpreted as the 

uncertainty in the prediction of the activity in the group ℓ in state i, given the union of all 

activity in group ℓ over a historical period in that state. The second term is the uncertainty in 

the same quantity, but in the case that the union of historical activity in group ℓ in another 

state is known. Thus, the interpretation of Iℓ(j → i) is as follows. If the uncertainty of the 

prediction of the process Xiℓ(t), given the union of all recent law activity in state i, is reduced 

by additionally conditioning on the union of all law activity in state j, then state j is said to 

have influence over state i. Hence, this measure is a type of “predictive causality.”

The non-negative quantity Iℓ(j → i) is directed (asymmetric), meaning that, in general, Iℓ(j 
→ i) ≠ Iℓ(i → j). A larger value of Iℓ(j → i) implies that knowledge of historical activity of 

group ℓ in state j improves the prediction of the activity in the group ℓ in state i. A smaller 

value of Iℓ(j → i) indicates the activity of group ℓ in state i is essentially independent of that 

in state j. While intertwined causal relationships among multiple states cannot be dismissed, 

our approach is tailored to pairwise interactions, whose detection can be afforded using the 

available data. Future work will seek to examine the relationship between data density and 

reconstructible features of the network topology. Rather than empirical evidence, this 

analysis should use comprehensive synthetic datasets, expanding on the model of law 

activity presented in what follows.

The information flow from state ℓ to state i in a group ℓ is the average of the information 

flows for the window sizes T̄ = 2, 3, 4, and 5 years. These horizons are based on an 

assumption of the amount of time required for one state’s law activity to influence that of 

another. Since the events in one time horizon also include the events in a shorter time 

horizon (e.g., Iℓ(j → i) for T̄ = 2 × 365 is based on events also found in Iℓ(j → i) for T̄ = 3 × 
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365), then this procedure places greater weight on short time delays between the activity in 

one state that may cause activity in another.

3.2. Comparison of inter-state influence (Equation 3.2) and transfer entropy

The new measure of information flow in Equation (3.2) is a type of conditional mutual 

information and shares many similarities with transfer entropy [21, 22, 25, 31, 32, 34, 35, 

59, 60], a celebrated measure of information flow between two processes. To ease 

comparison of transfer entropy and union transfer entropy, we consider just one group ℓ = 1 

consisting of a single law k = 1, so that Xiℓ(t) = {xi1(t)}, and we correspondingly simplify the 

notation of union transfer entropy in (3.2) as

(3.5)

Computation of the (one-step) transfer entropy from state j to state i, would entail the 

computation of

(3.6)

In order to include interactions with earlier law enactment events, transfer entropy can be 

expanded to include a history  of length r of the law 

enactments in state i, and the history  in state j, which is defined similarly, as

(3.7)

These conditional entropies, in turn, would require the estimation of the conditional 

distributions  and  from the law enactment data 

using the empirical frequencies of each observed joint occurrence of 

as in (3.1). Accurate estimation of the empirical frequencies of  for 

large r requires observation of long histories of time series xi(t) and xj(t), and accurate 

estimation of the conditional entropies in (3.7) requires even more data, as entropy 

estimators can be notoriously biased [61]. If the history length r were reduced back to r = 1, 

so that the transfer entropy could be estimated using (3.6), then almost all observed triplets 

(xi(t), xi(t − 1), xj(t − 1)) would be empty, as law enactments are rare events. We also find 

that downsampling a law enactment time series is too restrictive; transfer entropy 

computation using a year as a time step is not adequate.

Comparing (3.7) with (3.5), we remark that the influence between states considered in this 

work seeks to capture large histories of infrequently-changing state law enactment data, 

while still remaining computationally feasible. In light of the low rate of law activity over 
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the considered 31 year period, state influences are constructed on the basis of the union of 

historical law activity over a specified horizon.

3.3. Model of law activity for methodology validation

In order to validate the proposed methodology to infer directions of influence among states 

from xik(t), we propose a stochastic process to generate surrogate data based on a known 

network of influence among states. We describe in this section the formulation of the 

process and explain its parameters; the procedure to estimate these parameters from real data 

is illustrated in Appendix B.

We define a graph G = (V, E) comprised of a set of vertices V, one for each state, and a set 

of edges E such that if state j influences state i, then an edge from j to i is in E. The nodes j 
that can influence node i, that is, the nodes j for which an edge exists from j to i, is denoted 

as the set i. For expository purposes, we choose the network topology to be 1-out [62] 

regular, or ring-like, whereby state 1 influences state 2, state 2 influences state 3, and so on. 

In other words, i + 1 ∈ i for i = 1, …, 9, and 10 = {1}.

Next, a discrete-time stochastic process based on the graph G determines the law change 

events. On any given day, either no law activity occurs, or there is activity independent of 

other states, or the outcome (activity / no activity) is determined by that state’s connected 

neighbors, as defined by G. More formally, for each state i, i = 1, …, N, for each considered 

law k in that state, k = 1, …, K, and for each day t, t = 1, …, T, a binary variable xik(t) takes 

value 1 if the law k in state i was implemented, repealed, or experienced material change on 

day t, and it is 0 otherwise. A model with the following form encapsulates the law activity 

for the state i:

(3.8)

Here, νik(t) and ηik(t) are independent and identically distributed (i.i.d.) Bernoulli random 

variables with parameters α and β, respectively, and

(3.9)

is the most recent day before day t that state i experienced activity in law k.

Equation (3.8) implies that activity in law k is allowed to occur on day t only if νik = 1, 

which happens with probability α. Given that law activity is capable of occurring on day t, 
i.e., νik(t) = 1, then with probability β, that activity is independent of any neighbors (ηik(t) = 

1), while with probability 1 − β, xik(t) is determined by the law activity history of that state’s 

neighbors i. In this case, xik(t) takes value 1 if any neighbor j ∈ i has had activity in law 

k since state i has last displayed activity in law k. In other words, β describes the tendency 

for a state to act independently of others who might otherwise influence it. For simplicity, 

we assume that the values of a and β are constant and shared by all states.
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We choose the values of these parameters through an expectation maximization procedure 

[63] with real law activity data, as described in Appendix B. Note that in this approach, law 

activity is either random, or it is influenced by another state’s activity in the same category k 
(e.g., “NY beer tax rate” might influence “NJ beer tax rate”). Distinct laws types (e.g., “beer 

tax rate” and “Sunday ban”) are assumed to evolve independently across states. This 

assumption can be relaxed in favor of more complex forms of interactions, weighting the 

influence from multiples states’ law activities. Such an extension will be the subject of 

future work. An example of the possible routes to the outcomes in the present work is 

depicted in Figure 2. Equation (3.8) is simulated for N = 10 states and K = 38 laws with 

initial condition xik(1) = 1 for all i and k. After discarding the first 10 years of simulated 

data, 31 years (T = 11323) of law activity are collected.

3.4. Characterization of the relationship between inter-state dissimilarities and influences

A central element of our analysis is to understand the determining factors for inter-state 

influences, a more focused and less challenging task than fully reconstructing the topology 

of the interactions among states, which will be the objective of future studies. These 

determining factors are detected by comparing the influences estimated from the law data, 

using our new theoretical construct of union transfer entropy, to the dissimilarities between 

states (geographical and cultural dissimilarities, and differences in health outcomes, 

demographics, and economic factors; see Table 1). To perform a rigorous statistical analysis, 

we focus on a set of key hypotheses that can be verified through pairwise comparison of data 

partitioned in two clusters. For example, to ascertain if ideology is a key factor in 

determining the inter-state influence, we would partition state pairs on the basis of their 

relative degree of conservativeness or liberality, and then compare the overall influence of 

more conservative states on liberal states to the overall influence of more liberal states on 

conservative states.

More specifically, for real law activity, and for each of the directed dissimilarity measures 

υ(j → i) in Table 1, we assign directed pairs of states (j → i) to one of two clusters 

depending on the sign of the dissimilarity measure. For instance, if υI(j → i) < 0, then state j 
is on average more conservative than state i, and the directed pair (j → i) is placed in one 

cluster. Those states with υI(j → i) > 0 are placed in a second cluster. The median of the 

total influence of state j to state i for those state pairs in one cluster is compared against the 

median of the influence for those state pairs in the other with a Wilcoxon rank-sum test [64]. 

The threshold p < 0.05 is used for significance.

For the case of geographical distance υG(i, j), which is symmetric, those state pairs that 

share a border are placed in one cluster, and those state pairs that are not adjacent are placed 

in the other. Similarly, the red/blue distance υR/B(i, j) is a binary variable and is clustered by 

this value. To compare influence Iℓ(j → i), which is directed, to υG(i, j) and υR/B(i, j), which 

are symmetric, the union transfer entropy between two states is also symmetrized as Iℓ(i, j) = 

Iℓ(j → i) + Iℓ(i → j) to yield the total information flow Iℓ(i, j) between two states. The 

median of the total information flow for those state pairs in one cluster is compared against 

the median of the total information flow for those state pairs in the other with a Wilcoxon 

rank-sum test [64], with the threshold p < 0.05 for significance.
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In the case of simulated law activity, where the underlying network is known, the influences 

Iℓ(j → i) for those state pairs where j influences i are compared to those state pairs in which j 
does not influence i using a rank-sum test, with the threshold p < 0.05 for significance.

We also examine pairwise correlations between each of the dissimilarity measures across 50 

states to test for possible relationships between these measures. We compute the Pearson 

correlation coefficient [65] R for various each of the asymmetric dissimilarity measures in 

Table 1 (that is, all but υG(i, j) and υR/B(i, j)) and test its statistical significance using an R-

to-t conversion with subsequent t-test [65]. All analysis is performed in Matlab.

4. Results

4.1. Surrogate data shares similarities with real data and enables identification of causal 
relationships

Figure 3(a) depicts the dates in which the state excise tax rate on packaged beer by volume 

experienced any activity (enactment, change, or repeal) over the years 1980–2010 for 10 

states. Alongside these real data, in Figure 3(b) we generate surrogate activity for 10 states 

for the years 1980–2010 using the developed stochastic process, where a rule for state-to-

state influences is chosen such that state 1 can influence state 2, state 2 can influence state 3, 

and so on, where the final state 10 can influence state 1. The underlying influences (state 1 

influences 2, and so on) that resulted in policy adoption in the simulated data are highlighted 

in with pairs of hatch marks. Comparing Figure 3(a) and Figure 3(b), we note a similar 

sparse pattern, illustrating quantitative and qualitative similarities between law enactment 

activities and surrogate data from the stochastic model.

4.2. Union transfer entropy reveals the influences underlying a surrogate dataset

Figure 3(c)–(d) shows the computed union transfer entropy Iℓ(j → i) for the ten states or 

nodes in Figure 3(a)–(b) based on real or simulated data. The union transfer entropy Iℓ(j → 
i) from state j to state i, where i ≠ j = 1, …, 50, and group ℓ (either alcohol regulations, 

driving regulations, or impaired driving regulations) is positive if the ability to predict the 

law activity of state i is improved by knowledge of the historical law activity of state j. Like 

the true influences that determine the simulated law activity, Iℓ(j → i) is a directed quantity 

and is designed to be larger if state j influences state i in the true topology of interaction that 

underlies the simulated law activity. Figure 3(c)–(d) shows the computed union transfer 

entropy Iℓ(j → i) for the ten states or nodes in Figures 3(a)–(b) based on real or simulated 

data. Comparing the estimates Iℓ(j → i) from simulated data, a Wilcoxon rank sum test [64] 

reveals that state pairs (j → i) that also exist in the surrogate model yield higher union 

transfer entropy estimates Iℓ(j → i) (z = 3.73, p < 0.05). To examine the effect of the 

duration of the observed activity on this comparison, we also simulate law activity in 10 

states for the years 1920–2010. State pairs that exist in the ring-like topology are found to 

consistently display higher union transfer entropy (z = 3.02, p < 0.01), see Figure 4.

4.3. Union transfer entropy measured from real law activity relates to state dissimilarity

The union transfer entropy from state j to state i is computed for the law domains (groups) of 

alcohol, safe driving, and impaired driving, and for all 50 states. We group pairs of states 
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based on measures of dissimilarity between them that capture competing hypotheses on the 

mechanisms behind law activity. For instance, we group together state pairs in which state j 
is, on average, more ideologically conservative than state i; the union transfer entropy 

estimates Iℓ(j → i) of this group are compared against those of state pairs where j is, on 

average, more liberal than state i. The complete list of the 10 measures of dissimilarity we 

consider and the methodology utilized for clustering state pairs based on these measures, is 

found in Table 1. By focusing on such fundamental relationships between state pairs, instead 

of only the estimated value of the union transfer entropy, we seek to reduce the potential for 

spurious relations [67] among states, which may influence our ability to discern key factors 

in policy diffusion.

Figure 5 shows that union transfer entropy in the alcohol regulation domain is greater for 

two states that share a border (Wilcoxon rank sum test; z = 2.05, p < 0.05). Union transfer 

entropy in the alcohol regulation domain is larger in the direction from state j towards state i 
if state i is, on average, more liberal than state j (z = −2.75, p < 0.01); the opposite is true for 

the driving domain (z = 6.086, p < 0.0001) and the impaired driving domain (z = 6.99, p < 

0.0001). Impaired driving laws show a slight tendency to cross the ideological divide (z = 

−2.11, p < 0.05). However, for alcohol and driving, we observe no significant difference 

between the union transfer entropy estimates for two states that share the same political 

ideology and those states whose ideologies differ (z = −0.15, p = 0.88 alcohol; z = 1.09, p = 

0.27 driving). Note that these estimates are blind to the content of the laws and are computed 

without regard for the possibility that the enacted laws embody a particular ideology.

Figure 6 illustrates that in terms of variation in health outcomes, alcohol, driving, and 

impaired driving policies all yield higher union transfer entropy in the direction of states 

with higher deaths due to motor vehicle collisions per capita than in the opposite direction (z 
= −2.02, p < 0.05 alcohol; z = −5.37, p < 0.0001 driving; z = −3.12, p < 0.001 impaired 

driving). Moreover, alcohol domain union transfer entropy is higher in directions towards 

states with less ethanol consumption per capita (z = 3.86, p < 0.0001).

Alcohol regulations also show greater influence on states with greater populations (z = 

−2.44, p < 0.01) and populations densities (z = −2.73, p < 0.001); the opposite is true for 

driving regulations (z = 3.31, p < 0.001; z = 8.14, p < 0.0001), see Figure 7. Union transfer 

entropy in driving regulations is also larger in directions towards states with higher numbers 

of motor vehicle registrations per capita (z = −6.06, p < 0.0001). These directions for driving 

regulation flow are matched by those of impaired driving, which also flow towards less 

population density (z = 4.43, p < 0.0001) and more MV registrations (z = −1.97, p < 0.05).

Based on economic indicators, we find that union transfer entropy is larger in the direction 

towards states with higher gross domestic product (GDP) for alcohol (z = −2.11, p < 0.05), 

and away from high GDP for driving regulation (z = 3.83, p < 0.0001) and impaired driving 

regulations (z = 1.78, p < 0.05), see Figure 8. Finally, both alcohol regulation influence and 

impaired driving influence tend to flow towards states with a higher percentage of people 

below the federal poverty line (z = −3.99, p < 0.0001 alcohol; z = −2.62, p < 0.01 impaired 

driving).
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To examine confounding factors in the revealed relationships between union transfer entropy 

estimates and the selected measures of dissimilarity, we also explore correlations between 

each of them. The Pearson correlation coefficient between each of the dissimilarity measures 

for all pairs of states is found in Table 2. Note that these are not direct correlations between 

state factors, such as population and GDP, but rather the correlation in differences in these 

factors across the pairs of states. For instance, this table shows that if one state has a higher 

GDP than another, then that state is (unsurprisingly) also likely to have a higher population 

(R = 0.99).

5. Discussion

In this study, we present a model-free method to uncover the existence and direction of 

influences among states in their regulation of alcohol, driving safety, and impaired driving, 

based solely on the times at which their legislative bodies enact specific laws. This approach 

offers a new method for the analysis of complex dynamical systems, tailored for slow time-

scale processes. Using this method, we examine a series of competing hypotheses that have 

arisen in earlier works to explain the mechanisms behind the diffusion of policy. However, in 

contrast with these previous studies, our approach does not assume a functional relationship 

between the timing or number of law adoption events and these mechanisms. Instead, we 

concentrate on measuring the influence of one law state’s enactment process on another in 

terms of the information flow between the states, laying the foundation for causal analysis in 

the realm of state public health policy adoption. Given the size of the dataset, we focus on 

general state-level behavioral rules constructed on the basis of state characteristics and inter-

state variation, rather than independent evolution of state laws. The latter would require a 

considerably larger dataset, representing a longer history.

Through comparisons of union transfer entropy estimates with corresponding differences in 

state attributes, we confirm that internal state characteristics play a significant role in the 

adoption of alcohol, safe driving, and impaired driving policies, as posited in [10]. In 

addition, the alignment of the differences in attributes between two states with the direction 

of influence between them often favors one of two competing hypotheses. For example, 

results suggest that alcohol regulations in two adjacent states are more likely to be 

influenced by one another. This is supported by a number of previous studies that relate a 

state’s adoption of a novel policy to the policies of its neighbors [10, 11, 68], which is, in 

turn, thought to be caused by a combination of learning [5], economic pressures driven by 

contiguity [8], and the similarity of problems faced by nearby states.

However, we find that geographic adjacency is not the only factor driving the influences 

behind the policy adoption process. The fact that all three considered regulatory domains 

(alcohol, safe driving, and impaired driving) reflect influences towards states with a higher 

MVC death rate suggests that health outcomes may form the backbone behind the diffusion 

of these regulations. This finding may be due to a mimetic tendency for one state to emulate 

the policies of other states that were proven successful in modulating specific health 

concerns, a process that is commonly discussed as a driver of policy diffusion [4]. 

Alternatively, it may be hypothesized that states with a higher MVC death rate are more 

receptive to laws that might address the problem, irrespective of their source.
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Regarding variation in a state’s political ideology, our findings suggest that liberal states are 

more likely to be influenced by conservative states on alcohol regulation than vice versa. 

However, we observe no greater influence between two states of opposite ideology than 

between two states that share the same ideology. This is in contrast to some previous works, 

which suggest that policy may diffuse through pathway s of shared beliefs and identities [69, 

70]. For alcohol policy, at least, our results posit that states may be willing to reach across 

the ideological divide for policy solutions or even emulate a neighbor on the opposite side of 

the political spectrum. It may also be proposed that liberal states are more receptive to 

alcohol regulation, and therefore more susceptible to influence from other states, including 

those that do not share their political orientation.

An opposite effect is found in driving and impaired driving regulations, where politically 

conservative states are more likely to receive influence from liberal states than the other way 

around. This finding may potentially be ascribed to a willingness in liberal states to venture 

into driving regulation, while conservative states trail. However, conservative states bear on 

average a higher MVC death rate [71], and thus it can be hypothesized that a desire to 

reduce such figures may prompt policy emulation. Other state descriptors that are shown to 

have a bearing on the direction of influence may similarly be attributed to a higher rate of 

death due to MVCs. Considering non-negligible correlations between the measures of 

dissimilarity used in this study, a higher MVC death rate in one state is also associated with 

a higher conservativeness, lower population, lower population density, lower GDP, and a 

larger number of individuals below the poverty line. Indeed, a number of these factors are 

associated with a greater flow of influence into a state. For example, driving regulation 

influence tends in the direction of a state with a lower GDP, lower population, less 

population density, and more MV registrations per capita. While the cause of such 

correlations may be speculated about (for instance, places with lower population density 

have households with more motor vehicles largely because they more are dependent on 

them), they also hinder the ability to discern the relative role of the individual factors.

In all six measures of state dissimilarity in which a union transfer entropy estimate was 

significantly larger in one direction, that direction was reflected both in safe driving domains 

and impaired driving domains. While impaired driving may be interpreted as a middle 

ground between alcohol regulation and safe driving regulation, our results suggest that states 

learn impaired driving regulation from others in the same way that they learn safe driving 

regulation. On the other hand, factors underlying the directions of influence are shared 

between alcohol and impaired driving regulations in only two out of five cases (deaths per 

VMT and % poor).

Overall, this study demonstrates the feasibility of testing policy diffusion hypotheses using a 

model-free notion of state interactions that relies only on law activity data. In applying this 

method to analyze states’ political landscapes, any potential confounding variables, such as 

global media outlets or political movements at the federal level, are likely to affect multiple 

states at once and will thus be filtered by the proposed scheme. Moreover, different from 

some recent techniques to measure causality from time series data [22], our method can 

naturally handle law activity occurring over long historical periods with relatively little 

regulatory activity, and is therefore tailored to the slow rate of change of state-wide policy. 
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We anticipate that this method may find use in the analysis of complex systems beyond 

public policy, including the causal analysis of rare or extreme events in finance [72], ecology 

[73], and international relations [74].

Our findings naturally give rise to additional questions about the dynamics of the law 

adoption, be it learning, emulation, or even competition [7, 8], and on the role of more 

complex relationships [75] among states. However, in order to fully capture the influences 

among states using these methods, a vast catalog of daily law activity is needed. This 

suggests that further study of causal relationships and variation in policy adoption across 

legislative bodies could benefit from additional, high-resolution data comprising daily law 

activity. Moreover, it hints at future challenges in properly dissecting local, state, federal, 

and even international [76, 77] policy trends to better understand the phenomena that control 

the dynamics of these processes. Further insight into this complex landscape could be 

obtained by including steps supervised by human experts in our data-driven analysis, toward 

quantifying the significance of individual law activities and, possibly, determine hierarchical 

relationships among them.
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Appendix A

Laws considered for analysis

Tables Al, A2, and A3 list the laws considered for analysis along with their sources. While 

the authors largely relied on secondary sources summarizing the laws, the law data were 

often supplemented by original legal research to cover any missing historical versions or 

specific elements of the laws. Using the citation of the relevant statutes provided in 

secondary sources, the authors — one of whom has formal legal training — retrieved the full 

texts of the current statutes and their historical versions from online legal databases Westlaw 

and Hein Online. The laws in the Tables below that do not indicate a secondary source were 

obtained entirely based on original legal research undertaken by the authors.

Table Al

Selected laws in the domain of alcohol regulation used in analysis. The number of states 

enacting related laws in 1980–2010 is given in parentheses.

Domain Policy Law Source

Alcohol Regulation

Beer tax State excise tax on packaged beer (30) [78]

Dramshop liability

What kind of knowledge/action by the vendor is required 
for there to be liability in civil action (20)

What kind of knowledge/action by the vendor is required 
for there to be liability under criminal or administrative 
law (8)
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Domain Policy Law Source

What kind of responsibility is imposed upon the liable 
vendor (32)

Host liability

Presence of laws that impose liability against individual 
social hosts responsible (23)

[79]

Whether the law applies to underage parties or all parties 
(24)

[79]

Whether the law applies to residential, outdoor, or other 
properties (24)

[79]

Whether the law holds hosts responsible based on 
underage guests; consumption of alcohol, or if possession 
is enough (24)

[79]

Whether the law exempts family members and/or non-
owner residents of the property (24)

[79]

Keg registration Presence of regulations for registering purchased kegs 
(31)

[80, 81]

Alcohol sales ban on 
Sundays

Presence of a law prohibiting purchase of alcohol on 
Sundays (7)

[82]

Table A2

Selected laws in the domain of general driving safety regulations used in analysis. The 

number of states enacting related laws in 1980–2010 is given in parentheses.

Domain Policy Law Source

General Driving Regulation

Distracted driving

Restrictions on cell phone talking while 
driving (32)

[83]

Restrictions on texting while driving (39) [83]

Primary Enforcement of talking and texting 
restrictions (38)

[83]

Driver protection Presence of a law that requires safety belt use 
for all passengers (49)

[84–86]

Primary enforcement of seatbelt law for 
everyone in the car (34)

[86]

Maximum fine for seatbelt non-use (1st 
offense) (49)

[86]

Presence of a law that decreases monetary 
awards for injuries in lawsuits for seatbelt 
non-use (16)

[86]

Graduated Driver’s 
License (GDL) programme

Minimum entry age or learner’s permit (50) [87]

Required minimum number of days one must 
hold a learner’s permit (50)

[87]

Required minimum hours of supervised 
driving (44)

[87]

Required minimum hours of supervised 
driving after completing driver education (40)

[87]

Required minimum hours of night time or 
inclement weather practice hours (37)

[87]

Minimum age at which one can obtain a 
license (50)

[87]
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Domain Policy Law Source

Whether night time unsupervised driving is 
restricted with a learner’s permit (48)

[87]

Earliest time at which nighttime driving 
restriction may be lifted (33)

[87]

Minimum age at which night time driving 
restriction may be lifted (48)

[87]

Enforcement priority for GDL nighttime 
driving restriction law (48)

[87]

Whether the state bans teenage passengers for 
a certain period (15)

[87]

Minimum age at which a driver can have a 
teenage passenger in the vehicle (15)

[87]

Enforcement priority for GDL teenage 
passenger restriction law (15)

[87]

Child restraints

Whether use of a child restraint is regulated 
(49)

[88]

Whether use of a child restraint for infant 
passengers is regulated (50)

[88]

Whether use of a child restraint for toddlers is 
covered (50)

[88]

Whether use of a child restrain is covered for 
booster seat age children (48)

[88]

Primary enforcement of child restraint laws 
(49)

[88]

Whether children must be seated in the back 
of the vehicle (15)

[88]

Primary enforcement of rear seating for 
children (13)

[88]

Table A3

Selected laws in the domain of impaired driving regulations used in analysis. The number of 

states enacting related laws in 1980–2010 is given in parentheses.

Domain Policy Law Source

Impaired Driving Regulation

Open container Whether open containers of alcohol are banned in MV 
passenger compartments (34)

[89]

Zero tolerance

Whether a zero tolerance law applies (50) [90]

The age below which zero tolerance law applies (50) [90]

The BAC level for charging offender under zero tolerance 
law (50)

[90]

DUI penalties

Blood alcohol concentration level above which a person 
is presumed to have been driving under the influence (49)

[90]

Whether imprisonment is part of mandatory penalty for 
first-time DUI offenders (24)

Minimum number of days the first-time DUI offender 
must serve in prison (27)

Whether imprisonment is part of mandatory penalty for 
second-time DUI offenders (30)
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Domain Policy Law Source

Minimum number of days the second-time DUI offender 
must server in prison (36)

Whether penalty license suspension is mandatory for 
first-time DUI offenders (30)

The minimum number of days the licenses of the first-
time DUI offender must be suspended (38)

Whether penalty license suspension is mandatory for 
second-time DUI offenders (32)

The minimum number of days the licenses of the second-
time DUI offender must be suspended (39)

Whether a fine is mandatory for first-time DUI offenders 
(26)

Minimum fine for first-time DUI offenders (45)

Whether a fine is mandatory for second-time DUI 
offenders (28)

Minimum fine for second-time DUI offenders (43)

Appendix B

Estimation of model parameters from real law activity data

In estimating the parameters a and β in (3.8) from real law activity data, the enactment 

events xik(t) must be attributable to one of the pathways to enactment depicted in Figure 2. 

However, for the real regulation time series, it is not known in advance which events are due 

to the law history of a state’s neighbors and which are due to internal processes. Under this 

incomplete-data scenario, we employ the expectation maximization algorithm [63] to 

estimate the parameters α and β from the law enactment data. We introduce a latent variable 

θik(t) that takes value 1 if any neighbor j ∈ i has made a change in law k in the last τik(t) 
days, and value 0 otherwise. The probability P(θik(t) = 1) is denoted γ. The full conditional 

likelihood of [x11(1), …, xNK(T)] and [θ11(1), …, θNK(T)] can be written as

(5.1)

The estimation step [63] yields an update as
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(5.2)

For the maximization step, we numerically maximize the sum of the log likelihood and a 

linear penalty on β:

(5.3)

The penalty on β is selected to avoid having the EM algorithm attribute all law enactment 

events to random internal processes (with α = Σi,k,t xik(t)/NKT) and β = 1). We fit the law 

enactment data corresponding to the alcohol regulation domain (Table A1) to the model, 

resulting in parameter estimates α = 1.58 × 10−4 and β = 0.613.
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Figure 1. 
Process for computing union transfer entropy. (a) A sliding window considers the activity in 

state A (grey), the union of all activity in a historical period in state A (beige), and the union 

of all activity in the same historical period in state B (beige). (b) The outcome is tabulated 

for each position of the sliding window. (c) A histogram of the frequency of each possible 

outcome is computed based on the available data as in Equation (3.1). (d) The (union 

transfer entropy-based) influence from state B to state A is computed based on these 

probabilities as in Equation (3.2).
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Figure 2. 
Flowchart depicting the possible outcomes of xik(t) based on the history of law k in state i 

and its connected neighbors j ∈ i where w.p. stands for with probability. The pathway for 

xik(t) is determined by the probabilities α and β, as well as the law activity in states j ∈ i, 

for law k.
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Figure 3. 
Law activity of the beer tax rate of a sequence of 10 states selected at random but in 

alphabetical order (a) and simulated data (b). Each vertical line corresponds to the 

occurrence of law activity, and the absence of a line indicates no activity for each day t in 

1980–2010. Simulated enactments in (b) are based on an underlying network in which state 

1 influences state 2, state 2 influences 3, and so on (a ring-like topology). Pairs of law 

enactments that occurred due to a causal interaction are highlighted in one, two, and three 

hatch marks; for example, node 7 influences node 8 around 1988 and again, independently, 

in 2001. Corresponding reconstructed networks (c)–(d), with edge opacity selected from the 

strength of union transfer entropy computed using data for K = 11 laws. Edges are directed, 

as indicated by arrow heads and the curvature of the edges; for clarity, only edges in the 85th 

percentile are drawn. The graph edit distance [66] between the ring-like graph and the 

unweighted version of (d), which is the proportion of edge edits required to transform one 

graph to the other, is 5. 6%.
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Figure 4. 
Measured influence Iℓ(j → i) for simulated data in Fig. 3(b), and for data with the same rate 

as Fig. 3(b) but for years 1920–2010 (91 years). Grey bars indicate information flow 

measured for two states that are connected in the known underlying network, and white 

estimates correspond to states that are not connected. Asterisks * and ** indicate 

significance at the p < 0.05, and p < 0.01 levels, respectively. Error bars denote standard 

error.
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Figure 5. 
Information flows between adjacent states and toward liberal states in the realm of alcohol 

regulation, while both driving and impaired driving regulations flow toward conservative 

states. Mean influence Iℓ(i, j) or directed influences Iℓ(j → i) for alcohol (left), driving 

(middle), and impaired driving (right) law domains are clustered by state geographical and 

ideological similarity. Asterisks *, **, and *** indicate significance at the p < 0.05, p < 0.01, 

and p < 0.001 level, respectively. Error bars denote the standard error.
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Figure 6. 
Influence in alcohol, driving, and impaired driving flows towards states with a higher MVC 

death rate. Mean directed influences Iℓ(j → i) are clustered by health outcomes, organized in 

the same manner as Fig. 5.
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Figure 7. 
The direction of flow for driving and impaired driving often differs from the directions 

found in alcohol policy. Mean directed influences Iℓ(j → i) are clustered by population, 

organized in the same manner as Fig. 5
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Figure 8. 
Driving and impaired driving regulations flow toward states with a lower GDP. Mean 

directed influences Iℓ(j → i) are clustered by economic indicators, organized in the same 

manner as Fig. 5.
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Table 1

Measures of dissimilarity between states.

Dissimilarity Description Clustered by Ref.

Geographical υG (i, j) Smallest number of border crossings required to 
travel from one state to another

Whether states are adjacent (υG (i, j) = 1)

Ideological υI (j → i) Total difference between the political ideology of 
state i from state j over the years 1980–2010, υI (j 
→ i) = Σyear r ideologyi (r) − ideologyj (r), based 
on the average ideological position of that state’s 
elected officials, including the governor and the 
major party delegations in each house of the 
state’s legislative bodies.

If state j is, on average, more liberal / 
conservative (υI (j → i) > 0 / υI (j → i) < 0)

[50]

Red/blue distance υR/B 
(i, j)

If two states are on average on different sides of 
the ideological divide (the mean ideology in a 
given year) over 1980–2010

Whether states are more often than not on 
different sides (υR/B (j → i) = 1).

[50]

Motor vehicle deaths υD 
(j → i)

Difference between the sum over 1980–2010 of 
the number of deaths due to MVCs per vehicle 
miles traveled (VMT) in state i and that of state j

Whether state j has higher / lower total deaths 
per VMT (υD (j → i) > 0 / υD (j → i) < 0)

[51]

Alcohol consumption υA 
(j → i)

Difference between the sum over 1980–2010 of 
the gallons of ethanol consumed per capita (≥ 21 
years) consumed in state i and that of j

Whether state j consumes in total more / less 
EtOH (υAj → i > 0 / υA (j → i) < 0)

[52]

Population size υP (j → 
i)

Sum over 1980–2010 of the difference in total 
populations of states i and j

Whether state j has a higher/lower population on 
average (υP (j → i) > 0 / υP (j → i) < 0)

[53–55]

Population density υPD (j 
→ i)

Sum of the differences over 1980–2010 of the 
total population per square mile of the state i and 
that of j

Whether j has higher / lower population density 
on average (υPD (j → i) > 0 / υPD (j → i) < 0)

[54, 55]

Motor vehicle 
registration rate υV (j → 
i)

Sum over 1980–2010 of the differences in the 
number of motor vehicle registrations per capita in 
states i and j

Whether j has on average higher / lower 
registered vehicles per capita than i (υV (j → i) 
> 0 / υV (j → i) < 0)

[56]

Gross domestic product 
(GDP) υGDP (j → i)

Sum over 1980–2010 of the differences of the 
GDPs of states i and j

Whether j has higher / lower GDP on average 
than state i (υGDP (j → i) > 0 / υGDP (j → i) < 0)

[57]

Percent state population 
below poverty threshold 
υ%P (j → i)

Sum of the differences in the percentage of people 
with yearly income below the federal poverty line 
for states i and j

Whether j has a higher / lower percentage of 
poor than i (υ%P (j → i) > 0 / υ%P (j → i) < 0)

[53]

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2017 October 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anderson et al. Page 32

Ta
b

le
 2

Pe
ar

so
n 

co
rr

el
at

io
n 

co
ef

fi
ci

en
ts

 R
 b

et
w

ee
n 

di
ff

er
en

t d
is

si
m

ila
ri

ty
 m

ea
su

re
s 

ap
pl

ie
d 

to
 a

ll 
pa

ir
w

is
e 

co
m

bi
na

tio
ns

 o
f 

50
 s

ta
te

s.
 S

ig
ni

fi
ca

nt
 c

or
re

la
tio

ns
 (

p 
<

 

0.
05

) 
ap

pe
ar

 in
 b

ol
d. M

or
e

lib
er

al
H

ig
he

r
de

at
h

ra
te

M
or

e
E

t 
O

H
M

or
e

po
p.

M
or

e
po

p.
de

ns
it

y

M
or

e
M

V
re

gs
.

H
ig

he
r

G
D

P
M

or
e 

%
po

or

M
or

e 
lib

er
al

1
−0

.3
5

0.
04

0.
03

0.
47

−0
.4

3
0.

07
−0

.1
3

H
ig

he
r 

de
at

h 
ra

te
−0

.3
5

1
−0

.0
5

−0
.1

9
−0

.5
6

0.
07

−0
.2

3
0.

74

M
or

e 
E

tO
H

0.
04

−0
.0

5
1

−0
.1

1
0.

02
0.

06
−0

.0
8

−0
.4

1

M
or

e 
po

p.
0.

03
−0

.1
9

−0
.1

1
1

0.
19

−0
.3

3
0.

99
0.

13

M
or

e 
po

p.
 d

en
si

ty
0.

47
−0

.5
6

0.
02

0.
19

1
−0

.3
6

0.
22

−0
.3

3

M
or

e 
M

V
 r

eg
s.

−0
.4

3
0.

07
0.

06
−0

.3
3

−0
.3

6
1

−0
.3

3
−0

.1
3

H
ig

he
r 

G
D

P
0.

07
−0

.2
3

−0
.0

8
0.

99
0.

22
−0

.3
3

1
0.

09

M
or

e%
 p

oo
r

−0
.1

3
0.

74
−0

.4
1

0.
13

−0
.3

3
−0

.1
3

0.
09

1

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2017 October 24.


	Abstract
	1. Introduction
	2. Datasets
	3. Union transfer entropy for inferring causality among states
	3.1. Model-free measurement of inter-state influence from law activity
	3.1.1. Calculation of empirical probabilities
	3.1.2. Calculation of conditional mutual information

	3.2. Comparison of inter-state influence (Equation 3.2) and transfer entropy
	3.3. Model of law activity for methodology validation
	3.4. Characterization of the relationship between inter-state dissimilarities and influences

	4. Results
	4.1. Surrogate data shares similarities with real data and enables identification of causal relationships
	4.2. Union transfer entropy reveals the influences underlying a surrogate dataset
	4.3. Union transfer entropy measured from real law activity relates to state dissimilarity

	5. Discussion
	Appendix A
	Table Al
	Table A2
	Table A3
	Appendix B
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2

