
ar
X

iv
:1

50
5.

04
34

4v
2

 [
cs

.D
M

]
 3

 F
eb

 2
01

6

On the maximum quartet distance between phylogenetic trees

Noga Alon ∗ Humberto Naves † Benny Sudakov ‡

Abstract

A conjecture of Bandelt and Dress states that the maximum quartet distance between any

two phylogenetic trees on n leaves is at most (2
3
+ o(1))

(

n

4

)

. Using the machinery of flag algebras

we improve the currently known bounds regarding this conjecture, in particular we show that

the maximum is at most (0.69 + o(1))
(

n

4

)

. We also give further evidence that the conjecture is

true by proving that the maximum distance between caterpillar trees is at most (2
3
+ o(1))

(

n

4

)

.

1 Introduction

The practice of phylogenetic tree reconstruction to hypothesize various aspects of evolutionary rela-
tionships among different species of organisms has become a central problem in molecular biology.
For instance, the “Tree of Life” project [15] aims, among other things, to accurately construct a tree
representing the evolutionary history of the organismal lineages as they change through time.

A phylogeny (the evolutionary history of a set of species) is usually represented by a tree where
the species under study are mapped to the leaves of the tree and the tree-structure represents the
different evolutionary relationships among them. Here we focus solely on undirected (or unrooted)
phylogenetic trees. In this setting, the underlying tree is not directed and each non-leaf node is
incident to exactly three edges. The basic unit of information for phylogenetic classification is the
quartet, which is an undirected phylogenetic tree having exactly four leaves. We denote a quartet
over the leaves {a, b, c, d} as [ab|cd] whenever there is an edge in the underlying tree separating the
pair {a, b} from the pair {c, d}, as Figure 1 shows. Note that a phylogenetic tree defined over a taxa
(species) set of size n contains the information of exactly

(

n
4

)

quartets.

a

b

c

d

Figure 1: A quartet.

Studying quartets is of prime importance not only because they are the smallest informational
units induced by a phylogeny, but also because they play a major role in many reconstruction

∗Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,

Israel and School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540. Email: nogaa@tau.ac.il.

Research supported in part by a USA-Israeli BSF grant, by an ISF grant, by the Israeli I-Core program and by the

Oswald Veblen Fund.
†Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, USA. Email:

hnaves@ima.umn.edu. This research was supported in part by the Institute for Mathematics and its Applications with

funds provided by the National Science Foundation.
‡Department of Mathematics, ETH, 8092 Zurich. Email: benjamin.sudakov@math.ethz.ch. Research supported

in part by SNSF grant 200021-149111 and by a USA-Israeli BSF grant.

1

http://arxiv.org/abs/1505.04344v2

methods. Among them, the quartet-based reconstruction is perhaps the most basic and most studied
approach (see e.g. [5, 6, 12, 13, 22, 23, 25]). The task of the quartet-based reconstruction is to
find a tree over the full set of species that satisfies most of the given input quartets. In its full
generality this problem is very difficult as Steel [24] has shown that even deciding if there is a tree
that satisfies all the input quartets is NP-complete. To aggravate matters, even the ideal case in
which all quartets agree on a single tree is very rare. Thus a natural problem arises, namely, finding
a tree maximizing the number of compatible quartets — maximum quartet compatibility (MQC) [21].
As MQC is obviously NP-hard, several approximation algorithms have been sugested. However, the
best known approximation to the general problem is still obtained by a naive “random labelling of
the leaves of a tree” with expected approximation ratio of 1/3.

Related to the problem of compatibility is the concept of quartet distance [9]. This notion is used
to measure similarity of two different phylogenetic trees by means of counting how many quartets
are compatible to both of them. More specifically, if T1 and T2 are two phylogenetic trees on n
leaves, let qd(T1, T2) denote the difference between

(

n
4

)

and the number of quartets compatible to
both T1 and T2. With this definition in mind, a natural question emerges: what is the maximum
quartet distance between two phylogenetic trees on n leaves? Somewhat surprisingly the answer is
strictly smaller than

(

n
4

)

. Bandelt and Dress [4] showed that the maximum is always strictly smaller
than 14

15

(

n
4

)

for n ≥ 6. They also conjectured that the ratio between the maximum quartet distance
and

(

n
4

)

converges to 2
3 as n tends to infinity.

Conjecture 1.1 (Bandelt and Dress). The maximum quartet distance between two phylogenetic
trees on n leaves is

(

2
3 + o(1)

) (

n
4

)

.

Alon, Snir, and Yuster [1] further improved the bounds on the maximum quartet distance.
Namely, they proved that the maximum is always strictly larger than 2

3

(

n
4

)

but asymptotically
smaller than 9

10

(

n
4

)

. The lower bound of 2
3

(

n
4

)

can be again obtained by the same “random labelling
of the leaves” argument, thus Conjecture 1.1 implies that the average distance between two random
trees is asymptotically the same as the maximum distance. We also remark that the problem of
maximizing the quartet-distance between trees can be rephrased as how much a compatible set of
quartets can be violated, which is the opposite of MQC.

The main contribution of this paper is the following statement, which we obtain using the
machinery of flag algebras developed by Razborov in [18].

Theorem 1.2. The maximum quartet distance between two phylogenetic trees on n leaves is at most
(0.69 + o(1))

(

n
4

)

.

As further evidence that 2
3

(

n
4

)

is the correct answer, we prove the following statement which
establishes Conjecture 1.1 when restricted to caterpillar trees. By caterpillar we mean a phylogenetic
tree having at most two vertices which are each adjacent to two leaves, as in Figure 2.

α

x1 x2 xn. . .

β

Figure 2: A caterpillar with n+ 2 leaves.

Theorem 1.3. The maximum quartet distance between two phylogenetic caterpillar trees on n leaves
is at most

(

2
3 + o(1)

) (

n
4

)

.

The set of all caterpillar trees is a simple yet very important subclass of phylogenetic trees. For
instance, the proof of NP-hardness of MQC by Steel [24] heavily relies on this particular subclass.

2

Namely, deciding if there exists a tree T that satisfies all the quartets in a given input set is NP-
complete even if we further assume that T is caterpillar.

The rest of this paper is organized as follows. In Section 2, we formally define all the relevant
notions in phylogenetics that were briefly mentioned in this introduction. In Section 3, we provide
an informal explanation of our main tool, flag algebras. In Section 4, we discuss some of the details
of the proof of Theorem 1.2 and provide a link to the program establishing the proof. In addition,
we give the proof of Theorem 1.3 in Section 5. Lastly, the final section contains some concluding
remarks and open problems.

2 Preliminaries

A trivalent tree is a tree in which all internal vertices (the non-leaves) have exactly three neighbors.
Whenever the leaves of such trees are labeled bijectively by a taxa (species) set X of size n, we shall
call them phylogenetic trees. Throughout this paper, unless stated otherwise, all trees are assumed
to be phylogenetic trees. For a tree T = (V,E), the set of leaves of T is denoted by L(T).

The removal of an edge e in a phylogenetic tree splits it into two subtrees, and thus induces a
split among the leaves of the tree. We identify an edge e by the split (U,L(T) \ U) it generates on
the set of leaves, and denote this split by Ue. As external edges (the ones adjacent to the leaves)
induce trivial splits, we consider only the ones induced by internal edges.

Let T be a tree and A ⊆ L(T) a subset of the leaves of T . We denote by T |A, the topological
subtree of T induced by A were all leaves in L(T) \ A and paths leading exclusively to them are
removed, and subsequently internal vertices with degree two are contracted.

For two trees T and T ′, we say that T satisfies T ′ (or , equivalently, that T ′ is satisfied by T),
if L(T ′) ⊆ L(T) and T |L(T ′) ≃ T ′, that is, the subgtree of T induced by L(T ′) is isomorphic to T ′.
Otherwise, T ′ is violated by T . Let T = {T1, . . . , Tk} be a set of trees with possibly overlapping
leaves, and denote by L(T) =

⋃

i L(Ti), the union of the set of leaves of all trees Ti ∈ T . Then for
a tree T with L(T) = L(T), we denote by Ts(T) the set of trees in T that are satisfied by T . We
say that T is compatible if there exists a tree T ∗ over the set of leaves L(T) that satisfies every tree
Ti ∈ T , i.e. Ts(T

∗) = T (see Figure 3). We denote by co(T) the set of trees that satisfy T (up to
isomorphisms), co(T) = {T : Ts(T) = T }.

1

2 3 4

5

1

2 3

4

1

3 4

5

Figure 3: A tree on five leaves and two quartets compatible with it.

Further, we say that T ∗ is defined by T if co(T) is the singleton {T ∗}. If there is no such
compatible tree T ∗, we say that T is incompatible (i.e., co(T) = ∅).

A quartet tree (or just a quartet for short), is a phylogenetic tree over four leaves {a, b, c, d}.
We denote a quartet over {a, b, c, d} as [ab|cd] if there exists an edge e whose corresponding split Ue

satisfies a, b ∈ U and c, d 6∈ U . Quartets are the most elementary informational unit in a phylogenetic
tree, as a pair corresponds to a path in a tree and a triplet to a vertex (the unique vertex in the

3

intersection of all the pairwise paths connecting the three leaves). Every phylogenetic tree T with
n leaves defines

(

n
4

)

quartets, one for each set of four leaves. Let Q(T) denote this full quartet set
of T . It is well-known that Q(T) uniquely defines T . In fact Colonius and Schulze [7] showed that
the following proposition holds.

Proposition 2.1 (Colonius and Schulze). Let Q be a full quartet set over n species. If every subset
of three quartets (a quartet triplet) is compatible, then Q is compatible and there exists a unique tree
defined by Q. In fact, if for every five taxa {a, b, c, d, e} the following holds:

{[ae|bc], [ae|cd]} ∩ Q 6= ∅ ⇒ ([ab|cd] ∈ Q ⇒ [be|cd] ∈ Q), (1)

then Q is consistent.

Lastly, we would like to briefly sketch the “random labelling of the leaves” argument. Let T be
any tree with n leaves labeled by a taxa set X . Consider a random bijection π between X and the
leaves of T . The corresponding labeled tree is denoted by T π. As each of the n! possible bijections is
equally likely, we notice that a quartet [ab|cd] with labels from X is satisfied by T π with probability
exactly 1/3. Thus, by linearity of expectation, we have:

Proposition 2.2. Let Q be an arbitrary set of quartets over a taxa set X of size n, and let T π be
a random bijection between the leaves of a tree T and X . The expected number of elements in Q
satisfied by T is |Q|/3.

As a consequence, we have the next statement.

Proposition 2.3. Let T1 and T2 be two random phylogenetic trees over the same taxa set X of
size n, sampled independently and uniformly at random. The expected value of the quartet distance
qd(T1, T2) is 2

3

(

n
4

)

.

3 Flag algebra calculus

In this section we provide a brief introduction to the technique of flag algebras. First introduced by
Razborov in [18], it has been applied with great success to a wide variety of problems in extremal
combinatorics (see, for example, [2, 3, 8, 10, 11, 16, 17, 19, 20] and many others).

We begin with a brief explanation on how to map the problem of finding the maximum quartet
distance into a problem in extremal combinatorics. We then proceed with a general overview of the
flag algebra calculus in the second subsection, by introducing some key definitions and providing
some intuition behind the machinery. The third subsection will show how we express extremal
problems in the language of flag algebras. It is neither our goal to be rigorous nor thorough, but
rather to emphasize that the combinatorial arguments behind the flag algebra calculus are as old as
extremal combinatorics itself. Indeed, the main tools available to us are double-counting and the
Cauchy-Schwarz inequality.

The flag algebra calculus is powerful because it provides a formalism through which the combina-
torial problem can be reduced to a semi-definite programming (SDP) problem. This in turn enables
the use of computers to find solutions, with rigorous proofs, to problems in extremal combinatorics.
For a more complete survey of the technique, we refer the reader to the excellent expositions in
[14] and [17], while for a technical specification of flag algebras, we suggest the original paper of
Razborov [18].

4

3.1 The model

In this section, the main object of interest is the tree-pair. From two phylogenetic trees T1 and T2

labelled by the same taxa set, we would like to create a simple object that “represents” the pair
(T1, T2) in such a way that we can still compute the quartet distance qd(T1, T2) from it. Note that
the actual set of labels (the taxa set) is irrelevant in the computation of this distance, so this object
shall have no labels at all. A natural and amenable definition comes to mind. A tree-pair D is
a pair of trivalent trees D = (T 1, T 2) (i.e., unlabelled phylogenetic trees) having the same set of
leaves but having no other vertex in common. In that case we write L(D) := L(T 1) = L(T 2). From
two phylogenetic trees T1 and T2 over the same taxa set, one can construct a tree-pair D in the
following way. We first identify leaves from T1 and T2 having the same label and we subsequently
remove labels from T1 and T2 altogether to obtain T 1 and T 2, respectively. We often represent a
tree-pair D = (T 1, T 2) by the graph T 1∪T 2 which is the union of T 1 and T 2, that is, V (T 1∪T 2) =
V (T 1)∪V (T 2) and E(T 1∪T 2) = E(T 1)∪E(T 2), with T 1 positioned “on top” of T 2. (see Figure 4).

1

2 3 4

5

T1:

1

3 2 5

4

T2:

Figure 4: Two trees over the same taxa set and the tree-pair formed by their union.

Two tree-pairs D = (T 1, T 2) and D′ = (T
′
1, T

′
2) are isomorphic if there exists an isomorphism

between the graphs T 1∪T 2 and T
′
1∪T

′
2 that maps vertices of T i to vertices of T

′
i for i = 1, 2, i.e., it

respects the component trees. To indicate that two tree-pairs are isomorphic we write D ≃ D′. For
a tree-pair D = (T ′

1, T
′
2) and a subset A ⊆ L(D), we write D|A to denote the sub-tree-pair induced by

A, that is, D|A := (T ′
1|A, T

′
2|A). Recall that to obtain T ′

1|A and T ′
2|A we keep the smallest subtrees of

T ′
1 and T ′

2 (respectivelly) containing the leaves in A. We subsequently delete one by one all vertices
of degree two by replacing the corresponding path of length 2 by an edge until all the vertices not in
A have degree 3. For two tree-pairs D and D′, if there exists a set A ⊆ L(D) such that D|A ≃ D′,
then we say that D contains an induced copy of D′.

There are only 2 non-isomorphic tree-pairs having exactly four leaves, namely id4 and cr4 (see
Figure 5).

id4: cr4:

Figure 5: The two non-isomorphic tree-pairs on 4 leaves.

A moments thought reveals that the quartet distance qd(T1, T2) can be computed as follows. Let
D = (T 1, T 2) be the tree-pair obtained by joining T1 and T2. Then qd(T1, T2) is simply the number
of induced copies of cr4 in D. Hence to prove Theorem 1.2, it suffices to show that the following is
true.

5

Theorem 3.1. Let D be any tree-pair on n leaves. The number of induced copies of cr4 in D is at
most (0.69 + o(1))

(

n
4

)

.

3.2 Definitions and notation in the calculus

The flag algebra calculus is typically used to find the extremal density of some fixed structure in a
given family of combinatorial objects. In our case (see Theorem 3.1), it will be used to maximize
the density of cr4 among all tree-pairs of size n, for n sufficiently large. While the theory of flag
algebras is very general and can be applied to several different types of problems, we will explain it
using only examples related to our particular setting.

A type σ is a labeled tree-pair using labels from [k], where k = |L(σ)|. That is, each leaf in L(σ)
is associated with a label from [k], where k is a nonnegative integer. The size of σ is the integer k,
and is denoted by |σ|. Figure 6 shows some examples of types.

1dot: 1 2diamond: 1 2 3star:

Figure 6: Examples of types.

In what follows, an isomorphism between tree-pairs must preserve any labels that are present.
Given a type σ, a σ-flag is a tree-pair F on a partially labeled set of leaves, such that the sub-tree-
pair induced by the labeled leaves is isomorphic to σ. The underlying tree-pair of the flag F is the
tree-pair F with all labels removed. The size of a flag is the number of leaves, that is, |L(F)|. Note
that when σ is the trivial type of size 0 (denoted by σ = 0), a σ-flag is just a usual unlabeled tree-
pair. We shall write Fσ

l for the collection of all σ-flags of size l (up to isomorphism). In Figure 7 we
list all flags in Fdot

4 . Let Fσ =
⋃

l≥|σ|F
σ
l . When the type σ is trivial, we shall omit the superscript

from our notation.

1id14: 1cr14:

Figure 7: Family Fdot
4 .

Let us now define two fundamental concepts in our calculus, namely those of flag densities in
larger flags and tree-pairs. Let σ be a type of size k, let m ≥ 1 be an integer and let {Fi}

m
i=1 be a

collection of σ-flags of sizes li = |Fi| ≥ k. Given a σ-flag F of order at least l = k +
∑m

i=1(li − k),
let A ⊆ L(F) be the set of labeled leaves of F . Now select disjoint subsets Xi ⊆ L(F) \ A of sizes
|Xi| = li−k, uniformly at random. This is possible because F has at least

∑

i(li−k) unlabeled leaves.
Denote by Ei the event that the σ-flag induced by A∪Xi is isomorphic to Fi, for i ∈ [m]. We define
pσ(F1, F2, . . . , Fm;F) := P [∩m

i=1Ei] to be the probability that all these events occur simultaneously.
If D is just a tree-pair of order at least l, and not a σ-flag, then there is no pre-labeled set of leaves

A that induces the type σ. Instead, we uniformly at random select a partial labeling L : [k] → L(D).
This random labeling turns D into a σ′-flag FL, where the type σ′ is the labeled sub-tree-pair induced
by the set of vertices L([k]). If σ′ = σ, we can then proceed as above, otherwise we say the events
Ei have probability 0. Finally, we average over all possible random labellings. Formally, let Y be

6

the following random variable

Y :=

{

pσ(F1, F2, . . . , Fm;FL) if σ′ = σ
0 otherwise

.

Define dσ(F1, . . . , Fm;D) := E[Y] as the expected value of the random variable Y . The quantities
pσ(F1, F2, . . . , Fm;F) and dσ(F1, F2, . . . , Fm;D) are called flag densities of {Fi}i∈[m] in F and in D,
respectively. Clearly these flag densities are the same whenever σ = 0, in which case we omit the
subscript from both notations.

To better illustrate these definitions, we give some examples. These flags are shown in Figure 8.

1Z:
W :

Figure 8: Example flags.

We turn to compute the flag densities of id14 and cr14 in the flag Z. For example, to compute
pdot(id

1
4;Z), note that to induce a copy of id14 we must choose exactly 3 other unlabeled leaves which

together with the labeled leaf 1 induce a copy of id14. There are
(6
3

)

= 20 ways to make the choice
of 3 unlabeled leaves, and out of the 20 exactly 15 induce a copy of id14, thus pdot(id

1
4;Z) = 3

4 .
Similarly we obtain pdot(cr

1
4 ;Z) = 1

4 . We can also compute the joint flag densities of multiple flags.
For instance, let us consider pdot(id

1
4, id

1
4;Z). In this case, we first choose a set X1 of 3 unlabeled

leaves uniformly at random and we subsequently choose a set X2 of 3 other unlabeled leaves also
uniformly at random. Since the choice of X2 is uniquely determined given the choice of X1, there
are exactly

(6
3

)

possible choices for the pair (X1,X2). Out of these 20 choices, one can count that
exactly 10 of them will be such that both X1 and X2 will induce a copy of id14 when we add
the labeled leaf. The order matters here: when computing p(F1, F2;F), the set X1 must induce
a copy of F1 while X2 must induce a copy of F2. Thus pdot(id

1
4, id

1
4;Z) = 1

2 . Similarly, we have
pdot(id

1
4, cr

1
4;Z) = pdot(cr

1
4, id

1
4;Z) = 1

4 and pdot(cr
1
4 , cr

1
4 ;Z) = 0.

The computation of flag densities ddot for unlabeled tree-pairs is a little more involved. To see
how to compute it, we consider W depicted in Figure 8 as an example. There are two non-isomorphic
dot-flags whose underlying tree-pair is W , namely W 1

1 and W 1
2 as shown in Figure 9.

1W 1
1 : 1W 1

2 :

Figure 9: dot-flags for W .

If we randomly label a leaf from W , then with probability 2
3 it will become W 1

1 and with
probability 1

3 it will become W 1
2 . Moreover, since p(id14;W

1
1) =

4
5 and pdot(id

1
4;W

1
2) =

3
5 , we have

ddot(id
1
4;W) = 2

3pdot(id
1
4;W

1
1) +

1
3pdot(id

1
4;W

1
2) = 11

15 . Similarly we have pdot(cr
1
4;W

1
1) = 1

5 and
pdot(cr

1
4 ;W

1
2) =

2
5 , hence ddot(cr

1
4;W) = 4

15 .
The reader might notice that there is an alternative way to compute, say, ddot(cr

1
4;W): we simply

compute the product of ddot(cr
1
4; cr4) · p(cr4;W) = 1 · 4

15 = 4
15 . In general, suppose as before that we

have a type σ of size k, a σ-flag F of size l ≥ k, and an unlabeled tree-pair D. To compute dσ(F ;D),

7

we averaged over all random partial labelings of D the probability of finding a flag isomorphic to
F . A simple double-counting argument shows that we can do the “averaging” before the random
labeling, which is the idea behind Razborov’s averaging operator, as defined in Section 2.2 of [18].
Let F |0 denote the unlabeled underlying model of F . We can compute dσ(F ;D) by first computing
d(F |0;D), the probability that l randomly chosen vertices in D form an induced copy of F |0 as a
sub-model. Given this copy of F |0, we then randomly label k of the l vertices, and compute the
probability that these k vertices are label-isomorphic to σ. This amounts to multiplying d(F |0;D)
by a normalizing factor qσ(F), that is, dσ(F ;D) = qσ(F)d(F |0;D) = qσ(F)p(F |0;D). We can
interpret the normalizing factor as qσ(F) = dσ(F ;F |0).

There are more relations involving dσ and pσ than the one mentioned previously. We will now
state, without proof, a basic fact about flag densities that can be proved easily by double counting.

Proposition 3.2 (Chain rule). If σ is a type of size k, m ≥ 1 is an integer, and {Fi}
m
i=1 is a family

of σ-flags of sizes |Fi| = li, and l ≥ k +
∑m

i=1(li − k) is an integer parameter, then

1. For any σ-flag F of order at least l, we have

pσ(F1, . . . , Fm;F) =
∑

F ′∈Fσ

l

pσ(F1, . . . , Fm;F ′)pσ(F
′;F).

2. For any tree-pair D of size at least l, we have

dσ(F1, . . . , Fm;D) =
∑

H∈Fl

dσ(F1, . . . , Fm;H)d(H;D) =
∑

F∈Fσ

l

pσ(F1, . . . , Fm;F)dσ(F ;D).

To illustrate the chain rule for m = 1 and σ = 0, we consider the “expansion” of id4 in F5 (see
Figure 10).

id5: crA5 : crB5 : crC5 :

Figure 10: Family F5.

The chain rule gives

p(id4;F) = p(id4; id5)p(id5;F) + p(id4; cr
A
5)p(cr

A
5 ;F)+

+ p(id4; cr
B
5)p(cr

B
5 ;F) + p(id5; cr

C
5)p(cr

C
5 ;F)

= p(id5;F) +
3

5
p(crA5 ;F) +

1

5
p(crB5 ;F).

Similarly, we can expand p(cr4;F) = 2
5p(cr

A
5 ;F) + 4

5p(cr
B
5 ;F) + p(crC5 ;F).

For the ease of notation, we can express these two identities using the syntax of flag algebras:

id4 = id5 +
3

5
crA5 +

1

5
crB5

cr4 =
2

5
crA5 +

4

5
crB5 + crC5 .

In this syntax, the equation
∑

i∈I αiFi = 0 means that for all sufficiently large σ-flags F , we have
∑

i∈I αipσ(Fi;F) = 0, where αi ∈ R for all i ∈ I. We use Aσ to denote the set of linear combinations
of flags of type σ. It is convenient to define a product of flags in the following way:

F1 · F2 :=
∑

F∈Fσ

l

pσ(F1, F2;F)F, F1 ∈ Fσ , F2 ∈ Fσ, l ≥ |F1|+ |F2| − |σ|.

8

(Note that because of the chain rule, it does not matter which l we choose.)
To further simplify the notation, we can extend the definitions of pσ and dσ to Aσ by making

them linear in each coordinate. The product notation simplifies these extended definitions, because
pσ(f1 · f2; f) = pσ(f1, f2; f) and dσ(f1 · f2; g) = dσ(f1, f2; g), for any f1, f2, f ∈ Aσ and for any
g ∈ A0.

The last piece of notation we introduce is that of the averaging operator. Recall that for any
σ-flag F , we had the normalizing factors qσ(F) such that dσ(F ;G) = qσ(F)p(F |0;G). In the syntax
of flag algebra, this averaging operation is denoted by [[F]]σ := qσ(F) · F |0. We extend this linearly
to all elements of Aσ. For example

[[id14]]dot = id4, [[cr14]]dot = cr4, [[id14 + cr14]]dot = id4 + cr4, and [[W 1
1]]dot =

2

3
W.

This notation is useful, because dσ(f ; g) = p([[f]]σ; g) for any f ∈ Aσ and for any g ∈ A0, and hence
we have a unified notation for both types of flag densities.

3.3 Extremal problems in the flag algebra calculus

Recall that our optimization problem is to maximize the density of cr4 amongst all possible tree-
pairs. We will show how flag algebras can be applied to this problem to reduce it to a semi-definite
programming (SDP) problem, which can then be solved numerically.

We may use the chain rule to obtain d(cr4;D) =
∑

H∈Ft
d(cr4;H)d(H;D) for t ≥ 4. Since

∑

H∈Ft
d(H;D) = 1, we have

d(cr4;D) ≤ max
H∈Ft

d(cr4;H),

which is a bound that clearly does not depend on D. For instance, when we choose t = 6 we already
obtain d(cr4;D) ≤ 14

15 .
Inequalities obtained this way are often very weak, since we only use very local considerations

about the sub-tree-pairs H ∈ Ft, and we do not take into account how the tree-pairs fit together in
the larger tree-pair D; that is, how they intersect.

One might hope to find inequalities of the form
∑

H∈Ft
αHd(H;D) ≥ 0, such that when we

combine them with the initial identity, we get

d(cr4;D) ≤ d(cr4;D) +
∑

H∈Ft

αHd(H;D) =
∑

H∈Ft

(d(cr4;H) + αH)d(H;D)

≤ max
H∈Ft

{d(cr4;H) + αH}.

Since αH can be negative for some models H, the hope is that this will improve the low coefficients
by transferring weight from high coefficients. In order to find such inequalities, we need another
property of the flag densities.

Proposition 3.3. If σ is a fixed type of size k, m ≥ 1 is an integer, {Fi}
m
i=1 is a fixed family of

σ-flags of sizes |Fi| = li, and l ≥ k +
∑m

i=1(li − k) is an integer, then for any flag F of order n ≥ l,
we have

pσ(F1, . . . , Fm;F) =

[

m
∏

i=1

pσ(Fi;F)

]

+O(1/n),

where the constant in the big-O notation might depend on the family {Fi}
m
i=1.

One can prove Proposition 3.3 by noting that, if we drop the requirement that the sets Xi are
disjoint in the definition of pσ(F1, . . . , Fm;F), the events Ei will become independent, and thus
P [∩m

i=1Ei] =
∏m

i=1 P[Ei] =
∏m

i=1 pσ(Fi;F). The error introduced is the probability that these sets

9

Xi will intersect in F , which is O(1/n). It is tempting to claim a similar product formula for the
unlabeled flag densities dσ, but we cannot do so. In the above equation, it is essential that all the
σ-flags Fi share the same labeled type σ, and hence we require F to be a σ-flag.

We are now ready to establish some inequalities. Let’s first fix a type σ of size k. If Q is any
positive semi-definite |Fσ

l |× |Fσ
l | matrix with rows and columns indexed by the same set Fσ

l , where
l ≥ k, define the “quadratic form” on flags by

Q{Fσ
l } :=

∑

F1,F2∈Fσ

l

QF1,F2
F1 · F2 ∈ Aσ.

Proposition 3.3 yields, for a σ-flag F of sufficiently large size, the following approximation

pσ(Q{Fσ
l };F) ≈

∑

F1,F2∈Fσ

l

QF1,F2
pσ(F1;F)pσ(F2;F). (2)

Note that because Q is positive semi-definite, the right hand side of (2) is always non-negative. Even
after averaging we obtain:

[[Q]]σ(D) := p([[Q{Fσ
l }]]σ ;D) =

∑

F1,F2∈Fσ

l

QF1,F2
dσ(F1, F2;D)

=
∑

F1,F2∈Fσ

l

QF1,F2





∑

F∈Fσ
t

pσ(F1, F2;F)dσ(F ;D)





=
∑

F∈Fσ
t





∑

F1,F2∈Fσ

l

QF1,F2
pσ(F1, F2;F)



 dσ(F ;D)

=
∑

F∈Fσ
t





∑

F1,F2∈Fσ

l

QF1,F2
pσ(F1;F)pσ(F2;F)



 dσ(F ;D) +O(1/n) ≥ on→∞(1),

where n is the size of the tree-pair D and 2l − |σ| ≤ t ≤ n is some fixed integer. Therefore, when
n is large, we have that [[Q]]σ(D) is asymptotically non-negative. For each admissible model H of
size exactly t, let αH = [[Q]]σ(H) =

∑

F1,F2∈Fσ
t

QF1,F2
dσ(F1, F2;H). We then have

[[Q]]σ(D) =
∑

H∈Ft

αHd(H;D) ≥ on→∞(1).

The expression in the middle of the above equation is called the expansion of [[Q]]σ(D) in tree-pairs
of size t, with αH the coefficients of the expansion. For the sake of conciseness, we often omit the
parameter D and express this asymptotic inequality (combined with the expansion in size t) in the
syntax of flag algebras

[[Q]]σ := [[Q{Fσ
l }]]σ =

[[

∑

F1,F2∈Fσ

l

QF1,F2
F1 · F2

]]

σ

=
∑

H∈Ft

αHH ≥ 0. (3)

(Note that all inequalities between flags stated in the language of flag algebras are asymptotic.)

In general, if we have more than one inequality available, we can combine them together, provided
they are all expanded in the same size t. Suppose we have r inequalities given by the positive semi-
definite matrices Qi of the σi-flags of size li. Adding them together, we obtain

r
∑

i=1

[[Qi]]σi
=

∑

H∈Ft

αHH ≥ 0,

10

where

αH =

r
∑

i=1







∑

F1,F2∈F
σi

li

(Qi)F1,F2
dσi

(F1, F2;H)






,

and we want to minimize maxH∈Ft
{d(cr4;H) + αH}.

Thus we have transformed the original problem of finding a minimum upper bound for d(cr4;G)
into a linear system involving the variables (Qi)Fk,Fl

. As we have the constraint that the matrices Qi

should be positive semi-definite, this is a semi-definite programming problem. To take the maximum
coefficient in the expansion, we introduce an artificial variable y, and require it to be bounded below
by all the coefficients. Hence we have the following SDP problem in the variables y and (Qi)F1,F2

:

Minimize y, subject to the constraints:

• We have sH ≥ 0 for all H ∈ Ft, where

sH := y − d(cr4;H)−
r

∑

i=1







∑

F1,F2∈F
σi

li

(Qi)F1,F2
dσi

(F1, F2;H)






. (4)

The variables sH are called surplus variables.

• Qi is positive semi-definite for i ∈ [r]. (The matrices Qi are often called the block variables
of the SDP problem. We can assume without loss of generality that each Qi is symmetric, as
otherwise we could replace Qi by (Qi +QT

i)/2.)

A computer can solve this SDP problem numerically, allowing for an efficient determination of
the inequalities required to prove the extremal problem. We note at this point, that the solution to
the SDP problem need not only give the asymptotic bound, but can also provide some structural
information about the extremal tree-pair.

4 Main result

In this section we discuss some practical considerations of the main theorem. For a square matrix A,
let tr(A) denote its trace. The original formulation of the SDP problem can be rewritten in concise
matrix notation as follows:

minimize tr(C ·Q)
subject to tr(Aj ·Q) = bj, for all j = 1, . . . ,m,

and Q � 0 (i.e., Q is positive semi-definite)
(5)

where m = |Ft| represents the number of constraints in the problem, C is the cost matrix (we
have tr(C · X) = y, where y is as in the previous subsection), Q is positive semi-definite matrix
consisting of all the block-variable matrices Qi, and each equation tr(Aj · Q) = bj corresponds to
one of the equations (4) from the original formulation. In particular, if Ft = {H1, . . . ,Hm}, we have
bj = d(cr4;Hj). Finally, we let ℓ denote the number of rows/columns of Q.

A computer usually cannot solve (5) exactly, but only approximately. In other words, the output
of the SDP solver will be a matrix Q′ that satisfies the constraints approximately. Namely, we have

∣

∣tr(Aj ·Q
′)− bj

∣

∣ ≤ ε, for j = 1, . . . m, and
Q′ + εIℓ � 0,

(6)

11

for some small ε > 0 (usually ε < 10−9), where Iℓ denotes the ℓ× ℓ identity matrix. In what follows
we describe how to obtain a matrix Q that satisfies all the constraints of (5) and is not “too far”
from the approximate solution Q′. That way tr(C ·Q) ≈ tr(C ·Q′).

A natural first step towards this goal is to slightly change Q′ so that it satisfies all the linear
constraints in (5). For that purpose, we will project Q′ to the affine subspace of all ℓ× ℓ symmetric
real matrices Q that satisfy tr(Aj ·Q) = bj for all j = 1, . . . ,m. Let Q′′ denote this projection. How
much did we change the approximate solution? Namely, how large is ||Q′ −Q′′||∞? We recall that
for a matrix A, we denote ||A||∞ := maxij |Aij | and ||A||1 :=

∑

ij |Aij |.
To estimate ||Q′ −Q′′||∞ we often use some inequalities from the following proposition.

Proposition 4.1. The following statements are true:

(i) If A ∈ R
m×n and B ∈ R

n×l are two real matrices, then ||A ·B||∞ ≤ n · ||A||∞ · ||B||∞.

(ii) If A ∈ R
m×n and v ∈ R

n, then ||A · v||∞ ≤ ||A||∞ · ||v||1.

(iii) Let A ∈ R
n×n be any n×n symmetric matrix. Then A+n · ||A||∞ · In is positive semi-definite.

Proof. (i) Let C = A · B. We have Cij =
∑n

k=1AikBkj, thus

|Cij | ≤
n
∑

k=1

|Aik||Bkj| ≤
n
∑

k=1

||A||∞||B||∞ = n · ||A||∞ · ||B||∞,

hence ||C||∞ ≤ n · ||A||∞ · ||B||∞.

(ii) Let w = A · v. We have wi =
∑n

j=1Aijvj , thus

|wi| ≤
n
∑

j=1

|Aij ||vj | ≤
n
∑

j=1

||A||∞|vj | = ||A||∞ · ||v||1,

therefore ||w||∞ ≤ ||A||∞ · ||v||1.

(iii) Let B = A+ n · ||A||∞ · In. It suffices to show that for all v ∈ R
n, we have vT · B · v ≥ 0. Let

a = vT ·A · v. Using the definition of B, we obtain

b := vT ·B · v = vT · A · v + n · ||A||∞ · ||v||22 = a+ n · ||A||∞ · ||v||22.

By (ii) applied twice, we infer

|a| = ||vT ·A · v||∞ ≤ ||vT ||1 · ||A · v||∞ ≤ ||A||∞ · ||v||21

So by Cauchy-Schwarz inequality, we obtain |a| ≤ ||A||∞ · ||v||21 ≤ n · ||A||∞ · ||v||22, therefore
b ≥ 0, finishing the proof.

In what follows, we introduce further notation in order to express Q′′ in terms of Q′ and the
parameters of the problem (5). Let S be the linear space of all ℓ× ℓ real symmetric matrices, and let
A be the linear map A : S → R

m defined by A(Q)j = tr(Aj ·Q). In addition, let b ∈ R
m be vector

with coordinates bj for j = 1, . . . ,m, and let H be the affine subspace of all ℓ × ℓ real symmetric
matrices Q that satisfy the linear constraints of (5), namely tr(Aj ·Q) = bj for j = 1, . . . ,m. Note
that H is the pre-image of b by A. Let P be the orthogonal projection from the set S to the affine
subspace H. One can compute this projection by a solution to a least squares problem as follows:

P(Q) = Q+A
T · (A ·AT)−1(b−A(Q)),

12

for all Q ∈ S, where A
T : Rm → S denotes the transpose of A. We have Q′′ = P(Q′), thus by

Proposition 4.1 (i), we have

||Q′′ −Q′||∞ ≤ m · ||AT · (A ·AT)−1||∞ · ||b−A(Q′)||∞ ≤ εm · ||AT · (A ·AT)−1||∞.

For all the instances of (5) that we consider, one can verify that ||AT · (A · AT)−1||∞ ≤ 1, thus
ε′ := ||Q′′ −Q′||∞ < εm. This inequality together with Proposition 4.1 (ii) implies that

tr(C ·Q′′) = tr(C ·Q′) + tr(C · (Q′′ −Q′)) ≤ tr(C ·Q′) + εm · ||C||1.

We know that Q′′ satisfies all the linear constraints of (5), but Q′′ might not be positive semi-
definite. An application of Proposition 4.1 (iii) yields that

(Q′′ −Q′) + ℓ · ||Q′′ −Q′||∞ · Iℓ � 0,

which, together with the inequality Q′+εIℓ � 0 from (6), implies that Q′′+(ε+ℓε′) ·Iℓ � 0. To make
Q′′ positive semi-definite, we hope to find a matrix Q̃ that satisfies tr(Aj · Q̃) = 0 for j = 1, . . . ,m
and such that all the eigenvalues of Q̃ are large. If such Q̃ exists then Q′′ + δQ̃ will be positive
semi-definite for some small δ > 0 and will also satisfy the linear constraints in (5). For this reason,
we consider the following problem:

minimize tr(0 · Q̃)

subject to tr(Aj · Q̃) = 0, for all j = 1, . . . ,m,

and Q̃ ≻ 0 (i.e., Q̃ is strictly positive-definite)

(7)

Note that the function being minimized is the constant zero function, so (7) is a pure feasibility
problem. We again use computers to obtain an approximate solution Q̃′ to (7). Surprisingly, it
turns out that the obtained solution Q̃′ not only satisfies

∣

∣tr(Aj · Q̃
′)| < ε for all j = 1, . . . ,m, but

also has a large smallest eigenvalue (much larger than ε+ ℓε′), even though |tr(C · Q̃′)| is relatively
small. We will later exploit these properties to adjust Q′′ to an exact solution of (5).

Using similar ideas as before, we obtain a matrix Q̃′′ that satisfies tr(Aj · Q̃′′) = 0 for all
j = 1, . . . ,m by means of orthogonal projection of Q̃′ to the appropriate subspace. As we have
already seen, this operation only slightly changes the eigenvalues of Q̃′. Finally we let Q := Q′′+δQ̃′′,
where δ = ε+ℓε′

λ
and λ is the smallest eigenvalue of Q̃′′ (in all of our instances we have δ < 10−4).

Clearly Q satisfy all the constraints of (5), including Q � 0. Moreover, we have

tr(C ·Q) = tr(C ·Q′′) + δ · tr(C · Q̃′′) ≤ tr(C ·Q′) + εm · ||C||1 + δ · tr(C · Q̃′′),

and since both εm and δ are typically small, we will not change the objective value much from the
original approximate solution Q′ to the exact solution Q. Therefore Q is the desired exact solution
which is “close” to Q′.

In what follows we have a compiled table displaying the several bounds obtained for different
instances of the SDP problem. The first column represents the parameter t, which is the size of
the tree-pairs used in the expansion of the problem (see Section 3.3 for more details). The second
column counts the number of tree-pairs of size t. The third column indicates how many types where
used, that is, the types σ for the inequalities of the form (3). The used types are all those having size
with the same parity as and strictly smaller than t. The fourth column contains the total number
of variables in the SDP instance including the surpluses. Finally, the last column tells the bound
obtained from the SDP solver. The program used to generate the SDP instances and verify these
calculations can be downloaded at http://http://http://arxiv.org/src/1505.04344v2/anc.

Remark. It was still possible to run the program for t = 9, but unfortunately the bound was
still strictly greater than 2/3.

13

http://http://http://arxiv.org/src/1505.04344v2/anc

t m = |Ft| # of types used ℓ =# of variables Bound

5 4 1 50 0.884766
6 31 3 697 0.760257
7 243 6 12050 0.707633
8 3532 35 506171 0.688397

Table 1: Several instances of the main SDP problem.

5 On caterpillar trees

In this section, we prove Theorem 1.3 — a restricted version of Conjecture 1.1 to caterpillar trees.
One possible approach to this problem is to use the same machinery of flag algebras for the theory
of tree-pairs restricted to caterpillar trees, and try to obtain a bound in the same way as we did
for Theorem 1.2. However, this approach does not immediately yield the bound of 2

3 , and so it is
necessary (and worthwhile) to think about this problem from a different perspective. In the next
few paragraphs we will explain how to map the problem of computing the induced density of cr4 in
a tree-pair of caterpillar trees into a problem of counting induced sub-permutations of size 4.

Suppose D = {T 1, T 2} is a tree-pair composed by two caterpillar trees on n + 2 leaves (as
exemplified in Figure 2). One can think of D as a permutation of {α, x1, . . . , xn, β} — a permutation
that tells us exactly how the leaves of T1 are “attached” to the leaves of T2. For instance, the tree-
pair crA5 in Figure 10 could be represented by the permutation α → α, x1 → x1, x2 → x3, x3 →
x2, β → β. In fact, multiple permutations might give rise to the same tree-pair. Regarding this
matter, our first observation is that any caterpillar tree on four or more leaves has exactly 8 distinct
automorphisms. To illustrate this observation, consider the caterpillar tree on n+ 2 leaves labelled
by α, x1, . . . , xn, β as depicted in Figure 11. One of the automorphisms of this tree is σ1, which is the
unique automorphism that maps α to β and β back to α, such as in a “reflection”. Similarly, σ2 is
the automorphism that only swaps α with x1 and leaves all the remaining vertices in place. Finally,
σ3 is the automorphism that swaps β and xn. The group of automorphisms can be then written
as {σi1

1 σi2
2 σi3

3 : 0 ≤ i1, i2, i3 ≤ 1}. Our second observation is that given a permutation π, and two
automorphisms σ, σ′ of the caterpillar tree with leaves labelled {α, x1, . . . , xn, β}, the permutation
σπσ′ represents the same tree-pair as π itself. Here we think of σ and σ′ as only acting solely on
the leaves of the caterpillar trees.

α

x1 x2 xn. . .

β

σ2 σ3

σ1

Figure 11: The automorphisms of a caterpillar tree.

Given a permutation π of L := {α, x1, . . . , xn, β}, how do we count the number of induced copies
of cr4 in the corresponding tree-pair D represented by π? Suppose S ⊆ L is a subset of size 4
such that α, β 6∈ S and α, β 6∈ π(S), say S = {xi1 , xi2 , xi3 , xi4} with π(xit) = xjt for t = 1, . . . , 4
and i1 < i2 < i3 < i4. Here it is helpful to think of S as a subset of the leaves of T1 before the
identification with the leaves of T2. The corresponding leaves selected by S will induce a copy of id4
in D if either max{j1, j2} < min{j3, j4}, or max{j3, j4} < min{j1, j2}. Otherwise S induces a copy
of cr4. Since there are only O(n3) subsets S that do not satisfy the condition {α, β}∩(S∪π(S)) = ∅,
the problem of computing the density of id4 in D essentially becomes the problem of computing the

14

density of the following induced sub-permutations in a permutation π ∈ Sn:

1234, 1243, 2134, 2143, 3412, 4312, 3421, 4321. (8)

The machinery of flag algebras is very general and thus can also be applied to the theory of
permutations. In fact, we have the following theorem which implies Theorem 1.3.

Theorem 5.1. The sum of the densities of the permutations listed in (8) inside a permutation
π ∈ Sn is at least 1

3 + o(1) for n large.

Proof. Using the notation from flag algebras, let φ denote the sum of the densities of the permutations
in (8), that is,

φ = 1234 + 1243 + 2134 + 2143 + 3412 + 4312 + 3421 + 4321.

In this notation, a flag is just a permutation with some entries labeled by the set [k] for some k ≥ 0.

For instance 1 6
2
42 3

1
5 denotes a flag whose underlying permutation is 164235 for which the fifth

entry is labeled 1 and the second entry is labeled 2. In this case, the type of the flag is 2
2

1
1
, since

the sub-permutation induced by the labeled entries is isomorphic to 21 (corresponding to the entries

63). Another example is the flag 5
3
17 2

1
3 6

2
4 — its underlying permutation is 5172364 and its

type is 2
3

1
1

3
2
. With this definitions in mind, we remark that a type is just a permutation of

[k] with all entries labeled by elements of the set [k]. Thus, for an integer k ≥ 0, types on k entries
are in one-to-one correspondence with pairs of permutations of [k].

Consider the following 4 types of size 2

ρ1 = 1
1

2
2
, ρ2 = 2

1
1

2
,

ρ3 = 1
2

2
1
, ρ4 = 2

2
1

1
.

We have

φ =
1

3
+

4
∑

i=1

3 · [[(Xi − Yi)
2]]ρi + 6 · [[(Xi − Zi)

2]]ρi (9)

where

X1 = −1 2
1

3
2
4− 1 2

1
4

2
3 + 4 2

1
3

2
1 + 3 2

1
4

2
1,

Y1 = +1 2
1
3 4

2
+ 1 2

1
4 3

2
− 4 2

1
1 3

2
− 3 2

1
1 4

2
,

Z1 = + 2
1
1 3

2
4 + 2

1
1 4

2
3− 2

1
4 3

2
1− 2

1
3 4

2
1,

X2 = −4 3
1

2
2
1− 4 3

1
1

2
2 + 1 3

1
2

2
4 + 2 3

1
1

2
4,

Y2 = +4 3
1
2 1

2
+ 4 3

1
1 2

2
− 1 3

1
4 2

2
− 2 3

1
4 1

2
,

Z2 = + 3
1
4 2

2
1 + 3

1
4 1

2
2− 3

1
1 2

2
4− 3

1
2 1

2
4,

X3 = −1 2
2

3
1
4− 2 1

2
3

1
4 + 4 2

2
3

1
1 + 4 1

2
3

1
2,

Y3 = + 1
2
2 3

1
4 + 2

2
1 3

1
4− 2

2
4 3

1
1− 1

2
4 3

1
2,

Z3 = +1 2
2
4 3

1
+ 2 1

2
4 3

1
− 4 2

2
1 3

1
− 4 1

2
2 3

1
,

X4 = −4 3
2

2
1
1− 3 4

2
2

1
1 + 1 3

2
2

1
4 + 1 4

2
2

1
3,

Y4 = + 4
2
3 2

1
1 + 3

2
4 2

1
1− 3

2
1 2

1
4− 4

2
1 2

1
3,

Z4 = +4 3
2
1 2

1
+ 3 4

2
1 2

1
− 1 3

2
4 2

1
− 1 4

2
3 2

1
,

therefore φ ≥ 1
3 , thereby proving the theorem. Note that in order to attest the correctness of (9),

it suffices to evaluate the left- and the right-hand side of the equation for all permutations of size
6.

15

6 Concluding remarks

In Theorem 1.2 we showed that the maximum quartet distance between two arbitrary phylogenetic
trees on n leaves is at most (0.69+o(1))

(

n
4

)

. It would be interesting to know if the techniques of this
paper can be pushed even further to obtain the (23 + o(1))

(

n
4

)

thereby establishing Conjecture 1.1.
Another approach to Conjecture 1.1 is to solve an extremal problem in the theory of 4-uniform

hypergraphs. In [1], Alon et al proved the asymptotic upper bound of 9
10

(

n
4

)

by mapping a tree-pair
into a 4-uniform hypergraph in the following way. The vertices of the hypergraph are the leaves of
the tree-pair and a subset S of 4 leaves is an edge of the hypergraph if the sub-tree-pair induced by
S is isomorphic to cr4. They showed that the resulting hypergraph H does not contain a copy of
K4

6 — the complete 4-uniform hypergraph on 6 vertices. One remark is that not only K4
6 but also

several other forbidden hypergraphs do not appear as induced subgraphs of H. A natural question
emerges: can one characterize this family of forbidden subgraphs? In particular, is it finite?

Acknowledgement We thank Sagi Snir and Raphy Yuster for helpful discussions.

References

[1] N. Alon, S. Snir, and R. Yuster, On the compatibility of quartet trees, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2014), 535–545.

[2] R. Baber, and J. Talbot, Hypergraphs do jump, Combinatorics, Probability and Computing 20
2 (2011), 161–171.

[3] J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari, and J. Volec, Minimum Number of Mono-
tone Subsequences of Length 4 in Permutations, Combinatorics, Probability and Computing,
to appear.

[4] H. Bandelt, and A. Dress, Reconstructing the shape of a tree from observed dissimilarity data,
Advances in Applied Mathematics 7 (1986), 309–343.

[5] V. Berry, and O. Gascuel, Inferring evolutionary trees with strong combinatorial evidence,
Theoretical Computer Science 240 (2001), 271–298.

[6] V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham, Quartet cleaning: improved algorithms
and simulations, European Symposium on Algorithms (1999).

[7] H. Colonius, and H. Schulze, Tree structures for proximity data, British Journal of Mathematical
and Statistical Psycology 34(2) (1981), 167–180.

[8] S. Das, H. Huang, J. Ma, H. Naves, and B. Sudakov, A problem of Erdős on the minimum
number of k-cliques, Journal of Combinatorial Theory Series B 103 (2013), 344–373.

[9] G. Estabrook, F. McMorris, and C. Meacham, Comparison of undirected phylogenetic trees
based on subtrees of four evolutionary units, Systematic Biology 34(2) (1985), 193–200.

[10] R. Glebov, D. Král, J. Volec, An application of flag algebras to a problem of Erdős and Sós,
Electronic Notes in Discrete Mathematics 43 (2013), 171–177.

[11] H. Hatami, J. Hladký, D. Král’, S. Norine, and A. Razborov, On the number of pentagons in
triangle-free graphs, Journal of Combinatorial Theory Series A 120 (2013), 722–732.

[12] T. Jiang, P. Kearney, and M. Li, Orchestrating quartets: approximation and data correla-
tion, IEEE Symposium Foundation of Computer Science (FOCS), pages 416–425, Palo Alto,
California, November 1998.

16

[13] K. St. John, T. Warnow, B. Moret, and L. Vawter, Performance study of phylogenetic methods:
(unweighted quartet methods and neighbor-joining , Proceedings of the Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms (2001).

[14] P. Keevash, Hypergraph Turán Problems, Surveys in combinatorics, Cambridge (2011).

[15] D. R. Maddison, and K.-S. Schulz (eds.) 2007. The Tree of Life Web Project . Internet address:
http://tolweb.org.

[16] O. Pikhurko, and E. R. Vaughan, Minimum Number of k-Cliques in Graphs with Bounded
Independence Number , Combinatorics Probability and Computing 22 (2013), 910–934.

[17] V. Falgas-Ravry, and E. R. Vaughan, Applications of the semi-definite method to the Turán
density problem for 3-graphs, Combinatorics Probability and Computing 22 (2013), 21–54.

[18] A. Razborov, Flag algebras, Journal of Symbolic Logic 72(4) (2007), 1239–1282.

[19] A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations , SIAM Journal of Dis-
crete Mathematics 24 (2010), 946–963.

[20] A. Razborov, On the minimum density of triangles in graphs, Combinatorics Probability and
Computing 17(4) (2008), 603–618.

[21] C. Semple, and M. A. Steel, Phylogenetics, Oxford University Press (2003).

[22] S. Snir, and S. Rao, Quartets maxcut: A divide and conquer quartets algorithm , Transactions
on Computational Biology and Bioinformatics (TCBB) 7(4) (2010), 714–718.

[23] S. Snir, and R. Yuster, Reconstructing approximate phylogenetic trees from quartet samples,
SIAM Journal on Computing 41(6) (2012), 1466–1480.

[24] M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, Journal
of Classification 9(1) (1992), 91–116.

[25] K. Strimmer, and A. von Haeseler, Quartet puzzling: A quartet maximum-likelihood method
for reconstructing tree topologies, Molecular Biology and Evolution 13(7) (1996), 964–969.
Software available at ftp://ftp.ebi.ac.uk/pub/software/unix/puzzle/.

17

http://tolweb.org
ftp://ftp.ebi.ac.uk/pub/software/unix/puzzle/

	1 Introduction
	2 Preliminaries
	3 Flag algebra calculus
	3.1 The model
	3.2 Definitions and notation in the calculus
	3.3 Extremal problems in the flag algebra calculus

	4 Main result
	5 On caterpillar trees
	6 Concluding remarks

