
Bilinear quadratures for inner products

Christopher A. Wong

October 2, 2018

Abstract

A bilinear quadrature numerically evaluates a continuous bilinear map, such as
the L2 inner product, on continuous f and g belonging to known finite-dimensional
function spaces. Such maps arise in Galerkin methods for differential and integral
equations. The construction of bilinear quadratures over arbitrary domains in Rd is
presented. In one dimension, integration rules of this type include Gaussian quadrature
for polynomials and the trapezoidal rule for trigonometric polynomials as special cases.
A numerical procedure for constructing bilinear quadratures is developed and validated.

1 Introduction

Classical quadratures such as Gaussian and trapezoidal rules accurately evaluate continuous
linear functionals such as ∫

Ω

f(x)w(x) dx

for f in a finite-dimensional space of continuous functions. Bilinear quadratures evaluate
continuous bilinear forms such as the weighted L2 inner product

〈f, g〉L2 =

∫
Ω

f(x)g(x)w(x) dx

or the weighted H1 inner product

〈f, g〉H1 =

∫
Ω

d∑
i,j=1

( ∂f
∂xi

aij(x)
∂g

∂xj

)
+ f(x)g(x) dx

on finite-dimensional spaces of continuous functions f, g on Ω ⊂ Rd.
L2 inner products compute orthogonal projections onto subspaces, while H1 inner prod-

ucts provide local solutions to elliptic problems, a key ingredient of the finite element
method. For example, let Ω ⊂ Rd be a smooth bounded domain, let L be a uniformly
elliptic operator, f ∈ L2(Ω), g ∈ L2(∂Ω), and γ ∈ L∞(∂Ω). Consider the Robin problem{

Find u ∈ H1(Ω) satisfying

Lu = f in Ω, γu+ ∂u
∂n = g on ∂Ω.

(1.1)

When L = −∆, then if a bilinear form a : H1(Ω) × H1(Ω) → R is defined by a(u, v) =∫
Ω
Du ·Dv +

∫
∂Ω
γuv, the weak formulation to (1.1) seeks u ∈ H1(Ω) satisfying

a(u, v) = 〈f, v〉L2(Ω) + 〈g, v〉L2(∂Ω) for all v ∈ H1(Ω). (1.2)

The Galerkin method constructs an approximate solution to (1.2) by choosing finite-dimensional
function spaces F0,G0 and seeking u0 ∈ F0 satisfying

a(u0, v0) = 〈f, v0〉L2(Ω) + 〈g, v0〉L2(∂Ω) for all v0 ∈ G0. (1.3)
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Christopher A. Wong

The linear system (1.3) is solved in a basis, which requires computing a number of L2 inner
product integrals. These integrals should be computed both efficiently and accurately.

Efficiency is achieved by using the fewest function evaluations possible. When d > 1,
the optimal efficiency of a classical quadrature is unknown. For a bilinear quadrature, the
minimum number of function evaluations is equal to the dimension of function space being
integrated. The inner product of two functions f, g belonging to given finite-dimensional
function spaces is computed by the formula

〈f, g〉 = f(x)∗Wg(y), (1.4)

where f(x) ∈ Rm and g(y) ∈ Rn are evaluations of f and g at sets of points x and y in
Ω, respectively, and W is a matrix. The rank of the bilinear form is equal to the rank of
W , hence the minimal number of required function evaluations is equal to the dimension of
that function space.

Accuracy is achieved by defining and minimizing integration error. In a bilinear quadra-
ture, this is a nonlinear optimization problem for x,y, and W in (1.4), and is solved using a
Newton method for an appropriate objective function [CRY99, BGR10, XG10]. In this pa-
per an objective function is developed and demonstrated to yield numerically useful bilinear
quadrature rules in a general setting.

Numerical evaluation of inner product integrals has been studied in [BD71, McG79,
Gri80, BGR10, Che12] and as “bilinear quadrature” in [LZ87, Kno07]. This paper bor-
rows some of the framework from these past works but develops and utilizes a different
optimization procedure to produce quadrature rules.

2 Theory

2.1 Abstract formulation

In this section the problem of evaluating a general continuous bilinear form on a pair of
Banach spaces is considered. Results are given in great generality so that they apply to any
continuous bilinear forms. Later, these results are applied to useful special cases such as the
L2 and H1 inner products.

Definition 2.1. Let F and G be real Banach spaces. Then a bilinear quadrature of order
(m,n) on F ×G is a bilinear form Q defined by linear maps L1 : F → Rm and L2 : G → Rn
and a bilinear map B : Rm × Rn → R, such that, for each f ∈ F and g ∈ G,

Q(f, g) = B(L1f, L2g).

Definition 2.2. Let F ,G be real Banach spaces with a continuous bilinear form 〈·, ·〉 :
F × G → R. Finite-dimensional subspaces F0 ⊂ F and G0 ⊂ G are a dual pair if

∀f ∈ F0 \ {0},∃g ∈ G0 such that 〈f, g〉 6= 0,

∀g ∈ G0 \ {0},∃f ∈ F0 such that 〈f, g〉 6= 0.

If F0,G0 are a dual pair then dim(F0) = dim(G0).

Definition 2.3. Let F ,G be real Banach spaces with a continuous bilinear form 〈·, ·〉 :
F × G → R, and let F0 ⊂ F and G0 ⊂ G be a dual pair. A bilinear quadrature Q on F × G
is exact with respect to F0 × G0 if

〈f, g〉 = Q(f, g) for every f ∈ F0, g ∈ G0.
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Such a bilinear quadrature evaluates the bilinear form on F0 × G0 exactly. We have the
diagram

F0 × G0 Rm × Rn

R
〈·, ·〉

(L1, L2)

B(·, ·)

If the parent spaces F ,G are implied, we will abuse notation by referring to an exact bilinear
quadrature on F0 × G0.

Remark. If F ,G are infinite-dimensional and Q is exact on F0 × G0, then

sup
f∈F,g∈G

|Q(f, g)− 〈f, g〉| =∞,

so a bilinear quadrature can only be accurate on finite-dimensional subspaces.

Lemma 2.4. Let F0 ⊂ F and G0 ⊂ G be a dual pair, and let L1 : F → Rm, L2 : G → Rn be
linear. Then there exists bilinear B : Rm×Rn → R such that the map Q(f, g) = B(L1f, L2g)
is an exact quadrature on F0 × G0 if and only if L1|F0

and L2|G0 are both injective.

Proof. Suppose B exists. If f, f̃ ∈ F0 are distinct then there exists g ∈ G0 such that

0 6= 〈f − f̃ , g〉 = Q(f − f̃ , g) = B(L1(f − f̃), L2g),

so L1f 6= L1f̃ and L1|F0
is injective. Similarly for L2|G0 .

Suppose L1|F0
and L2|G0 are injective. Their Moore-Penrose pseudoinverses (L1|F0

)+

and (L2|G0)+ left-invert L1 and L2, respectively. Define a bilinear map on Rm × Rn by

B(x, y) =
〈
(L1|F0

)+x, (L2|G0)+y
〉
.

Then, for all f ∈ F0, g ∈ G0,

B(L1f, L2g) =
〈
(L1|F0

)+ L1|F0
f, (L2|G0)+ L2|G0 g

〉
= 〈f, g〉.

From Lemma 2.4 a necessary condition for an exact bilinear quadrature is that m ≥
dimF0, n ≥ dimG0. Minimal order is achieved when m = dimF0, n = dimG0 and B(x, y)
is uniquely given by

B(x, y) =
〈
(L1|F0

)−1x, (L2|G0)−1y
〉
.

Exact bilinear quadratures are not unique, as there are many possible linear maps L1, L2.
Furthermore, B may not be unique, since if n > dim(F0), then L1|F0

has infinitely many
left inverses. Therefore, a method is needed to choose among the infinitely many bilinear
quadratures. One metric of quality is that, in addition to its exactness on F0 × G0, the
bilinear quadrature also approximates 〈f, g〉 for some set of g’s outside of G0.

Definition 2.5. Let F0 ⊂ F and G0 ⊂ G be a dual pair, and let G1 ⊂ G be another
finite-dimensional subspace such that

G1 ⊂ F⊥0 := {g ∈ G : 〈f, g〉 = 0 for all f ∈ F0}.

Let Q be a set of bilinear quadratures exact on F0 × G0. Then Q ∈ Q is called minimal on
G1 if

Q = arg min
Q̃∈Q

σ(Q̃;F0,G1), (2.1)
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where

σ(Q̃;F0,G1) := max
06=g∈G1
06=f∈F0

|Q̃(f, g)|
‖f‖F‖g‖G

.

If Q is minimal on G1, then it approximates the pairing of F0 and G0 ⊕ G1. Precisely, if
f ∈ F0, g ∈ G0 ⊕ G1, and we write g = g0 + g1 with gi ∈ Gi, then

|Q(f, g)− 〈f, g〉| = |Q(f, g1)| ≤ σ(Q;F0,G1)‖f‖F‖g1‖G . (2.2)

Thus, minimizing σ(Q;F0,G1) will improve the approximation.
One important special case for bilinear quadratures is the symmetric case, which is when

F = G is an inner product space. In this case, a bilinear quadrature computes an orthogonal
projection.

Definition 2.6. Let F0 and G0 be a dual pair in an inner product space. Let {fi} be an
orthonormal basis for F0. Given a bilinear quadrature Q exact on F0×G0, the approximate
orthogonal projection onto F0 arising from Q is the linear map PQ given by

PQ(g) =
∑
i

Q(fi, g)fi.

An error estimate for orthogonal projections similar to (2.2) is given later in Theorem 2.7.

2.2 Integral formulation

In this section, the bilinear quadrature framework is applied to the evaluation of Sobolev
inner products on function spaces. Let Ω ⊂ Rd be a bounded domain, and let F = G =
Cr(Ω), r a non-negative integer, equipped with a Sobolev inner product

〈f, g〉Hs =
∑
|α|≤s

〈Dαf,Dαg〉L2(Ω)

for s ≤ r.
Choose a dual pair F0,G0 in F . Exactness on F0×G0 requires linear maps L1 : Cr(Ω)→

Rm, L2 : Cr(Ω)→ Rn, and bilinear form B : Rm×Rn → R so that for every f ∈ F0, g ∈ G0,
B(L1f, L2g) = 〈f, g〉Hs .

Appropriate linear maps L1, L2 are pointwise evaluations at particular points in Ω. Thus,
for the points x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , yn) ∈ Ωn, define

L1f := f(x) =

 f(x1)
...

f(xm)

 , L2g := g(y) =

g(y1)
...

g(yn)

 .
Given bases β = {f1, . . . , fk} for F0 and {g1, . . . , gk} for G0, let M ∈ Rk×k be the Gram
matrix with entries

Mij = 〈fi, gj〉Hs .

Since F0,G0 are a dual pair, M is invertible. Define matrix functions

F (x) :=

F1(x1) . . . fk(x1)
...

...
F1(xm) . . . fk(xm)

 , G(y) :=

G1(y1) . . . gk(y1)
...

...
G1(yn) . . . gk(yn)

 .
To make L1 and L2 are injective, choose x,y, such that F (x) and G(y) have full column
rank. If B(v, w) = v∗Ww for all v, w for an m× n matrix W , then the bilinear quadrature
is exact if and only if

F (x)∗WG(y) = M. (2.3)

4 of 20



Christopher A. Wong

Therefore a bilinear quadrature rule

Q(f, g) = f(x)∗Wg(y) (2.4)

evaluates 〈f, g〉Hs exactly for any f ∈ F0, g ∈ G0. The corresponding approximate orthogo-
nal projection onto F0 is

PQ(g) =

k∑
i=1

[fi(x)∗Wg(y)] fi.

In the basis β, the approximate projection is computed by

[PQ(g)]β = F (x)∗Wg(y) ∈ Rk. (2.5)

Good values for the matrix W and evaluation points x,y must be determined. Without
loss of generality, suppose that the bases {fi} and {gj} are Hs-orthonormal in Cr(Ω). Select
finite-dimensional G1 ⊂ Cr(Ω) for the minimization (2.1) and define the feasible set Q to
be all quadratures of the form (2.4) satisfying (2.3). If {γ1, . . . , γp} is an orthonormal basis
for G1, define

Γ(x) :=

γ1(x1) . . . γp(x1)
...

...
γ1(xn) . . . γp(xn)

 ∈ Rn×p.

Then (2.1) can be reformulated as

min
Q∈Q

σ(Q;F0,G1) = min
Q∈Q

max
g∈G1,‖g‖G=1
f∈F0,‖f‖F =1

|Q(f, g)|

= min
x,y,W

max
a,b∈Rk

‖a‖2=‖b‖2=1

|b∗F (x)∗WΓ(y)a|

= min
x,y,W

σ1 (F (x)∗WΓ(y)) subject to F (x)∗WG(y) = M, (2.6)

where σ1(A) is the leading singular value of a matrix A. Minimization (2.6) is independent
of x, since by (2.3) F (x)∗W = ML, where L is a left inverse of G(y). Therefore x is chosen
by performing a similar minimization on the left, setting an orthonormal basis {λi} for a
space F1 ⊂ G⊥0 , defining the corresponding matrix function Λ(x), and minimizing

min
x,y,W

σ1 (Λ(x)∗WG(y)) subject to F (x)∗WG(y) = M, (2.7)

where similarly the dependence of (2.7) on y may be dropped since WG(y) is equal to L∗M ,
where L is a left inverse of F (x).

In the symmetric case F0 = G0, M = I, F1 = G1, and m = n = k with x = y,
minimizations (2.6) and (2.7) are equivalent and simplify to

min
x
σ1(F (x)−1Γ(x)). (2.8)

In subsequent sections special attention is given to the symmetric case because it is used
for evaluating orthogonal projections.

2.3 Error estimates

In this section, upper bounds on several error quantities in computing an approximate
orthogonal projection of the form (2.5) are estimated.

Theorem 2.7 (Euclidean norm error estimate). Let F0,G0 be a dual pair in an inner
product space F and Q a bilinear quadrature of the form (2.4) that is exact on F0 × G0.
Let PQ be the approximate orthogonal projection onto F0 arising from Q with coordinate
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representation (2.5). If P is the exact orthogonal projection operator onto F0, G1 ⊂ F⊥0 ,
and g = g0 + g1 ∈ G0 ⊕ G1 such that gi ∈ Gi,

‖[PQ(g)− P (g)]β‖2 ≤ σ(Q;F0,G1)‖g1‖, (2.9)

where ‖ · ‖2 is the Euclidean norm.

Proof. This is essentially the same as (2.1). Since 〈fi, g〉 = Q(fi, g0), then

‖[PQ(g)− P (g)]β‖2 =

(
k∑
i=1

|Q(fi, g)− 〈fi, g〉|2
)1/2

=

(
k∑
i=1

|Q(fi, g)−Q(fi, g0)|2
)1/2

=

(
k∑
i=1

|Q(fi, g1)|2
)1/2

= max
α6=0

1

‖α‖2

k∑
i=1

αiQ(fi, g1),

where α = (αi) ∈ Rk. Each f ∈ F0 can be written as f =
∑
i αifi, so

max
α6=0

1

‖α‖2

k∑
i=1

αiQ(fi, g1) = max
06=f∈F0

Q(f, g1)

‖f‖

≤ σ(Q;F0,G1)‖g1‖.

Theorem 2.7 provides an error bound for an approximate orthogonal projection when
the projected function g is in G0 ⊕ G1. If F0 is a space of polynomials, then it is also useful
to obtain an error estimate that depends on the regularity of g.

Theorem 2.8 (Uniform norm error estimates for polynomials). Let F = C(Ω) with Ω ⊂
Rd a bounded, convex domain, equipped with the L2 inner product. Let F0 be the set of
multivariate polynomials of degree at most n with an orthonormal basis β = {fi}, let P :
F → F be the orthogonal projection onto F0, and suppose PQ is an approximate orthogonal
projection onto F0 with coordinate representation (2.5). There exist a constant C > 0 such
that for every g ∈ Cn+1(Ω), then

‖[Pg − PQg]β‖∞ ≤ C‖Dn+1g‖L∞ , (2.10)

where
‖Dn+1g‖L∞ :=

∑
|α|=n+1

max
x∈Ω
|Dαg(x)|.

Proof. Using (2.5) and the exactness of PQ on F0, then writing g = Pg+(I−P )g = g0 +g1,
we have

‖[Pg − PQg]β‖∞ = ‖F ∗Wg1(x)‖∞
≤ ‖F ∗W‖∞→∞‖(I − P )g‖C0

≤ ‖F ∗W‖∞→∞‖(I − P )(g − q)‖C0 ,

where q is any element of F0 and ‖ · ‖∞→∞ is the induced matrix ∞ norm. Then

‖[Pg − PQg]β‖∞ ≤ ‖F ∗W‖∞→∞(1 + ‖P‖C0→C0)‖g − q‖C0 ,
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where the C0 operator norm of P is given by

‖P‖C0→C0 = max
x∈Ω

∫
Ω

∣∣∣∑
i

fi(t)fi(x)
∣∣∣ dt.

By the Deny-Lions/Bramble-Hilbert lemma [EG04], for all g ∈ Cn+1(Ω) there exists a
constant CBH > 0 (dependent on n and Ω) such that

inf
q∈F0

‖g − q‖C0 ≤ CBH‖Dn+1g‖L∞ ,

which combined with the previous inequality yields the desired result with

C = ‖F ∗W‖∞→∞(1 + ‖P‖C0→C0)CBH .

In the presence of round-off error in function evaluation, the conditioning of an approx-
imate orthogonal projection is also important to quantify.

Theorem 2.9. Let PQ be an approximate orthogonal projection of the form (2.5). If δg(y)
is the absolute error in computing g(y) and δPQ(g) is the resulting projection absolute error,
then with respect to a vector norm ‖ · ‖,

‖[δPQ(g)]β‖
‖[PQ(g)]β‖

≤ κ‖δg(y)‖
‖g(y)‖

,

where κ = κ(F ∗(x)W ) is the matrix condition number with respect to ‖ · ‖.

2.4 Classical and bilinear quadratures on univariate polynomials

In this section we review Gaussian quadratures and show they are a special case of a bilinear
quadrature in one dimension. We then propose a way to generalize to quadratures evaluating
inner products of polynomials on multidimensional domains.

Definition 2.10. Let Ω ⊂ Rd be a connected domain. A classical quadrature q of order n
on Ω is a linear functional defined by a set x = (x1, . . . , xn), xi ∈ Ω, called the nodes, and
a vector w ∈ Rn, whose components are called the weights, such that for any f ∈ C(Ω),

q(f) = w∗f(x) =

n∑
i=1

wif(xi).

Furthermore, if F0 is a subspace of C(Ω) and µ is a Borel measure, then q is said to be
exact on F0 if

q(f) =

∫
Ω

f dµ

for all f ∈ F0.

Let Pn be the space of univariate polynomials of degree up to n, I an open interval, and
µ a finite absolutely continuous Borel measure on I.

Definition 2.11. Suppose P2n−1 is µ-integrable on I. Then a Gaussian quadrature of order
n on I is a classical quadrature of order n on I that is exact on P2n−1 with respect to µ.

The advantages and disadvantages of the theory of quadratures for polynomials are
rooted in existence and uniqueness result for Gaussian quadratures.

Theorem 2.12. Suppose P2n−1 is µ-integrable on I, and let {φk} denote any set of L2(I, µ)-
orthonormal polynomials such that deg(φk) = k. Then the following sets are equal:
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1. The zeros of φn.

2. The eigenvalues of the symmetric bilinear form on Pn−1 given by

B(f, g) :=

∫
I

xf(x)g(x) dµ = 〈xf(x), g(x)〉L2(I,µ) .

3. The nodes {xi} of a Gaussian quadrature of order n on I.

Proof. (1⇐⇒ 2) Since B(·, ·) is symmetric it is diagonalizable with n real eigenvalues {λi}.
If a polynomial ψi(x) is an eigenvector for λi, then for 0 ≤ j ≤ n− 1,

〈xψi(x), φj(x)〉 = λi〈ψi(x), φj(x)〉 =⇒ 〈(x− λi)ψi(x), φj(x)〉 = 0.

Since (x− λi)ψi(x) ∈ Pn for each i, and the only polynomials in Pn that are orthogonal to
each of φ0, . . . , φn−1 are multiples of φn, then each (x−λi) is a factor of φn(x). Thus φn(x)
is a multiple of (x− λ1) . . . (x− λn) and its zeros are the eigenvalues of B(·, ·).

(2 ⇐⇒ 3) Suppose a Gaussian quadrature with weights {wi} and nodes {xi} exists.
With respect to the basis of orthonormal polynomials {φk}, the bilinear form B(·, ·) has a
symmetric matrix represention B with entries given by

Bij =

∫
I

xφi(x)φj(x) dµ =

n∑
k=1

wkxkφi(xk)φj(xk).

If

uk =


√
wkφ0(xk)

...√
wkφn−1(xk)

 , X =

x1

. . .

xn

 ,
then

B =

n∑
k=1

xkuku
∗
k = UXU∗. (2.11)

Since δij =
∑n
k=1 wkφi(xk)φj(xk), then I = UU∗ and U is a unitary matrix. Then (2.11)

is the unitary diagonalization of the symmetric matrix B with eigenvalues given by the
xk’s.

Remarks. Theorem 2.12 shows that if a Gaussian quadrature of order n exists, its nodes are
the zeros of φn. The existence proof is completed by showing the weights exist and satisfy

1/wi =

n∑
j=0

(φj(xi))
2.

Therefore, taking the square root
√
wk is legitimate [DR84]. Theorem 2.12 also provides an

efficient method to construct these quadratures. The matrix B in (2.11) is tridiagonal, so
its eigenvalues can be calculated quickly, even for very large n [GW69].

Gaussian quadrature is optimal for integrating polynomials on an interval, but does not
extend readily to higher-dimensional domains. The zeros of a multivariate polynomial are
generally not isolated (consider f(x, y) = xy) so they cannot all be used as nodes of a
classical quadrature. Additionally, the connection between nodes and eigenvalues no longer
holds since the eigenvalues are only scalars (the connection extends to two-dimensional
domains with complex eigenvalues [VR14]).

Bilinear quadratures make sense in any dimension, yet contain Gaussian quadrature as
a special case. Consider a classical quadrature with nodes x = {xi} and weights w = {wi}.
If a function h(x) = f(x)g(x) with f, g belonging to function spaces F ,G respectively, then
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the classical quadrature q evaluated on h is the same as a bilinear quadrature Q on f, g
given by

Q(f, g) = f(x)∗

w1

. . .

wn

 g(x) = w∗h(x) = q(h).

The matrix W is diagonal with entries given by the weights of the classical quadrature.
Thus for a general bilinear quadrature of the form (2.4) the entries of W can be viewed as
analogues of the weights.

Theorem 2.13. The nodes of a Gaussian quadrature of order n are the same as the points
x in the unique bilinear quadrature of order (n, n) on Pn−1 × Pn−1 that is minimal on
span{φn}, where φn is the orthonormal polynomial of degree n. Furthermore, the matrix
W in (2.4) is a diagonal matrix whose diagonal entries are the weights of the Gaussian
quadrature.

Proof. Let φ0, . . . , φn−1 be the orthonormal polynomials up to degree n − 1 such that
deg φk = k, x = (x1, . . . , xn) ∈ Ωn, and define

Φ(x) =

φ0(x1) . . . φn−1(x1)
...

...
φ0(xn) . . . φn−1(xn)

 .
Then the minimization problem (2.8) becomes

min
x∈Ωn

σ1

Φ(x)−1

φn(x1)
...

φn(xn)


 .

This is uniquely minimized (up to reordering of the xi’s) when x is the set of zeros of φn
in which case σ1 = 0. The corresponding bilinear quadrature Q exactly evaluates products
where one polynomial has degree n − 1 and the other has degree n. Then Q has the same
evaluation points as a bilinear quadrature formed from the Gaussian quadrature. Since W
is unique, then it must be equal to the diagonal matrix with entries given by the weights of
the Gaussian quadrature.

The above result suggests that a good way to accurately compute inner products of poly-
nomials on a multidimensional domain is to utilize a symmetric bilinear quadrature that is
exact on Pn×Pn and minimal on Pn+1 ∩P⊥n . Just as Gaussian quadratures accurately inte-
grate nearly polynomial functions accurately, bilinear quadratures constructed in the above
manner are expected to evaluate inner products of nearly polynomial functions accurately.
Numerical results for these quadrature are shown in section 3.

2.5 Classical and bilinear quadratures on trigonometric polynomi-
als

For the space of trigonometric polynomials

Tn−1 = span{1, sinx, . . . , sin (n− 1)x, cosx, . . . , cos (n− 1)x},

it is known that the (n+ 1)-point trapezoidal rule

Tra(p) :=
π

n
p(0) +

π

n
p(2π) +

2π

n

n−1∑
j=1

p

(
2πj

n

)
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is exact for integrating all p ∈ Tn−1 over the interval [0, 2π]. Since Tn−1 is a rotationally-
invariant function space on the circle R/2πZ, the trapezoidal rule yields a family of n-point
classical quadratures for Tn−1 given by∫ 2π

0

p(x) dx =
2π

n

n−1∑
j=0

p(xj) for all p ∈ Tn−1, xj+1 − xj =
2π

n
. (2.12)

When n is odd, the above trapezoidal rule quadrature is a special case of a bilinear quadra-
ture:

Theorem 2.14. Let n > 0 be an odd integer. Then the set of classical quadratures on Tn−1

in (2.12) are equivalent to symmetric bilinear quadratures of order (n, n) on T(n−1)/2 ×
T(n−1)/2 that are minimal on span{sinnx, cosnx}.

Proof. Set n = 2k + 1. Since Tn−1 is rotationally invariant on the circle, then if Q is
a symmetric bilinear quadrature on Tk × Tk of the form (2.4), σ(Q) is invariant under
rotations of the evaluation points x = (x1, . . . , xn). Therefore without loss of generality
x1 = 0, xj ∈ [0, 2π). Define

F (x) =
1√
2π


1 . . . 1

e−ikx2 . . . eikx2

...
...

e−ikxn . . . eikxn

 ,Γ(x) =
1√
2π


1 1

e−i(k+1)x2 ei(k+1)x2

...
...

e−i(k+1)xn ei(k+1)xn

 ,
and it suffices to prove that choosing xj = 2πj/n solves the minimization problem (2.1).

If xj = 2πj/n, then the first column of F (x) is the second column of Γ(x), and the last
column of F (x) is the first column of Γ(x). Therefore, in this case, F (x)−1Γ(x) =

[
en e1

]
,

where ej is the j-th standard coordinate vector, hence σ1(F (x)−1Γ(x)) = 1.
We claim that for any choice of nodes x ∈ [0, 2π)n with x1 = 0,

σ1(F (x)−1Γ(x)) ≥ 1. (2.13)

If (2.13) is established, then setting xj = 2π(j − 1)/n yields a minimal quadrature in Q.
To show this, let u be the first column of F (x)−1Γ(x). We will show that ‖u‖2 ≥ 1, from
which (2.13) follows. The column u satisfies the equation

F (x)u =
1√
2π


1

e−i(k+1)x2

...
e−i(k+1)xn

 ,
which is equivalent to the Vandermonde system

1 1 . . . 1
1 eix2 . . . ei(n−1)x2

...
...

...
1 eixn . . . ei(n−1)xn

u =


1

e−ix2

...
e−ixn

 .
Setting zj = eixj , then the entries of u are the coefficients of a degree n − 1 complex
polynomial p(z) such that p(zj) = 1/zj . Setting q(z) = zp(z), it suffices to find a degree n
polynomial q(z) such that q(0) = 0 and q(zj) = 1. Such a q is unique and

q(z) = 1−
n∏
j=1

(1− z/zj) .

Then the leading coefficient of q, which is also the leading coefficient of p, has absolute value
1, and hence ‖u‖2 ≥ 1.
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Remark. The trapezoidal rule uniquely generates a minimal bilinear quadrature, since in
that case q(z) = αzn for some |α| = 1. If xj ’s are not equispaced, q(z) has some nonzero
lower-order coefficients.

2.6 Lobatto quadrature and the non-invertible case

While minimizing the number of evaluation points will reduce the cost of evaluating a
quadrature, it may be advantageous to use more points than is optimal in order to improve
accuracy. One example is Lobatto quadratures for polynomials of one variable, which use
more points than Gaussian quadratures. In this section, we observe Lobatto quadratures
are a special case of a bilinear quadrature where extra evaluation points are used, in which
case the matrix function F (x) is non-invertible. The formulation of Lobatto-like bilinear
quadratures on general domains is given.

Definition 2.15. Let P2n−1 be µ-integrable on an interval I = [a, b]. Then the correspond-
ing Lobatto quadrature is a classical quadrature of order n+ 1 exact on P2n−1 with respect
to µ such that if x0, . . . , xn are the nodes, then x0 = a and xn = b.

Theorem 2.16. Suppose P2n−1 is µ-integrable on I, and let {φk} denote the unique set
of orthonormal polynomials such that deg(φk) = k. Then there exists a unique Lobatto
quadrature of order n + 1, and the interior nodes {xi : 1 ≤ i ≤ n − 1} are the zeros of
d
dxφn(x).

A Lobatto quadrature of order n + 1 corresponds to a symmetric bilinear quadrature
that is exact on Pn−1 × Pn−1 and minimal on Pn in which the W matrix is diagonal and
the matrix F (x) is given by

F (x) =


φ1(a) . . . φk(a)
φ1(x1) φk(x1)

...
...

φ1(xn−1) φk(xn−1)
φ1(b) . . . φk(b)

 .

Unlike in the Gaussian quadrature case, the matrix F = F (x) is not square, so there
exists infinitely many matrices W satisfying (2.3). Therefore, the simplified minimization
condition (2.8) cannot be employed, and one must optimize over both the quadrature nodes
x and matrices W . In general, suppose F is m × k and G is n × k, both with full column
rank. Then all matrices W satisfying (2.3) are of the form

W = (F ∗)+MG+ + Y − FF+Y GG+, (2.14)

where Y is an arbitrary m×n matrix. In the symmetric case F = G and M = I, a minimal
bilinear quadrature is found through the unconstrained minimization

Find Y ∈ Rm×m and x minimizing σ1

(
F+Γ + F ∗Y (I − FF+)Γ

)
(2.15)

While computationally more expensive, this optimization procedure can be used to compute
symmetric Lobatto-like bilinear quadratures. First fix points x0 that the bilinear quadrature
is required to use, then construct the (typically non-square) matrix function F (x0,x), where
only the points x are varying. Then minimize according to (2.15). This procedure is
applicable for arbitrary domains Ω, any space of continuous functions, and any inner product
on that space.

2.7 Change of variables

For a bilinear quadrature computing an L2(Ω) inner products, a bilinear quadrature can be
cheaply constructed for L2(Φ(Ω)) inner products, where Φ is an affine invertible change of
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variables. For continuous functions fi on Ω, set

f̃i(Φ(x)) = fi(x)|det(DΦ)|−1/2.

Then

〈f̃i, f̃j〉L2(Φ(Ω)) =

∫
Φ(Ω)

f̃i(y)f̃j(y) dy =

∫
Ω

fi(x)fj(x) dx = 〈fi, fj〉L2(Ω).

The Jacobian DΦ is constant when Φ is affine, so if the bilinear quadrature on L2(Ω) exact
on F0 × G0 is

Q(f, g) = f(x)∗Wg(y),

a bilinear quadrature on L2(Φ(Ω)) for (F0 ◦ Φ−1)× (G0 ◦ Φ−1) is given by

Q̃(f̃ , g̃) = f̃(Φ(x))∗W̃ g̃(Φ(y)), W̃ = W |det(DΦ)|−1. (2.16)

For an Hs inner product with s > 0, in general a new bilinear quadrature cannot be
cheaply constructed under a change of variables. However, when Φ(x) = λUx + b is affine
with λ ∈ R and U a unitary matrix, a change of variables can still be performed at low
cost. Let W be the matrix in a bilinear quadrature of form (2.4) computing H1(Ω) inner
products. Then write W = W0 +W1, where W0 is the matrix for a bilinear quadrature that
computes L2(Ω) inner products. Then a new bilinear quadrature for H1(Φ(Ω)) is formed
with matrix

W̃ = |λ|−1W0 + |λ|−3W1

and evaluation points mapped by Φ.

3 Computation

In this section, a basic numerical procedure to produce symmetric bilinear quadrature rules
is described. Afterward, some numerical examples of bilinear quadrature rules are presented.

3.1 Orthogonalization

For a function space F0, one may initially have a numerical routine to evaluate (up to
machine precision) basis functions ψ1, . . . , ψk for F0 that are not orthonormal. Assuming
that the inner products 〈ψi, ψj〉 = Mij can be computed exactly, F (x) is computed from
Ψ(x) and Gram matrix M by

1. Compute the lower triangular matrix L in the Cholesky factorization M = LL∗.

2. For a given x, perform a lower-triangular solve on the matrix equation Ψ(x)∗ = LZ.

3. Set F (x) = Z∗.

The same procedure can be used to produce an orthonormal basis for the function space F1

that the bilinear quadrature is minimized against.

3.2 Nonlinear optimization

For the invertible symmetric case we have reduced our problem to the minimization problem
(2.6):

Find x minimizing σ1

(
F (x)−1Γ(x)

)
.

This is a nonlinear optimization problem in d · k variables, where d is the dimension of the
integration region Ω and k = dim(F0).

The problem of minimizing the largest singular value of a matrix function A(x) is equiv-
alent to minimizing the largest eigenvalue of the symmetric positive semidefinite matrix
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A∗(x)A(x). This type of the eigenvalue optimization problem has been extensively studied
in its own right; see [OW95] [SF95].

Often F (x) and Γ(x), but not their derivatives, can be accurately computed. Also, the
multiplicity of the largest singular values are generally unknown. Consequently, a quasi-
Newton method is ideal for the optimization procedure. The objective function is non-
convex and typically has multiple local minima, so the optimization procedure is run with
many initial guesses. Furthermore, in the presence of many nearby local minima, after
each convergent result, the computed points can be perturbed by a small value δ and the
procedure run again with perturbed points as another initial guess. This is repeated until
suitable convergence. While this procedure may be expensive, computing a quadrature
is typically a one-time cost, after which the quadrature can be used repeatedly for its
applications.

In our numerical experiments, we employ a quasi-Newton method with BFGS updates
as implemented as part of Matlab’s fminunc routine [Bro70, Fle70, Gol70, Sha70]. Since
F (x)−1Γ(x) is a small, dense matrix, its norm is computed by calculating its full SVD.
Up to 105 initial random points uniformly distributed across the domain are used, and the
procedure is iterated until convergence in double-precision arithmetic.

For our numerical implementation we do not reinforce the constraint that the evaluation
points xi remain in the integration domain Ω. While in general the full constrained mini-
mization problem may be necessary, we have empirically observed that it is not necessary
for quadratures on polynomials. This can be explained by observing that the orthogonal
polynomials grow rapidly outside of Ω; thus points outside the domain are not expected to
be good candidates for the solution to the minimization problem.

Remarks. In the case of polynomials it is possible to accurately compute the gradients of
F (x) and Γ(x), in which case a quasi-Newton method may be unnecessary. The BFGS
method has been chosen since it is robust for different function spaces.

3.3 Bilinear quadratures on triangular domains

In practical applications one of the most important cases to consider is the L2 product
of polynomials on a simplex. For example, in the finite element method one typically
solves a two-dimensional PDE locally on polynomials supported on triangular domains. The
discretization requires computing a number of inner products. In this section we compute
bilinear quadratures that are exact on polynomials on a triangular domain.

Because the space of polynomials is affine-invariant it suffices to find evaluation points
for polynomials on a reference triangle. Given a bilinear quadrature on a reference triangle a
bilinear quadrature for polynomials on any other triangle can be cheaply obtained using the
change of variables formula (2.16). A basis of orthogonal polynomials on the right triangle
with vertices (−1,−1), (−1, 1), (1,−1) is given by

Km,n(x, y) =

(
1− v

2

)m
Pm

(
2x+ y + 1

1− y

)
P 2m+1,0
n (y), (3.1)

where Pm is the mth Legendre polynomial and Pα,βn is the nth Jacobi polynomial with
parameters α, β. These functions can be computed efficiently and stably as in [XG10].

Using this basis, symmetric bilinear quadratures exact for the L2 inner product over this
right triangle on F0 = Pn and minimal on F1 = Pn+1 ∩ P⊥n were computed. The minimal
number of evaluation points were used, in which case the number of points required is

k = dim(Pn) =

(
n+ 2

2

)
.

In Table 1, for each computed bilinear quadrature rule, the minimized largest singular value
σ = σ1(F (x)−1Γ(x)) is given, along with the ∞-norm condition number of the matrix for
the approximate orthogonal projection.
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.14507 2.82218e+0
2 6 0.30373 6.29185e+0
3 10 0.47762 1.15455e+1
4 15 0.65817 2.03810e+1
5 21 0.78394 3.39955e+1
6 28 0.87930 4.71065e+1
7 36 0.95305 8.48889e+1
8 45 1.05595 1.09107e+2

Table 1: Numerical results for k-point bilinear quadratures on Pn ×Pn for L2 on the interior of the
reference right triangle.

Figure 1: Evaluation points for bilinear quadratures on Pn × Pn for L2 on the interior of an
equilateral triangle, for n = 4, 8.

In Figure 1, the evaluation points of two bilinear quadrature rules on the equilateral
triangle are shown. Notice that the points possess some symmetries. The expectation
that quadrature points for polynomials should have some symmetries has been exploited
in the past to reduce the complexity of searching for classical quadratures [XG10]. In the
quasi-Newton method used to solve (2.8), however, no symmetry conditions were explicitly
enforced.

3.4 Numerical accuracy of quadratures on triangles

In the section the computed bilinear quadratures on triangles are compared against existing
high-order classical quadrature schemes on triangles in the setting of orthogonal projections.
Given the space F0 = Pn on Ω with L2-orthonormal basis β = {fi}, orthogonal projection
operator P onto F0, and given g ∈ C∞(Ω), we wish to compute

[Pg]β =

〈f1, g〉L2

...
〈fk, g〉L2

 .
The column vector [Pg]β can be computed using either an approximate orthogonal projec-
tion, or a classical quadrature for each entry

∫
Ω
fig.

Since the approximate orthogonal projection matrix F ∗W , weights of the classical quadra-
ture, and locations of evaluation points are all precomputed, the flop cost for each method
is solely determined by the number of evaluation points needed. The 28-point bilinear
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P′5 P′6 C TP
Dunavant 9.38e-14 3.97e-01 4.97e-05 9.06e-03
Xiao/Gimbutas 3.29e-15 2.73e-01 1.91e-05 4.74e-03
Bilinear 3.92e-15 3.99e-15 6.74e-06 1.71e-03

Table 2: Average `2-norm relative error in computing approximate orthogonal projection coefficients
onto P6 for four different sets of functions using three methods that use 28 function evaluations.

quadrature as shown in Figure 1 was utilized. For comparison we chose two different 28-
point classical quadratures, each exact on polynomials of degree up to 11, due to Dunavant
[Dun85] and Xiao and Gimbutas [XG10], respectively. These quadratures were computed
using the libraries available from [Bur15]. Both classical quadratures were similarly trans-
formed to an equilateral triangle of side length 1.

For our numerical experiments, we draw the projected function g from four different
probability distributions of functions, which we denote by P′5,P′6, C, and TP .

We define
P′n := {g ∈ Pn : ‖g‖L2 = 1},

with probability measure given by drawing a random vector of coefficients uniformly in
[−1, 1]k, and then normalizing the coefficients to have `2-norm 1, and using those as the
Fourier coefficients on the orthonormal polynomials on the triangle.

The set C contains smooth functions with slow decay, and is defined by functions of the
form

g(x, y) =
1

1 + (a1x+ a2y)2
,

where a = (a1, a2) is drawn uniformly from the unit circle.
The set TP contains smooth non-polynomial functions with oscillations, and has ele-

ments of the form
g(x, y) = ea1x+a2y cos(4b1x+ 4b2y)p(x, y),

where parameters (a1, a2) and (b1, b2) are both drawn uniformly from the unit circle, and
p(x, y) is a random element of P′2 with L2 norm 1 as chosen in the same manner as for the
first two cases.

For each randomly chosen function g, we computed the column vector [PQg]β using the
three quadrature methods. The exact value [Pg]β was computed with a 295-point classical
quadrature that exactly integrates polynomials up to degree 40, as computed in [XG10].
The `2 norm relative error was averaged over 104 randomly generated g for each of the four
classes of functions. The resulting average relative errors are shown in Table 2.

On P′5, all three quadrature rules achieve very high accuracy, with the Dunavant quadra-
ture losing one digit of accuracy and both Xiao/Gimbutas and bilinear quadratures correctly
computing the orthogonal projection up to double precision. This is expected since all
quadratures are designed to integrate such polynomial functions exactly.

On P′6, neither classical quadratures are accurate to full precision because both classical
quadratures are only capable of exactly integrating polynomials of degree up to 11. Since
the bilinear quadrature can exactly integrate P6 × P6, it has mean error on the order of
machine precision.

On the sets C and TP , none of the quadratures are accurate to machine precision since
none of the functions are polynomials. However, the bilinear quadrature achieves better
accuracy than the classical quadratures despite having the same number of evaluation points.

The existing classical quadratures are already very good, integrating non-polynomial
functions from C and TP with several digits of accuracy. Additionally, the classical quadra-
ture of Xiao/Gimbutas performs better than the Dunavant quadrature in all four cases.
However, the bilinear quadrature was as good or better than the classical quadratures in
each case, despite using the same number of evaluations. This result is explained by the fact
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.67739 2.91852e+0
2 6 0.79523 7.50137e+0
3 10 0.92888 1.17526e+1
4 15 0.97590 2.68367e+1
5 21 0.99701 3.14417e+1
6 28 1.00066 6.42937e+1
7 36 1.00711 7.34237e+1
8 45 1.00784 1.03464e+2

Table 3: Numerical results for k-point bilinear quadratures on Pn × Pn for L2 on the interior of a
square.

Figure 2: Evaluation points for bilinear quadratures on Pn × Pn for L2 on the interior of a square,
for n = 4, 8.

that bilinear quadratures are specifically designed for the orthogonal projection problem,
while classical quadratures are designed for evaluating a linear functional.

3.5 Bilinear quadratures on other domains

In this section bilinear quadratures for L2 inner products of polynomials on the interiors
of a square and a circle are computed. We observe that, just as in the case of triangles,
minimizing according to (2.8) produces well-behaved evaluation points.

For the case of the square domain [−1, 1]2, orthogonal polynomials are Pn(x)Pm(y),
where Pn is the nth Legendre polynomial. Table 3 shows the minimized leading singu-
lar value σ and matrix condition number κ∞ for several k-point bilinear quadratures on
the square. Interestingly, the evaluation points on the square do not appear to obey any
symmetries.

Remark. One can produce a classical quadrature scheme on the square by simply taking the
tensor product of two Gaussian quadratures on an interval. However, this exactly integrates
basis functions of the form xαyβ with 0 ≤ α ≤ n, 0 ≤ β ≤ n, rather than integrating
polynomials whose total degree does not exceed some value.

On the unit disk, an orthogonal basis of polynomials is given in polar coordinates by the
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.67617 3.04857e+0
2 6 0.79868 5.50559e+0
3 10 0.89712 1.01509e+1
4 15 0.94133 1.59179e+1
5 21 0.97804 2.24193e+1
6 28 1.00337 3.94055e+1
7 36 1.02908 5.60579e+1
8 45 1.07413 6.75064e+1

Table 4: Numerical results for k-point bilinear quadratures on Pn × Pn for L2 on the unit disk.

Figure 3: Evaluation points for bilinear quadratures on Pn×Pn for L2 on the unit disk, for n = 4, 6.

Zernike polynomials Zm,n(r, θ), defined by

Zm,n(r, θ) := Qm,n(r) cos(mθ), Z−m,n(r, θ) := Qm,n(r) sin(mθ),

Qm,n(r) :=

(n−m)/2∑
k=0

(−1)k
(
n− k
k

)(
n− 2k
n−m

2 − k

)
rn−2k,

where n ≥ m ≥ 0 are integers and n − m is even. Table 4 shows the minimized leading
singular value σ and matrix condition number κ∞ for several k-point bilinear quadratures
on the unit disk.

3.6 Bilinear quadrature for the Sobolev inner product

In this section we compute bilinear quadratures that evaluate the Sobolev inner product

〈f, g〉H1 =

∫
Ω

Df(x) ·A(x)Dg(x) + f(x)g(x) dx,

where A(x) is symmetric positive definite on Ω. One advantage of a bilinear quadrature for
H1 is that the above integral can be numerically evaluated using only point evaluations of
f, g and does not require evaluating any derivatives.

For Ω = [−1, 1], bilinear quadratures for H1 on Pn×Pn and minimal on Pn+1∩P⊥n were
computed for two positive weight functions A(x) = 1+x2 and A(x) = ex. Orthogonalization
was performed by starting with the Legendre polynomials and computing the Gram matrix
M using a 40-point classical Gaussian quadrature.
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n k σ κ∞(F ∗W )
1 2 0.00000 5.00000e+0
2 3 0.00000 1.38132e+1
3 4 0.00000 2.72011e+1
4 5 0.00000 6.59254e+1
5 6 0.00000 1.21461e+2
6 7 0.00000 1.86818e+2
7 8 0.00000 2.86549e+2
8 9 0.00000 4.22824e+2

Table 5: Numerical results for bilinear quadratures on Pn×Pn for H1[−1, 1] with the weight function
A(x) = 1 + x2.

n k σ κ∞(F ∗W )
1 2 0.00000 4.52560e+0
2 3 0.00000 1.30446e+1
3 4 0.00000 2.49183e+1
4 5 0.00000 5.13338e+1
5 6 0.00000 9.28987e+1
6 7 0.00000 1.50063e+2
7 8 0.00000 2.28284e+2
8 9 0.00000 3.30651e+2

Table 6: Numerical results for bilinear quadratures on Pn×Pn for H1[−1, 1] with the weight function
A(x) = ex.

In Tables 5 and 6 the singular value σ and condition number κ∞ are shown for the
two bilinear quadratures for H1. In all cases, σ is zero up to machine precision, since the
exact solution to the minimization (2.6) is the roots of the (n+ 1)th-degree H1-orthogonal
polynomial, just as for Gaussian quadratures. We observe that the condition number of the
approximation projection matrix F ∗W is larger than in the L2 case. This can be explained
by the fact that small perturbations in the function values can lead to large perturbations
in the derivatives.

4 Conclusions

A quadrature framework for numerically evaluating a continuous bilinear form on function
spaces has been presented, and an optimization procedure for computing such quadratures
has been outlined. We have argued that this is the correct approach to numerically evalu-
ating orthogonal projections of functions onto a fixed subspace.

We have also observed that the optimization approach for finding bilinear quadratures
does not depend on the ambient dimension, the domain of integration, or the function space
to be integrated exactly. Despite this generality, in our numerical experiments we found the
resulting quadratures perform well, achieving both efficiency and accuracy.

There are several topics to explore in future work. One is the construction and utiliza-
tion of bilinear quadratures tailored to specific high-order Galerkin methods. Another is the
investigation of the performance of bilinear quadratures for evaluating other (non-Sobolev)
bilinear forms. Yet another finding an efficient numerical method for solving the optimiza-
tion problem (2.15) for the non-invertible case. In that case, a bilinear quadrature is not
uniquely determined by its evaluation points, and the optimization problem gains many
additional degrees of freedom. Lastly, one could investigate the use of bilinear quadratures
for solving integral equations. Such quadratures may prove useful in the Nyström discretiza-
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tion of Fredholm integral operators [Bol72] or boundary integral equations on domains with
corners [BRS10].
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