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ASTRO-DF: A CLASS OF ADAPTIVE SAMPLING
TRUST-REGION ALGORITHMS FOR DERIVATIVE-FREE

STOCHASTIC OPTIMIZATION

SARA SHASHAANI ∗, FATEMEH S. HASHEMI † , AND RAGHU PASUPATHY ‡

Abstract. We consider unconstrained optimization problems where only “stochastic” estimates
of the objective function are observable as replicates from a Monte Carlo oracle. The Monte Carlo
oracle is assumed to provide no direct observations of the function gradient. We present ASTRO-DF
— a class of derivative-free trust-region algorithms, where a stochastic local interpolation model is
constructed, optimized, and updated iteratively. Function estimation and model construction within
ASTRO-DF is adaptive in the sense that the extent of Monte Carlo sampling is determined by
continuously monitoring and balancing metrics of sampling error (or variance) and structural error
(or model bias) within ASTRO-DF. Such balancing of errors is designed to ensure that Monte Carlo
effort within ASTRO-DF is sensitive to algorithm trajectory, sampling more whenever an iterate
is inferred to be close to a critical point and less when far away. We demonstrate the almost-sure
convergence of ASTRO-DF’s iterates to a first-order critical point when using linear or quadratic
stochastic interpolation models. The question of using more complicated models, e.g., regression
or stochastic kriging, in combination with adaptive sampling is worth further investigation and will
benefit from the methods of proof presented here. We speculate that ASTRO-DF’s iterates achieve
the canonical Monte Carlo convergence rate, although a proof remains elusive.

Key words. derivative-free optimization, simulation optimization, stochastic optimization,
trust-region

1. INTRODUCTION. We consider unconstrained stochastic optimization (SO)
problems, that is, optimization problems in continuous space where the objective func-
tion(s) can only be expressed implicitly via a Monte Carlo oracle. The Monte Carlo
oracle is assumed to not provide any direct observations of the function derivatives.

SO has recently gathered attention due to its versatile formulation, allowing the
user to specify functions involved in an optimization problem implicitly, e.g., through
a stochastic simulation. As a result, SO allows virtually any level of problem com-
plexity to be embedded, albeit at the possible price of a computationally burdensome
and slow Monte Carlo oracle. SO has seen wide recent adoption — see, for example,
applications in telecommunication networks [31], traffic control [42], epidemic fore-
casting [40] and health care [1]. Recent editions of the Winter Simulation Conference
(www.informs-sim.org) have dedicated an entire track to the SO problem and its
various flavors. For a library of SO problems, see www.simopt.org and [46, 47].

1.1. Problem Statement. The SO problem we consider is formally stated as
follows:

(1.1) Problem P : minimize f (x) subject to x ∈ IRd,

where f : IRd → IR is bounded from below and has Lipschitz continuous gradients.
Furthermore, the function f(x) = E[F (x)] is the expectation of a random func-
tion F (x) that is observable through Monte Carlo. This means, for instance, that
one can generate n identically distributed samples or replicates Fi(x), j = 1, 2, . . . , n
of F (x) by “executing” the Monte Carlo simulation n times at the point x. This
leads to the estimator F̄ (x, n) = n−1

∑n
j=1 Fj (x) having standard error estimated
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as σ̂F (x, n) /
√
n where σ̂2

F (x, n) = n−1
∑n

j=1

(
Fj (x)− F̄ (x, n)

)2
. We assume that

no direct observations of the gradient ∇f(·) , e.g., through IPA [4, p. 214], are avail-
able through the Monte Carlo oracle. This means that methods seeking a gradient
estimate need to resort to indirect methods such as as finite differencing [4, p. 209],
leading to biased estimators.

An algorithm for solving the above problem will be evaluated based on its ability
to return a (random) sequence of iterates {Xk} converging in some rigorously defined
probabilistic metric to a first- or second-order critical point of the function f . Thus,
each “run” of a solution algorithm will return a random sequence of iterates {Xk},
and SO algorithms that return iterate sequences {Xk} guaranteed to converge to a
critical point with probability one will be called consistent.

1.2. Complications. The presence of a Monte Carlo oracle lends flexibility to
the SO problem formulation, but it also brings with it a simply-stated complication:
the lack of uniform deterministic error guarantees. Specifically, suppose f (x, n) is the
Monte Carlo estimate of the unknown desired function value f(x) at the point x, and
n represents the extent of Monte Carlo effort. Then, simple probability arguments
reveal that deterministic guarantees of the sort |f (x, n) − f (x) | ≤ ǫ, ǫ > 0 do not
hold irrespective of the size of n; instead, one has to be content with probabilistic
precision guarantees of the form P{|f (x, n) − f (x) | > ǫ} ≤ α for n ≥ n0(α). The
analogous situation for function derivative estimation using Monte Carlo is worse. If
the derivative estimate ∇̂f(x) := (∇̂1f(x), ∇̂2f(x), . . . , ∇̂qf(x)) is constructed using
a central-difference approximation as

∇̂if(x) = (2cn)
−1(f(x+ cnei, n)− f(x− cnei, n)), i = 1, 2, . . . , q,

then, as in the function estimation context, no uniform guarantees on the accu-
racy of ∇̂f(x) are available in general. Furthermore, the rate at which ∇̂f(x) con-
verges to ∇f(x) depends crucially on the choice of {cn}, with the best possible rate
O(n−1/3) under generic Monte Carlo sampling being much slower than the corre-
sponding O(n−1/2) rate for function estimation. (See [4] for this and related results.)
Most importantly, implementing such finite-difference derivative estimates within an
SO algorithm is well recognized to be a delicate issue, easily causing instabilities. In
any event, the lack of uniform deterministic guarantees in the SO context means that
estimation error inevitably accumulates across iterations of an algorithm, thereby
threatening convergence guarantees of the resulting iterates. Algorithms for solving
SO have to somehow contend with such potential non-convergence due to mischance,
either through the introduction of gain sequences as in stochastic approximation [34]
or through appropriate sampling as in sample average approximation or retrospective
approximation [33, 43].

A second complication within SO, but one that it partially shares with black-box
deterministic optimization contexts, is the lack of information about function struc-
ture. Structural properties such as convexity, uni-modality, and differentiability, if
known to be present, can be exploited when designing optimization algorithms. Such
properties, when appropriate, are usually assumed within the deterministic context,
and an appropriate solution algorithm devised. In SO, however, structural assump-
tions about the underlying true objective and constraint function, even if correct,
may not provide as much leverage during algorithm development. This is because,
due to the presence of stochastic error, the true objective and constraint functions
are never directly observed; and, making structural assumptions about their observed
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sample-paths is far more suspect.

Remark 1. Another aspect that is unique to SO is noteworthy. Monte Carlo calls
are typically the most compute-intensive operations within SO contexts. And, depend-
ing on the nature of the SO algorithm, different number of Monte Carlo calls may
be expended across iterations, e.g., constant in Stochastic Approximation (SA) [34],
varying but predetermined in Retrospective Approximation (RA) [43], or random in
Sampling Controlled Stochastic Recursion (SCSR) [45]. This means that the elemen-
tal measure of effort in SO — the number of Monte Carlo oracle calls — may not
have a simple relationship with the notion of “iterations” defined within the specific
SO algorithm, forcing a need for more careful book-keeping. This is why iterative
SO algorithms are well-advised to measure convergence and convergence rates not in
terms of the number of iterations, but rather in terms of the total number of Monte
Carlo calls.

1.3. ASTRO-DF and Overview of Contribution. Our particular focus in
this research is that of developing a class of algorithms for solving low to moderate di-
mensional SO problems that have no readily discernible structure. We are inspired by
the analogous problem in the deterministic context that has spurred the development
of a special and arguably very useful class of optimization methods called model-based
trust-region derivative-free (TRO-DF) algorithms [22, 49, 21, 5]. TRO-DF algorithms
are typified by two aspects: (i) they eschew the direct computation and use of deriva-
tives for searching, and instead rely on constructed models of guaranteed accuracy in
specified “trust-regions”; (ii) the algorithmic search evolves by repeatedly construct-
ing and optimizing a local model within a dynamic trust-region, explicitly restricting
the distance between the successive iterates returned by the algorithm. The aspect
in (i) is particularly suited for adaptation to SO contexts where direct derivative es-
timation can be delicate and unstable, requiring careful choice of step-sizes [4]; the
aspect in (i) also aids efficiency because models constructed in previous iterations can
be re-used with some updating, and no effort is expended for explicit estimation of
derivatives. The aspect in (ii) runs counter to efficiency, but is designed to reduce
variance in the algorithm’s iterates, through steps that are more circumspect.

We construct a family of adaptive sampling trust-region optimization derivative-
free (ASTRO-DF) algorithms for the SO context. In their most rudimentary form,
ASTRO-DF algorithms follow a familiar idea for iteratively estimating the first and
second order critical points of a function. Given a current random iterate Xk that ap-
proximates the first-order critical point of interest, ASTRO-DF constructs a tractable
“local” stochastic model using Monte Carlo observations of the objective function at
carefully chosen points around Xk. The constructed model is then optimized within
the local region in which it is constructed to obtain a candidate solution X̃k+1. Next,
the objective function is observed (using Monte Carlo) at X̃k+1 and compared against
the value predicted by the model at X̃k+1. If the observed decrease in function values
from Xk to X̃k+1 exceeds the decrease predicted by the constructed model in a cer-
tain stochastic sense, the candidate X̃k+1 is accepted as the next iterate Xk+1. As a
vote of confidence on the constructed model, the trust-region radius is then expanded
by a factor. Otherwise, that is, if the predicted decrease is much lower than the
observed decrease (again, in a certain precise sense), the candidate X̃k+1 is rejected,
the trust-region radius is shrunk, and the local model is updated in an attempt to
improve accuracy. This iterative process then repeats to produce a random sequence
of iterates {Xk} that is realized in each run of ASTRO-DF.

Remark 2. Throughout this paper, we use the term “sampling” to refer to the



4 Shashaani, Hashemi, and Pasupathy

act of obtaining replicates using multiple runs of the Monte Carlo oracle at a fixed
point. This is not to be confused with sampling design points in the search region. So,
when we say that the sample size is n, we mean that n amount of Monte Carlo effort
was expended to obtain the function estimate at a fixed point.

The above ideas for model construction, trust-region management, and candidate
point acceptance say nothing about how much Monte Carlo effort to expend. Since
all observations for function estimation and model construction are based on Monte
Carlo, the resulting accuracy estimates are at best probabilistic, leading us to the
question of how much to sample. Too little Monte Carlo effort threatens convergence
due to accumulated stochastic and deterministic errors, and too much Monte Carlo
sampling means reduced overall efficiency. Identifying the correct Monte Carlo sam-
pling trade-off is more than a theoretical question, and answering it adequately entails
more than broad prescriptions on sampling rates. To produce good implementations,
sampling prescriptions ought to be automatic and specific to the problem at hand,
which usually means relying on inference based on algorithm trajectory.

To resolve the issue of how much to sample, we propose that a simple strat-
egy called adaptive sampling be incorporated within derivative-free trust-region algo-
rithms in the SO context. Recognizing that the error in function and model estima-
tion can be decomposed orthogonally into error due to sampling (or variance in the
case of unbiased estimates) and error due to structure (or bias), adaptive sampling
seeks to ensure that “just adequate” Monte Carlo sampling is performed by balancing
these errors. For example, when constructing a local model, Monte Carlo sampling in
ASTRO-DF is adaptive in the sense that sampling continues until a certain continu-
ously monitored metric of model quality exceeds a metric of sampling variability. A
similar rule is employed when estimating the objective function at a point for purposes
of candidate acceptance. We believe that such adaptive sampling paves the way for
efficiency because it reacts to the observed algorithm trajectory and, as we shall see,
keeps the different sources of error within the algorithm in lock-step. The resulting
algorithm remains practical because of the simplicity of the proposed adaptive sam-
pling rule — sample until the estimated standard error falls below a certain specified
power of the prevailing trust-region radius.

Remark 3. Adaptive sampling as an idea is not new and has been used with great
success in other areas such as sequential confidence interval construction [20, 28] and
SO on finite spaces [30].

Adaptive sampling, while invaluable as an implementation idea, introduces sub-
stantial complications when analyzing algorithm behavior. Akin to what happens
during sequential sampling in the context of confidence interval construction [20, 28],
the explicit dependence of the extent of Monte Carlo sampling on algorithm tra-
jectory causes systematic early stopping and consequent bias in the function esti-
mates obtained within ASTRO-DF. In other words, when using adaptive sampling,
E[f(x, n)] 6= f(x) in general since the sample size n is a stopping time [25, pp. 182]
that will depend on f(x, n). Demonstrating that ASTRO-DF’s iterates converge to a
first-order critical point with probability one then entails demonstrating that the bias
effects of adaptive sampling, especially when used within the derivative-free trust-
region context, wear away asymptotically. We accomplish this by first generically
characterizing a relationship between the moments of the adaptive sample size and
the function estimates at stopping, and then showing that the errors induced due to
model construction, algorithm recursion, and function estimation remain in lock-step
(or comparable) throughout ASTRO-DF’s evolution.
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We note that ASTRO-DF, as presented here, assumes that a stochastic linear or
stochastic quadratic interpolation model is constructed during the model-construction
step of the algorithm. While such models are reasonable and have seen wide use in
the analogous deterministic context, other possibly more powerful model construction
techniques such as regression or stochastic kriging [3] should be considered in place
of interpolation models, especially alongside adaptive sampling. Ongoing research
investigates this question and it is our belief that the proof techniques that we present
in this paper will carry over, albeit with some changes.

2. PRELIMINARIES. In this section, we list notation, key definitions, and
some basic results that will be used invoked throughout the rest of the document.

2.1. Notation and Convention. We use bold font for vectors, script font for
sets, lower case font for real numbers and upper case font for random variables. Hence
{Xk} denotes a sequence of random vectors in IRd, x =

(
x1, x2, . . . , xd

)
denotes

a d-dimensional vector of real numbers, Y := {Y1,Y2, . . . ,Yp} denotes a set of p
real vectors, and Y := {Y1,Y2, . . . ,Yp} denotes a set of p random vectors. The set

B (x; r) =
{
y ∈ IRd : ‖y − x‖ ≤ r

}
is the closed ball of radius r > 0 with center x.

For a sequence of random vectors {Xk}, Xk
wp1−−→ X denotes convergence with

probability one or almost-sure convergence. For a sequence of real numbers {ak}, we
say ak = o (1) if limk→∞ ak = 0; we say ak = O (1) if {ak} is bounded, that is, there
exists a constant M > 0 such that |ak| < M for large enough k. For sequences of
real numbers {ak}, {bk}, we say that ak ∼ bk if limk→∞ ak/bk = 1. For a sequence of
random variables {Xk}, we say Xk = Op(1) if {Xk} is stochastically bounded, that
is, given ǫ > 0 there exists M(ǫ) ∈ IR such that P{Xk ∈ (−M(ǫ),M(ǫ))} ≥ 1− ǫ for
all k ≥ K(ǫ) ∈ N. For a sequence of sets {An} defined on a probability space, the
set P {An i.o.} := P {

⋂∞
n=1

⋃∞
m=n Am} refers to the event that “An happens infinitely

often.”

2.2. Key Definitions. The following definitions will be invoked heavily during
our exposition and analysis of ASTRO-DF. For further details on these definitions,
consult [22] and [41].

Definition 2.1. (Poised and Λ-Poised Sets) Given x ∈ IRd and ∆ > 0, let Y =
{Yi ∈ B (x; ∆) , i = 1, 2, . . . , p} be a finite set and Φ (z) =

(
φ1 (z) , φ2 (z) , . . . , φq (z)

)

be a polynomial basis on IRd. Define

(2.1) P (Φ,Y) =




φ1 (Y1) φ2 (Y1) . . . φq (Y1)
φ1 (Y2) φ2 (Y2) . . . φq (Y2)

...
...

...
...

φ1 (Yp) φ2 (Yp) . . . φq (Yp)


 .

Then, Y is said to be a “poised set” in B (x; ∆) if the matrix P (Φ,Y) is nonsingular.
A poised set Y is said to be “Λ-poised” in B (x; ∆) if

Λ ≥ max
j=1,...,p

max
z∈B(x;∆)

|ℓj (z)| ,

where ℓj (z) are the Lagrange polynomials associated with Y.
Definition 2.2. (Polynomial Interpolation Models) Let f : IRd ⊆ IRd → IR be

a real-valued function and let Y and Φ be as defined in Definition 2.1 with p = q.
Suppose we can find α =

(
α1, α2, . . . , αp

)
such that

(2.2) P (Φ,Y)α = (f (Y1) , . . . , f (Yp))
T
.
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(Such an α is guaranteed to exist if Y is poised.) Then the function m(z) : B (x; ∆) →
IR given by

(2.3) m(z) =

p∑

j=1

αjφj (z)

is said to be a polynomial interpolation model of f on B (x; ∆). As a special case, m (z)
is said to be a linear interpolation model of f on B (x; ∆) if Φ(z) := (φ1, φ2, . . . , φp) =
(1, z1, z2, . . . , zd), and a quadratic interpolation model of f on B (x; ∆) if Φ(z) :=
(φ1, φ2, . . . , φp) =

(
1, z1, z2, . . . , zd, 1

2 (z
1)2, z1z2, . . . , 12 (z

2)2, . . . , 1
2 (zd)

2
)
.

Definition 2.3. (Stochastic Interpolation Models) A model constructed as in
Definition 2.2 but with sampled function estimates is called a stochastic interpolation
model. Specifically, analogous to (2.2), suppose α̂ =

(
α̂1, α̂2, . . . , α̂p

)
is such that

P (Φ,Y) α̂ =
(
F̄ (Y1, n (Y1)) , F̄ (Y2, n (Y2)) , . . . , F̄ (Yp, n (Yp))

)T
,

Then the stochastic function M(z) : B (x; ∆) → IR given as M(z) =
∑p

j=1 α̂
jφj (z)

is said to be a stochastic polynomial interpolation model of f on B (x; ∆), where
Φ (z) =

(
φ1 (z) , φ2 (z) , . . . , φq (z)

)
and P (Φ,Y) are as in Definition 2.2.

Definition 2.4. (Fully-linear and Fully-quadratic Models) Given x ∈ IRd,
m (z) : B (x; ∆) → IR, m ∈ C1 is said to be a (κef , κeg)-fully-linear model of f
on B (x; ∆) if it has a Lipschitz continuous gradient with Lipschitz constant νmgL, and
there exist constants κef , κeg (not dependent on z and ∆) such that

(2.4)
|f (z)−m (z)| ≤ κef∆

2;

‖∇f (z)−∇m (z)‖ ≤ κeg∆.

Similarly m(z) : B (x; ∆) → IR, m ∈ C2 is said to be a (κef , κeg, κeh)-fully-quadratic
model of f on B (x; ∆) if it has a Lipschitz continuous second derivative with Lipschitz
constant νmhL, and constants κef , κeg, κeh (not dependent on z, ∆) such that

(2.5)

|f (z) −m (z)| ≤ κef∆
3;

‖∇f (z)−∇m (z)‖ ≤ κeg∆
2;

∥∥∇2f (z)−∇2m (z)
∥∥ ≤ κeH∆.

A linear interpolation model constructed using a poised set Y can be shown to be
(κef , κeg)-fully-linear; likewise, a quadratic interpolation model constructed using a
poised set Y can be shown to be (κef , κeg, κeh)-fully-quadratic.

Definition 2.5. (Cauchy Reduction) Step s is said to achieve κfcd fraction of
Cauchy reduction for m (·) on B (x; ∆) with some ∆ > 0, if

(2.6) m (x)−m (x+ s) ≥ κfcd

2
‖∇m (x)‖min

{ ‖∇m (x)‖
‖∇2m (x)‖ ,∆

}
,

where ∇m (x) and ∇2m (x) are the model gradient and the model Hessian at point x.
We assume ‖∇m (x)‖ /

∥∥∇2m (x)
∥∥ = +∞ when ∇2m (x) = 0. A Cauchy step with

κfcd = 1 is obtained by minimizing the model m(·) along the steepest descent direction
within B (x; ∆) [22, p. 175]. Accordingly, the Cauchy step is especially easy to obtain
when m(·) is linear or quadratic.
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2.3. Useful Results. We will now state some basic results that will be used
at various points in the paper. The first of these (Theorem 2.6) is a seminal result
that is routinely used in sequential sampling contexts, especially when constructing
confidence intervals. The second result (Theorem 2.7) is a variation of Lemma 2
and Theorem 1 in [27] which, again, originally appeared in the context of sequential
confidence intervals. As we shall see, we will use Theorem 2.7 extensively in our
analysis, to analyze the behavior of estimators that are constructed using sequential
sampling. The postulates and the setting of Theorem 2.7 differ only a little from the
setting of Theorem 1 in [27]; for this reason, we have chosen not to include a proof.

Theorem 2.6 (Chow and Robbins, 1965). Suppose random variables Xi, i =

1, 2, . . . are iid with variance σ2 < ∞, X̄n = n−1
∑n

i=1 Xi, σ̂
2
n = n−1

∑n
i=1

(
Xi − X̄n

)2
,

and {an} a sequence of positive constants such that an → a as n → ∞. If

N(d) = inf

{
n ≥ 1 :

σ̂n√
n
≤ d

an

}
,

then d2N(d)/
(
a2σ2

) wp1−−→ 1 and σ̂N/σ
wp1−−→ 1 as d → 0.

Theorem 2.7. Suppose random variables Xi, i = 1, 2, . . . are iid with E[X1] =

0,E[X2
1 ] = σ2 > 0, and E[|X1|4v] < ∞ for some v ≥ 2. Let σ̂2

n = n−1
∑n

i=1

(
Xi − X̄n

)2
,

where X̄n = n−1
∑n

i=1 Xi. If

N(λ) = inf

{
n ≥ λγ :

σ̂n√
n
≤ κ√

λ

}
, γ ∈ (0, 1]

then the following hold.
(i) As λ → ∞,

P{N(λ) < ∞} = 1 and N(λ)
wp1−−→ ∞.

(ii) As λ → ∞ and for every s < v,

E[Ns(λ)] ∼ σ2sκ−2sλs.

(iii) For every ǫ ∈ (0, 1),

P{N(λ) ≤ σ2κ−2λ(1 − ǫ)} = βλ−(v−1)γ .

where, as [27] notes, β is a generic constant that might depend only on v and
the moments of X1 but not on λ.

(iv) As λ → ∞,

E[X̄2
N(λ)(λ)] ∼ κ2λ−1.

We next state Lemma 2.8 which characterizes the error in the stochastic inter-
polation model introduced in Definition 2.3. Lemma 2.8 is essentially a stochastic
variant of a result that appears in Chapter 3 of [22]. We provide a sketch of the proof
of Lemma 2.8 in the Appendix.

Lemma 2.8. Let Y = {Y1,Y2, . . . ,Yp} be a Λ-poised set on B (Y1; ∆). Let m (z)
be an interpolation model of f on B (Y1; ∆). Let M (z) be the corresponding stochastic
interpolation model of f on B (Y1; ∆) constructed using observations F̄ (Yi, n(Yi)) =
f (Yi) + Ei for i = 1, 2, . . . , p.
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(i) For all z ∈ B (Y1; ∆),

|M (z)−m (z)| ≤ pΛ max
i=1,2,...,p

∣∣F̄ (Yi, n(Yi))− f (Yi)
∣∣ .

(ii) If M (z) is a stochastic linear interpolation model of f on B (Y1; ∆), then
there exist positive constants κegL1, κegL2 such that for z ∈ B (Y1; ∆) ,

‖∇M (z)−∇f (z)‖ ≤ κegL1∆+ κegL2

√∑d+1
i=2 (Ei − E1)

2

∆
.

If M (z) is a stochastic quadratic interpolation model of f on B (Y1; ∆), then
there exist positive constants κegQ1, κegQ2 such that

‖∇M (z)−∇f (z)‖ ≤ κegQ1∆
2 + κegQ2

√∑(d+1)(d+2)/2
i=2 (Ei − E1)

2

∆
.

We end this section by stating two basic results that we repeatedly invoke, and
which can be found in most standard treatments of probability such as [12]. The first
of these is used to upper bound the probability of the union of events; the second
provides sufficient conditions to ensure that an infinite number of a collection {An}
of events happening is zero.

Lemma 2.9 (Boole’s Inequality). Let A1, A2, · · · be a countable set of events
defined on a probability space. Then P (

⋃
iAi) ≤

∑
i P (Ai) . Particularly, we see that

if the random variables X,Xi, i = 1, 2, · · · , q satisfy X ≤ X1 +X2 + · · ·+Xq, then

(X > c) ⊆ (X1 +X2 + · · ·Xq > c)

⊆
(
X1 >

c

q

)
∪
(
X2 >

c

q

)
∪ · · · ∪

(
Xq >

c

q

)
,

implying (from Boole’s inequality) that

P {X > c} ≤ P

{
q⋃

i=1

(
Xi >

c

q

)}
≤

q∑

i=1

P

{
Xi >

c

q

}
.

Lemma 2.10 (Borel-Cantelli’s First Lemma). For a sequence A1, A2, . . . of events
defined on a probability space, if

∑∞
n=1 P {An} < ∞, then the probability P {An i.o.}

of An happening “infinitely often” is

P {An i.o.} := P

{
∞⋂

n=1

∞⋃

m=n

Am

}
= 0.

3. RELATED WORK. Much progress has been made in recent times on solv-
ing various flavors of the SO problem. The predominant solution methods in the sim-
ulation literature fall into two broad categories called Stochastic Approximation (SA)
and Sample-Average Approximation (SAA). SA and SAA have enjoyed a long history
with mature theoretical and algorithmic literature. More recently, newer classes of
algorithms that can be described as “stochastic versions” of iterative structures in the
deterministic context have emerged.
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3.1. SA and SAA. Virtually all stochastic approximation type methods are
subsumed by the following generic form:

(3.1) Xk+1 = ΠD (Xk − akGk) ,

where ΠD(x) is the projection of the point x onto the set D, {ak} is a user-chosen
positive-valued scalar sequence, and Gk is an estimator of the gradient ∇f(Xk) of the
function f at the point Xk. When direct Monte Carlo observations of the objective
function f are available, the most common expression for Gk =

(
G1

k, G
2
k, · · · , Gd

k

)
is

either the central-difference approximation Gi
k = (2ck)

−1(F (Xk + ckei) − F (Xk −
ckei)) or the forward-difference approximation Gi

k = c−1
k (F (Xk + ckei)− F (Xk)) of

the gradient∇f(Xk), where {ck} is a positive-valued sequence and F : IRd → IR is the
observable estimator of the objective function f : IRd → IR. The resulting recursion
is the famous Kiefer-Wolfowitz process [32, 15]. More recent recursions include an
estimated Hessian Hk(·) of the function f at the point Xk:

(3.2) Xk+1 = ΠD

(
Xk − akH

−1
k Gk

)
,

making the resulting recursion in (3.1) look closer to the classical Newton’s iteration in
the deterministic context. The Hessian estimatorHk(·) has d2 entries, and hence, most
methods that use (3.2) estimate Hk(·) either using a parsimonious design (e.g., [54,
55]), or construct it from the history of observed points.

As can be seen in (3.1), the SA recursion is simply stated and implemented,
and little has changed in its basic structure since 1951, when it was first introduced
by Robbins and Monro [50] for the context of finding a zero of a “noisy” vector
function. Instead, much of the research over the ensuing decades has focused on
questions such as convergence and convergence rates of SA type algorithms, the effect
of averaging on the consistency and convergence rates of the iterates, and efforts to
choose the sequence {ak} in an adaptive fashion. Some good entry points into the
vast SA literature include [34, 38, 48, 44]. See [17, 16, 57] recent attempts to address
the persistent dilemma of choosing the gain sequence {ak} to ensure good practical
performance.

SAA, in contrast to SA, is more a framework than an algorithm to solve SO
problems. Instead of solving Problem P , SAA asks to solve a “sample-path” Problem
Pn (to optimality) to obtain a solution estimator Xn. Formally, in the unconstrained
context, SAA seeks to solve

(3.3) Problem Pn : minimize f (x, n) subject to x ∈ IRd,

where f (x, n) is computed using a “fixed” sample of size n.
SAA is attractive in that Problem Pn becomes a deterministic optimization prob-

lem and SAA can bring to bear all of the advances in deterministic nonlinear pro-
gramming methods [11, 39] of the last few decades. SAA has been the subject of a
tremendous amount of theoretical and empirical research over the last two decades.
For example, the conditions that allow the transfer of structural properties from the
sample-path to the limit function f(x) [33, Propositions 1,3,4]; the sufficient condi-
tions for the consistency of the optimal value and solution of Problem Pn assuming the
numerical procedure in use within SAA can produce global optima [53, Theorem 5.3];
consistency of the set of stationary points of Problem Pn [53, 6]; convergence rates for
the optimal value [53, Theorem 5.7] and optimal solution [33, Theorem 12]; expres-
sions for the minimum sample size m that provides probabilistic guarantees on the
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optimality gap of the sample-path solution [52, Theorem 5.18]; methods for estimating
the accuracy of an obtained solution [37, 8, 9]; and quantifications of the trade-off be-
tween searching and sampling [51], have all been thoroughly studied. SAA is usually
not implemented in the vanilla form Pn due to known issues relating to an appropriate
choice of the sample size n. There have been recent advances [44, 24, 8, 9, 10] aimed
at defeating the issue of sample size choice.

3.2. Stochastic TRO. Two algorithms that are particularly noteworthy com-
petitors to what we propose here are STORM [19] and the recently proposed algorithm
by Larson and Billups [35] (henceforth LB2014). While the underlying logic in both
of these algorithms key differences arise in terms of what has been assumed about the
quality of the constructed models and how such quality can be achieved in practice.
Another notable difference is that STORM also treats the context of biased estima-
tors, that is, contexts where E [f(x, n)] 6= f(x). A key postulate that guarantees
consistency in STORM is that the constructed models are of a certain specified qual-
ity (characterized through the notion of probabilistic full linearity) with a probability
exceeding a fixed threshold. The authors provide a way to construct such models us-
ing function estimates constructed as sample means. Crucially, the prescribed sample
means in STORM use a sample size that is derived using the Chebyshev inequal-
ity with an assumed upper bound on the variance. By contrast, the sample sizes
in ASTRO-DF are determined adaptively by balancing squared bias and variance
estimates for the function estimator. While this makes the sample size in ASTRO-
DF a stopping time [12] thereby complicating proofs, such adaptive sampling enables
ASTRO-DF to differentially sample across the search space, leading to efficiency.

LB2014, like STORM, uses random models. Unlike STORM, however, the se-
quence of models constructed in LB2014 are assumed to be accurate (as measured by
a certain rigorous notion) with a probability sequence that converges to one. A re-
lated version of LB2014 [13] addresses the case of differing levels of (spatial) stochastic
error through the use of weighted regression schemes, where the weights are chosen
heuristically.

Another noteworthy algorithm for the context we consider in this paper is VNSP,
proposed by Deng and Ferris [23, 24]. VNSP uses a quadratic interpolation model
within a trust-region optimization framework, and is derivative-free in the sense that
only function estimates are assumed to be available. Model construction, inference,
and improvement, along with (nondecreasing) sample size updates happen within a
Bayesian framework with an assumed Gaussian conjugate prior. Convergence theory
for VNSP is accordingly within a Bayesian setting.

In the slightly more tangential context where unbiased gradient estimates are
assumed to be available, a number of trust-region type algorithms have emerged
in the last decade or so. STRONG or Stochastic Trust-Region Response-Surface
Method [18], for instance, is an adaptive sampling trust-region algorithm for solving
SO problems that is in the spirit of what we propose here. A key feature of STRONG is
local model construction through a design of experiments combined with a hypothesis
testing procedure. STRONG assumes that the error in the derivative observations are
additive and have a Gaussian distribution. Amos et. al. [2] and Bastin et. al. [7] are
two other examples of algorithms that treat the setting where unbiased observations of
the gradient are assumed to be available. (The former, in fact, assumes that unbiased
estimates of the Hessian of the objective function are available.) Bastin et. al. [7] is
specific to the problem of estimation within mixed-logit models.
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Algorithm 1 ASTRO-DF Main Algorithm

Require: Initial guess x0 ∈ IRd, initial trust-region radius ∆̃0 > 0 and maximum radius ∆max >

0, model “fitness” threshold η1 > 0, trust-region expansion constant γ1 > 1 and contraction
constant γ2 ∈ (0, 1), initial sample size n0, sample size lower bound sequence {λk} such that
k(1+ǫ) = O(λk), initial sample set Ỹ0 = {x0}, and outer adaptive sampling constant κoas.

1: for k = 0, 1, 2, . . . do
2: Model Construction: Construct the model at Xk by calling Algorithm 2 with the candidate

trust-region radius ∆̃k and candidate set of sample points Ỹk,

[Mk(Xk + s),∆k,Yk] = AdaptiveModelConstruction(∆̃k, Ỹk).

Set Ñk = N (Xk).
3: TR Subproblem: Approximate the kth step by minimizing the model in the trust-region,

Sk = argmin‖s‖≤∆k
Mk(Xk + s), and set the new candidate point X̃k+1 = Xk + Sk.

4: Evaluate: Estimate the function at the candidate point using adaptive sampling to obtain
F̄ (X̃k+1, Ñk+1), where

Ñk+1 = max

{
λk,min

{
n :

σ̂F

(
X̃k+1, n

)

√
n

≤
κoas∆2

k√
λk

}}
,(4.1)

Update:

5: Compute the success ratio ρ̂k as

ρ̂k =
F̄
(
Xk , Ñk

)
− F̄

(
X̃k+1, Ñk+1

)

Mk(Xk)−Mk(X̃k+1)
.

6: if ρ̂k > η1 then

7: Xk+1 = X̃k+1, ∆̃k+1 = min{γ1∆k,∆max}, Nk+1 = Ñk+1.

Update the sample set Ỹk+1 to include the new iterate.
8: else

9: Xk+1 = Xk, ∆̃k+1 = γ2∆k, Nk+1 = Ñk.

Update the sample set Ỹk+1, if needed, to include the rejected candidate point.
10: end if

11: end for

4. ASTRO–DF OVERVIEW AND ALGORITHM LISTING. ASTRO-
DF is an adaptive sampling trust-region derivative-free algorithm whose essence is
encapsulated within four repeating stages: (i) local stochastic model construction
and certification through adaptive sampling; (ii) constrained optimization of the con-
structed model for identifying the next candidate solution; (iii) re-estimation of the
objective function at the next candidate solution through adaptive sampling; and
(iv) iterate and trust-region update based on a (stochastic) sufficient decrease check.
These stages appear with italic labels in Algorithm 1. In what follows, we describe
each step of Algorithm 1 in further detail.

In Step 2 of Algorithm 1, a stochastic model of the function f(·) in the trust-region
B(Xk; ∆k) is constructed using Algorithm 2. The aim of Algorithm 2 is to construct
a model of a specified quality within a trust-region having radius smaller than a fixed
multiple of the model gradient norm. During the jkth iteration of Algorithm 2, a

poised set Y(jk)
k , {Y (jk)

1 ,Y
(jk)
2 , . . . ,Y

(jk)
p } in the “candidate” trust-region having

radius ∆̃kw
jk−1 and center Y

(jk)
1 = Xk is chosen (Step 3); Monte Carlo function esti-

mates are then obtained at each of the points in Y(jk)
k withN

(
Y

(jk)
i

)
being the sample

size at point Y
(jk)
i after the jkth iteration of the contraction loop. Sampling at each

point in Y(jk)
k is adaptive and continues (Steps 4–6) until the estimated standard errors
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Algorithm 2 [Mk(Xk + s),∆k,Yk]=AdaptiveModelConstruction(∆̃k, Ỹk)

Require: Parameters from ASTRO-DF: candidate trust-region radius ∆̃k and candidate sample
set Ỹk (possibly with cardinality < p).
Parameters specific to AdaptiveModelConstruction: trust-region contraction factor w ∈ (0, 1),
trust-region and gradient balance constant µ, gradient inflation constant β with 0 < β < µ, and
inner adaptive sampling constant κias.

1: Initialize jk = 1, set Y(jk)
k

= Ỹk, and set Y1 = Xk where Xk is the first element of Ỹk.
Contraction loop:

2: repeat

3: Improve Y(jk)
k

=
{
Y

(jk)
1 ,Y

(jk)
2 , . . . ,Y

(jk)
p

}
by appropriately choosing Y

(jk)
i , i = 2, 3, · · · , p

to make it a poised set in B(Xk ; ∆̃kw
jk−1).

4: for i = 1 to p do

5: Estimate F̄
(
Y

(jk)
i , N

(
Y

(jk)
i

))
, where

(4.2) N
(
Y

(jk)
i

)
= max

{
λk ,min

{
n :

σ̂F (Yi, n)√
n

≤ κias(∆̃kw
jk−1)2√

λk

}}
.

6: end for

7: Construct a quadratic model M
(jk)
k

(Xk + s) via interpolation.
8: Set jk = jk + 1.

9: until ∆̃kw
jk−1 ≤ µ‖∇M

(jk)
k

(Xk) ‖.
10: SetMk(Xk+s) = M

(jk)
k

(Xk+s), ∇Mk(Xk) = ∇M
(jk)
k

(Xk), and∇2Mk(Xk) = ∇2M
(jk)
k

(Xk).

11: return Mk(Xk + s), ∆k = min
{
∆̃k,max

{
β ‖∇Mk(Xk)‖ , ∆̃kw

jk−1
}}

, and Yk = Y(jk)
k

.

σ̂F

(
Y

(jk)
i , N

(
Y

(jk)
i

))
/

√
N

(
Y

(jk)
i

)
of the function estimates F̄

(
Y

(jk)
i , N

(
Y

(jk)
i

))

drop below a slightly inflated square of the candidate trust-region radius. A linear
(or quadratic) interpolation model is then constructed using the obtained function
estimates in Step 5. (If a linear interpolation model is constructed, p = d+ 1, and if
a quadratic interpolation model is constructed, p = (d+1)(d+2)/2.) If the resulting

model M
(jk)
k (z), z ∈ B(Xk; ∆̃kw

jk−1) is such that the candidate trust-region radius

∆̃kw
jk−1 is too large compared to the norm of the model gradient

∥∥∥∇M
(jk)
k (Xk)

∥∥∥,

that is, if ∆̃kw
jk−1 > µ

∥∥∥∇M
(jk)
k (Xk)

∥∥∥, then the candidate trust-region radius is

shrunk by a factor w and control is returned back to Step 3. On the other hand, if
the candidate trust-region radius is smaller than the product of µ and the norm of the
model gradient, then the resulting stochastic model is accepted but over an updated
incumbent trust-region radius given by Step 11. (Step 11 of Algorithm 2, akin to [21],
updates the incumbent trust-region radius to the point in the interval [∆̃kw

jk−1, ∆̃k]

that is closest to β
∥∥∥∇M

(jk)
k (Xk)

∥∥∥).
We emphasize the following four issues pertaining to Step 2 in Algorithm 1 and

the model resulting from the application of Algorithm 2.

(i) Due to the nature of the chosen poised set Yk, the (hypothetical) limit-
ing model mk(Xk) constructed from true function observations on Yk will
be (κef , κeg)-fully-linear (or (κef , κeg, κeh)-fully-quadratic) on the updated
trust-region B(Xk; ∆k). Of course, the model mk(Xk) is unavailable since
true function evaluations are unavailable; and it makes no sense to talk
about whether the constructed model Mk(Xk) is (κef , κeg)-fully-linear (or
(κef , κeg, κeh)-fully quadratic) since it is constructed from stochastic func-
tion estimates.
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(ii) By construction, the trust-region resulting from the application of Algorithm
2 has a radius that is at most β times the model gradient norm ‖∇Mk(Xk)‖.

(iii) The structure of adaptive sampling in Step 5 of Algorithm 2 is identical to that
appearing for estimation in Step 4 of Algorithm 1. The adaptive sampling step
simply involves sampling until the estimated standard error of the function
estimate comes within a factor of the deflated square of the incumbent trust-
region radius. As our convergence proofs will reveal, balancing the estimated
standard error to any lower power of the incumbent trust-region radius will
threaten consistency of ASTRO-DF’s iterates.

(iv) As can be seen from the algorithm listings, the quality of the constructed
model in ASTRO-DF is ensured (in Step 2) at every iteration. As will be ev-
ident from our analysis, such stringency eases theoretical analysis. This is in
contrast to many modern implementations of derivative-free trust-region al-
gorithms where model quality is checked and improved (if necessary) through
a “criticality step” which is triggered only when the norm of the model gra-
dient falls below a threshold. This selective model quality assurance makes
the algorithm more numerically efficient, at the price of a more complicated
trust-region management and convergence analysis (See acceptable iterations
and model improving iterations in [22, p. 185]). We believe that incorporat-
ing a similar criticality step in ASTRO-DF will ease computational burden
during implementation.

Let us now resume our discussion of Algorithm 1. In Step 2, Algorithm 1 exe-
cutes AdaptiveModelConstruction to obtain a model Mk (z) , z ∈ B (Xk; ∆k) whose
limiting approximation is (κef , κeg)-fully-linear (or (κef , κeg, κeh)-fully-quadratic) as
observed in (i) above. Step 3 in Algorithm 1 then approximately solves the constrained
optimization problem Sk = argmin‖s‖≤∆k

Mk (Xk + s) to obtain a candidate point

X̃k+1 = Xk + Sk satisfying the κfcd-Cauchy decrease as defined in Assumption 4.

In preparation for checking if the candidate solution X̃k+1 provides sufficient de-
crease, Step 4 of Algorithm 1 obtains Monte Carlo samples of the objective function at

X̃k+1, until the estimated standard error σ̂F

(
X̃k+1, Ñk+1

)
/

√
Ñk+1 of F̄

(
X̃k+1, Ñk+1

)

is smaller than a slightly deflated square of the trust-region radius λ
−1/2
k κoas∆

2
k, sub-

ject to the sample size being at least as big as λk (see Remark 4).

In Step 5 of Algorithm 1, the obtained function estimate is used to check if the
so called success ratio ρ̂k, that is, the ratio of the predicted to the observed function
decrease at the point X̃k+1, exceeds a fixed threshold η1. The denominator of the
success ratio ρ̂k is calculated by evaluating the constructed model at X̃k+1 using the
analytical form listed in Definition 2.3. If ρ̂k exceeds the threshold η1, the candidate
X̃k+1 is accepted as the new iterate Xk+1, the iteration is deemed successful, and
the trust-region is expanded (Step 6). If ρ̂k falls below the specified threshold η1, the
candidate X̃k+1 is rejected (though it may remain in the sample set), the iteration
is deemed unsuccessful, and the trust-region is shrunk (Step 9). In either case, ∆̃k+1

is set as the incumbent trust-region radius, Nk+1 is set as the current sample size of
Xk+1, and Yk is set as the interpolation set for the next iteration. Note that in the
next iteration the sample size of Xk+1 is subject to change through Step 2 again.

Remark 4. The sequence {λk} appearing as the first argument of the “max”
function in the expression for the adaptive sample size (in Step 4 of Algorithm 1 and
Step 5 of Algorithm 2) is standard for all adaptive sampling contexts, e.g., [20, 28],
and intended to nullify the effects of mischance without explicitly participating in the
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limit. Since N = max
{
λk, λkσ̂

2
F (Xk, N)κ−2

oas∆
−4
k

}
, and since we will demonstrate

that σ̂2
F (Xk, N)

wp1−−→ σ > 0 and ∆k
wp1−−→ 0, the probability of the first argument in

the expression for the adaptive sample size being binding will decay to zero as k → ∞.

5. CONVERGENCE ANALYSIS OF ASTRO-DF. As noted in Section
4, the convergence behavior of ASTRO-DF depends crucially on the behavior of three
error terms expressed through the following decomposition:

∣∣∣F̄
(
X̃k+1, Ñk+1

)
−Mk

(
X̃k+1

)∣∣∣ ≤
∣∣∣F̄

(
X̃k+1, Ñk+1

)
− f

(
X̃k+1

)∣∣∣

+
∣∣∣f

(
X̃k+1

)
−mk

(
X̃k+1

)∣∣∣

+
∣∣∣mk

(
X̃k+1

)
−Mk

(
X̃k+1

)∣∣∣ .(5.1)

The three terms appearing on the right-hand side of (5.1) can be interepreted, respec-

tively, as follows: (i) the stochastic sampling error
∣∣∣F̄

(
X̃k+1, Ñk+1

)
− f

(
X̃k+1

)∣∣∣
arising due to the fact that function evaluations are estimated using Monte Carlo; (ii)

the deterministic model error
∣∣∣f

(
X̃k+1

)
−mk

(
X̃k+1

)∣∣∣ arising due to the choice of

local model; and (iii) the stochastic interpolation error
∣∣∣mk

(
X̃k+1

)
−Mk

(
X̃k+1

)∣∣∣
arising due to the fact that model prediction at unobserved points is a combination
of the model bias and the error in (i). (The analysis in the deterministic context
involves only the error in (ii).) Accordingly, driving the errors in (i) and (ii) to zero
sufficiently fast, while ensuring the fully-linear or quadratic sufficiency of the expected
model, guarantees almost sure convergence.

Driving the errors in (i) and (ii) to zero sufficiently fast is accomplished by forcing
the sample sizes to increase across iterations at a sufficiently fast rate, something that
we ensure by keeping the estimated standard error of all function estimates in lock
step with the square of the trust-region radius. The trust-region radius is in turn also
kept in lock-step with the model gradient through the model construction Algorithm
2. Such a deliberate lock-step between the model error, trust-region radius, and the
model gradient is aimed at efficiency without sacrificing consistency.

In what follows, we provide a formal proof of the wp1 convergence of ASTRO-DF’s
iterates. Recall that we assume that the models being constructed within Step 2 of
Algorithm 1 are either linear or quadratic. Furthermore, we focus only on convergence
to a first-order critical point of the function f .

We first list six standing assumptions that are assumed to hold for the ensuing
results. Additional assumptions will be made as and when required.

Assumption 1. The function f is continuously differentiable and bounded from
below. Furthermore, it has Lipschitz continuous gradients, that is, there exists νgL
such that ‖∇f (x)−∇f (y)‖ ≤ νgL ‖x− y‖ for all x,y ∈ IRd.

Assumption 2. There exists a first-order critical point associated with Problem
P , that is, there exists x∗ ∈ IRd such that: ∇f (x∗) = 0.

Assumption 3. The Monte Carlo oracle, when executed at Xk, generates inde-
pendent and identically distributed random variates Fj(Xk) = f(Xk) + ξj | Fk, where
ξ1, ξ2, . . . is a martingale-difference sequence adopted to Fk such that E

[
ξ2j | Fk

]
= σ2

for all k, where σ2 < ∞ and supk E[|ξj |4v | Fk] < ∞ for some v ≥ 2.
Assumptions 1 – 3 are arguably mild assumptions relating to the problem. The

following three assumptions relate to the nature of the proposed algorithm ASTRO-
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DF.
Assumption 4. The minimizer obtained in the trust-region subproblem (Step 3

of Algorithm 1) satisfies a κfcd-Cauchy decrease with κfcd > 0, that is,

Mk (Xk)−Mk

(
X̃k+1

)
≥ κfcd

2
‖∇Mk (Xk)‖min

{ ‖∇Mk (Xk)‖
‖∇2Mk (Xk)‖

,∆k

}
.

Assumption 5. There exists a positive constant κbhm, such that the model Hes-
sian ∇2Mk (Xk) satisfies

P

{
ω : lim sup

k→∞

∥∥∇2Mk (Xk(ω))
∥∥ ≤ κbhm

}
= 1,

that is, the model Hessians are eventually bounded for all x and k almost surely.
Assumption 6. The “lower-bound sequence” {λk} is chosen to satisfy k(1+ǫ) =

O(λk) for some ǫ > 0.
Assumption 4 is usually easily ensured through an appropriate choice in the trust-

region subproblem step (Step 3 of Algorithm 1). For example, Assumption 4 is sat-
isfied if the optimization resulting from Step 3 of Algorithm 1 yields a solution that
is at least as good as the Cauchy step tC , which is the minimizer of the model Mk(·)
along the direction ∇Mk(Xk) and constrained to the trust-region, that is,

tC = argmin
α∈[0,∆k]

Mk(Xk − α∇Mk(Xk)).

(See Section 10.1 in [22] for additional details.) Likewise, Assumption 5 can be en-
forced through a check that is performed each time the model is constructed or up-
dated. And, Assumption 6 imposes a (weak) minimum increase on the sample sizes
for estimation and model construction operations within ASTRO-DF.

Remark 5. It is our view that the minimum rate of increase on the lower bound
sequence {λk} can be reduced to a logarithmic increase instead of what has been as-
sumed in Assumption 6. Using the notation of Theorem 2.7, this will require a large-
deviation type bound on the tail probability P{|X̄N | > t} after assuming the existence
of the moment-generating function of Xi’s. To the best of our knowledge there cur-
rently exist no such results for fixed-width confidence interval stopping, which is the
context of Theorem 2.7.

5.1. Main Results. We are now ready to establish the consistency, that is, the
almost sure convergence to a stationary point, of the iterates generated by ASTRO-
DF. The roadmap for consistency consists of three main theorems supported by three
lemmas. The first of the main theorems is Theorem 5.2 where we demonstrate that
the sequence of trust-region radii {∆k} across the iterations of ASTRO-DF converges
to zero with probability one. Next, Theorem 5.4 establishes that the iterations within
ASTRO-DF are eventually successful with probability one. The final result that es-
tablishes the almost sure convergence of ASTRO-DF’s iterates to a stationary point
appears as Theorem 5.6. With the exception of Lemma 5.5, all results that follow
analyze the ensemble probabilistic behavior of the sample paths to then make infer-
ences about individual sample-paths, primarily through the first Borel-Cantelli’s first
lemma (see Lemma 2.10). Lemma 5.5 is an exception in that the analysis there is
pathwise, without probabilistic arguments.

We start with Lemma 5.1 which establishes that the sequence of function estimates
at the iterates generated by ASTRO-DF has to remain bounded with probability one.

Lemma 5.1. Let Assumptions 1, 3, and 6 hold. Then
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(a) P
{
limk→∞ F̄ (Xk, Nk) = −∞

}
= 0,

(b) P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c∆2
k i.o.

}
= 0.

Proof. For part (a) we know from Assumption 1 that f is bounded from below.
Hence we can write for any c ∈ R,

(5.2) P

{
lim
k→∞

F̄ (Xk, Nk) = −∞
}

≤ P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c i.o.
}
,

where i.o. stands for “infinitely often.” (See Section 2.1 for a formal definition and
use of “infinitely often.”) However by the law of total probability,

P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c
}
= E

[
P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c | Fk

}]

≤ E[c−2
E[
(
F̄ (Xk, Nk)− f (Xk)

)2 | Fk]],(5.3)

where the last inequality follows from Chebyshev’s inequality [12]. Now invoke part
(iv) of Theorem 2.7 along with Assumption 3 and the sample size expression in (4.1)
to notice that

(5.4) E[
(
F̄ (Xk, Nk)− f (Xk)

)2 | Fk] ∼ κ2
oas∆

4
kλ

−1
k

as λk → ∞; that is, for large-enough k, we can write for any δ > 0 that

E[
(
F̄ (Xk, Nk)− f (Xk)

)2 | Fk] ≤ (1 + δ)κ2
oas∆

4
kλ

−1
k

≤ (1 + δ)κ2
oas∆

4
maxλ

−1
k .(5.5)

Now use (5.3) and (5.5) to write

P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c
}
≤ E[c−2

E[
(
F̄ (Xk, Nk)− f (Xk)

)2 | Fk]]

≤ E[c−2(1 + δ)κ2
oas∆

4
maxλ

−1
k ]

= c−2(1 + δ)κ2
oas∆

4
maxλ

−1
k .(5.6)

The right-hand side of (5.6) is summable since k(1+ǫ) = O(λk) for some ǫ > 0; we can
thus invoke the first Borel-Cantelli Lemma [12] and conclude that the right-hand side
of (5.2) is zero. This proves part (a).

In fact, similar to (5.6) we have

P
{∣∣F̄ (Xk, Nk)− f (Xk)

∣∣ ≥ c∆2
k

}
≤ E[c−2

E[
(
F̄ (Xk, Nk)− f (Xk)

)2 | Fk]]

≤ E[c−2∆−4
k (1 + δ)κ2

oas∆
4
kλ

−1
k ]

= c−2(1 + δ)κ2
oasλ

−1
k ,(5.7)

which is again summable and hence allows the invocation of Borel-Cantelli’s first
lemma [12], proving part (b).

Next, we state a theorem that plays a crucial role in proving the overall con-
vergence of ASTRO-DF iterates. Recall that even in deterministic derivative-free
trust-region algorithms, unlike trust-region algorithms where derivative observations
are available, the trust-region radius necessarily needs to decay to zero to ensure con-
vergence. Theorem 5.2 states that this is indeed the case for ASTRO-DF. The proof
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rests on Lemma 5.1 and the assumed sufficient Cauchy decrease guarantee during
Step 3 of Algorithm 1.

Theorem 5.2. Let Assumptions 1, 3, 4, 5 and 6 hold. Then ∆k
wp1−−→ 0 as

k → ∞.
Proof. We note during the ith iteration in Step 2 of Algorithm 1 that F̄ (Xi, Ni)

and F̄
(
Xi, Ñi

)
denote the function estimate at the point Xi before entering and

upon exiting AdaptiveModelConstruction respectively.

(5.8) F̄ (Xk, Nk) = F̄ (X1, N1) +

k−1∑

i=1

(Ai +Bi)

where the summands Ai = F̄ (Xi+1, Ni+1) − F̄
(
Xi, Ñi

)
and Bi = F̄

(
Xi, Ñi

)
−

F̄ (Xi, Ni). In words Ai represents the reduction in the function estimates during
the ith iteration and Bi represents the difference between the two estimates of the
function at the point Xi at the end of iteration i−1 and i. We now make the following
observations about Ai and Bi.

(a) If i is an unsuccessful iteration, then Ai = 0 since Xi = Xi+1.
(b) If i is a successful iteration, we know by definition that ρ̂i ≥ η1. If we denote

κefd = (2µ)−1η1κfcdmin
{
(µκbhm)−1 , 1

}
, then by Assumptions 4 and 5, and

by the assurance in Algorithm 2 that ∆k ≤ µ ‖∇Mk (Xk)‖, we have

(5.9)

Ai ≤ η1 (Mi (Xi+1)−Mi (Xi))

≤ −η1
2
κfcd ‖∇Mi (Xi)‖min

{ ‖∇Mi (Xi)‖
‖∇2Mi (Xi)‖

,∆i

}

≤ −κefd∆
2
i .

(c) For any given c > 0, Lemma 5.1 ensures that P {|Bi| > c i.o.} = 0 since

P

{∣∣∣F̄
(
Xi, Ñi

)
− F̄ (Xi, Ni)

∣∣∣ > c
}
≤ P

{∣∣∣F̄
(
Xi, Ñi

)
− f (Xi)

∣∣∣ >
c

2

}

+ P

{∣∣f (Xi)− F̄ (Xi, Ni)
∣∣ > c

2

}
,

using Boole’s inequality (see Lemma 2.9). This implies that except for a set
of measure zero, |Bi| ≤ c for large enough i.

Now suppose D := {ω : limk→∞ ∆k(ω) 6= 0} denotes the set of sample-paths for
which the trust-region radius does not decay to zero. For contraposition, suppose D
has positive measure. Consider a sample-path ω0 ∈ D. Since unsuccessful iterations
are necessarily contracting iterations, we can find δ(ω0) > 0 and the sub-sequence
of successful iterations {kj} in the sample-path ω0 such that ∆kj

(ω0) ≥ δ(ω0). This
implies from observation (b) above that

(5.10) Akj
(ω0) ≤ −κefdδ

2(ω0).

Now, observation (a) above implies that

(5.11) Akj+ℓ(ω0) ≤ 0, ℓ = 1, 2, . . . , kj+1 − kj − 1.

Also by the observation (c) above, and choosing c = 1
3κefdδ

2(ω0), we see that for
large-enough i,

(5.12)
∣∣∣F̄

(
Xi(ω0), Ñi(ω0)

)
− F̄ (Xi(ω0), Ni(ω0))

∣∣∣ ≤ 2

3
κefdδ

2(ω0).
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We then write for large-enough j,

(5.13)

kj+1−1∑

ℓ=kj

(Aℓ(ω0) +Bℓ(ω0)) = Akj
(ω0) +

kj+1−1∑

ℓ=kj

Bℓ(ω0)

≤ Akj
(ω0)

+ F̄
(
Xkj+1−1(ω0), Ñkj+1−1(ω0)

)

− F̄
(
Xkj+1(ω0), Nkj+1(ω0)

)

≤ −1

3
κefdδ

2(ω0),

where the first equality follows from observation (a) above, the first inequality follows
from the definition of Bℓ, and the second inequality follows from (5.10) and (5.12).
The inequality in (5.13) (and the fact that there is an entire sequence {kj} of successful
iterations) means that limk→∞ F̄ (Xk (ω0) , Nk(ω0)) = −∞ thus contradicting Lemma
5.1. The assertion of the theorem thus holds.

Relying on Theorem 5.2, we now show that the model gradient converges to the
true gradient almost surely. This, of course, does not imply that the true gradient
itself converges to zero — a fact that will be established subsequently. Implicit in the
proof of Theorem 5.2 is the requirement that Algorithm 2 terminates in finite time
with probability one, a fact that we establish through Lemma C.1 in the Appendix.

Lemma 5.3. Let Assumptions 1, 3 – 6 hold. Then ‖∇Mk (Xk)−∇f (Xk)‖
wp1−−→

0 as k → ∞.

Proof. In Step 3 of Algorithm 2, ∆̃kw
jk−1 denotes the trust-region radius over

which the model is constructed. (Note that due to Step 11 of Algorithm 2, ∆̃kw
jk−1

may or may not equal the ending trust-region radius ∆k upon completion of k itera-
tions of ASTRO-DF.) Then, we know from part (ii) of Lemma 2.8 that

‖∇Mk (Xk)−∇f (Xk)‖ ≤ κ1

(
∆̃kw

jk−1
)θ

+ κ2

√
∑p

i=2

(
E

(jk)
k,i − E

(jk)
k,1

)2

(
∆̃kwjk−1

) ,

where E
(jk)
k,i = F̄

(
Y

(jk)
i , N

(
Y

(jk)
i

))
−f

(
Y

(jk)
i

)
for i = 1, . . . , p denotes the error due

to sampling at point Y
(jk)
i after the jkth iteration of the contraction loop. (Recall

that Y
(jk)
1 = Xk; p = d + 1 and θ = 1 in the linear interpolation models, and

p = (d + 1)(d + 2)/2 and θ = 2 in the quadratic interpolation models. For the
quantities κ1 and κ2 refer to part (ii) of Lemma 2.8.)

From Theorem 5.2, ∆k
wp1−−→ 0 as k → ∞, and hence, ∆̃kw

jk−1 wp1−−→ 0 as k → ∞.

Also,

√
∑p

i=2

(
E

(jk)
k,i − E

(jk)
k,1

)2

≤
∑p

i=2

√(
E

(jk)
k,i − E

(jk)
k,1

)2

=
∑p

i=2

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣ .
Considering these two observations, it suffices to show that as k → ∞,

(5.14)
(
∆̃kw

jk−1
)−1

p∑

i=2

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣ wp1−−→ 0.

Towards this, we write for c > 0, large enough k, some δ > 0, and by Boole’s inequality
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(Lemma 2.9),

P





∑p
i=2

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣
(
∆̃kwjk−1

) ≥ c



 ≤

p∑

i=2

E



P




∣∣∣E(jk)

k,i − E
(jk)
k,1

∣∣∣ ≥
c
(
∆̃kw

jk−1
)

p− 1
| Fk









≤
p∑

i=2


E


P




∣∣∣E(jk)

k,i

∣∣∣ ≥
c
(
∆̃kw

jk−1
)

2(p− 1)
| Fk








+E



P




∣∣∣E(jk)

k,1

∣∣∣ ≥
c
(
∆̃kw

jk−1
)

2(p− 1)
| Fk













≤ 2(p− 1)34
(
c∆̃kw

jk−1
)−2

(1 + δ)κ2
ias(∆̃kw

jk−1)4λ−1
k

≤ 8(p− 1)3c−2(1 + δ)κ2
ias∆

2
kλ

−1
k ,(5.15)

where the second inequality above follows from the application of Boole’s inequal-
ity (see Lemma 2.9), and the penultimate inequality above follows from arguments
identical to those leading to (5.6) in the proof of Lemma 5.1 after using the adaptive
sample size expression in (4.2). Since the right-hand side of (5.15) is summable, we
can invoke the first Borel-Cantelli lemma [12] to conclude that (5.14) holds.

We now show that for large enough iteration k, the steps within ASTRO-DF are
always successful with probability one. This result is important in that it implies that
the model gradient and the trust-region radius will remain in lock-step for large k,
almost surely. The proof proceeds by dividing the model error into three components,
each of which is shown to be controlled with probability one.

Theorem 5.4. Let Assumptions 1 – 6 hold. Then P {ρ̂k < η1, i.o.} = 0 for any
η1 ∈ (0, 1).

Proof. At the end of Step 9 of Algorithm 2, letm
(jk)
k (z) be the interpolation model

of f constructed on the poised set Yk. (Of course, we cannot constructmk(·) explicitly
because the true function values are unknown.) Then m

(jk)
k (z) is a (κef , κeg)-fully-

linear model of f on B
(
Xk; ∆̃kw

jk−1
)
and since ∆k ≥ ∆̃kw

jk−1, by the Lemma in

[22, p. 200] we have that mk (·) is a (κef , κeg)-fully-linear model of f on B (Xk; ∆k).
In addition, Algorithm 2 ensures that ∆k ≤ µ ‖∇Mk (Xk)‖.

Assumption 4 on the Cauchy decrease in the minimization problem implies that

Mk (Xk)−Mk

(
X̃k+1

)
≥ κfcd

2
‖∇Mk (Xk)‖min

{ ‖∇Mk (Xk)‖
‖∇2Mk (Xk)‖

,∆k

}

≥ κfcd

2
‖∇Mk (Xk)‖min

{
∆k

µκbhm
,∆k

}

≥ κmd∆
2
k.(5.16)

where κmd = (2µκbhm)−1min(µκ−1
bhm, 1)κfcd. Recall that

ρ̂k :=
F̄
(
Xk, Ñk

)
− F̄

(
X̃k+1, Ñk+1

)

Mk(Xk)−Mk(X̃k+1)

and that F̄
(
Xk, Ñk

)
= Mk (Xk). Now using Boole’s inequality (see Lemma 2.9) and
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(5.16), we can write

P {ρ̂k < η1} ≤ P {|1− ρ̂k| ≥ 1− η1}

≤ P

{∣∣∣F̄
(
X̃k+1, Ñk+1

)
−Mk

(
X̃k+1

)∣∣∣ ≥ (1− η1)κmd∆
2
k

}

≤ P
{
Err1 ≥ η′∆2

k

}
+ P

{
Err2 ≥ η′∆2

k

}
+ P

{
Err3 ≥ η′∆2

k

}
,(5.17)

where Err1 :=
∣∣∣F̄

(
X̃k+1, Ñk+1

)
− f

(
X̃k+1

)∣∣∣, Err2 :=
∣∣∣f

(
X̃k+1

)
−mk

(
X̃k+1

)∣∣∣,

Err3 :=
∣∣∣mk

(
X̃k+1

)
−Mk

(
X̃k+1

)∣∣∣, and η′ = 3−1 (1− η1)κmd. In what follows, we

establish P {ρ̂k < η1 i.o.} = 0 by demonstrating that each of the errors Err1, Err2
and Err3 exceeding η′∆2

k infinitely often has probability zero.
We first analyze the stochastic sampling error probability P

{
Err1 ≥ η′∆2

k

}
ap-

pearing on the right-hand side of (5.17). Using arguments identical to those leading
to (5.6) in the proof of Lemma 5.1, it is seen that

(5.18) P

{∣∣∣F̄
(
X̃k+1, Ñk+1

)
− f

(
X̃k+1

)∣∣∣ ≥ η′∆2
k i.o.

}
= 0.

Next we analyze the deterministic model error probability P
{
Err2 ≥ η′∆2

k

}
ap-

pearing on the right-hand side of (5.17). Since we know from the postulates of the
theorem that mk (z) is a (κef , κeg)-fully-linear model of f on B (Xk; ∆k), implying
that if η1 is chosen so that η′ = 1

3 (1 − η1)κmd > κef , we have

(5.19) P

{∣∣∣f
(
X̃k+1

)
−mk

(
X̃k+1

)∣∣∣ ≥ η′∆2
k i.o.

}
= 0.

Finally, we analyze the stochastic interpolation error probability P
{
Err3 ≥ η′∆2

k

}

appearing on the right-hand side of (5.17). Using part (i) of Lemma 2.8 and relabeling
Xk to Y1 for readability, we write

P
{
Err3 > η′∆2

k

}
≤ P



 max

Yi∈Yk,
i=1,2,...,p

∣∣F̄ (Yi, N (Yi))− f (Yi)
∣∣ > η′∆2

k

pΛ





≤
p∑

i=1

P

{∣∣F̄ (Yi, N (Yi))− f (Yi)
∣∣ > η′∆2

k

p2Λ

}

=

p∑

i=1

E

[
P

{∣∣F̄ (Yi, N (Yi))− f (Yi)
∣∣ > η′∆2

k

p2Λ
| Fk

}]
.(5.20)

Now using (5.20) and arguments identical to those leading to (5.6) in the proof of
Lemma 5.1 (and the sample size expression (4.2) in Step 5 of Algorithm 2), we can
then say for large enough k and some δ > 0 that

P
{
Err3 > η′∆2

k

}
≤ p5Λ

λk(η′∆2
k)

2
(1 + δ)κ2

ias∆
4
k

≤ p5Λ

λkη′2
(1 + δ)κ2

ias.(5.21)

Since λk is chosen so that k1+ǫ = O(λk) for some ǫ > 0, we see that (5.21) implies that
P
{(

F̄ (Yi, N (Yi))− f (Yi)
)
> η′∆2

k i.o.
}
= 0 by Borel-Cantelli. This in turn implies

from (5.20) that

(5.22) P

{∣∣∣Mk

(
X̃k+1

)
−mk

(
X̃k+1

)∣∣∣ ≥ η′∆2
k i.o.

}
= 0.
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Conclude from (5.18), (5.19), and (5.22) that each of the errors Err1, Err2, and
Err3 exceeding η

′∆2
k infinitely often has probability zero and the assertion of Theorem

5.4 holds.
Lemma 5.5. For any sample path ω ∈ Ω if there exists a constant κlbg(ω) > 0,

such that ‖∇Mk (Xk(ω))‖ ≥ κlbg(ω) for large enough k, then there exists a constant
κlbd(ω) > 0 such that ∆k(ω) ≥ κlbd(ω) for large enough k.

Proof. Let Kg(ω) > 0 be such that ‖∇Mk (Xk(ω))‖ ≥ κlbg if k > Kg(ω). From
Theorem 5.4, we let Ks(ω) > 0 be such that Ks(ω) − 1 is the last unsuccessful
iteration, that is, k is a successful iteration if k ≥ Ks(ω). Then ∆̃k(ω) > ∆k−1(ω) for
all k ≥ Ks(ω). For k ≥ max {Kg(ω),Ks(ω)} + 1, consider the two cases below when
Algorithm 2 starts.
Case 1: (∆̃k(ω) ≥ µ ‖∇Mk (Xk(ω))‖): Since ∆̃k(ω) ≥ µ ‖∇Mk (Xk(ω))‖, the inner

loop of Algorithm 2 is executed, implying that

∆k(ω) ≥ β‖∇Mk (Xk(ω)) ‖ ≥ βκlbg(ω).

Case 2: (∆̃k(ω) < µ ‖∇Mk (Xk(ω))‖): In this scenario, the inner loop of Algorithm
2 is not executed, implying that ∆k(ω) = ∆̃k(ω) = γ1∆k−1(ω) meaning that
the trust-region radius expands from the previous iteration.

Case 1 and Case 2 iterations are mutually exclusive and collectively exhaustive.
Case 1 iterations imply, under the assumed postulates, that ∆k(ω) ≥ βκlbg(ω); Case
2 iterations result in an expanded trust-region radius. Conclude from these assertions
that ∆k(ω) ≥ min

{
βκlbg(ω),∆max{Kg(ω),Ks(ω)}

}
.

An important observation from the Algorithms 1 and 2 is that the difference
between the function estimates of two consecutive iterates can be increasing; or in
other words F̄ (Xk) is not necessarily monotone decreasing. When iteration k is
unsuccessful, that is, Xk = Xk+1, it is possible that F̄ (Xk, Nk) < F̄ (Xk+1, Nk+1).

When iteration k is successful, it must be true that F̄
(
Xk, Ñk

)
> F̄ (Xk+1, Nk+1) but

it is still possible that F̄ (Xk, Nk) < F̄ (Xk+1, Nk+1) since F̄ (Xk, Nk) 6= F̄
(
Xk, Ñk

)
.

We are now fully setup to demonstrate that ASTRO-DF’s iterates converge to a first-
order critical point with probability one.

Theorem 5.6. Let Assumptions 1 – 6 hold. Then ‖∇f (Xk)‖
wp1−−→ 0 as k → ∞.

Proof. We start by making the following two observations.
(a) Lemma 5.5 and Theorem 5.2 together imply that lim infk→∞ ‖∇Mk (Xk)‖ =

0. This, along with Lemma 5.3, imply lim infk→∞ ‖∇f (Xk)‖ = 0 almost
surely.

(b) Consider the sequence of function estimates {F̄ (Xk, Nk)}. Since we know
from Theorem 5.4 that iterations are ultimately successful with probability
one, we see that {F̄ (Xk, Nk)} is non-increasing for large enough k with prob-
ability one. This and the fact that the sequence {F̄ (Xk, Nk)} is bounded (by
Lemma 5.1) with probability one implies that the difference F̄ (Xk+1, Nk+1)−
F̄ (Xk, Nk)

wp1−−→ 0.
Suppose the assertion of Theorem 5.6 is not true. The there exists a set D of

positive measure such that for any sample-path ω ∈ D, there exists a subsequence of
iterations {ti} satisfiying ‖∇f (Xti)‖ > 3ǫ for some ǫ > 0. (In the previous statement
and in what follows, we have suppressed ω from the notation for convenience.) Due
to our observation in (a), corresponding to each element ti, there exists ℓi = ℓ (ti), the
first iteration after ti, such that ‖∇f (Xℓi)‖ < 2ǫ. Therefore if Ki = {k : ti ≤ k ≤ ℓi},
then ‖∇f (Xk)‖ ≥ 2ǫ for all k ∈ Ki.
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Now choose i large enough so that by Theorem 5.4, Lemma 5.3, Theorem 5.2, and
Lemma 5.1 for all k ∈ Ki, (i) ρ̂k ≥ η1 (only successful iterations), (ii) ‖∇Mk (Xk)‖ ≥ ǫ
(model gradient close to the function gradient), (iii) ∆k ≤ κ−1

bhmǫ (trust-region radius
small), and (iv)

∣∣F̄ (Xk, Nk)− f (Xk)
∣∣ ≤ 8−1η1ǫκfcd∆k (simulation error small). As

a result and by Cauchy reduction in Assumption 4 we get

F̄ (Xk+1, Nk+1)− F̄
(
Xk, Ñk

)
≤ −2−1η1κfcd ‖∇Mk (Xk)‖min

{
κ−1
bhm ‖∇Mk (Xk)‖ ,∆k

}

≤ −2−1η1κfcdǫmin
{
κ−1
bhmǫ,∆k

}

= −η1
κfcd

2
ǫ∆k.(5.23)

Therefore

F̄ (Xk+1, Nk+1)− F̄ (Xk, Nk) ≤ F̄ (Xk+1, Nk+1)− F̄
(
Xk, Ñk

)

+
∣∣∣F̄

(
Xk, Ñk

)
− f (Xk)

∣∣∣+
∣∣f (Xk)− F̄ (Xk, Nk)

∣∣

≤ −η1
κfcd

2
ǫ∆k + η1

κfcd

4
ǫ∆k = −η1

κfcd

4
ǫ∆k,(5.24)

and as a result ∆k ≤ −4(η1κfcdǫ)
−1

(
F̄ (Xk+1, Nk+1)− F̄ (Xk, Nk)

)
for all k ∈ Ki.

It follows that

‖Xℓi −Xti‖ ≤
∑

j∈Ki

‖Xj+1 −Xj‖ ≤
∑

j∈Ki

∆j

≤ −4

η1κfcdǫ

∑

j∈Ki

F̄ (Xj+1, Nj+1)− F̄ (Xj , Nj)

≤ −4

η1κfcdǫ

(
F̄ (Xℓi , Nℓi)− F̄ (Xti , Nti)

)
.(5.25)

The inequality in (5.25) and our observation in (b) imply that

(5.26) ‖Xℓi −Xti‖ → 0 as i → ∞.

Furthermore, since

|f (Xℓi)− f (Xti)| ≤
∣∣F̄ (Xℓi, Nℓi)− F̄ (Xti , Nti)

∣∣

+
∣∣f (Xℓi)− F̄ (Xℓi , Nℓi)

∣∣+
∣∣f (Xti)− F̄ (Xti , Nti)

∣∣ ,

we see that

(5.27) |f (Xℓi)− f (Xti)| → 0 as i → ∞.

Using (5.26) and (5.27), and since the gradient ∇f(x) is Lipschitz continuous,
we conclude ‖∇f (Xℓi)−∇f (Xti)‖ → 0 as i → ∞. This, however, gives us a
contradiction since the definition of ti and ℓi dictate that ‖∇f (Xti)‖ > 3ǫ and
‖∇f (Xℓi)‖ < 2ǫ.

6. FURTHER REMARKS AND DISCUSSION. Over the last decade or
so, derivative-free trust-region algorithms have deservedly enjoyed great attention
and success in the deterministic optimization context. Analogous algorithms for the
now widely prevalent and important Monte Carlo stochastic optimization context,
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where only stochastic function oracles are available, is poorly studied. This paper de-
velops adaptive sampling trust-region optimization derivative-free algorithms (called
ASTRO-DF) for solving low to moderate dimensional stochastic optimization prob-
lems. The key idea within ASTRO-DF is to endow a derivative-free trust-region
algorithm with an adaptive sampling strategy for function estimation. The extent
of such sampling at a visited point depends on the estimated proximity of the point
to a solution, calculated by balancing the estimated standard error of the function
estimate with a certain power of the incumbent trust-region radius. So, just as one
might expect of efficient algorithms, Monte Carlo sampling in ASTRO-DF tends to be
low during the early iterations compared to later iterations, when the visited points
are more likely to be closer to a first-order critical point. More importantly, however,
the schedule of sampling is not predetermined (as in most stochastic approximation
and sample-average approximation algorithms) but instead adapts to the prevailing
algorithm trajectory and the needed precision of the function estimates.

We show that ASTRO-DF’s iterates exhibit global convergence to a first-order
critical point with probability one. While the proofs are detailed, convergence follows
from two key features of ASTRO-DF: (i) the stochastic interpolation models are con-
structed across iterates in such a way that the error in the stochastic interpolation
model is guaranteed to remain in lock-step with (a certain power of) the trust-region
radius; and (ii) the optimization within the trust-region step is performed in such a
way as to guarantee Cauchy reduction and then the objective function is evaluated at
the resulting candidate point. Remarkably, the features (i) and (ii) together ensure
that the sequence of trust-region radii necessarily need to converge to zero with prob-
ability one, and that the model gradient, the true gradient and the trust-region radius
all have to remain in lock-step, thus guaranteeing convergence to a first-order critical
point with probability one. The key driver for efficiency is adaptive sampling, making
all sample sizes within ASTRO-DF stopping times that are explicitly dependent on
algorithm trajectory.

Four other points are worthy of mention.

(i) Our proofs demonstrate global convergence to first-order critical points. Cor-
responding proofs of convergence to a second-order critical point can be ob-
tained in an identical fashion by driving some measure of second-order sta-
tionarity to zero instead of the model gradient.

(ii) The adaptive sampling ideas and the ensuing proofs we have presented in this
paper are for the specific case of stochastic interpolation models. It seems
to us, however, that the methods of proof presented in this paper can be
co-opted (with care) into other potentially more powerful model construction
ideas such as regression [14] and kriging [3, 56]. Which of such ideas result
in the best derivative-free trust-region algorithms (as measured by practical
performance and asymptotic efficiency) remains to be seen.

(iii) We have presented no proof that ASTRO-DF’s iterates achieve the Monte
Carlo canonical rate [4]. Demonstrating that ASTRO-DF’s iterates achieve
the canonical rate will rely on rate results for derivative-free trust-region
algorithms in the deterministic context, some of which are only now appear-
ing [26]. We speculate, however, that ASTRO-DF’s iterates do enjoy the
canonical rate, as our analogous work [29] in a different context has demon-
strated.

(iv) The asymptotic sampling rate within ASTRO-DF is approximately O
(
∆−4

k

)
,

where ∆k is the incumbent trust-region radius. (See (5.4) in the proof of
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Lemma 5.1.) This sampling stipulation is comparable to that prescribed in
two other prominent recent studies [19, 36].The O(∆−4) sampling appears
to be the minimum needed to guarantee convergence in derivative-free trust-
region methods without assumptions on the tail-behavior of the error driving
simulation observations. A question of interest is whether the O(∆−4) sam-
pling stipulation can be relaxed by assuming that the simulation error is
light-tailed, that is, the errors have a well-defined moment-generating func-
tion. Such assumption will likely allow modifying the results in [19] through
the use of the Chernoff bound instead of the Chebyshev inequality, leading
to a weakening of the sampling stipulation. The corresponding modification
in ASTRO-DF will involve proving a variation of Theorem 3.7 which we be-
lieve will be a contribution in itself. Assuming that the simulation errors are
light-tailed is reasonable. For instance, many distributions we see in practice,
e.g, normal, gamma, beta, are light-tailed; any distribution with bounded
support is light-tailed.

Appendix A. Proof of part (i) of Lemma 2.8. We know that for all z ∈
B (Y1; ∆),

m (z) =

p∑

i=1

ℓi (z) f (Yi) ; M (z) =

p∑

i=1

ℓi (z) F̄ (Yi, n(Yi)) ,

where ℓj (z) are the Lagrange polynomials associated with the set Y. Since Y is
Λ-poised in B (Y1; ∆), we know (see Chapter 3 in [22]) that

(A.1) Λ ≥ Λℓ = max
i=1,2,...,p

max
z∈B(Y1;∆)

|ℓi (z)| .

Now write, for z ∈ B (Y1; ∆),

|M (z)−m (z)| =
∣∣∣∣∣

p∑

i=1

ℓi (z)
(
F̄ (Yi, n(Yi))− f (Yi)

)
∣∣∣∣∣

≤ pΛℓ max
i∈{1,2,...,p}

∣∣F̄ (Yi, n(Yi))− f (Yi)
∣∣

≤ pΛ max
i∈{1,2,...,p}

∣∣F̄ (Yi, n(Yi))− f (Yi)
∣∣ ,

where the last inequality follows from (A.1).

Appendix B. Proof of part (ii) of Lemma 2.8.
If the model M(·) is a stochastic linear interpolation model, we see that for

i = 1, 2, 3, . . . , p

(B.1) (Yi − Y1)
T ∇M (Y1) = M (Yi)−M (Y1) = f (Yi)− f (Y1) + Ei − E1.

Now re-trace the steps of the proof on pages 26 and 27 of [22], while carrying the
additional term Ei − E1 appearing on the right-hand side of (B.1).

If the model M(·) is a stochastic quadratic interpolation model, we write z ∈
B(Y1,∆), M(z) = c + zT g + 1

2z
THz = f(z) + ef (z);∇M(z) = Hz + g = ∇f(z) +

eg(z);∇2M(z) = H = ∇2f(z) + eH(z). Now write, after subtracting the expression
for M(z) from that for M(Yi), i = 1, . . . , p+ 1 to get

(B.2) (Yi−z)T g+
1

2
(Yi−z)TH(Yi−z)+(Yi−z)THz = f(Yi)−f(z)+Ei−ef(z).
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Notice that the equation in (B.2) is identical to the corresponding equation on page
53 of [22] except for the extra term Ei appearing on the right-hand side of (B.2).
Re-trace the steps on pages 53, 54, and 55 of [22].

Appendix C. Model Construction Algorithm Termination. In what fol-
lows, we demonstrate through the following result that the model construction algo-
rithm (Algorithm 2) terminates with probability one, whenever the incumbent solu-
tion Xk is not a first-order critical point.

Lemma C.1. Suppose the incumbent solution Xk ∈ IRd during the kth iteration
is not first-order critical, that is, ∇f(Xk) 6= 0. Then Algorithm 2 terminates in a
finite number of steps with probability one.

Proof. Set ‖∇f(Xk)‖ = c′ 6= 0. We will prove the assertion through a contradic-
tion argument.

First, we notice that the contraction loop (Steps 3–9) in Algorithm 2 is not entered
if µ ‖∇Mk (Xk)‖ ≥ ∆̃k, in which case Algorithm 2 terminates trivially.

Next, suppose µ ‖∇Mk (Xk)‖ < ∆̃k and that the contraction loop in Steps 3–9

of Algorithm 2 is infinite. Let ∇M
(jk)
k (Xk) denote the model gradient during the

kjth iteration of the contraction loop. Then µ
∥∥∥∇M

(jk)
k (Xk)

∥∥∥ < ∆̃kw
jk−1, ∀jk ≥ 1.

This means, since w < 1, that ∆̃kw
jk−1 → 0 and therefore

∥∥∥∇M
(jk)
k (Xk)

∥∥∥ wp1−−→ 0 as

jk → ∞. Furthermore, due to the sampling rule in (4.2) and by Theorem 2.6, we have

that N
(
Y

(jk)
i

)
→ ∞ as jk → ∞. Now, if E

(jk)
k,i = F̄

(
Y

(jk)
i , N

(
Y

(jk)
i

))
−f

(
Y

(jk)
i

)
,

then we can write for large enough k and some δ > 0,

(C.1) P





∑p
i=2

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣

∆̃kwjk−1
≥ c



 ≤ 8(p− 1)3c−2(1 + δ)κ2

ias∆
2
kλ

−1
k ,

which follows from arguments identical to (5.15) in the proof of Lemma 5.3. Since
the right-hand side of (C.1) is summable, we conclude by Borel-Cantelli’s first lemma

(Lemma 2.10) that
(
∆̃kw

jk−1
)−1 ∑p

i=2

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣ wp1−−→ 0. This implies, from

Lemma 2.8 and since Algorithm 2 maintains full-linearity, that as jk → ∞,

∥∥∥∇f (Xk)−∇M
(jk)
k (Xk)

∥∥∥ ≤ κ1

(
∆̃kw

jk−1
)θ

+ κ2

∑p
i=1

∣∣∣E(jk)
k,i − E

(jk)
k,1

∣∣∣
(
∆̃kwjk−1

) wp1−−→ 0.

Hence we have arrived at a contradiction since we argued that
∥∥∥∇M

(jk)
k (Xk)

∥∥∥ wp1−−→ 0

but then ‖∇f(Xk)‖ = c′ 6= 0 by the contrapositive assumption.
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